Design of Parallel Algorithms

Parallel Dense Matrix Algorithms

Topic Overview

m Matrix-Vector Multiplication
m Matrix-Matrix Multiplication

m Solving a System of Linear Equations

Matix Algorithms: Introduction

m Due to their regular structure, parallel computations involving matrices and
vectors readily lend themselves to data-decomposition.

m Typical algorithms rely on input, output, or intermediate data decomposition.

m Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic
partitionings.

Matrix-Vector Multiplication

m We aim to multiply a dense » x n matrix A with an »n x 7 vector x to yield the »
X 1 result vectory.

m The serial algorithm requires »?> multiplications and additions.

W=n"

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

m The n X n matrix is partitioned among » processors, with each processor
storing complete row of the matrix.

m The n x 1 vector x is distributed such that each process owns one of its
elements.

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

Matix 4 Veector x Processes

..

By Balv v v ¥ r
(a) Initial partitioning of the matnix (b) Distribution of the full vector among all
and the starting vector x the procasses by all-to-all broadeast

Matix 4 Vector y

(c) Entire vector diztributed to each (d) Fmal distribution of the matrix
process after the broadeast and the result vecter

Multiplication of an n x n matrix with an n x 1 vector using rowwise block 1-D
partitioning. For the one-row-per-process case, p = n.

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

m Since each process starts with only one element of x , an all-to-all broadcast
is required to distribute all the elements to all the processes.

. n_l . . .
m Process P, now computes yli] = Ej=O(A[”J] X x[J])

m The all-to-all broadcast and the computation of y[i] both take time @) .
Therefore, the parallel time is @(n) .

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

m Consider now the case when p < n and we use block 1D partitioning.

m Each process initially stores n=p complete rows of the matrix and a portion of the
vector of size n=p.

N Tth all-to-all broadcast takes place among p processes and involves messages
of size n=p.

m This is followed by n=p local dot products.

m Thus, the parallel run time of this procedure is

local operations

‘ 2 ‘ all—g(\)—all
T L r 1 ;
P = ? + ts ng + twn

This is cost-optimal.

Matrix-Vector Multiplication:
Rowwise 1-D Partitioning

Scalability Analysis:
m We know that 7, = pT, - W, therefore, we have,
T, =t,plogp+t np=tplogp+t NWp
m For isoefficiency, we have W = KT, which the second term gives:
4 =Ktw\/Wp=>\/W=Ktwp=>W=K2tfvp2

m There is also a bound on isoefficiency because of concurrency. In this case,
p < n, therefore, W = n’ = Q(p?).

m Overall isoefficiency is W = O(p?).

Matrix-Vector Multiplication:
2-D Partitioning

m The n x n matrix is partitioned among »° processors such that each
processor owns a single element.

m The n x 1 vector x is distributed only in the last column of n processors.

I\/Iatnx Vector Mult|pI|cat|on 2-D Partltlonlng

\Iatm: -l Vector x
| | C : i k
<}- U B |:| ! v ! ! i
pD :pl [T P\,_/l_r | 6 : 6 : * 1 .G
it Ul = =i = et At ot F== - —b-p—t - - - t—-—
Y U4 N SR M S I S ;‘[_.. 4 _,._:._i__:_ Loroiodo-
D 1 1 [n
1 | L N TR I N HE
I EEEREIEIR.
P R T I SR SN Sy N N S TR S N SO Mg S-S JN
: b P R 4

(a) Initial data distribution and communication (b) One-to-all broadcast of portions of
steps to align the vector along the diagonal the vector along process columns

. M|atrix A . Vector y

(c) All-to-one reduction of partial results (d) Final distribution of the result vector

Matrix-vector multiplication with block 2-D partitioning. For the
one-element-per-process case, p = n? if the matrix sizeisnxn .

Matrix-Vector Multiplication:
2-D Partitioning

m \We must first align the vector with the matrix appropriately.

m The first communication step for the 2-D partitioning aligns the vector x along
the principal diagonal of the matrix.

m The second step copies the vector elements from each diagonal process to
all the processes in the corresponding column using » simultaneous
broadcasts among all processors in the column.

m Finally, the result vector is computed by performing an all-to-one reduction
along the columns.

Matrix-Vector Multiplication:
2-D Partitioning (one element per processor)

m Three basic communication operations are used in this algorithm: one-to-one
communication ©(1) to align the vector along the main diagonal, one-to-all
broadcast O(log n) of each vector element among the » processes of each
column, and all-to-one reduction ©(log n) in each row.

m Each of these operations takes at most O(log n) time and the parallel time is
O(log n) .

m The cost (process-time product) is ©(n? log n) ; hence, the algorithm is not
cost-optimal.

