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Design of Parallel Algorithms 

Bulk Synchronous Parallel 
A Bridging Model of Parallel Computation 



+ Need for a Bridging Model 

n  The RAM model has been reasonable successful for serial programming 
n  The model provides a framework for describing the implementation of serial algorithms 
n  The model provides reasonably accurate predictions for algorithm running times 

n  A bridging model is a model that can be used to design algorithms and also make 
reliable performance predictions 

n  Historically, there has not been a satisfactory bridging model for parallel 
computations.  Either the model is good at describing algorithms (PRAM) or is 
good at describing performance (network model) but not both. 

n  Leslie Valiant proposed the BSP model as a potential bridging model 
n  Basically an improvement on the PRAM model to incorporate more practical aspects of 

parallel hardware costs 



+ What is the Bulk Synchronous Parallel  
(BSP) model? 
n  Processors are coupled to local memories 

n  Communications happen in synchronized bulk operations 
n  Data updates for the communications are inconsistent until the completion of a 

synchronization step 
n  All of the communications that occur at the synchronization step are modeled in 

aggregate rather than tracking individual message transit times 

n  For data exchange, a one-sided communication model is advocated 
n  E.g. data transfer through put or get operations that are executed by only one side of 

the exchange (as opposed to 2 sided where send-receive pairs must be matched up.) 

n  Similar to a coarse grained PRAM model, but exposes more realistic 
communication costs 

n  BSP provides realistic performance predictions  



+ Bulk Synchronous Parallel Programming 

n  Parallel Programs are developed through a series of super-steps 

n  Each super-step contains: 
n  Computations that utilize local processor memory only 
n  A communication pattern between processors called an h-relation 
n  A barrier step whereby all (or subsets) of processors are synchronized 

n  The communication pattern is not fully realized until the barrier step is complete 

n  The h-relation: 
n  This describes communication pattern according to a single characteristic of the 

communication pattern called h 
n  h is defined as the larger of the number of incoming our outgoing interactions that occur 

during the communication step 
n  Time for communication is assumed to be mgh+l where m is the message size, g is an 

empirically determined bulk bandwidth factor, and l is an empirically determined time for 
barrier synchronization 



+ Architecture of a BSP Super-Step 

n  The super-step begins with local 
computations 

n  In some models, virtual processors are 
used to give the run-time system flexibility 
to balance load and communication 

n  Local computations are followed by a 
global communication step 

n  The global communications are completed 
with a  barrier synchronization 

n  Since every super-step starts after the 
barrier, computations are time 
synchronized at the beginning of each 
super-step 



+ Cost Model for BSP 

n  The network is defined by two bulk parameters 
n  The parameter g represents the average per-processor rate of word transmission 

through the network.  It is an analog to tw in network models. 
n  The parameter l is the time required to complete the barrier synchronization and 

represents the bulk latency of the network.  It is an analog to ts in network models. 

n  The cost of a super-step can be computed using the following formula 
n  tstep=max( wi ) + mg max( hi ) + l 
n  wi is the time for local work on processor i 
n  hi is the number of incoming or outgoing messages for processor i 
n  m is the message size 
n  g is the machine specific BSP bandwidth parameter 
n  l is the machine specific BSP latency parameter 



+ Example of BSP implementations of 
broadcast (central scheme) 
n  Since there is no global shared memory in the BSP model, we need to 

broadcast a value before it can be used by all processors 

n  There are several ways to implement broadcast algorithms, a central scheme 
would perform the broadcast by using one super-step with one processor 
communicating with all other processors.  This we call the central scheme. 

n  In this approach the h relation will be p-1 since one processor will need to 
send a message to all other processors. 

n  The cost for this scheme is tcentral = gh+l = g(p-1) + l 



+ Example: BSP broadcast using binary tree 
scheme 
n  Broadcast using a tree approach where the algorithm proceeds in log p 

steps 

n  Each step, every processor that presently has broadcast data sends to a 
processor that has no data 
n  Processors that have broadcast data doubles in each step 

n  Since each processor either sends or receives one or no data each step, the 
h relation is always h=1 

n  The time for each step of this algorithm is tstep = g+l 

n  The time for the overall broadcast algorithm that includes all log p steps 
n  ttree = (g+l) log p  



