
+

Design of Parallel Algorithms

Parallel Dense Matrix Algorithms

+ Topic Overview

n  Matrix-Vector Multiplication

n  Matrix-Matrix Multiplication

n  Solving a System of Linear Equations

+ Matix Algorithms: Introduction

n  Due to their regular structure, parallel computations involving matrices and
vectors readily lend themselves to data-decomposition.

n  Typical algorithms rely on input, output, or intermediate data decomposition.

n  Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic
partitionings.

+ Matrix-Vector Multiplication

n  We aim to multiply a dense n x n matrix A with an n x 1 vector x to yield the n
x 1 result vector y.

n  The serial algorithm requires n2 multiplications and additions.

W = n2

+ Matrix-Vector Multiplication:
Rowwise 1-D Partitioning
n  The n x n matrix is partitioned among n processors, with each processor

storing complete row of the matrix.

n  The n x 1 vector x is distributed such that each process owns one of its
elements.

+ Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

Multiplication of an n x n matrix with an n x 1 vector using rowwise block 1-D
partitioning. For the one-row-per-process case, p = n.

+ Matrix-Vector Multiplication:
Rowwise 1-D Partitioning
n  Since each process starts with only one element of x , an all-to-all broadcast

is required to distribute all the elements to all the processes.

n  Process Pi now computes .

n  The all-to-all broadcast and the computation of y[i] both take time Θ(n) .
Therefore, the parallel time is Θ(n) .

y[i]= A[i, j]× x[j]()
j=0

n−1
∑

+ Matrix-Vector Multiplication:
Rowwise 1-D Partitioning
n  Consider now the case when p < n and we use block 1D partitioning.

n  Each process initially stores n=p complete rows of the matrix and a portion of the
vector of size n=p.

n  The all-to-all broadcast takes place among p processes and involves messages
of size n=p.

n  This is followed by n=p local dot products.

n  Thus, the parallel run time of this procedure is

 This is cost-optimal.

TP =
n2

p

local operations 

+ ts log p+ twn
all−to−all  

+ Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

Scalability Analysis:

n  We know that T0 = pTP - W, therefore, we have,

n  For isoefficiency, we have W = KT0 which the second term gives:

n  There is also a bound on isoefficiency because of concurrency. In this case,
p < n, therefore, W = n2 = Ω(p2).

n  Overall isoefficiency is W = O(p2).

TO = ts p log p+ twnp = ts p log p+ tw W p

W = Ktw W p⇒ W = Ktwp⇒W = K 2tw
2p2

+ Matrix-Vector Multiplication:
2-D Partitioning
n  The n x n matrix is partitioned among n2 processors such that each

processor owns a single element.

n  The n x 1 vector x is distributed only in the last column of n processors.

+ Matrix-Vector Multiplication: 2-D Partitioning

Matrix-vector multiplication with block 2-D partitioning. For the
one-element-per-process case, p = n2 if the matrix size is n x n .

+ Matrix-Vector Multiplication:
2-D Partitioning
n  We must first align the vector with the matrix appropriately.

n  The first communication step for the 2-D partitioning aligns the vector x along
the principal diagonal of the matrix.

n  The second step copies the vector elements from each diagonal process to
all the processes in the corresponding column using n simultaneous
broadcasts among all processors in the column.

n  Finally, the result vector is computed by performing an all-to-one reduction
along the columns.

+ Matrix-Vector Multiplication:
2-D Partitioning (one element per processor)

n  Three basic communication operations are used in this algorithm: one-to-one
communication Θ(1) to align the vector along the main diagonal, one-to-all
broadcast Θ(log n) of each vector element among the n processes of each
column, and all-to-one reduction Θ(log n) in each row.

n  Each of these operations takes at most Θ(log n) time and the parallel time is
Θ(log n) .

n  The cost (process-time product) is Θ(n2 log n) ; hence, the algorithm is not
cost-optimal.

