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Principle of Locality
[7.1]

Memory systems are organized as a
memory hierarchy because of the
principle of locality.

Principle of Locality

[7.1.1]

The principle of locality has two components:

. temporal locality—If location X is
accessed, it is likely to be accessed again
in the near future.

. spatial locality—If location X is accessed,
other locations close to X are likely to be
accessed in the near future.

Principle of Locality
i = [7.1.2]

Most software exhibits these characteristics:

. Instruction accesses
. spatial locality due to sequential
instruction access
.temporal locality due to loops and
recursion
. Data accesses
. spatial locality due to arrays and
structures
.temporal locality due to temporaries
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Memory Technology
[7.2]

There are a variety of memory
technologies. Each provides a
different blend of speed (access
time) and cost per bit
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Memory Technology
[7.2.1]

The three most common technologies are

. SRAM—Static RAM

Transistor feedback cells (no refreshing)
Access time: 1 to 10 ns
. DRAM—Dynamic RAM

Capacitor cells (requires refreshing)
Access time: 10 to 100 ns
. Magnetic Disk

Mechanical arm and platters

Access time: 10 to 50 ms
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Memory Technology
[7.2.2]

Note that magnetic disks are a million
times slower than DRAM: ms = 108 X ns.

Also, memory speed is directly proportional
to cost:

SRAM . - . .
increasing increasing

DRAM speed_ _ cost
(decreasing (in terms of

Disk access time) $ per MByte)
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Memory Technology
[7.2.3]

If you can spend a fixed amount of money on
only one memory technology, then you can
buy

large small
and OR and
slow fast

However, you want large and fast.
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Memory Hierarchy Structure
[7.3]

If the principle of locality holds,
we can combine memory
technologies to give the illusion of a
large and fast memory.
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Memory Hierarchy Structure
T = [7.3.1]

How can combining memory technologies
help?

1.When a location is accessed the first time,
retrieve the value from long-term storage in
a large and slow memory.

2.However, save the value along with the
values of nearby locations in a small and
fast memory.

3.Accesses to these values are very likely in
the near future and they can be satisfied
by the small and fast memory.
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Memory Hierarchy Structure

[7.3.2]

Typical i~ one chip
Memory i :
Hierarchy §
SRAM I SRAM i | multiple
higher levels ... E==g==l.....0 [-levels of
(closer to CPU) cache
l main
DRAM memory

lower levels i
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Memory Hierarchy Structure

[7.3.3]

Common terminology:

. hit—a memory access that finds the value
in the current memory level

. miss—a memory access that does not find
the value in current memory level; the
value must be sought in lower levels

. hit time—access time if a hit occurs

. miss penalty—additional access time if a
miss occurs (can vary)

v— 9

Cache Organization

Example Cache Operation

Caches and Writing

Miss Analysis
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Cache Overview
[7.4.1]

Caches are high-speed, temporary
storage for memory values likely to
be accessed in the near future.

Cache Overview
T = [7.4.1.1]

Caches are small (compared to main
memory), high-speed SRAM memories that
are close to the CPU.

By satisfying most memory requests, caches
decrease the average memory access time.

A block or cache line is the unit of data
transferred between a cache and the next
lower memory level. Block sizes are typically
between 4 and 256 bytes.
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Cache Overview
[7.4.1.2]

A cache stores blocks from widely scattered
locations—how are the blocks organized?

o[ [y cache

block

main
memory

‘ S

First, we need to know about block addressing.
.




Cache Overview
T = [7.4.1.3]

Every byte in main memory has a byte
address. Once a block size is chosen, every
main memory byte also has a block
address:

byte address

block address = m ﬂoor function
in bytes (i.e., dr.op the
fraction)
Example: block _ | 963
byte address = 963  address |JGJ
block size = 16 bytes — |_60-188J - 60
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T = [7.4.1.4]

When the block size is a power of two, the
byte address divides cleanly into two parts:

byte address
| : 1 Think about
| | | this as the
' | N address into
block address  byte offset the block.

