Design of Parallel Algorithms

Parallel Dense Matrix Algorithms




Topic Overview

m Matrix-Vector Multiplication
m Matrix-Matrix Multiplication

m Solving a System of Linear Equations



Matix Algorithms: Introduction

m Due to their regular structure, parallel computations involving matrices and
vectors readily lend themselves to data-decomposition.

m Typical algorithms rely on input, output, or intermediate data decomposition.

m Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic
partitionings.



Matrix-Vector Multiplication

m We aim to multiply a dense » x n matrix A with an »n x 7 vector x to yield the »
X 1 result vectory.

m The serial algorithm requires »?> multiplications and additions.

W=n"



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

m The n X n matrix is partitioned among » processors, with each processor
storing complete row of the matrix.

m The n x 1 vector x is distributed such that each process owns one of its
elements.



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning
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Multiplication of an n x n matrix with an n x 1 vector using rowwise block 1-D
partitioning. For the one-row-per-process case, p = n.



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

m Since each process starts with only one element of x , an all-to-all broadcast
is required to distribute all the elements to all the processes.

. n_l . . .
m Process P, now computes yli] = Ej=O(A[”J] X x[J])

m The all-to-all broadcast and the computation of y[i] both take time @) .
Therefore, the parallel time is @(n) .



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

m Consider now the case when p < n and we use block 1D partitioning.

m Each process initially stores n=p complete rows of the matrix and a portion of the
vector of size n=p.

N Tth all-to-all broadcast takes place among p processes and involves messages
of size n=p.

m This is followed by n=p local dot products.

m Thus, the parallel run time of this procedure is

local operations

‘ 2 ‘ all—g(\)—all
T L r 1 ;
P = ? + ts ng + twn

This is cost-optimal.



Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

Scalability Analysis:
m We know that 7, = pT, - W, therefore, we have,
T, =t,plogp+t np=tplogp+t NWp
m For isoefficiency, we have W = KT, which the second term gives:
4 =Ktw\/Wp=>\/W=Ktwp=>W=K2tfvp2

m There is also a bound on isoefficiency because of concurrency. In this case,
p < n, therefore, W = n’ = Q(p?).

m Overall isoefficiency is W = O(p?).



Matrix-Vector Multiplication:
2-D Partitioning

m The n x n matrix is partitioned among »° processors such that each
processor owns a single element.

m The n x 1 vector x is distributed only in the last column of n processors.
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Matrix-vector multiplication with block 2-D partitioning. For the
one-element-per-process case, p = n? if the matrix sizeisnxn .



Matrix-Vector Multiplication:
2-D Partitioning

m \We must first align the vector with the matrix appropriately.

m The first communication step for the 2-D partitioning aligns the vector x along
the principal diagonal of the matrix.

m The second step copies the vector elements from each diagonal process to
all the processes in the corresponding column using » simultaneous
broadcasts among all processors in the column.

m Finally, the result vector is computed by performing an all-to-one reduction
along the columns.



Matrix-Vector Multiplication:
2-D Partitioning (one element per processor)

m Three basic communication operations are used in this algorithm: one-to-one
communication ©(1) to align the vector along the main diagonal, one-to-all
broadcast O(log n) of each vector element among the » processes of each
column, and all-to-one reduction ©(log n) in each row.

m Each of these operations takes at most O(log n) time and the parallel time is
O(log n) .

m The cost (process-time product) is ©(n? log n) ; hence, the algorithm is not
cost-optimal.



Matrix-Vector Multiplication:
2-D Partitioning

m When using fewer than n? processors, each process owns an
block of the matrix (n/Alp)x (nAlp).

m The vector is distributed in portions of (n/Alp) elements in the last process-
column only.

m In this case, the message sizes for the alignment, broadcast, and reduction
are all (n\p).

m The computation is a product of an (n/Alp)x (n/Np) submatrix with a vector of
length (nAlp).