+ Matrix-Vector Multiplication:
2-D Partitioning
n  When using fewer than n2 processors, each process owns an

block of the matrix (n/√p)× (n/√p).

n  The vector is distributed in portions of (n/√p) elements in the last process-
column only.

n  In this case, the message sizes for the alignment, broadcast, and reduction
are all (n/√p).

n  The computation is a product of an (n/√p)× (n/√p) submatrix with a vector of
length (n/√p).

+ Matrix-Vector Multiplication:
2-D Partitioning
n  The first alignment step takes time

n  The broadcast and reductions take time

n  Local matrix-vector products take time

n  Total time is

ts + tw
n
p

ts + twn / p() log p

tcn
2 / p

TP ≈
n2

p
+ ts log p+ tw

n
p
log p

+ Matrix-Vector Multiplication:
2-D Partitioning
n  Scalability Analysis:

n  Equating T0 with W, term by term, for isoefficiency, we have the dominant
term:

n  The isoefficiency due to concurrency is O(p).

n  The overall isoefficiency is Θ(p log2p)

TO = pTP −W = t s p log p+ tw W p log p

W = K 2tw
2 p log2 p

+ Matrix-Matrix Multiplication

n  Consider the problem of multiplying two n x n dense, square matrices A and B to
yield the product matrix C =A x B.

n  The serial complexity is O(n3).

n  We do not consider better serial algorithms (Strassen's method), although, these can
be used as serial kernels in the parallel algorithms.

n  A useful concept in this case is called block operations. In this view, an n x n matrix
A can be regarded as a q x q array of blocks Ai,j (0 ≤ i, j < q) such that each block
is an (n/q) x (n/q) submatrix.

n  In this view, we perform q3 matrix multiplications, each involving (n/q) x (n/q)
matrices.

+ Matrix-Matrix Multiplication

n  Consider two n x n matrices A and B partitioned into p blocks Ai,j and Bi,j
(0 ≤ i, j <) of size each.

n  Process Pi,j initially stores Ai,j and Bi,j and computes block Ci,j of the result
matrix.

n  Computing submatrix Ci,j requires all submatrices Ai,k and Bk,j for 0 ≤ k < .

n  Naïve Algorithm:
n  All-to-all broadcast blocks of A along rows and B along columns.
n  Perform local submatrix multiplication.

+ Matrix-Matrix Multiplication

n  The two broadcasts take time

n  The computation requires √p multiplications of (n/√p)× (n/√p) sized submatrices.

n  The parallel run time is approximately

n  The algorithm is cost optimal and the isoefficiency is O(p1.5) due to bandwidth
term tw and concurrency.

n  Major drawback of the algorithm is that it is not memory optimal.

2 ts log p + tw n2 / p() p −1()()

TP ≅
n3

p
+ ts log p+ 2tw

n2

p

+ Matrix-Matrix Multiplication:
Cannon's Algorithm
n  In this algorithm, we schedule the computations of the processes of the ith

row such that, at any given time, each process is using a different block Ai,k.

n  These blocks can be systematically rotated among the processes after every
submatrix multiplication so that every process gets a fresh Ai,k after each
rotation.

+ Matrix-Matrix Multiplication:
Cannon's Algorithm

Communication steps in Cannon's algorithm on 16 processes.

+ Matrix-Matrix Multiplication:
Cannon's Algorithm
n  Align the blocks of A and B in such a way that each process multiplies its

local submatrices. This is done by shifting all submatrices Ai,j to the left (with
wraparound) by i steps and all submatrices Bi,j up (with wraparound) by j
steps.

n  Do the following for √p steps:
n  Perform local block multiplication.
n  Each block of A moves one step left and each block of B moves one step up (again

with wraparound).
n  Perform next block multiplication, add to partial result, repeat until all blocks have

been multiplied.

+

n  In the alignment step the two shift operations require a total of time of each processor
communicating 1 block:

n  Each of the single-step shifts in the compute-and-shift phase of the algorithm takes
time.

n  The parallel time is approximately:

n  The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm,
although with larger factors on communication time. This algorithm is memory optimal
however!