(Note that block addresses are a
generalization of what we have called "word
addresses", "halfword addresses"etc.)
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Cache Overview

[7.4.1.5]

Example:
byte addr = 32 bits
block size = 32 bytes (or 8 words)
Thus, the byte offset will be 5 bits
since 32 = 25,
block address = 32 - 5 = 27 bits

31 5 4 0

L I |
T T
block address byte offset
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Cache Organization
A

Fully Associative Caches

Direct Mapped Caches

Set Associative Caches

Block Replacement Policy

Fully Associative Caches
[7.4.2.1]

With a fully associative
organization, blocks from main
memory can be placed
anywhere in the cache.

Fully Associative Caches
[7.4.2.1.1]

Fully associative caches get their name from
associative memories.

Associative memories use comparators to
retrieve a value based on the value's content
instead of an index into the memory.

In a fully associative cache, blocks are stored
along with their block address. Blocks are
located by searching for the block with a
given block address.

L

Fully Associative Caches
[7.4.2.1.2]

input block address
block address valid (tag) block data
bit | —! I

AN TR

00

found
match comparators output

block data
[ (. T

7 Fully Associative Caches
i = [7.4.2.1.3]

However, memory density is reduced because
the comparators require a lot of hardware.

Also, building the comparators into hardware
tends to reduce flexibility in address and
block size.

We will find that other cache approaches work
almost as well, so associative memories are
low volume, expensive parts and large,
fully associative caches are rare.
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Direct Mapped Caches
[7.4.2.2]

By restricting the placement of
blocks, the direct mapped
approach needs only one
comparator.
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Direct Mapped Caches

[7.4.2.2.1]

To reduce the number of comparators, blocks
can be placed into the cache according to an
index value derived from the block address.

The simplest
index is just |
some lower bits block address

of the block T : ]
address. The [ | | |
remaining bits | | Il | I
are called the tag index byte offset

tag.

byte aldd ress
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Direct Mapped Caches

[7.4.2.2.2]
input valid
block address bit tag block data
bt :
index | |
(selects | '
block)
% N,
tag
D output
found match block data
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Direct Mapped Caches

[7.4.2.2.3]

A block can go into only one location—the
one identified by its index.

That is, the index is the address of the block
in the cache. If we let
indexCount = number of index bits
blockCount = number of cache blocks
then
2indexCount — hlockCount
index = (block address) mod blockCount
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Direct Mapped Caches
i = [7.4.2.2.4]

Example: block address = 60, blockCount =
16
index = 60 mod 16 = 12

Problem: Different blocks may have the same
index (just like hashing)—called interference
or conflict.

Example: 44
If blockCount = 16, then ¢4
all of these blocks have
the same index (12): 76

v— N

Set Associative Caches

[7.4.2.3]

Set associative caches are a
compromise between fully associative
and direct mapped caches.

A /.

Set Associative Caches
[7.4.2.3.1]

Set associative caches use a small number
of comparators (like direct mapped), but
they retain flexibility in block placement
(like fully associative).

A set associative cache is divided into sets.
"n-way set associative" means that there
are n blocks in each set.

The index is used to select the set instead
of the block.

e —— i —————

Set Associative Caches
[7.4.2.3.2]
input valid
block address bit tag block data
b —— :

index I I
(selects [
set) r
L

N
~
~

I

tag

—G output

~
found match block data
A (. T




Set Associative Caches
i = [7.4.2.3.3]

A block can be placed anywhere within the
set that its index selects.

Note these special cases:

. direct mapped is "1-way set associative"
. fully associative is
"(blockCount)-way set associative"

Also, if setCount = number of sets in cache
index = (block address) mod setCount

v

Block Replacement Policy
[7.4.2.4]

When the possible cache locations

for placing a new block are already

filled, some block must be chosen
for replacement.

v— 9

Block Replacement Policy

[7.4.2.4.1]

When a new block is brought into the cache,
where does it go?

. direct mapped—only one location
If a block is already there, replace it.

. fully or set associative—multiple
locations possible
If there are already blocks in all of those
locations, one must be chosen for
replacement—which one?

i 4§

Block Replacement Policy

[7.4.2.4.2]
Choosing a block to replace:

.random—pick a block at random; actually
works quite well in practice.