Matrix-Vector Multiplication:
2-D Partitioning

m The first alignment step takes time n
t+t ——

\ P
m The broadcast and reductions take time

(ts+twn/\/;)log\/;

m Local matrix-vector products take time

tn’/p

m Jotal time is 2)
n 1 n
I, =—+t logp+t, —

log p
p Jr




Matrix-Vector Multiplication:
2-D Partitioning

m Scalability Analysis:
T,=pT,-W =t plogp+t,NWplogp

m Equating 7, with 7, term by term, for isoefficiency, we have the dominant
term:

W =Kt plog’p

m The isoefficiency due to concurrency is O(p).

m The overall isoefficiency is ©(p log2p)



Matrix-Matrix Multiplication |I

m Consider the problem of multiplying two » x n dense, square matrices 4 and B to
yield the product matrix C =4 x B.

m The serial complexity is O(n?).

m We do not consider better serial algorithms (Strassen's method), although, these can
be used as serial kernels in the parallel algorithms.

m A useful concept in this case is called block operations. In this view, an n x n matrix
A can be regarded as a ¢ x g array of blocks 4, (0 <, j < g) such that each block
IS an (n/q) x (n/q) submatrix.

m [n this view, we perform ¢° matrix multiplications, each involving (n/q) x (n/q)
matrices.



Matrix-Matrix Multiplication

m Consider two 77 X 71 matrices 4 and B partitioned into p blocks 4, ;and B, ,

(0<i,j</p)ofsize (n/\/P) x (n//P) each.

m Process P, initially stores 4, . and B; ; and computes block C; ; of the result
matrix.

m Computing submatrix C; ; requires all submatrices 4,, and B, for 0 < & /P

m Naive Algorithm:
m All-to-all broadcast blocks of 4 along rows and B along columns.
m Perform local submatrix multiplication.



Matrix-Matrix Multiplication

m The two broadcasts take time 2(ts log\/;+tw (nz /p)(\/;—l))

m The computation requires \p multiplications of (n/Alp)x (n/\p) sized submatrices.

m The parallel run time is approximately
3 2

T, sn—+tslogp+2twn—

p Jr

m The algorithm is cost optimal and the isoefficiency is O(p’-°) due to bandwidth
term ¢, and concurrency.

m Major drawback of the algorithm is that it is not memory optimal.




Matrix-Matrix Multiplication:
Cannon's Algorithm

m In this algorithm, we schedule the computations of the,/? processes of the ith
row such that, at any given time, each process is using a different block 4, ,.

m These blocks can be systematically rotated among the processes after every
submatrix multiplication so that every process gets a fresh 4, , after each
rotation.



Matrix-Matrix Multiplication:

Cannon's Algorithm
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Communication steps in Cannon's algorithm on 16 processes.




Matrix-Matrix Multiplication:
Cannon's Algorithm

m Align the blocks of 4 and B in such a way that each process multiplies its
local submatrices. This is done by shifting all submatrices 4, ; to the left (with
wraparound) by 7 steps and all submatrices B, ; up (with wraparound) by ;
steps.

m Do the following for Vp steps:
m Perform local block multiplication.

m Each block of 4 moves one step left and each block of B moves one step up (again
with wraparound).

m Perform next block multiplication, add to partial result, repeat until all blocks have
been multiplied.



Matrix-Matrix Multiplication:
Cannon's Algorithm

m In the alignment step the two shift operations require a total of time of each processor

communicating 1 block: )
T ien = 2(t,+1,0° / p)

align

m Each of the single-step shifts in the compute-and-s@ift phase of the algorithm takes

time. _ tcn—+2(fs +1,n° /19)

T;hiftC ompute 3/2

m The parallel time is approximately:

3 2
T =n_+2 pts+2twn—
= Jp \

m The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm,
ﬁlthough'wﬂh larger factors on communication time. This algorithm is memory optimal
owever!



Matrix-Matrix Multiplication:
DNS Algorithm

m Uses a 3-D partitioning.

m Visualize the matrix multiplication algorithm as a cube . matrices 4 and B
come in two orthogonal faces and result C comes out the other orthogonal
face.

m Each internal node in the cube represents a single add-multiply operation
(and thus the complexity).

m DNS algorithm partitions this cube using a 3-D block scheme.



Matrix-Matrix Multiplication:
DNS Algorithm

m Assume an 77 X 71 X 71 mesh of processors.

m Move the columns of 4 and rows of B and perform broadcast.
m Each processor computes a single add-multiply.

m This is followed by an accumulation along the C dimension.

m Since each add-multiply takes constant time and accumulation and broadcast
takes log n time, the total runtime is log 7.

m This is not cost optimal. It can be made cost optimal by using » / log n
processors along the direction of accumulation.



