
+

Design of Parallel
Algorithms
Models of Parallel Computation

+
Preliminaries: Decomposition,
Tasks, and Dependency Graphs

n  The first step in developing a parallel algorithm is to
decompose the problem into tasks that can be executed
concurrently

n  A given problem may be docomposed into tasks in many
different ways.

n  Tasks may be of same, different, or even interminate sizes.

n  A decomposition can be illustrated in the form of a directed
graph with nodes corresponding to tasks and edges
indicating that the result of one task is required for
processing the next. Such a graph is called a task
dependency graph.

+
Degree of Concurrency

n  The number of tasks that can be executed in parallel is the
degree of concurrency of a decomposition.

n  Since the number of tasks that can be executed in parallel may
change over program execution, the maximum degree of
concurrency is the maximum number of such tasks at any point
during execution. What is the maximum degree of
concurrency of summing n numbers?

n  The average degree of concurrency is the average number of
tasks that can be processed in parallel over the execution of the
program. Assuming that each tasks in the database example
takes identical processing time, what is the average degree
of concurrency in each decomposition?

n  The degree of concurrency increases as the decomposition
becomes finer in granularity and vice versa.

+
Critical Path Length

n  The Task Dependency Graph is a directed graph that
describes the flow of information between parallel tasks in
the program. Because of this dependency, some tasks may
not run concurrently with other tasks.
n  A directed path in the task dependency graph represents a

sequence of tasks that must be processed one after the other.

n  The longest such path determines the shortest time in which the
program can be executed in parallel.

n  The length of the longest path in a task dependency graph is
called the critical path length.

Critical Path Length

Consider the task dependency graphs of the two database query

decompositions:

 What are the critical path lengths for the two task dependency graphs?
If each task takes 10 time units, what is the shortest parallel execution time
for each decomposition? How many processors are needed in each case to
achieve this minimum parallel execution time? What is the maximum
degree of concurrency?

+
Limits on Parallel Performance

n  It would appear that the parallel time can be made arbitrarily
small by making the decomposition finer in granularity.

n  There is an inherent bound on how fine the granularity of a
computation can be. For example, in the case of
multiplying a dense matrix with a vector, there can be no
more than (n2) concurrent tasks.

n  Concurrent tasks may also have to exchange data with other
tasks. This results in communication overhead. The tradeoff
between the granularity of a decomposition and associated
overheads often determines performance bounds.

+
Task Interaction Graphs

n  Task interaction graphs are undirected graphs that show data
communication patterns between tasks.
n  Represents data communication within the parallel program
n  Subtasks generally exchange data with others in a

decomposition. For example, even in the trivial decomposition of
the dense matrix-vector product, if the vector is not replicated
across all tasks, they will have to communicate elements of the
vector.

n  The graph of tasks (nodes) and their interactions/data exchange
(edges) is referred to as a task interaction graph.

n  Note that task interaction graphs represent data
dependencies, whereas task dependency graphs represent
control dependencies.

Task Interaction Graphs: An Example

 Consider the problem of multiplying a sparse matrix A with a
vector b. The following observations can be made:

•  As before, the computation of each element of the result vector can be
viewed as an independent task.

•  Unlike a dense matrix-vector product though, only non-zero elements of
matrix A participate in the computation.

•  If, for memory optimality, we also partition b across tasks, then one can see
that the task interaction graph of the computation is identical to the graph of
the matrix A (the graph for which A represents the adjacency structure).

+
Task Interaction Graphs,
Granularity, and Communication

 In general, if the granularity of a decomposition is finer,
the associated overhead (as a ratio of useful work associated
with a task) increases.

 Example: Consider the sparse matrix-vector product example
from previous foil. Assume that each node takes unit time to
process and each interaction (edge) causes an overhead of a
unit time.

 Viewing node 0 as an independent task involves a useful
computation of one time unit and overhead (communication) of
three time units.

 Now, if we consider nodes 0, 4, and 5 as one task, then the
task has useful computation totaling to three time units and
communication corresponding to four time units (four edges).
Clearly, this is a more favorable ratio than the former case.

+
Processes and Mapping

n  In general, the number of tasks in a decomposition exceeds the
number of processing elements available.

n  For this reason, a parallel algorithm must also provide a mapping of
tasks to processes.

 Note: We refer to the mapping as being from tasks to processes, as
opposed to processors. This is because typical programming APIs, as we
shall see, do not allow easy binding of tasks to physical processors. Rather,
we aggregate tasks into processes and rely on the system to map these
processes to physical processors. We use processes, not in the UNIX sense
of a process, rather, simply as a collection of tasks and associated data.