Matrix-Vector Multiplication:
2-D Partitioning

m When using fewer than n? processors, each process owns an
block of the matrix (n/Alp)x (nAlp).

m The vector is distributed in portions of (n/Alp) elements in the last process-
column only.

m In this case, the message sizes for the alignment, broadcast, and reduction
are all (n\p).

m The computation is a product of an (n/Alp)x (n/Np) submatrix with a vector of
length (nAlp).

Matrix-Vector Multiplication:
2-D Partitioning

m The first alignment step takes time n
t+t ——

\ P
m The broadcast and reductions take time

(ts+twn/\/;)log\/;

m Local matrix-vector products take time

tn’/p

m Jotal time is 2)
n 1 n
I, =—+t logp+t, —

log p
p Jr

Matrix-Vector Multiplication:
2-D Partitioning

m Scalability Analysis:
T,=pT,-W =t plogp+t,NWplogp

m Equating 7, with 7, term by term, for isoefficiency, we have the dominant
term:

W =Kt plog’p

m The isoefficiency due to concurrency is O(p).

m The overall isoefficiency is ©(p log2p)

Matrix-Matrix Multiplication |I

m Consider the problem of multiplying two » x n dense, square matrices 4 and B to
yield the product matrix C =4 x B.

m The serial complexity is O(n?).

m We do not consider better serial algorithms (Strassen's method), although, these can
be used as serial kernels in the parallel algorithms.

m A useful concept in this case is called block operations. In this view, an n x n matrix
A can be regarded as a ¢ x g array of blocks 4, (0 <, j < g) such that each block
IS an (n/q) x (n/q) submatrix.

m [n this view, we perform ¢° matrix multiplications, each involving (n/q) x (n/q)
matrices.

Matrix-Matrix Multiplication

m Consider two 77 X 71 matrices 4 and B partitioned into p blocks 4, ;and B, ,

(0<i,j</p)ofsize (n/\/P) x (n//P) each.

m Process P, initially stores 4, . and B; ; and computes block C; ; of the result
matrix.

m Computing submatrix C; ; requires all submatrices 4,, and B, for 0 < & /P

m Naive Algorithm:
m All-to-all broadcast blocks of 4 along rows and B along columns.
m Perform local submatrix multiplication.

Matrix-Matrix Multiplication

m The two broadcasts take time 2(ts log\/;+tw (nz /p)(\/;—l))

m The computation requires \p multiplications of (n/Alp)x (n/\p) sized submatrices.

m The parallel run time is approximately
3 2

T, sn—+tslogp+2twn—

p Jr

m The algorithm is cost optimal and the isoefficiency is O(p’-°) due to bandwidth
term ¢, and concurrency.

m Major drawback of the algorithm is that it is not memory optimal.

Matrix-Matrix Multiplication:
Cannon's Algorithm

m In this algorithm, we schedule the computations of the,/? processes of the ith
row such that, at any given time, each process is using a different block 4, ,.

m These blocks can be systematically rotated among the processes after every
submatrix multiplication so that every process gets a fresh 4, , after each
rotation.

Matrix-Matrix Multiplication:

Cannon's Algorithm

4
| ""i‘ T
£
- ,:"‘:.'-'\u !'.'_::-'\l,\
B | B B |3

4 1 4 1
'.'I.Aob E'\bl tAu:""tAo,)"'
By Ll fB‘:: le.)
"":__'Al 1 -"\ 12™ 5,:Al 5“'I%An,:’
_."Bw ;3:.1 ;Bu -.Bw
=T A q"\:.l*tA:o" A
B (Bu | B
4 1 4
* "5__'A.n" :.,'_-'\s_q" %’As,l" ?_'A:.:"'
Awp | Aar | Aaz | Awy Bus |[.Bus, | Bua, [.Bus . ."B.w ;B:,l .‘:Bl: .'B:‘)
A | A | Aux | Auy Bio [1Bur, || Buai | Bus (c') A ilD.'l.B after mma. aliénmem
Az "\"'_' A | As B,y |iBy [8.2 || Bas I" f f
'-:AOJ..'S__"'\D.I--':A\IU Ao =
Age | Anr | Asz | Ay B,, | By, lb,‘: B, ‘sz .‘B” ‘Bu: ‘Bx 3
CALS T A= TAL =T A
P S - EB LB. .'{B. kB
(2) In:tal aliznment of A (b) Initial aliznment 0f B P f S P P
- !TAZD--E_.A'LI- !'TA':: 3 F Ay
B "3 v | B dBu
-tA_”'l..\ -tA”o-kA!‘u
By |,Bu JBuy

I

=

'\

E |

';,;A-:,u" -
2Bus

{—.4:" -t

"Bu 3

!