-
Matrix-Matrix Multiplication:

DNS Algorithm
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The communication steps in the DNS algorithm while multiplying 4 x 4
matrices A and B on 64 processes.



Matrix-Matrix Multiplication:
DNS Algorithm

Using fewer than »n° processors.
m Assume that the number of processes p is equal to ¢ for some g < n.
m The two matrices are partitioned into blocks of size (n/q) x(n/q).

m Each matrix can thus be regarded as a g x g two-dimensional square array of
blocks.

m The algorithm follows from the previous one, except, in this case, we operate
on blocks rather than on individual elements.



Matrix-Matrix Multiplication:
DNS Algorithm

Using fewer than »? processors.

m Assume running on p=qg?> procesors

m The first one-to-one communication step is performed for both 4 and B, and
takes t +t,(n/q)? time for each matrix.

m The two one-to-all broadcasts take 2(t log q + t, (n/q)?log q) time.
m The reduction takes time ¢ log q + t, (n/q)?log q

m Multiplication of (n/q)%(n/q) submatrices is performed serially and takes
(n/q)® time.
= Note that a 3-D block that is assigned to a given processor represents that matrix
of a (n/q)*(n/q) sub-matrix of A and B (the third dimension represents the k loop of
the sub-matrix multiply!)



DNS blocked algorithm

m For parallel running time we assemble the parts to get
2 2 3
T,=t +t,(n/q) +3(ts +1,(n/q) )logq+(n/q)
m Recall that p=¢~° which we can substitute into the above equation to obtain

3 2
n n
T,=—+|t +t,—=|(1+logp
- ( p2/3)( )

m This gives a parallel overhead function of

2/3

7 )(p + plogp) = @(W2/3p1/3 logp)

1, = (ts +1
P



o
Computing the Isoefficiency function of the

blocked DNS algorithm

m Isoefficiency function is found to be W = f(O(p (log p)?) as shown below:

W =KT,(W,p)

W =KW p"logp
W = Kp1/3 log p

W = K3p(logp)3



Solving a System of Linear Equations

m Consider the problem of solving linear equations of the kind:

aporo + apiry 0+ -+ app_1Tn—1 = bo,
ajorg + ayjgry + -+ ay 11 = by,
Ay —1,070 . Ap—-1,1T1 LR . A1 n—-1Tpn—-1~ bn.—l'

m This is written as Ax = b, where A is an 72 X 711 matrix with A[i, j]1 = a;;, b

isan7 X [ vector[b,, b,, ..., b, |7, and x is the solution.



Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and back-substitution. The triangular

form is as:
rg + wugiry+ ug2rot - + U p—1Tn—1 = Yo
ry + uipret -+ U p_1Tp-1 = Y1,
: ;
Tn-—-1 = Yn-1.

We write thisas: Ux =y .

A commonly used method for transforming a given matrix into an upper-triangular matrix is
Gaussian Elimination.



Gaussian Elimination

1. procedure GAUSSIAN_ELIMINATION (A, b, v)

2. begin

3. fork:=0ton —1do /* Outer loop */
4, begin

5. forj:=k+1ton —1do

6. Alk, j] = Alk, j]/A[k, k]; /" Division step */
7. y[k] = blk]/A[k, k]

8. Alk, k] :=1;

9. fori . =k+1ton—1do

10. begin

1. forj:=k+1ton —1do

12. Ali,j] = Ali, 5] — Ali k] x A[k, 3]; /" Elimination step */
13. bli] := b[i] — Ali, k] x y[k];

14. Ali k] = 0;

15. endfor; /" Line 9%/

16, endfor; /* Line 3%/

17. end GAUSSIAN_ELIMINATION

Serial Gaussian Elimination



Gaussian Elimination |I

m The computation has three nested loops - in the £th iteration of the outer loop, the
algorithm performs (n-k)? computations. Summing from k = 1..n, we have roughly
(n?/3) multiplications-subtractions.

4
Inactive part 5;35 12
S—
AN
.................... Pt |
S, =R —— (k)—= (k) ,;__ ...... += Alkj]=A[kjJAlkk]
Lo
Active DATT v -
IZZIE}ZZZI:IIIZIIZ(u)—@J)} """" —-o Alig] =A[Lj] - AlK] x Alk]]

A typical computation in Gaussian elimination.