. least recently used (LRU)—pick the
block that has not been accessed for the
longest time

LRU is hard to do exactly in hardware, so
there are various approximation schemes.
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Example Cache Operation

[7.4.3]

Direct Mapped Example
Set Associative Example

Fully Associative Example

A £,

Direct Mapped Example
[7.4.3.1]

Consider the operation of a
direct mapped cache through a
series of 12 memory accesses.

Direct Mapped Example
i = [7.4.3.1.1]

Assume the cache has a total of 32 words and
a block size of 2 words.

32/2 = 16 blocks in the cache
2% = 16, so the index is 4 bits
23 = 8 bytes, so the byte offset is 3 bits
32 -4 -3 = 25, so the tag is 25 bits
Total cache size is

blockCount X (valid bit + tag + data)

= 16(1 + 25 + 64) = 1,440 bits

R (R R —S,

Direct Mapped Example
[7.4.3.1.2]

For cache index calculations:

block address = I%J

index = (block address) mod 16
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Direct Mapped Example
[7.4.3.1.3]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

580 72 8 M
Updated Cache Contents
Index Block
0
1
2
3
4
5

(e BN Re)]

72

(o]

11
12
13
14
15

A .

Direct Mapped Example

[7.4.3.1.4]
Memory Access

Byte Addr. Block Addr. Index Hit or Miss
312 39 7 M

Updated Cache Contents

Index Block
0

aua b WN =

39
72

[eoRENNNe))

(o]

11
12
13
14
15

A .

Direct Mapped Example
[7.4.3.1.5]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

580 72 8 H
Updated Cache Contents
Index Block
0
1
2
3
4
5

39
72

0 N

o]

11
12
13
14
15
—— —— ————

Direct Mapped Example
[7.4.3.1.6]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

364 45 13 M
Updated Cache Contents
Index Block
0

u b wWwN =

39
72

(e RN Re)]

(o]

11
12
13 45
14
15

A /.




Direct Mapped Example
[7.4.3.1.7]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

536 67 3 M
Updated Cache Contents
Index Block
0
1
2
3 67
4
5

39
72

(e BN Re)]

(o]

11
12
13 45
14
15
e —— i —— "

Direct Mapped Example

[7.4.3.1.8]
Memory Access

Byte Addr. Block Addr. Index Hit or Miss

324 40 8 M
Updated Cache Contents
Index Block
0
1
2
3 67
4
5

39
72 40

[eoRENNNe))

(o]

11
12
13 45
14
15
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Direct Mapped Example
[7.4.3.1.9]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

412 51 3 M
Updated Cache Contents
Index Block
0
1
2
3 67 51
4
5

39
72 40

0 N

o]

11
12
13 45
14
15
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Direct Mapped Example
[7.4.3.1.10]

Memory Access

Byte Addr. Block Addr. Index Hit or Miss
528 66 2 M

Updated Cache Contents

Index Block
0
66
67 51

u b wWwN =

39
72 40

(e RN Re)]

(o]

11
12
13 45
14
15

A /.




Direct Mapped Example
[7.4.3.1.11]

Memory Access

Byte Addr. Block Addr. Index Hit or Miss
664 83 3 M

Updated Cache Contents

Index Block
0

66
67 5t 83

Uu b~ wWN =

39
72 40

(e BN Re)]

(o]

11
12
13 45
14
15

A .

Direct Mapped Example

[7.4.3.1.12]

Memory Access

Byte Addr. Block Addr. Index Hit or Miss
576 72 8 M

Updated Cache Contents

Index Block
0
1
2 66
3 67 5t 83
4
5

39
724972

[eoRENNNe))

(o]

11
12
13 45
14
15
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Direct Mapped Example
[7.4.3.1.13]

Memory Access

Byte Addr. Block Addr. Index Hit or Miss
668 83 3 H

Updated Cache Contents

Index Block
0
1
2 66
3 67 5t 83
4
5

39
7249 72

0 N

o]

11
12
13 45
14
15
—— —— ————

Direct Mapped Example
[7.4.3.1.14]