-.:""{'\u -

R "W i

'.ﬁ} i e .ew.» i e

I -:—Al 3

Jon

A,
B,

A,

B;s

A t A, -
B,,

Ay

B,

(d) Submamix locations after first shift

Aoy | A | A | As:
BS.: 1 Bl.! B.‘,‘
A | A | A | Ao
Bl'.: Bl_l B:.! BI,$
Ay | A [A [A
Bis | Bu | B | Bus
Ag | As | A | Al
Bﬁ.: Bl 1 Bl'.! Bl 5

(2) Submatmy locations after second shift (f) Submatnx locations after third shift

Communication steps in Cannon's algorithm on 16 processes.

Matrix-Matrix Multiplication:
Cannon's Algorithm

m Align the blocks of 4 and B in such a way that each process multiplies its
local submatrices. This is done by shifting all submatrices 4, ; to the left (with
wraparound) by 7 steps and all submatrices B, ; up (with wraparound) by ;
steps.

m Do the following for Vp steps:
m Perform local block multiplication.

m Each block of 4 moves one step left and each block of B moves one step up (again
with wraparound).

m Perform next block multiplication, add to partial result, repeat until all blocks have
been multiplied.

Matrix-Matrix Multiplication:
Cannon's Algorithm

m In the alignment step the two shift operations require a total of time of each processor

communicating 1 block:)
T ien = 2(t,+1,0° / p)

align

m Each of the single-step shifts in the compute-and-s@ift phase of the algorithm takes

time. _ tcn—+2(fs +1,n° /19)

T;hiftC ompute 3/2

m The parallel time is approximately:

3 2
T =n_+2 pts+2twn—
= Jp \

m The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm,
ﬁlthough'wﬂh larger factors on communication time. This algorithm is memory optimal
owever!

Matrix-Matrix Multiplication:
DNS Algorithm

m Uses a 3-D partitioning.

m Visualize the matrix multiplication algorithm as a cube . matrices 4 and B
come in two orthogonal faces and result C comes out the other orthogonal
face.

m Each internal node in the cube represents a single add-multiply operation
(and thus the complexity).

m DNS algorithm partitions this cube using a 3-D block scheme.

Matrix-Matrix Multiplication:
DNS Algorithm

m Assume an 77 X 71 X 71 mesh of processors.

m Move the columns of 4 and rows of B and perform broadcast.
m Each processor computes a single add-multiply.

m This is followed by an accumulation along the C dimension.

m Since each add-multiply takes constant time and accumulation and broadcast
takes log n time, the total runtime is log 7.

m This is not cost optimal. It can be made cost optimal by using » / log n
processors along the direction of accumulation.

-
Matrix-Matrix Multiplication:

DNS Algorithm

0. 0.0
O

O
O

() After broadcastinz /17 along j aws (d) Comrsponding distritution of B

The communication steps in the DNS algorithm while multiplying 4 x 4
matrices A and B on 64 processes.

Matrix-Matrix Multiplication:
DNS Algorithm

Using fewer than »n° processors.
m Assume that the number of processes p is equal to ¢ for some g < n.
m The two matrices are partitioned into blocks of size (n/q) x(n/q).

m Each matrix can thus be regarded as a g x g two-dimensional square array of
blocks.

m The algorithm follows from the previous one, except, in this case, we operate
on blocks rather than on individual elements.

Matrix-Matrix Multiplication:
DNS Algorithm

Using fewer than »? processors.

m Assume running on p=qg?> procesors

m The first one-to-one communication step is performed for both 4 and B, and
takes t +t,(n/q)? time for each matrix.

m The two one-to-all broadcasts take 2(t log q + t, (n/q)?log q) time.
m The reduction takes time ¢ log q + t, (n/q)?log q

m Multiplication of (n/q)%(n/q) submatrices is performed serially and takes
(n/q)® time.
= Note that a 3-D block that is assigned to a given processor represents that matrix
of a (n/q)*(n/q) sub-matrix of A and B (the third dimension represents the k loop of
the sub-matrix multiply!)