TshiftCompute = tc
n3

p3/2
+ 2 ts + twn

2 / p()

Matrix-Matrix Multiplication:
Cannon's Algorithm

Talign = 2 ts + twn
2 / p()

TP =
n3

p
+ 2 pts + 2tw

n2

p

+ Matrix-Matrix Multiplication:
DNS Algorithm
n  Uses a 3-D partitioning.

n  Visualize the matrix multiplication algorithm as a cube . matrices A and B
come in two orthogonal faces and result C comes out the other orthogonal
face.

n  Each internal node in the cube represents a single add-multiply operation
(and thus the complexity).

n  DNS algorithm partitions this cube using a 3-D block scheme.

+ Matrix-Matrix Multiplication:
DNS Algorithm

n  Assume an n x n x n mesh of processors.

n  Move the columns of A and rows of B and perform broadcast.

n  Each processor computes a single add-multiply.

n  This is followed by an accumulation along the C dimension.

n  Since each add-multiply takes constant time and accumulation and broadcast
takes log n time, the total runtime is log n.

n  This is not cost optimal. It can be made cost optimal by using n / log n
processors along the direction of accumulation.

+ Matrix-Matrix Multiplication:
DNS Algorithm

The communication steps in the DNS algorithm while multiplying 4 x 4
matrices A and B on 64 processes.

+ Matrix-Matrix Multiplication:
DNS Algorithm

 Using fewer than n3 processors.

n  Assume that the number of processes p is equal to q3 for some q < n.

n  The two matrices are partitioned into blocks of size (n/q) x(n/q).

n  Each matrix can thus be regarded as a q x q two-dimensional square array of
blocks.

n  The algorithm follows from the previous one, except, in this case, we operate
on blocks rather than on individual elements.

+ Matrix-Matrix Multiplication:
DNS Algorithm

Using fewer than n3 processors.

n  Assume running on p=q3 procesors

n  The first one-to-one communication step is performed for both A and B, and
takes ts +tw(n/q)2 time for each matrix.

n  The two one-to-all broadcasts take 2(ts log q + tw (n/q)2 log q) time.

n  The reduction takes time ts log q + tw (n/q)2 log q .

n  Multiplication of (n/q)×(n/q) submatrices is performed serially and takes
(n/q)3 time.
n  Note that a 3-D block that is assigned to a given processor represents that matrix

of a (n/q)×(n/q) sub-matrix of A and B (the third dimension represents the k loop of
the sub-matrix multiply!)

+ DNS blocked algorithm

n  For parallel running time we assemble the parts to get

n  Recall that p=q3 which we can substitute into the above equation to obtain

n  This gives a parallel overhead function of

TP = ts + tw n / q()2 +3 ts + tw n / q()2() logq+ n / q()3

TP =
n3

p
+ ts + tw

n2

p2 3
!

"
#

$

%
& 1+ log p()

TO = ts + tw
W 2 3

p2 3
!

"
#

$

%
& p+ p log p() =Θ W 2 3p1 3 log p()

+ Computing the Isoefficiency function of the
blocked DNS algorithm
n  Isoefficiency function is found to be W = f(O(p (log p)3) as shown below:

W = KTO W, p()
W = KW 2 3p1 3 log p

W 1/3 = Kp1 3 log p

W = K 3p log p()3

+ Solving a System of Linear Equations

n  Consider the problem of solving linear equations of the kind:

n  This is written as Ax = b, where A is an n x n matrix with A[i, j] = ai,j, b
is an n x 1 vector [b0, b1, … , bn]T, and x is the solution.

+ Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and back-substitution. The triangular
form is as:

We write this as: Ux = y .

A commonly used method for transforming a given matrix into an upper-triangular matrix is
Gaussian Elimination.

+ Gaussian Elimination

Serial Gaussian Elimination

+ Gaussian Elimination

n  The computation has three nested loops - in the kth iteration of the outer loop, the
algorithm performs (n-k)2 computations. Summing from k = 1..n, we have roughly
(n3/3) multiplications-subtractions.

A typical computation in Gaussian elimination.