Memory Access

Byte Addr. Block Addr. Index Hit or Miss
536 67 3 M

Updated Cache Contents

Index Block
0
1
2 66
3 67 5t 83 67
4 Note
5 misses

d

due to
39 conflict

724672

(e RN Re)]

(o]

11
12
13 45
14
15
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Direct Mapped Example
[7.4.3.1.15]

i =
Note that for this example

miss rate = number of misses = E = 83.3%
number of accesses 12
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Set Associative Example
[7.4.3.2]

Consider the operation of a set
associative cache of the same
size as it processes the same

series of 12 memory accesses.

v—————p———————— 4§\

Set Associative Example

[7.4.3.2.1]

Assume the cache is 2-way set associative, a
total of 32 words, a block size of 2 words, and
LRU replacement.

Still 16 blocks, but now 16/2 = 8 sets

23 = 8, so the index is 3 bits

Same block size means byte offset is 3 bits
32 -3 - 3 = 26, so the tag is 26 bits

Total cache size is
= 16(1 + 26 + 64) = 1,456 bits

y— 4§

Set Associative Example

[7.4.3.2.2]
For cache index calculations:

block address = I%J

index = (block address) mod 8

v————p————————— 4§ N

Set Associative Example
[7.4.3.2.3]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

580 72 0 M
Updated Cache Contents
Index Block A Block B
0 72

1
2
3
4
5

r—— P4\

Set Associative Example
[7.4.3.2.4]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

312 39 7 M
Updated Cache Contents
Index Block A Block B

0 72

u b WN =

v 49— %




Set Associative Example

i = [7.4.3.2.5]
Memory Access
Byte Addr. Block Addr. Index Hit or Miss
580 72 0 H
Updated Cache Contents
Index Block A Block B
0 72
1
2
3
4
5

v 94— ¥

Set Associative Example

[7.4.3.2.6]
Memory Access
Byte Addr. Block Addr. Index Hit or Miss
364 45 5 M
Updated Cache Contents

Index Block A Block B

0 72

1

2

3

4

5 45

v————p————————— 4§ N

Set Associative Example

i = [7.4.3.2.7]
Memory Access
Byte Addr. Block Addr. Index Hit or Miss
536 67 3 M
Updated Cache Contents
Index Block A Block B
0 72
1
2
3 67
4
5 45

r—— P4\

Set Associative Example

T = [7.4.3.2.8]
Memory Access
Byte Addr. Block Addr. Index Hit or Miss
324 40 0 M
Updated Cache Contents
Index Block A Block B
0 72 40
1
2
3 67
4
5 45

v 94— ¥




Set Associative Example
[7.4.3.2.9]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

412 51 3 M
Updated Cache Contents
Index Block A Block B
0 72 40

1

2

3 67 51
4

5 45

v 49— %

Set Associative Example

[7.4.3.2.10]
Memory Access

Byte Addr. Block Addr. Index Hit or Miss

528 66 2 M
Updated Cache Contents
Index Block A Block B
0 72 40

1

2 66

3 67 51
4

5 45

v—————p———————— 4§\

Set Associative Example
[7.4.3.2.11]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

664 83 3 M
Updated Cache Contents
Index Block A Block B
0 72 40

1

2 66

3 67 83 51
4

5 45

A (. —

Set Associative Example
[7.4.3.2.12]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

576 72 0 H
Updated Cache Contents
Index Block A Block B
0 72 40

1

2 66

3 67 83 51
4

5 45

R —— ——— ————




Set Associative Example
[7.4.3.2.13]

Memory Access
Byte Addr. Block Addr. Index Hit or Miss

668 83 3 H
Updated Cache Contents
Index Block A Block B
0 72 40

1

2 66

3 67 83 51
4

5 45

v 94— ¥

Set Associative Example

[7.4.3.2.14]
Memory Access

Byte Addr. Block Addr. Index Hit or Miss

536 67 3 M
Updated Cache Contents
Index Block A Block B
0 72 40

1

2 66

3 67 83 5t 67
4

5 45

v—————p———————— 4§\

Set Associative Example
[7.4.3.2.15]

i =
Note that for this example

) number of misses 9
miss rate = = — =75%
number of accesses 12

The miss rate improved with the increase in
associativity.

v———— N

Fully Associative Example
[7.4.3.3]

Consider the operation of a fully
associative cache of the same
size as it processes the same
series of 12 memory accesses.

v 9

Fully Associative Example
i = [7.4.3.3.1]

Assume the cache is fully associative, a total
of 32 words, a block size of 2 words, and LRU
replacement.