Parallel Gaussian Elimination

m Assume p = n with each row assigned to a processor.

m The first step of the algorithm normalizes the row. This is a serial operation and
takes time (n-k) in the kth iteration.

m In the second step, the normalized row is broadcast to all the processors. This takes
me (¢, +tu(n —k — 1)) logn

m Each processor can independently eliminate this row from its own. This requires (n-
k-1) multiplications and subtractions.

m The total parallel time can be computed by summing from £ =1 ... n-1 as

3 1
Tp = §n(n — 1)+ tsnlogn + atwn(n — 1) logn.

m The formulation is not cost optimal because of the #,, term.



Parallel Gaussian Elimination
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Gaussian elimination steps during the iteration corresponding k = 3 for an 8 x 8
matrix partitioned rowwise among eight processes.




Parallel Gaussian Elimination:
Pipelined Execution

m In the previous formulation, the (k+1)st iteration starts only after all the
computation and communication for the kth iteration is complete.

m In the pipelined version, there are three steps - normalization of a row,
communication, and elimination. These steps are performed in an
asynchronous fashion.

m A processor P, waits to receive and eliminate all rows prior to £.

m Once it has done this, it forwards its own row to processor Pk+1.



arallel Gaussian Elimination:

Ipelined Ex

Pipelined Gaussian elimination on a 5 x 5 matrix partitioned withone row
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Parallel Gaussian Elimination:
Pipelined Execution

m The total number of steps in the entire pipelined procedure is O(n).

m In any step, either O(n) elements are communicated between directly-
connected processes, or a division step is performed on O(n) elements of a
row, or an elimination step is performed on O(n) elements of a row.

m The parallel time is therefore O(n?) .

m This is cost optimal.



Parallel Gaussian Elimination:
Pipelined Execution
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The communication in the Gaussian elimination iteration
corresponding to k = 3 for an 8 x 8 matrix distributed among four
processes using block 1-D partitioning.



Parallel Gaussian Elimination:
Block 1D with p <

m The above algorithm can be easily adapted to the case when p < n.

m In the £th iteration, a processor with all rows belonging to the active part of the matrix
performs (n — k -1) [ np multiplications and subtractions.

m In the pipelined version, for n > p, computation dominates communication.
m The parallel time is given by: 2(n/ p)EZ;S(n —k—1)
or approximately, n’/p.

m While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the
sequential run time by a factor of 3/2.



Parallel Gaussian Elimination:
Block 1D withp < n
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(b) Cyclic 1-D mapping

Computation load on different processes in block and cyclic

1-D partitioning of an 8 x 8 matrix on four processes during the
Gaussian elimination iteration corresponding to k = 3.




Parallel Gaussian Elimination:
Block 1D with p <

m The load imbalance problem can be alleviated by using a cyclic mapping.

m In this case, other than processing of the last p rows, there is no load
imbalance.

m This corresponds to a cumulative load imbalance overhead of O(n’p)
(instead of O(x?) in the previous case).



Parallel Gaussian Elimination:
2-D Mapping

m Assume an 71 X 71 matrix 4 mapped onto an 72 X 71 mesh of processors.

m Each update of the partial matrix can be thought of as a scaled rank-one
update (scaling by the pivot element).

m In the first step, the pivot is broadcast to the row of processors.

m In the second step, each processor locally updates its value. For this it needs
the corresponding value from the pivot row, and the scaling value from its
Own row.

m This requires two broadcasts, each of which takes log n time.

m This results in a non-cost-optimal algorithm.



Parallel Gaussian Elimination:
2-D Mapping
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(c) Columnwise broadcast of Alk;] (@) Al =ALjJFALK) x Alk))
fork<j<n fork<i<padk<j<n

Various steps in the Gaussian elimination iteration corresponding to
k =3 for an 8 x 8 matrix on 64 processes arranged in a logical two-
dimensional mesh.



Parallel Gaussian Elimination:
2-D Mapping with Pipelining

m \We pipeline along two dimensions. First, the pivot value is pipelined along the
row. Then the scaled pivot row is pipelined down.

m Processor P; . (not on the pivot row) performs the elimination step A[i, j] :=
Ali, j] - A, 19]A[k j] as soon as A[i, k] and Alk, j] are available.

m The computation and communication for each iteration moves through the
mesh from top-left to bottom-right as a “front."

m After the front corresponding to a certain iteration passes through a process,
the process is free to perform subsequent iterations.

m Multiple fronts that correspond to different iterations are active
simultaneously.