+ Parallel Gaussian Elimination
n  Assume p = n with each row assigned to a processor.

n  The first step of the algorithm normalizes the row. This is a serial operation and
takes time (n-k) in the kth iteration.

n  In the second step, the normalized row is broadcast to all the processors. This takes
time .

n  Each processor can independently eliminate this row from its own. This requires (n-
k-1) multiplications and subtractions.

n  The total parallel time can be computed by summing from k = 1 … n-1 as

n  The formulation is not cost optimal because of the tw term.

+ Parallel Gaussian Elimination

Gaussian elimination steps during the iteration corresponding k = 3 for an 8 x 8
matrix partitioned rowwise among eight processes.

+ Parallel Gaussian Elimination:
Pipelined Execution
n  In the previous formulation, the (k+1)st iteration starts only after all the

computation and communication for the kth iteration is complete.

n  In the pipelined version, there are three steps - normalization of a row,
communication, and elimination. These steps are performed in an
asynchronous fashion.

n  A processor Pk waits to receive and eliminate all rows prior to k.

n  Once it has done this, it forwards its own row to processor Pk+1.

+ Parallel Gaussian Elimination:
Pipelined Execution

Pipelined Gaussian elimination on a 5 x 5 matrix partitioned withone row
per process.

+ Parallel Gaussian Elimination:
Pipelined Execution
n  The total number of steps in the entire pipelined procedure is Θ(n).

n  In any step, either O(n) elements are communicated between directly-
connected processes, or a division step is performed on O(n) elements of a
row, or an elimination step is performed on O(n) elements of a row.

n  The parallel time is therefore O(n2) .

n  This is cost optimal.

+ Parallel Gaussian Elimination:
Pipelined Execution

The communication in the Gaussian elimination iteration
corresponding to k = 3 for an 8 x 8 matrix distributed among four

processes using block 1-D partitioning.

+ Parallel Gaussian Elimination:
Block 1D with p < n
n  The above algorithm can be easily adapted to the case when p < n.

n  In the kth iteration, a processor with all rows belonging to the active part of the matrix
performs (n – k -1) / np multiplications and subtractions.

n  In the pipelined version, for n > p, computation dominates communication.

n  The parallel time is given by:

 or approximately, n3/p.

n  While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the
sequential run time by a factor of 3/2.

+ Parallel Gaussian Elimination:
Block 1D with p < n

Computation load on different processes in block and cyclic
1-D partitioning of an 8 x 8 matrix on four processes during the

Gaussian elimination iteration corresponding to k = 3.

+ Parallel Gaussian Elimination:
Block 1D with p < n
n  The load imbalance problem can be alleviated by using a cyclic mapping.

n  In this case, other than processing of the last p rows, there is no load
imbalance.

n  This corresponds to a cumulative load imbalance overhead of O(n2p)
(instead of O(n3) in the previous case).

+ Parallel Gaussian Elimination:
2-D Mapping

n  Assume an n x n matrix A mapped onto an n x n mesh of processors.

n  Each update of the partial matrix can be thought of as a scaled rank-one
update (scaling by the pivot element).

n  In the first step, the pivot is broadcast to the row of processors.

n  In the second step, each processor locally updates its value. For this it needs
the corresponding value from the pivot row, and the scaling value from its
own row.

n  This requires two broadcasts, each of which takes log n time.

n  This results in a non-cost-optimal algorithm.

+ Parallel Gaussian Elimination:
2-D Mapping

Various steps in the Gaussian elimination iteration corresponding to
k = 3 for an 8 x 8 matrix on 64 processes arranged in a logical two-

dimensional mesh.

+ Parallel Gaussian Elimination:
2-D Mapping with Pipelining
n  We pipeline along two dimensions. First, the pivot value is pipelined along the

row. Then the scaled pivot row is pipelined down.

n  Processor Pi,j (not on the pivot row) performs the elimination step A[i, j] :=
A[i, j]] - A[i, k] A[k, j] as soon as A[i, k] and A[k, j] are available.

n  The computation and communication for each iteration moves through the
mesh from top-left to bottom-right as a ``front.''

n  After the front corresponding to a certain iteration passes through a process,
the process is free to perform subsequent iterations.

n  Multiple fronts that correspond to different iterations are active
simultaneously.