+
Processes and Mapping

n  Appropriate mapping of tasks to processes is critical to the
parallel performance of an algorithm.

n  Mappings are determined by both the task dependency and
task interaction graphs.

n  Task dependency graphs can be used to ensure that work is
equally spread across all processes at any point (minimum
idling and optimal load balance).

n  Task interaction graphs can be used to make sure that
processes need minimum interaction with other processes
(minimum communication).

+
Processes and Mapping

An appropriate mapping must minimize parallel execution
time by:

n  Mapping independent tasks to different processes.

n  Assigning tasks on critical path to processes as soon as they
become available.

n  Minimizing interaction between processes by mapping tasks
with dense interactions to the same process.

 Note: These criteria often conflict with each other. For
example, a decomposition into one task (or no
decomposition at all) minimizes interaction but does not
result in a speedup at all! Can you think of other such
conflicting cases?

+
Decomposition Techniques

 So how does one decompose a task into various subtasks?

 While there is no single recipe that works for all problems,
we present a set of commonly used techniques that apply to
broad classes of problems. These include:

• recursive decomposition

• data decomposition

• exploratory decomposition

• speculative decomposition

+
Recursive Decomposition

n  Generally suited to problems that are solved using the
divide-and-conquer strategy.

n  A given problem is first decomposed into a set of sub-
problems.

n  These sub-problems are recursively decomposed further
until a desired granularity is reached.

Recursive Decomposition: Example

A classic example of a divide-and-conquer algorithm on which we

can apply recursive decomposition is Quicksort.

 In this example, once the list has been partitioned around the pivot, each
sublist can be processed concurrently (i.e., each sublist represents an
independent subtask). This can be repeated recursively.

+
Recursive Decomposition:
Example
 The problem of finding the minimum number in a given list (or
indeed any other associative operation such as sum, AND, etc.) can
be fashioned as a divide-and-conquer algorithm. The following
algorithm illustrates this.

 We first start with a simple serial loop for computing the
minimum entry in a given list:

 1. procedure SERIAL_MIN (A, n)
 2. begin
 3. min = A[0];
 4. for i := 1 to n − 1 do
 5. if (A[i] < min) min := A[i];
 6. endfor;
 7. return min;
 8. end SERIAL_MIN

+
Recursive Decomposition:
Example We can rewrite the loop as follows:

 1. procedure RECURSIVE_MIN (A, n)
2. begin
3. if (n = 1) then
4. min := A [0] ;
5. else
6. lmin := RECURSIVE_MIN (A, n/2);
7. rmin := RECURSIVE_MIN (&(A[n/2]), n - n/2);
8. if (lmin < rmin) then
9. min := lmin;
10. else
11. min := rmin;
12. endelse;
13. endelse;
14. return min;
15. end RECURSIVE_MIN

Recursive Decomposition: Example

 The code in the previous foil can be decomposed naturally using a
recursive decomposition strategy. We illustrate this with the
following example of finding the minimum number in the set {4, 9,
1, 7, 8, 11, 2, 12}. The task dependency graph associated with this
computation is as follows:

+
Data Decomposition

n  Basic Idea: Partition data first, then infer tasks decomposition
based on how computations access the data

n  Approach:
n  Identify the data on which computations are performed.

n  Partition this data across various tasks.

n  This partitioning induces a decomposition of the problem.

n  Data can be partitioned in various ways - this critically
impacts performance of a parallel algorithm.

+
Data Decomposition: Output Data
Decomposition

n  Often, each element of the output can be computed
independently of others (but simply as a function of the
input).

n  A partition of the output across tasks decomposes the
problem naturally.

+
Input Data Partitioning

n  Generally applicable if each output can be naturally
computed as a function of the input.

n  In many cases, this is the only natural decomposition because
the output is not clearly known a-priori (e.g., the problem of
finding the minimum in a list, sorting a given list, etc.).

n  A task is associated with each input data partition. The task
performs as much of the computation with its part of the data.
Subsequent processing combines these partial results.

+
Intermediate Data Partitioning

n  Computation can often be viewed as a sequence of
transformation from the input to the output data.

n  In these cases, it is often beneficial to use one of the
intermediate stages as a basis for decomposition.

+
The Owner Computes Rule

n  The Owner Computes Rule generally states that the process
assined a particular data item is responsible for all
computation associated with it.

n  In the case of input data decomposition, the owner computes
rule imples that all computations that use the input data are
performed by the process.

n  In the case of output data decomposition, the owner
computes rule implies that the output is computed by the
process to which the output data is assigned.