DNS blocked algorithm

m For parallel running time we assemble the parts to get
2 2 3
T,=t +t,(n/q) +3(ts +1,(n/q))logq+(n/q)
m Recall that p=¢~° which we can substitute into the above equation to obtain

3 2
n n
T,=—+|t +t,—=|(1+logp
- (p2/3)()

m This gives a parallel overhead function of

2/3

7)(p + plogp) = @(W2/3p1/3 logp)

1, = (ts +1
P

o
Computing the Isoefficiency function of the

blocked DNS algorithm

m Isoefficiency function is found to be W = f(O(p (log p)?) as shown below:

W =KT,(W,p)

W =KW p"logp
W = Kp1/3 log p

W = K3p(logp)3

Solving a System of Linear Equations

m Consider the problem of solving linear equations of the kind:

aporo + apiry 0+ -+ app_1Tn—1 = bo,
ajorg + ayjgry + -+ ay 11 = by,
Ay —1,070 . Ap—-1,1T1 LR . A1 n—-1Tpn—-1~ bn.—l'

m This is written as Ax = b, where A is an 72 X 711 matrix with A[i, j]1 = a;;, b

isan7 X [vector[b,, b,, ..., b, |7, and x is the solution.

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and back-substitution. The triangular

form is as:
rg + wugiry+ ug2rot - + U p—1Tn—1 = Yo
ry + uipret -+ U p_1Tp-1 = Y1,
: ;
Tn-—-1 = Yn-1.

We write thisas: Ux =y .

A commonly used method for transforming a given matrix into an upper-triangular matrix is
Gaussian Elimination.

Gaussian Elimination

1. procedure GAUSSIAN_ELIMINATION (A, b, v)

2. begin

3. fork:=0ton —1do /* Outer loop */
4, begin

5. forj:=k+1ton —1do

6. Alk, j] = Alk, j]/A[k, k]; /" Division step */
7. y[k] = blk]/A[k, k]

8. Alk, k] :=1;

9. fori . =k+1ton—1do

10. begin

1. forj:=k+1ton —1do

12. Ali,j] = Ali, 5] — Ali k] x A[k, 3]; /" Elimination step */
13. bli] := b[i] — Ali, k] x y[k];

14. Ali k] = 0;

15. endfor; /" Line 9%/

16, endfor; /* Line 3%/

17. end GAUSSIAN_ELIMINATION

Serial Gaussian Elimination

Gaussian Elimination |I

m The computation has three nested loops - in the £th iteration of the outer loop, the
algorithm performs (n-k)? computations. Summing from k = 1..n, we have roughly
(n?/3) multiplications-subtractions.

4
Inactive part 5;35 12
S—
AN
.................... Pt |
S, =R —— (k)—= (k) ,;__ += Alkj]=A[kjJAlkk]
Lo
Active DATT v -
IZZIE}ZZZI:IIIZIIZ(u)—@J)} """" —-o Alig] =A[Lj] - AlK] x Alk]]

A typical computation in Gaussian elimination.

Parallel Gaussian Elimination

m Assume p = n with each row assigned to a processor.

m The first step of the algorithm normalizes the row. This is a serial operation and
takes time (n-k) in the kth iteration.

m In the second step, the normalized row is broadcast to all the processors. This takes
me (¢, +tu(n —k — 1)) logn

m Each processor can independently eliminate this row from its own. This requires (n-
k-1) multiplications and subtractions.

m The total parallel time can be computed by summing from £ =1 ... n-1 as

3 1
Tp = §n(n — 1)+ tsnlogn + atwn(n — 1) logn.

m The formulation is not cost optimal because of the #,, term.

Parallel Gaussian Elimination

pb 01 AN 0.9 00 0.5 06 0N
R, 10D 09 00 0.9 06 00
p: 01 2% ao s asn am
°} 00 (900 G5 08 N
p‘ 00 (4N A0 (45 “p) (A7)
P, 00 (A9 30 (59 B8 (51
pB 0 0 (89 B (85 @) (6N
I 0 0 (00008 08N 0D
pb 01 A2 0.9 00 0.9 06 0N
R Y E I EYYED
p: 012N eH s aes an
B[+ ¢ ¢ 1,0900080
P, 0 0 Yy l:(d;h_s; K10V
p’ 0 0 5y lj\,o'!\.\,s; Fiomean
B 0 0 By l‘o,l,u?mﬁ; ‘fc,o_l?a.!;.
B 00 TNNARTSE el
B 01 QD 0.9 00 0.5 06 0N
pl 10 0% a0 0.9 08 00
R 01 (Y Qo s an
p’ 00 1 Q0035 a8 N
P, 00 (4 A0 (45 U8 (7
p3 00 (59 G0 (59 68 (5N
p° 00 (8 B (65 66 B
P, 00 (1904 (L9 O (0D

(a) Compuration:
(@) Alkj)=AkjJAKK] for k<j<n
@) Ak =1

(0) Communication:
Onaz-10-2ll brodcast of row Afk.*]

(c) Compuration:

(@ AlLj] =A[Lj] - Alk]x Alkj)
fork<i<nad k<j<n

@) AfLK) =0 for k<i<n

Gaussian elimination steps during the iteration corresponding k = 3 for an 8 x 8
matrix partitioned rowwise among eight processes.

