
+

Design of Parallel Algorithms

Bulk Synchronous Parallel
A Bridging Model of Parallel Computation

+ Need for a Bridging Model

n  The RAM model has been reasonable successful for serial programming
n  The model provides a framework for describing the implementation of serial algorithms
n  The model provides reasonably accurate predictions for algorithm running times

n  A bridging model is a model that can be used to design algorithms and also make
reliable performance predictions

n  Historically, there has not been a satisfactory bridging model for parallel
computations. Either the model is good at describing algorithms (PRAM) or is
good at describing performance (network model) but not both.

n  Leslie Valiant proposed the BSP model as a potential bridging model
n  Basically an improvement on the PRAM model to incorporate more practical aspects of

parallel hardware costs

+ What is the Bulk Synchronous Parallel
(BSP) model?
n  Processors are coupled to local memories

n  Communications happen in synchronized bulk operations
n  Data updates for the communications are inconsistent until the completion of a

synchronization step
n  All of the communications that occur at the synchronization step are modeled in

aggregate rather than tracking individual message transit times

n  For data exchange, a one-sided communication model is advocated
n  E.g. data transfer through put or get operations that are executed by only one side of

the exchange (as opposed to 2 sided where send-receive pairs must be matched up.)

n  Similar to a coarse grained PRAM model, but exposes more realistic
communication costs

n  BSP provides realistic performance predictions

+ Bulk Synchronous Parallel Programming

n  Parallel Programs are developed through a series of super-steps

n  Each super-step contains:
n  Computations that utilize local processor memory only
n  A communication pattern between processors called an h-relation
n  A barrier step whereby all (or subsets) of processors are synchronized

n  The communication pattern is not fully realized until the barrier step is complete

n  The h-relation:
n  This describes communication pattern according to a single characteristic of the

communication pattern called h
n  h is defined as the larger of the number of incoming our outgoing interactions that occur

during the communication step
n  Time for communication is assumed to be mgh+l where m is the message size, g is an

empirically determined bulk bandwidth factor, and l is an empirically determined time for
barrier synchronization

+ Architecture of a BSP Super-Step

n  The super-step begins with local
computations

n  In some models, virtual processors are
used to give the run-time system flexibility
to balance load and communication

n  Local computations are followed by a
global communication step

n  The global communications are completed
with a barrier synchronization

n  Since every super-step starts after the
barrier, computations are time
synchronized at the beginning of each
super-step

+ Cost Model for BSP

n  The network is defined by two bulk parameters
n  The parameter g represents the average per-processor rate of word transmission

through the network. It is an analog to tw in network models.
n  The parameter l is the time required to complete the barrier synchronization and

represents the bulk latency of the network. It is an analog to ts in network models.

n  The cost of a super-step can be computed using the following formula
n  tstep=max(wi) + mg max(hi) + l
n  wi is the time for local work on processor i
n  hi is the number of incoming or outgoing messages for processor i
n  m is the message size
n  g is the machine specific BSP bandwidth parameter
n  l is the machine specific BSP latency parameter

+ Example of BSP implementations of
broadcast (central scheme)
n  Since there is no global shared memory in the BSP model, we need to

broadcast a value before it can be used by all processors

n  There are several ways to implement broadcast algorithms, a central scheme
would perform the broadcast by using one super-step with one processor
communicating with all other processors. This we call the central scheme.

n  In this approach the h relation will be p-1 since one processor will need to
send a message to all other processors.

n  The cost for this scheme is tcentral = gh+l = g(p-1) + l

+ Example: BSP broadcast using binary tree
scheme
n  Broadcast using a tree approach where the algorithm proceeds in log p

steps

n  Each step, every processor that presently has broadcast data sends to a
processor that has no data
n  Processors that have broadcast data doubles in each step

n  Since each processor either sends or receives one or no data each step, the
h relation is always h=1

n  The time for each step of this algorithm is tstep = g+l

n  The time for the overall broadcast algorithm that includes all log p steps
n  ttree = (g+l) log p

+ Optimizing broadcasts under BSP

n  The central algorithm time:
n  tcentral = g(p-1) + l

n  The tree algorithm time:
n  ttree = (g+l) log p

n  If l >> g then for sufficiently small p, then tcentral < ttree

n  Can we optimize broadcast for specific system where we know g and l?
n  There is no reason that we are constrained only double in each step, We could

triple, quadruple, or more each step.
n  Combining the central and tree algorithm can yield an algorithm that can be

optimized for architecture parameters

+ Cost of the hybrid broadcast algorithm

n  Each step of the algorithm, processors that have data will communicate with
k-1 other processors, therefore h=k-1 in each step

n  After logk p steps, all processors will have shared the broadcast data

n  Therefore the cost of each step of the hybrid algorithm is (k-1)g and so the
cost of the hybrid algorithm is thybrid = ((k-1)g + l)logk p

n  To optimize set k such that thybrid’(k)=0, from this we find optimal k set by
n  l/g = 1+k*(ln(k)-1)

n  For a general message of m words, the broadcast algorithm can be shown to
be thybrid = (m(k-1)g + l)logk p, and the optimal setting for k becomes
n  l/(mg) = 1+k*(ln(k)-1)