+ Optimizing broadcasts under BSP 

n  The central algorithm time: 
n  tcentral  = g(p-1) + l 

n  The tree algorithm time: 
n  ttree = (g+l) log p  

n  If l >> g then for sufficiently small p, then tcentral < ttree 

n  Can we optimize broadcast for specific system where we know g and l? 
n  There is no reason that we are constrained only double in each step,  We could 

triple, quadruple, or more each step. 
n  Combining the central and tree algorithm can yield an algorithm that can be 

optimized for architecture parameters 



+ Cost of the hybrid broadcast algorithm 

n  Each step of the algorithm, processors that have data will communicate with 
k-1 other processors, therefore h=k-1 in each step 

n  After logk p steps, all processors will have shared the broadcast data 

n  Therefore the cost of each step of the hybrid algorithm is (k-1)g and so the 
cost of the hybrid algorithm is thybrid = ((k-1)g + l)logk p 

n  To optimize set k such that thybrid’(k)=0, from this we find optimal k set by 
n  l/g = 1+k*(ln(k)-1) 

n  For a general message of m words, the broadcast algorithm can be shown to 
be thybrid = (m(k-1)g + l)logk p, and the optimal setting for k becomes 
n  l/(mg) = 1+k*(ln(k)-1) 



+ Practical application of BSP 

n  Several parallel programming environments have been developed based on 
the BSP model 

n  The second generation of the MPI standard, MPI-2, has an extended its API 
to include a one-sided communication structure that can emulate the BSP 
model (e.g. it is one-sided + barrier synchronization) 

n  Even when using two sided communications, parallel programs are often 
developed as a sequence of super-steps.  Using the BSP model, these can 
be analyzed using a bulk view of communications. 

n  The BSP model assumes that network is homogenous, but architectural 
changes, such as multi-core architectures, present challenges 
n  Currently model is being extended to support hierarchical computing structures 



+ Discussion Topic 

n  Implementation of summing n numbers using BSP model 

n  Serial Implementation: 

!

   int sum = 0 ;!

   for(int i=0;i<n;++i)!

     sum = sum + a[i] ;!



+ Dependency graph for serial summation 

a[0] sum 

a[1] 

a[2] 

a[3] 

a[4] 

Final sum  = (((((sum+a[0])+a[1])+a[2])+a[3])+a[4]) 



+ Problems with parallelizing the serial code 

n  The dependency graph does not allow one to perform subsequent 
operations.   
n  It is not possible, as the algorithm is formulated, to execute additions in parallel 

n  We note that the addition operation is associative 
n  NOTE!  This is not true for floating point addition! 
n  Although floating point addition is not associative, it is approximately associative 

n  Accurately summing large numbers of floating point values, particularly in 
parallel, is a deep problem  

n  For the moment we will assume floating point is associative as well, but note that 
in general an optimizing compiler cannot assume associativity of floating point 
operations! 

n  We can exploit associativity to increase parallelism 



+ How does associativity help with 
parallelization? 
n  We can recast the problem from a linear structure to a tree: 

n  ((((a0+a1)+a2)+a3) = ((a0+a1)+(a2+a3)) 
n  Now a0+a1 and a2+a3 can be performed concurrently! 

a[0] a[1] a[2] a[3] 

sum 



+ What are the costs of this transformation 

n  Using operator associativity we are able to reveal additional parallelism, 
however there are costs 
n  For the serial summing algorithm only one register is needed to store intermediate 

results (we used the sum variable) 
n  For the tree based summing algorithm we will need to store n/2 intermediate 

results for the first concurrent step 

n  For summing where 2n >> p, maximizing concurrency may introduce new 
problems: 
n  Storing extra intermediate results increase memory requirements of algorithm and 

may overwhelm available registers 
n  Assigning operations to processors (graph partitioning) is needed to parallelize the 

summation.  Some mappings will introduce significantly more inter-processor 
communication than others 



+ Mapping Operators to Processors 
Round Robin Allocation 

p1 

p2 

p3 

p0 



+ BSP model for round robin allocation of the 
tree 
n  Since there is communication for each level of the tree, there will be log n 

super-steps in the algorithm 

n  For level i in the tree, the algorithm will perform max(n/(2ip),1) operations 
on at least one processor. 

n  For level i in the tree, the algorithm will utilize an h relation where h = 
max(n/(2ip),2)  

n  Therefore the running time to sum n numbers on p processors using the BSP 
model is  
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+ Mapping Operators to Processors 
Communication Minimizing Allocation 
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+ BSP model for optimized allocation sum 

n  Notice that only the last log p levels of the tree will require communication 
between processors, therefore there will be only log p super-steps 

n  The first step will require n/p-1 operations per processor, and the remaining 
steps will only require 1 operation 

n  During these final log p steps, at most a processor either receives or send 
one piece of information, and so h = 1 for the h-relation 

n  From this the BSP model running time can be derived: 
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+ Comments on BSP analysis 

n  Obviously, in the BSP model, different allocations of work to processors can have 
radically different running times even though the work is equally balanced. 

n  For a PRAM model, both allocations would have had the same cost which is 
unrealistic. 

n  The cost structure of the BSP algorithms favors algorithms that have greater 
locality 

n  Even if we do not explicitly use a BSP model, we typically think of our algorithm 
going through a sequence of steps even if the implementation never explicitly 
enforces a barrier to get all processors to a unified state.  Therefore the BSP 
model closely matches how we typically think about practical parallel programs. 



+ Q&A 