Parallel Gaussian Elimination:
Pipelined Execution

m In the previous formulation, the (k+1)st iteration starts only after all the
computation and communication for the kth iteration is complete.

m In the pipelined version, there are three steps - normalization of a row,
communication, and elimination. These steps are performed in an
asynchronous fashion.

m A processor P, waits to receive and eliminate all rows prior to £.

m Once it has done this, it forwards its own row to processor Pk+1.

arallel Gaussian Elimination:

Ipelined Ex

Pipelined Gaussian elimination on a 5 x 5 matrix partitioned withone row

et

0.28) @3.1) 02) 03) o4

Lo o

AR USSRUS R

08 (.0 2 (%) (1.4

L0) 0. 4 0
il il

G0 0.3 0% G4

28 Q1) 22 2% (2.4)

) 23) 24

-.’:mén n.? ¥

38) 02 (A3 (34

3.2) A3 54

a0 1) 0 09 a0

(48) (4.1) (A2) (43) (44}

} S Ay

“A0) (A1) (42) () 0

) A1) (A2 (49 ()

0 |u.n) 0% 04

(a) Ireration k = 0 starts ®) © (d)
1 @0 02) 08 (04] Loy W) (02 (0% 24
L} o) 0an(e O 0% aA)

(28 .1 Q2) 2% 24

0 u.;)l;:.::l‘_':,uip 4?.

o QN ey ey e
| | |

o Ia.n @3 (39 24

(38 OU1) O2) (33 (3.4)
1 1

R A0 002 L))

0 14;).:;» ’!,l;‘.:u,.

& AN GH N a4

u.::-,/.l;é:un?‘o,v 4)

A0) (A1) (42) (4.3 (0

¢ “ iil{}}i’l.l:i{‘,ll

(e) Irzration k = 1 stars

(2) Irzration X = 0 ends

®

1) 0.2) (0.3 (04) [| (4 L)y o 04 LA VRUSSRUS R |
01 0 04 0 1 P R
T |a.n anas [0 o P & 0 1 @y QA
] |u.n anenes [0 o o 0 ° o |(.\a (3% 34
0 A1) A2) 43 (44 o [W ws @n [0 o 8 0 (4D (49 (A

(1) Iteration k= 2 starts

(j) Ireratzon k = | ends

[ty

1 @0 02) 03) (04

@) O 0y @A)

[1 (L2 L3 (04 9 ¢ OO s Gl
o 0 25 124 L} 0 25) 24 L} L 1) QA ¢ 0 1 .9 QA)
0o o @ Iun) (3.4) EEE e 0 0 a0 to0 0 1 oA
L 1] |.‘J) [T R L} o0 ¢ (‘)Ié‘(,lj L} o 0 I(l,l) “n ¢ 0 o o0 |(Ml
(m) Ireration X = 3 starts (n) (o)Itsrationk=3ends (p)lterationk=4

Communication fork=0.3
Communication fork =1

Communication fork =2

[[] compution fork=0.3
[[] compution fork=1.4
|:] Computation fork =2

per process.

Parallel Gaussian Elimination:
Pipelined Execution

m The total number of steps in the entire pipelined procedure is O(n).

m In any step, either O(n) elements are communicated between directly-
connected processes, or a division step is performed on O(n) elements of a
row, or an elimination step is performed on O(n) elements of a row.

m The parallel time is therefore O(n?) .

m This is cost optimal.

Parallel Gaussian Elimination:
Pipelined Execution

101 02 (03) 04 (0,5 (06) (0.7)

0 1 (1.2 (1,3 (4 (L5 (1,6) (1,7

(=]
(=}
—

(2.3) 24) 2,5) 2,6) (2.7)

0 0 0 (43) (44 (45 46) (47)

P v v
2
00 0 (53)GH (I G 6D

0 0 0 (63) 64 65 (6.6 (6.7)

P v v
3 1o 0 0 (73 74 (75 76 (17

The communication in the Gaussian elimination iteration
corresponding to k = 3 for an 8 x 8 matrix distributed among four
processes using block 1-D partitioning.