+ Practical application of BSP

n  Several parallel programming environments have been developed based on
the BSP model

n  The second generation of the MPI standard, MPI-2, has an extended its API
to include a one-sided communication structure that can emulate the BSP
model (e.g. it is one-sided + barrier synchronization)

n  Even when using two sided communications, parallel programs are often
developed as a sequence of super-steps. Using the BSP model, these can
be analyzed using a bulk view of communications.

n  The BSP model assumes that network is homogenous, but architectural
changes, such as multi-core architectures, present challenges
n  Currently model is being extended to support hierarchical computing structures

+ Discussion Topic

n  Implementation of summing n numbers using BSP model

n  Serial Implementation:

!

 int sum = 0 ;!

 for(int i=0;i<n;++i)!

 sum = sum + a[i] ;!

+ Dependency graph for serial summation

a[0] sum

a[1]

a[2]

a[3]

a[4]

Final sum = (((((sum+a[0])+a[1])+a[2])+a[3])+a[4])

+ Problems with parallelizing the serial code

n  The dependency graph does not allow one to perform subsequent
operations.
n  It is not possible, as the algorithm is formulated, to execute additions in parallel

n  We note that the addition operation is associative
n  NOTE! This is not true for floating point addition!
n  Although floating point addition is not associative, it is approximately associative

n  Accurately summing large numbers of floating point values, particularly in
parallel, is a deep problem

n  For the moment we will assume floating point is associative as well, but note that
in general an optimizing compiler cannot assume associativity of floating point
operations!

n  We can exploit associativity to increase parallelism

+ How does associativity help with
parallelization?
n  We can recast the problem from a linear structure to a tree:

n  ((((a0+a1)+a2)+a3) = ((a0+a1)+(a2+a3))
n  Now a0+a1 and a2+a3 can be performed concurrently!

a[0] a[1] a[2] a[3]

sum

+ What are the costs of this transformation

n  Using operator associativity we are able to reveal additional parallelism,
however there are costs
n  For the serial summing algorithm only one register is needed to store intermediate

results (we used the sum variable)
n  For the tree based summing algorithm we will need to store n/2 intermediate

results for the first concurrent step

n  For summing where 2n >> p, maximizing concurrency may introduce new
problems:
n  Storing extra intermediate results increase memory requirements of algorithm and

may overwhelm available registers
n  Assigning operations to processors (graph partitioning) is needed to parallelize the

summation. Some mappings will introduce significantly more inter-processor
communication than others

+ Mapping Operators to Processors
Round Robin Allocation

p1

p2

p3

p0

+ BSP model for round robin allocation of the
tree
n  Since there is communication for each level of the tree, there will be log n

super-steps in the algorithm

n  For level i in the tree, the algorithm will perform max(n/(2ip),1) operations
on at least one processor.

n  For level i in the tree, the algorithm will utilize an h relation where h =
max(n/(2ip),2)

n  Therefore the running time to sum n numbers on p processors using the BSP
model is

tsum =
n
2ip
!

"
"

#

$
$tc +

n
4ip
!

"
"

#

$
$2g+ l

%
&
'

(
)
*i=1

logn

∑ ≅
n
p
(tc + g)+ l logn

+ Mapping Operators to Processors
Communication Minimizing Allocation

p1

p2

p3

p0

+ BSP model for optimized allocation sum

n  Notice that only the last log p levels of the tree will require communication
between processors, therefore there will be only log p super-steps

n  The first step will require n/p-1 operations per processor, and the remaining
steps will only require 1 operation

n  During these final log p steps, at most a processor either receives or send
one piece of information, and so h = 1 for the h-relation

n  From this the BSP model running time can be derived:

tsum =
n
p
−1

"

#
$

%

&
'tc + tc + g+ l{ }

i=1

log p

∑ =
n
p
−1

"

#
$

%

&
'tc + tc + g+ l() log p

+ Comments on BSP analysis

n  Obviously, in the BSP model, different allocations of work to processors can have
radically different running times even though the work is equally balanced.

n  For a PRAM model, both allocations would have had the same cost which is
unrealistic.

n  The cost structure of the BSP algorithms favors algorithms that have greater
locality

n  Even if we do not explicitly use a BSP model, we typically think of our algorithm
going through a sequence of steps even if the implementation never explicitly
enforces a barrier to get all processors to a unified state. Therefore the BSP
model closely matches how we typically think about practical parallel programs.

+ Q&A