+
Exploratory Decomposition

n  In many cases, the decomposition of the problem goes hand-
in-hand with its execution.

n  These problems typically involve the exploration (search) of
a state space of solutions.

n  Problems in this class include a variety of discrete
optimization problems (0/1 integer programming, QAP, etc.),
theorem proving, game playing, etc.

Exploratory Decomposition: Example

 A simple application of exploratory decomposition is in the solution to
a 15 puzzle (a tile puzzle). We show a sequence of three moves that
transform a given initial state (a) to desired final state (d).

 Of-course, the problem of computing the solution, in general, is
much more difficult than in this simple example.

Exploratory Decomposition: Example

 The state space can be explored by generating various successor
states of the current state and to view them as independent tasks.

+
Speculative Decomposition

n  In some applications, dependencies between tasks are not
known a-priori.

n  For such applications, it is impossible to identify independent
tasks.

n  There are generally two approaches to dealing with such
applications: conservative approaches, which identify
independent tasks only when they are guaranteed to not have
dependencies, and, optimistic approaches, which schedule tasks
even when they may potentially be erroneous.

n  Conservative approaches may yield little concurrency and
optimistic approaches may require roll-back mechanism in the
case of an error.

+
Speculative Decomposition:
Example

 A classic example of speculative decomposition is in discrete event
simulation.

n  The central data structure in a discrete event simulation is a time-ordered
event list.

n  Events are extracted precisely in time order, processed, and if required,
resulting events are inserted back into the event list.

n  Consider your day today as a discrete event system - you get up, get ready,
drive to work, work, eat lunch, work some more, drive back, eat dinner, and
sleep.

n  Each of these events may be processed independently, however, in driving
to work, you might meet with an unfortunate accident and not get to work at
all.

n  Therefore, an optimistic scheduling of other events will have to be rolled
back.

+
Hybrid Decompositions

 Often, a mix of decomposition techniques is necessary for
decomposing a problem. Consider the following examples:

•  In quicksort, recursive decomposition alone limits concurrency (Why?). A
mix of data and recursive decompositions is more desirable.

•  In discrete event simulation, there might be concurrency in task processing.
A mix of speculative decomposition and data decomposition may work well.

•  Even for simple problems like finding a minimum of a list of numbers, a mix
of data and recursive decomposition works well.

+
Mapping Techniques for Minimum
Idling

 Mapping techniques can be static or dynamic.

n Static Mapping: Tasks are mapped to processes a-
priori. For this to work, we must have a good estimate of
the size of each task. Even in these cases, the problem
may be NP complete.

n Dynamic Mapping: Tasks are mapped to processes at
runtime. This may be because the tasks are generated
at runtime, or that their sizes are not known.

 Other factors that determine the choice of techniques
include the size of data associated with a task and the
nature of underlyingdomain.

+
Schemes for Static Mapping

n  Mappings based on data partitioning.

n  Mappings based on task graph partitioning.

n  Hybrid mappings.

+
Mappings Based on Data
Partitioning

 We can combine data partitioning with the ``owner-computes'' rule to
partition the computation into subtasks. The simplest data
decomposition schemes for dense matrices are 1-D block
distribution schemes.

Block Array Distribution Schemes

 Block distribution schemes can be generalized to higher
dimensions as well.

+
Graph Partitioning Dased Data
Decomposition

n  In case of sparse matrices, block decompositions are more
complex.

n  Consider the problem of multiplying a sparse matrix with a
vector.

n  The graph of the matrix is a useful indicator of the work
(number of nodes) and communication (the degree of each
node).

n  In this case, we would like to partition the graph so as to
assign equal number of nodes to each process, while
minimizing edge count of the graph partition.

+
Partitioning the Graph of Lake
Superior

Random Partitioning

Partitioning for minimum edge-cut.

+
Mappings Based on Task
Paritioning

n  Partitioning a given task-dependency graph across
processes.

n  Determining an optimal mapping for a general task-
dependency graph is an NP-complete problem.

n  Excellent heuristics exist for structured graphs.

+
Hierarchical Mappings

n  Sometimes a single mapping technique is inadequate.

n  For example, the task mapping of the binary tree (quicksort)
cannot use a large number of processors.

n  For this reason, task mapping can be used at the top level
and data partitioning within each level.

+
 An example of task partitioning at top level with data
partitioning at the lower level.