Parallel Gaussian Elimination:
Block 1D with p <

m The above algorithm can be easily adapted to the case when p < n.

m In the £th iteration, a processor with all rows belonging to the active part of the matrix
performs (n — k -1) [np multiplications and subtractions.

m In the pipelined version, for n > p, computation dominates communication.
m The parallel time is given by: 2(n/ p)EZ;S(n —k—1)
or approximately, n’/p.

m While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the
sequential run time by a factor of 3/2.

Parallel Gaussian Elimination:
Block 1D withp < n

©.1) (0.2) (0,3) (0.4 (0,5) (0,6) (0,7)

112 1L,3) @4 1.5 @16 (1,7

—

0,1) (0,2) (0,3) (0.4) (0,5) (0,6) (0,7)

0 1 @23 @24 25 26 27

0 0 (33) G4 G5 Be (B

0 0 43 (44 45 ‘46 4D

0 0 (53) (G4 (5.5 (56 5D

1
P, .
0
P, .
0
P, .
0
Py .

0 0 (63) (64 (6.5 (6,6) (6,7

0 0 73 @4 (75 (7.6 (7.1

(a) Block 1-D mapping

PO
0 0 0 @3 44 @45 46 41
0 1 (1,2) (1,3) (1,49 (1,5 (1,6) (1,7)
0 0 0 (5.3) (54 (55 (5:6) (5.7 Pl
0 0 1 @3 24 @25 2.6 27
0 0 0 (6,3) (6,4) (6,5 (6,6) (6,7) P2
0 0 0 (33 34 (35 3.6 3.7
0 0 0 @3) (14 (7.5 (71.6) (7,7) P3

(b) Cyclic 1-D mapping

Computation load on different processes in block and cyclic

1-D partitioning of an 8 x 8 matrix on four processes during the
Gaussian elimination iteration corresponding to k = 3.

Parallel Gaussian Elimination:
Block 1D with p <

m The load imbalance problem can be alleviated by using a cyclic mapping.

m In this case, other than processing of the last p rows, there is no load
imbalance.

m This corresponds to a cumulative load imbalance overhead of O(n’p)
(instead of O(x?) in the previous case).

Parallel Gaussian Elimination:
2-D Mapping

m Assume an 71 X 71 matrix 4 mapped onto an 72 X 71 mesh of processors.

m Each update of the partial matrix can be thought of as a scaled rank-one
update (scaling by the pivot element).

m In the first step, the pivot is broadcast to the row of processors.

m In the second step, each processor locally updates its value. For this it needs
the corresponding value from the pivot row, and the scaling value from its
Own row.

m This requires two broadcasts, each of which takes log n time.

m This results in a non-cost-optimal algorithm.

Parallel Gaussian Elimination:
2-D Mapping

1 LGRS B W] D] D) FUURS B OEN D) 1 S A2 S oay 25 e ™

9 LI RET DR] DRRET] B PR RRREN B 0 DU TR RRRE N BRI N DA DRSe)

Qq 0 o apesyasy 0 1 alaa s ey

alofe '(71_|| (R FREN R PR 0 0 |eas|oaf oS asan

Q 0 (O R TR B FEES RO B] DI TR FER S RERN BE XY IR B
: o gl e

Q 0] rj‘._ll R PR RN DS | = DI PR PR RAR N BT PR
- Y — O

0 | o | o |kenfaales] e 0 DI (Y] FEXR EERH RV O]
[JTTY SN SN - .

o [o e [afoofesfasfon 0 o |esfoafos|osfon
- o] -0 —a

(2) Rowwise broadcastof AlLk

[

(@) ARJ]=AKJJAKE]

for(k-1)<i<n fork<j<n
T FIORR EEORS OS] PR FITRS IR PR P EER FUSI FTTRY] IR ERE FErS] M)
D} 1 (LN CLO] LS (e L) 1 ! DU R BR] RRIEE REN N DY D S
Q9 o 1 QR0 a2 0 opasjaayasyaepee™
Qq 0 1 llll 1 9 1 AN OS] oo™y
9 0 L 2 llﬁ(A 0 DI [ERY] IR RERH R I8 &)
o loloe nu\ «uu) o |es|eef ol cslan
a oo =,nke ol 0 DI OS] FEX EER EE] (O]
Q9 o LU [a IIL 0 O oSl osason
(c) Columnwise broadcast of Alk;] (@) Al =ALjJFALK) x Alk))
fork<j<n fork<i<padk<j<n

Various steps in the Gaussian elimination iteration corresponding to
k =3 for an 8 x 8 matrix on 64 processes arranged in a logical two-
dimensional mesh.