Still 16 blocks

No index bits

Same block size means byte offset is 3 bits
32 - 3 = 29, so the tag is 29 bits

Total cache size is
= 16(1 + 29 + 64) = 1,504 bits

—— | ————

Fully Associative Example
[7.4.3.3.2]

Memory Accesses Final Cache Contents

Byte Block Hit or (Letters are
Addr. Addr. Miss block labels)
580 72 M A B C D
312 39 M 72 39 45 67
580 72 H E F G H
364 45 M 40 51 66 83
536 67 M I J K L
324 40 M

412 51 M M N O P
528 66 M




664 | 83 M miss rate = 8/12 = 67%
576 72 H

668 83 H Greater associativity
536 67 H improves the miss rate.
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Caches and Writing
[7.4.4]

When a store is executed, we
have to make sure that the
written value finds its way back
to main memory.

v—————p———————— 4§\

Caches and Writing

[7.4.4.1]

There are two aproaches to handling a store:

. write through—Writes are much less
frequent than reads so just write into cache
and main memory.

. write back—Write only to cache and use
"dirty" bit to keep track of which cache
blocks have been changed.

Copy to main memory when a dirty block is
replaced.

: Caches and Writing
i = [7.4.4.2]

Adv. Disadv.
Write simple and slower
Through memory stays (write buffers
consistent can help)
Write faster and more complex
Back consolidates controller and
writes memory may
be inconsistent
at times

A .

Caches and Writing

[7.4.4.3]

memory inconsistency:
corresponding blocks at different
levels have different values

write through: blocks

stay the same.

main IZI/ write back: blocks can be
memory different for a long time.

: Inconsistency is not a
b problen‘l until we a“dd
other "observers".

Miss Analysis
[7.4.5]

Block Size and Misses

Associativity and Misses

Miss Classification

Reducing the Miss Penalty

Block Size and Misses
[7.4.5.1]

For a given cache size, there is an
optimal block size for a program.
Blocks that are too small do not
exploit spatial locality, but blocks
that are too large cannot tolerate
spatial nonlocality.

e E———

: Block Size and Misses
i = [7.4.5.1.1]

miss block block
penalty| < size] = countl

U U

ability to ability to
exploit tolerate
spatial spatial
locality nonlocality




Block Size and Misses
[7.4.5.1.2]

Easy to see for the extreme case:

cache

(1 block) [ 1] | cache

(2 blocks)
memory memory
(2 blocks) I:I:IIt D]:Dlr (4 blocks)

nonlocal nonlocal
jumping causes jumping
cache thrashing tolerated

A /. (R

i = [7.4.5.1.3]
(blocks start
thrashing in and
miss out of the cache)
rate

N el
exploiting residual
more spatial nonlocality
locality dominates
block
size

A —

Associativity and Misses

[7.4.5.2]

The miss rate decreases as
associativity increases, but
performance may or may
not increase.

A (R ———

Associativity and Misses

[7.4.5.2.1]

Many misses are caused by inflexible block
placement in the cache, i.e., when blocks can
go to only certain cache places. Recall

. direct mapped—block has only one place
. n-way set associative—block has n places
. fully associative—block can go anywhere

Blocks that map to the same locations in the
cache are said to interfere or conflict.

i— & N

Associativity and Misses
[7.4.5.2.2]

Conflict can cause severe problems with
certain array access patterns.

cache [T

main

LTI TIATT PRI
memor
| . N N
Interference can be fully associative
reduced by increasing | set associative
associativity: direct mapped

A R

Associativity and Misses
[7.4.5.2.3]

associativity T :> miss rate 1

miss
rate

always decreases
(or stays the same)

—_

associativity
R . s,

Associativity and Misses
[7.4.5.2.4]

associativity | = hit time } = performance | |2

performance

3577 slower
-, hardware

decreasing
miss rate

associativity
y———————

Miss Classification
[7.4.5.3]

To summarize miss behavior, we
can organize misses into three
categories: compulsory,
capacity, and conflict.