Parallel Gaussian Elimination:
2-D Mapping with Pipelining

m |f each step (division, elimination, or communication) is assumed to take
constant time, the front moves a single step in this time. The front takes O(n)
time to reach P

n-1n-1*

m Once the front has progressed past a diagonal processor, the next front can
be initiated. In this way, the last front passes the bottom-right corner of the
matrix O(r) steps after the first one.

m The parallel time is therefore O(n) , which is cost-optimal.
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--— Compmmication fork =2 EI Computation for k=2

Pipelined Gaussian elimination for a 5 x 5 matrix with 25 processors.



Parallel Gaussian Elimination:
2-D Mapping with Pipelining and p < n
m In this case, a processor containing a completely active part of the matrix

performs »n°/p multiplications and subtractions, an%go\ry@unicates
words along its row and its column.

m The computation dominates communication for n >> p.

m The total parallel run time of this algorithm is (2rn°/p) X n, since there are n
iterations. This is equal to 2n’/p.

m This is three times the serial operation count!




Parallel Gaussian Elimination:
2-D Mapping Wlth Pipeliningand p < n
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The communication steps in the Gaussian elimination iteration
corresponding to k = 3 for an 8 x 8 matrix on 16 processes of a two-
dimensional mesh.



Parallel Gaussian Elimination:

2-D Mapping with Pipeliningand p < n
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(2) Block-checkerboard mapping
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(v) Cyclic-checkerboard mapping

Computational load on different processes in block and cyclic
2-D mappings of an 8 x 8 matrix onto 16 processes during the Gaussian
elimination iteration corresponding to k = 3.



Parallel Gaussian Elimination:
2-D Cyclic Mapping

m The idling in the block mapping can be alleviated using a cyclic mapping.

m The maximum difference in computational load between any two processes
in any iteration is that of one row and one column update.

m This contributes @(n\/ﬁ) to the overhead function. Since there are n
iterations, the total overhead is @(nzﬁ) .



Gaussian Elimination
with Partial Pivoting

m For numerical stability, one generally uses partial pivoting.

m In the £ th iteration, we select a column i (called the pivot column) such that
A[k, i] is the largest in magnitude among all A[%, i] such that £ <j < n.

m The & th and the i th columns are interchanged.

m Simple to implement with row-partitioning and does not add overhead since
the division step takes the same time as computing the max.

m Column-partitioning, however, requires a global reduction, adding a log p
term to the overhead.

m Pivoting precludes the use of pipelining.



Gaussian Elimination with Partial Pivoting:
2-D Partitioning

m Partial pivoting restricts use of pipelining, resulting in performance loss.
m This loss can be alleviated by restricting pivoting to specific columns.

m Alternately, we can use faster algorithms for broadcast.



S
Solving a Triangular System:
Back-Substitution

m The upper triangular matrix U undergoes back-substitution to determine the vector x.

procedure BACK_SUBSTITUTION (UJ, =, v)
begin
fork :=n — 1 downto 0 do /* Main loop */
begin

x[k] = y[k];
fori := k — 1 downto O do
y[i] = yli] — z[k] x Uli, k];
endfor;
end BACK_SUBSTITUTION

WoONCOEB WD~

A serial algorithm for back-substitution.



Solving a Triangular System:
Back-Substitution

m The algorithm performs approximately »°/2 multiplications and subtractions.

m Since complexity of this part is asymptotically lower, we should optimize the
data distribution for the factorization part.

m Consider a rowwise block 1-D mapping of the » x n matrix U with vector y
distributed uniformly.

m The value of the variable solved at a step can be pipelined back.

m Each step of a pipelined implementation requires a constant amount of time
for communication and O(n/p) time for computation.

m The parallel run time of the entire algorithm is ©(n°/p).



Solving a Triangular System:
Back-Substitution

m If the matrix is partitioned by using 2-D partitioning on a logical mesh of /p X /P
processes, and the elements of the vector are distributed along one of the
columns of the process mesh, then only the /D Processes containing the
vector perform any computation.

m Using pipelining to communicate the appropriate elements of Uto the
process containing the corresponding elements of y for the substitution step
(line 7), the algorithm can be executed in O(n?/ \/2_7) time.

m While this is not cost optimal, since this does not dominate the overall
computation, the cost optimality is determined by the factorization.