Parallel Gaussian Elimination:
2-D Mapping with Pipelining

m \We pipeline along two dimensions. First, the pivot value is pipelined along the
row. Then the scaled pivot row is pipelined down.

m Processor P; . (not on the pivot row) performs the elimination step A[i, j] :=
Ali, j] - A, 19]A[k j] as soon as A[i, k] and Alk, j] are available.

m The computation and communication for each iteration moves through the
mesh from top-left to bottom-right as a “front."

m After the front corresponding to a certain iteration passes through a process,
the process is free to perform subsequent iterations.

m Multiple fronts that correspond to different iterations are active
simultaneously.

Parallel Gaussian Elimination:
2-D Mapping with Pipelining

m |f each step (division, elimination, or communication) is assumed to take
constant time, the front moves a single step in this time. The front takes O(n)
time to reach P

n-1n-1*

m Once the front has progressed past a diagonal processor, the next front can
be initiated. In this way, the last front passes the bottom-right corner of the
matrix O(r) steps after the first one.

m The parallel time is therefore O(n) , which is cost-optimal.

D
=}
>

" 2.D Mapping w

(LS RURH [0S

)| 0.0 1

2 3| 0.4 LI U R URS RER

=3
LRS! REAN B ooy aaf oo L] IR o fanasfosfea
Q0 (30 Q2| (23 2A) ey e 2] E4 (2,04 Q0 QD23 QA
[0 RENN D b] [RSS ReR D (3 A2y) A0 QO 514 B2 5] (5.4 (300 O A 534 O

[ERS REAN B8 B [ESS RER) ICUH EER Y] FERE RERH ISR Amfany

(404 (0]] 43y ()

(2) Iteration k = 0 starts) © (d)
1|l 1| enf o 1 1| e an|os e
0 o fanfoz L] L IR RUS] U RER)
Y7 LR 'EX o |anjeyfen|eo | o o |an|an|ey e

o (4

[RNG! EERN ERSd] IRRH RSN}

aal |om

LI R DS [RSS ReR]

i “A) i KR I RE YT (ERR [CR0 RENN TS [ERR RO
(® [43) (g) eraton k = 1 starss @
1 [onfen]os] e 1 [y el oo 1 1 fenfanfosfeq

LI B LS RLE D BT L] LU R R USRS R R

o Oy e e L) o O janias e

O sy oy

i SR L]

O fAnfazy e ° LU REA RS S IERS RER)

M @ o

1 (O] 0. 1 janjes)| 4 1 (014 2.2 5] (0.4 1 RN FO ST (RS RN]
L] DI RS FE S RO o 1 .24 .3 (L0 9 1 (L2 (LS| 014 L DI R FE S RO)
o o {] IR S 0 9 1 s ° o o o LI [P e 2 1)
[LU U [RSS RE R P B el oo |0 [ias o

.
o .’l.l:t:,n [:)I an| [oo [we]asfaol [o]e o | o [anfasan
(m) Ireration X = 2 starts () (p) Iteration k=10

w—e Compmnication fork =0 I:l Computation for k=0

— Compmmication fork =1 |:| Compuntion fork =1

--— Compmmication fork =2 EI Computation for k=2

Pipelined Gaussian elimination for a 5 x 5 matrix with 25 processors.

Parallel Gaussian Elimination:
2-D Mapping with Pipelining and p < n
m In this case, a processor containing a completely active part of the matrix

performs »n°/p multiplications and subtractions, an%go\ry@unicates
words along its row and its column.

m The computation dominates communication for n >> p.

m The total parallel run time of this algorithm is (2rn°/p) X n, since there are n
iterations. This is equal to 2n’/p.

m This is three times the serial operation count!