A .




Miss Classification
[7.4.5.3.1]

Compulsory misses:

. These are misses resulting from the first
access to a block.
. Also called cold-start misses

To reduce compulsory misses, increase the
block size to exploit more spatial locality.

Miss Classification
i = [7.4.5.3.2]

Capacity misses:

. These are misses caused by a full cache.
When the cache is full, blocks may often be
forced out and then reloaded.

. Note that these misses will occur even with
a fully associative cache.

To reduce capacity misses, increase the
size of the cache.

v 94— §

Miss Classification

[7.4.5.3.3]

Conflict misses:

. These are misses caused by inflexible
block placement.

. In direct mapped and set associative
caches, blocks may be forced out and
reloaded even though there are plenty of
empty locations (i.e., not capacity misses).

To reduce conflict misses, increase the
cache's associativity.

A /.

Miss Classification
[7.4.5.3.4]

ntway
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Reducing the Miss Penalty
[7.4.5.4]

Even if misses are infrequent, a
miss penalty of 50 to 100 clock
cycles would significantly
degrade performance.

The miss penalty can be reduced
using a variety of techniques.

v— N

Reducing the Miss Penalty
[7.4.5.4.1]

. Use intelligent transfers when the
needed word is in the middle of a block:
.early restart—resume execution as
soon as the word comes in; do the rest
of the block transfer in the background
.requested word first—start transfer
with the needed word and "wrap around"
. Instead of stalling the pipeline waiting on a
block, use dynamic pipeline scheduling
to execute instructions out of order.

——————— & N

Reducing the Miss Penalty
i = [7.4.5.4.2]

.Increase memory bandwidth

]

I cache | transfer

more than
@e bus ~— one word at a
time
(128 bits, 256
main memory bits, ...)

A £,

g Reducing the Miss Penalty
i = [7.4.5.4.3]

Take advantage of bus speed > memory speed:

use interleaved

t memory to increase
bandwidth (multiple
banks working in
t

I T T y / parallel)

memory banks
A (.




Reducing the Miss Penalty
[7.4.5.4.4]

Take advantage of memory burst capability:

DRAM reading a

row from the

capacitor array at;ray tta?kes a
ong time,

[ ]-+—but, an entire
1 I row can be

f buffered
row contents can be

read very quickly

A £,

Reducing the Miss Penalty
[7.4.5.4.5]

. Use multilevel caches

To support fast clocks,
the first-level caches on the
i chip must be small (16KB to
i .~ 64KB). They have high

miss rates.

The second-level cache

effectively decreases the

miss penalty of the first-
level caches.

~—
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Virtual Memory
[7.5]

Virtual Memory Uses

[7.5.1]

— 4 N

Overview of Uses
[7.5.1.1]

Caches are used to increase the
effective speed of main memory. Virtual
memory is used to increase the
effective size of main memory, but it
also has other uses unrelated to the large
and fast illusion of the memory hierarchy.

Overview of Uses
[7.5.1.1.1]

Virtual memory has a variety of uses:

A.Increase the effective size of main
memory

B.Allow simple, efficient sharing of main
memory among multiple programs

C.Prevent multiple programs from interfering
with each other (whether maliciously or
accidentally)

Overview of Uses
i = [7.5.1.1.2]

Note that uses B and C are not part of the
large and fast illusion of the memory
hierarchy. Why combine them with virtual
memory?

Use A requires an address translation and
this address translation is a convenient place
to support B and C.

Supporting B is essentially free, and C only
requires the addition of some control bits.