+ Parallel Gaussian Elimination:
2-D Mapping with Pipelining
n  If each step (division, elimination, or communication) is assumed to take

constant time, the front moves a single step in this time. The front takes Θ(n)
time to reach Pn-1,n-1.

n  Once the front has progressed past a diagonal processor, the next front can
be initiated. In this way, the last front passes the bottom-right corner of the
matrix Θ(n) steps after the first one.

n  The parallel time is therefore O(n) , which is cost-optimal.

+ 2-D Mapping with Pipelining

Pipelined Gaussian elimination for a 5 x 5 matrix with 25 processors.

+ Parallel Gaussian Elimination:
2-D Mapping with Pipelining and p < n
n  In this case, a processor containing a completely active part of the matrix

performs n2/p multiplications and subtractions, and communicates
words along its row and its column.

n  The computation dominates communication for n >> p.

n  The total parallel run time of this algorithm is (2n2/p) x n, since there are n
iterations. This is equal to 2n3/p.

n  This is three times the serial operation count!

+ Parallel Gaussian Elimination:
2-D Mapping with Pipelining and p < n

The communication steps in the Gaussian elimination iteration
corresponding to k = 3 for an 8 x 8 matrix on 16 processes of a two-

dimensional mesh.

+ Parallel Gaussian Elimination:
2-D Mapping with Pipelining and p < n

Computational load on different processes in block and cyclic
2-D mappings of an 8 x 8 matrix onto 16 processes during the Gaussian

elimination iteration corresponding to k = 3.

+ Parallel Gaussian Elimination:
2-D Cyclic Mapping
n  The idling in the block mapping can be alleviated using a cyclic mapping.

n  The maximum difference in computational load between any two processes
in any iteration is that of one row and one column update.

n  This contributes to the overhead function. Since there are n
iterations, the total overhead is .

+ Gaussian Elimination
with Partial Pivoting
n  For numerical stability, one generally uses partial pivoting.

n  In the k th iteration, we select a column i (called the pivot column) such that
A[k, i] is the largest in magnitude among all A[k, i] such that k ≤ j < n.

n  The k th and the i th columns are interchanged.

n  Simple to implement with row-partitioning and does not add overhead since
the division step takes the same time as computing the max.

n  Column-partitioning, however, requires a global reduction, adding a log p
term to the overhead.

n  Pivoting precludes the use of pipelining.

+ Gaussian Elimination with Partial Pivoting:
2-D Partitioning
n  Partial pivoting restricts use of pipelining, resulting in performance loss.

n  This loss can be alleviated by restricting pivoting to specific columns.

n  Alternately, we can use faster algorithms for broadcast.

+ Solving a Triangular System:
Back-Substitution
n  The upper triangular matrix U undergoes back-substitution to determine the vector x.

A serial algorithm for back-substitution.

+ Solving a Triangular System:
Back-Substitution
n  The algorithm performs approximately n2/2 multiplications and subtractions.

n  Since complexity of this part is asymptotically lower, we should optimize the
data distribution for the factorization part.

n  Consider a rowwise block 1-D mapping of the n x n matrix U with vector y
distributed uniformly.

n  The value of the variable solved at a step can be pipelined back.

n  Each step of a pipelined implementation requires a constant amount of time
for communication and Θ(n/p) time for computation.

n  The parallel run time of the entire algorithm is Θ(n2/p).

+ Solving a Triangular System:
Back-Substitution
n  If the matrix is partitioned by using 2-D partitioning on a logical mesh of

processes, and the elements of the vector are distributed along one of the
columns of the process mesh, then only the processes containing the
vector perform any computation.

n  Using pipelining to communicate the appropriate elements of U to the
process containing the corresponding elements of y for the substitution step
(line 7), the algorithm can be executed in time.

n  While this is not cost optimal, since this does not dominate the overall
computation, the cost optimality is determined by the factorization.