Parallel Gaussian Elimination:
2-D Mapping Wlth Pipeliningand p < n

n/ \/
1 (0,1) [(0,2) (0,3)(0,4) (0,5)|(0,6) (0,7) 1 (0,1{(0,2) (0,3)[(0,4) (0,5)|(0,6) (0,7)
0 1 |(1,2) (1,3)(1,4) (1,5)[(1,6) (1,7) 0 1 |(1,2)(1,3)[(1,4)(1,5)((1,6) (1,7)
0 0 1 (2.3) [(2,4) (2,5)[(2,6) 2,7) 0 0 |1 (2324 @2.5)26) 27
0 0 |0,331G43S) (3.6 3. 0 010 1 :(_3,1)5_(3_,5_) (_3,_6)2_(3_,7—)
ﬁ o (o eesiaan [0 0 [0 wjasasanen |
0 0 |(5 3)' (5.4) (5,9)((5,6) (5.7) 0 0 |0 (53 (5,4)E (5.5) (5,6)E 5.7
0 0 0 (6 3), (6 4) (6,5) (6 6) (6,7) 0 0 |0 (63 (6,4)% (6,5) (6,6)5 (6,7)
0 0 |L(73)|r (7,4) (75) (7 6) (7,7) 0 0 |0 (13 (7,4)V(7,5) (7,6)V(7,7)
(a) Rowwise broadcast of A[ik] (b) Columnwise broadcast of A[k,j]
fori=kto(n-1) forj=(k+1)to(n-1)

The communication steps in the Gaussian elimination iteration
corresponding to k = 3 for an 8 x 8 matrix on 16 processes of a two-
dimensional mesh.

Parallel Gaussian Elimination:

2-D Mapping with Pipeliningand p < n

ooy (o] o e fiae (0
(U (I SURT RS EER SR PRI
0 ¢ P aseie 127
O 0 |0 (AN AN (57
O 0 |0 (AN (s (AT
O 0 |0 (S350 (398 (A7)
O 2|0 (a3 ind (a8 (67
0 2|0 OO O 08 O

(2) Block-checkerboard mapping

IR 252 e int o)
“ol o @yl ¢ @aley @
LA T SRR sy L)
sol o ol ¢ salen o
U] I OIS Y B Y] S R S
6ol o @5 o walEn @)
sal o o ¢ selen oy
Cal e O8] ¢ Oeom

(v) Cyclic-checkerboard mapping

Computational load on different processes in block and cyclic
2-D mappings of an 8 x 8 matrix onto 16 processes during the Gaussian
elimination iteration corresponding to k = 3.

Parallel Gaussian Elimination:
2-D Cyclic Mapping

m The idling in the block mapping can be alleviated using a cyclic mapping.

m The maximum difference in computational load between any two processes
in any iteration is that of one row and one column update.

m This contributes @(n\/ﬁ) to the overhead function. Since there are n
iterations, the total overhead is @(nzﬁ) .

Gaussian Elimination
with Partial Pivoting

m For numerical stability, one generally uses partial pivoting.

m In the £ th iteration, we select a column i (called the pivot column) such that
A[k, i] is the largest in magnitude among all A[%, i] such that £ <j < n.

m The & th and the i th columns are interchanged.

m Simple to implement with row-partitioning and does not add overhead since
the division step takes the same time as computing the max.

m Column-partitioning, however, requires a global reduction, adding a log p
term to the overhead.

m Pivoting precludes the use of pipelining.

Gaussian Elimination with Partial Pivoting:
2-D Partitioning

m Partial pivoting restricts use of pipelining, resulting in performance loss.
m This loss can be alleviated by restricting pivoting to specific columns.

m Alternately, we can use faster algorithms for broadcast.

S
Solving a Triangular System:
Back-Substitution

m The upper triangular matrix U undergoes back-substitution to determine the vector x.

procedure BACK_SUBSTITUTION (UJ, =, v)
begin
fork :=n — 1 downto 0 do /* Main loop */
begin

x[k] = y[k];
fori := k — 1 downto O do
y[i] = yli] — z[k] x Uli, k];
endfor;
end BACK_SUBSTITUTION

WoONCOEB WD~

A serial algorithm for back-substitution.

Solving a Triangular System:
Back-Substitution

m The algorithm performs approximately »°/2 multiplications and subtractions.

m Since complexity of this part is asymptotically lower, we should optimize the
data distribution for the factorization part.

m Consider a rowwise block 1-D mapping of the » x n matrix U with vector y
distributed uniformly.

m The value of the variable solved at a step can be pipelined back.

m Each step of a pipelined implementation requires a constant amount of time
for communication and O(n/p) time for computation.

m The parallel run time of the entire algorithm is ©(n°/p).

Solving a Triangular System:
Back-Substitution

m If the matrix is partitioned by using 2-D partitioning on a logical mesh of /p X /P
processes, and the elements of the vector are distributed along one of the
columns of the process mesh, then only the /D Processes containing the
vector perform any computation.

m Using pipelining to communicate the appropriate elements of Uto the
process containing the corresponding elements of y for the substitution step
(line 7), the algorithm can be executed in O(n?/ \/2_7) time.

m While this is not cost optimal, since this does not dominate the overall
computation, the cost optimality is determined by the factorization.