A — —

Increasing Effective Memory Size
[7.5.1.2]

Virtual memory allows main
memory to be used as a "cache"
for a large swap space on a
disk. Blocks are called pages and
misses are called page faults.
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Increasing Effective Memory Size
[7.5.1.2.1]

I to/from caches

main
memory

swap space pages are
(10’s to transferred

100’s MB) back and forth

file system
hard disk space

A

Increasing Effective Memory Size
[7.5.1.2.2]

i =
Page sizes range from 4 KB to 64 KB.
The increase in effective memory size lets you

.Run larger executables with more data (not
very effective for scientific codes)

. Keep multiple programs open in particular
states

. Avoid file manipulation in software (CAD
tools use this a lot)

v————p————————— 4§ N

Increasing Effective Memory Size

[7.5.1.2.3]

Since main memory acts like a cache, some
mechanism must specify where a particular
page is placed in main memory: address
translation.

virtual address—the address generated by
the program

physical address—the address actually used
to access main memory

vy 34— ¥

Increasing Effective Memory Size
[7.5.1.2.4]

) T
virtual | | |
address

physical | T |
address

T T
physical page number (PPN) page offset
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Increasing Effective Memory Size

i = [7.5.1.2.5]
Virtual Memory Caches
page offset byte offset
VPN block address
PPN index

(This "index" is found
from a table instead of
simply VPN bits.)

Note:
virtual address size: set by ISA
VPN, PPN, page offset sizes: set by
hardware

Sharing Memory Space Efficiently
[7.5.1.3]

Different programs can have
different address translations.
Thus, every program can "see"
one large memory space with
only it and the OS.

—— —— ————

Sharing Memory Space Efficiently

Typical virtual memory arrangement:

' ! top half
user program 1 kernel 1 yeyoted to 0S
sees a complete | @ SP3C€ 1 7 (shared by all
virtual address | . (2 GB) | programs)
Sp3a2(i(la3ig4vi?ti;(ljr user bottom half
addresses) space - devoted to
(2 GB) user program

Sharing Memory Space Efficiently

[7.5.1.3.2]
stack | v
: fragments
of virtual
} — | space may
heap I e _ actua||y be
: dt
static data | 1 jal to m;f?fsei!calo
text physical ages
address g | P2
user space translation
(2 GB)
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Sharing Memory Space Efficiently
[7.5.1.3.3]

User spaces from different programs can be
easily mixed in physical memory:

pages pages
of user of user
space A space B

physical memory

A — —

Controlling Memory Space Access
[7.5.1.4]

Virtual memory is the foundation
for all computer security.

During the address translation, a
memory access can be checked to
see if the process has permission to
read the requested area of memory.

] A ————

Controlling Memory Space Access

[7.5.1.4.1]

Memory restrictions are not useful if they can
be changed by any process. Thus, a processor
needs at least two modes:

. kernel mode—ability to access and change
everything (used by the OS)

. user mode—restricted access; cannot
change the virtual memory translations, etc.

On the MIPS, user programs can switch to
kernel mode in a restricted way with "syscall".

v 4§

Controlling Memory Space Access

[7.5.1.4.2]

With different modes protecting the integrity
of the address translation, we can set up
access restrictions for a given process:

. Make some pages inaccessible in a mode
. Make some pages read only in a mode
. Give full access to some pages in a mode

Various combinations of access restrictions for
the kernel and user modes are possible.

— N

Address Translation

i = [7.5.2]

Page Tables

Making Page Tables Smaller

Making Page Tables Faster

Page Tables
[7.5.2.1]

The miss penalty for virtual memory
is extremely high: on the order of
108 clock cycles.

For the absolute minimum miss
rate, a fully associative mapping is
used: any virtual page can be
placed into any physical page.

i— & N

Page Tables
i = [7.5.2.1.1]

For the fully associative mapping, do we need
lots of hardware comparators?

In virtual memory, the blocks (pages) are
large, and there are far fewer of them than
cache blocks.

Thus, it is feasible to have a lookup table with
an entry for every VPN (block address). The
table eliminates the comparator hardware but
it takes time to do the lookup.

e —— i —————

i Page Tables
i = [7.5.2.1.2]

The lookup table is called a page table. The
address of a table entry is the VPN; the main
contents of an entry is the PPN.

The user space of each process is mapped by
a separate page table:

. This allows each process to have an
uncluttered view of memory

. This prevents processes from interfering—a
process cannot "escape" its page table.
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Page Tables

i = [7.5.2.1.3]
page table VPN page offset
register l 1 I ]
T6h
cannot be page table
changed in
user mode VTR
valid bit =
(invalid entry could

hold disk location) PPN lpage offsetl

Making Page Tables Smaller
[7.5.2.2]

Even though page tables have a
reasonable size for 32-bit addresses, we
can divide the tables into segments to

make more efficient use of memory.

A .

Making Page Tables Smaller

[7.5.2.2.1]

If the VPN is 20 bits and each page table entry
is 4 bytes, 4 MB are required for the page
table of each program. Imagine the
problem with 64-bit addresses!

Page table size can be reduced by not
mapping certain areas of virtual space:

. Just map the top (stack) and bottom (heap)
. Or, support a generalized segment structure
with a hierarchical table

v 4§

Making Page Tables Smaller

[7.5.2.2.2]
small | ™
page stack .
vast middle
table / : } region of virtual
space is not
— | heap mapped
small static data
page
table text
~—
user space
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Making Page Tables Smaller

i = [7.5.2.2.3]
Vl|3N
Iindexl index2 index3I page offset
page table ¢ [ ¢ [ ¢ | |
register l l l

(page tables
effectively build
a tree with each = PPN

table being a

node) level 1 level 2 level 3

v

Making Page Tables Faster
[7.5.2.3]

Address translation is required for
every memory access; so, it must be
fast. We cannot afford to do table
lookups for every memory access. A
special translation cache can be used to
speed up this process.

v— 9

Making Page Tables Faster
[7.5.2.3.1]

At any given time, there are usually only a few
pages that are being actively accessed. The
active pages are called the working set.

A small cache can hold the translations for the
pages in the working set—the historical name
for this cache is "Translation Look-Aside
Buffer" or TLB.

TLBs are usually small, built into the
processor, and fully or set associative.

—— | ————

input VPN PPN
VPN valid (tag) (block data)
bit | —— :
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Making Page Tables Faster
i = [7.5.2.3.3]

Watch out for the different conceptual levels
of caching here:

. In virtual memory, the main memory is a
cache for the swap space on the disk.

. The page tables hold the mapping that
tells where a page on the disk is placed in
main memory (for regular caches, the
mapping is simple—extract a few bits from
the block address)

.The TLB is a cache for the page tables.
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Handling Page Faults
[7.5.3]

Virtual memory must use a write
back scheme since writing through
is too slow even with a write buffer.
(Thus, page tables need a dirty bit)

v—————p———————— 4§\

Handling Page Faults

[7.5.3.1]

Page faults are handled by the OS. The miss
penalty is enormous anyway due to the disk
so there is plenty of time for software control.

Note that instructions must be restartable:

.On a page fault, the instruction must be
stopped before it changes visible state.
. Resume execution when the page is ready.
A simple load/store ISA helps tremendously!
— 3§

Handling Page Faults
i = [7.5.3.2]

Virtual memory may use random or LRU
replacement. One approximate LRU scheme is

. Give each page table entry a use bit (in
addition to the valid and dirty bits)

. Periodically clear all use bits

.When a page is accessed, set its use bit

. When choosing a page to replace, find one
with a cleared use bit if possible (such a
page would not have been accessed during
the last time period)

v

Virtual Caches
[7.5.4]

Where do we put our caches—
before or after the address
translation? This leads to the
concept of physical and virtual
caches.
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: Virtual Caches
[7.5.4.1]

. CPU .
virtual virtual
address address

address virtual
translation cache
physical virtual
address address
physical address
cache translation
t physical physical
address address
main main
memory memory
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Virtual Caches

T = [7.5.4.2]
Virtual Physical
Cache Cache
Adv. avoids translation simple
delays
Disadv. must be flushed blocks must
when processes be flushed
switch when a page
. is replaced
aliasing

v 4§

7 Virtual Caches
T = [7.5.4.3]
Notes:

. Virtual cache flushing can be eliminated by
appending the process ID to the virtual
address (like the TLB).

. Aliasing—two processes share a physical
page but it is represented in the cache at
different virtual addresses—updating one
cache block will not update the other

. You can mix virtual and physical, e.g.,
virtual first level and physical second level
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