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Preliminaries: Decomposition, 
Tasks, and Dependency Graphs 

n  The first step in developing a parallel algorithm is to 
decompose the problem into tasks that can be executed 
concurrently  

n  A given problem may be docomposed into tasks in many 
different ways.  

n  Tasks may be of same, different, or even interminate sizes.  

n  A decomposition can be illustrated in the form of a directed 
graph with nodes corresponding to tasks and edges 
indicating that the result of one task is required for 
processing the next. Such a graph is called a task 
dependency graph.   



+
Degree of Concurrency  

n  The number of tasks that can be executed in parallel is the 
degree of concurrency of a decomposition.  

n  Since the number of tasks that can be executed in parallel may 
change over program execution, the maximum degree of 
concurrency is the maximum number of such tasks at any point 
during execution. What is the maximum degree of 
concurrency of summing n numbers?  

n  The average degree of concurrency is the average number of 
tasks that can be processed in parallel over the execution of the 
program. Assuming that each tasks in the database example 
takes identical processing time, what is the average degree 
of concurrency in each decomposition?  

n  The degree of concurrency increases as the decomposition 
becomes finer in granularity and vice versa.  

 



+
Critical Path Length  

n  The Task Dependency Graph is a directed graph that 
describes the flow of information between parallel tasks in 
the program.  Because of this dependency, some tasks may 
not run concurrently with other tasks. 
n  A directed path in the task dependency graph represents a 

sequence of tasks that must be processed one after the other.  

n  The longest such path determines the shortest time in which the 
program can be executed in parallel.  

n  The length of the longest path in a task dependency graph is 
called the critical path length.  

 



Critical Path Length  

Consider the task dependency graphs of the two database query 

decompositions:  

 What are the critical path lengths for the two task dependency graphs? 
If each task takes 10 time units, what is the shortest parallel execution time 
for each decomposition? How many processors are needed in each case to 
achieve this minimum parallel execution time? What is the maximum 
degree of concurrency?  



+
Limits on Parallel Performance  

n  It would appear that the parallel time can be made arbitrarily 
small by making the decomposition finer in granularity.  

n  There is an inherent bound on how fine the granularity of a 
computation can be. For example, in the case of 
multiplying a dense matrix with a vector, there can be no 
more than (n2) concurrent tasks.  

n  Concurrent tasks may also have to exchange data with other 
tasks. This results in communication overhead. The tradeoff 
between the granularity of a decomposition and associated 
overheads often determines performance bounds.  

 



+
Task Interaction Graphs  

n  Task interaction graphs are undirected graphs that show data 
communication patterns between tasks.  
n  Represents data communication within the parallel program 
n  Subtasks generally exchange data with others in a 

decomposition. For example, even in the trivial decomposition of 
the dense matrix-vector product, if the vector is not replicated 
across all tasks, they will have to communicate elements of the 
vector.  

n  The graph of tasks (nodes) and their interactions/data exchange 
(edges) is referred to as a task interaction graph.  

n  Note that task interaction graphs represent data 
dependencies, whereas task dependency graphs represent 
control dependencies.  

 



Task Interaction Graphs: An Example  

  Consider the problem of multiplying a sparse matrix A with a 
vector b. The following observations can be made: 

•  As before, the computation of each element of the result vector can be 
viewed as an independent task.  

•  Unlike a dense matrix-vector product though, only non-zero elements of 
matrix A participate in the computation.  

•  If, for memory optimality, we also partition b across tasks, then one can see 
that the task interaction graph of the computation is identical to the graph of 
the matrix A (the graph for which A represents the adjacency structure).  



+
Task Interaction Graphs, 
Granularity, and Communication  

  In general, if the granularity of a decomposition is finer, 
the associated overhead (as a ratio of useful work associated 
with a task) increases.  

 Example: Consider the sparse matrix-vector product example 
from previous foil. Assume that each node takes unit time to 
process and each interaction (edge) causes an overhead of a 
unit time.  

  Viewing node 0 as an independent task involves a useful 
computation of one time unit and overhead (communication) of 
three time units.  

  Now, if we consider nodes 0, 4, and 5 as one task, then the 
task has useful computation totaling to three time units and 
communication corresponding to four time units (four edges). 
Clearly, this is a more favorable ratio than the former case.  

 



+
Processes and Mapping  

n  In general, the number of tasks in a decomposition exceeds the 
number of processing elements available.  

n  For this reason, a parallel algorithm must also provide a mapping of 
tasks to processes.  

 Note: We refer to the mapping as being from tasks to processes, as 
opposed to processors. This is because typical programming APIs, as we 
shall see, do not allow easy binding of tasks to physical processors. Rather, 
we aggregate tasks into processes and rely on the system to map these 
processes to physical processors. We use processes, not in the UNIX sense 
of a process, rather, simply as a collection of tasks and associated data.   



+
Processes and Mapping  

n  Appropriate mapping of tasks to processes is critical to the 
parallel performance of an algorithm.  

n  Mappings are determined by both the task dependency and 
task interaction graphs.  

n  Task dependency graphs can be used to ensure that work is 
equally spread across all processes at any point (minimum 
idling and optimal load balance).  

n  Task interaction graphs can be used to make sure that 
processes need minimum interaction with other processes 
(minimum communication).  

 



+
Processes and Mapping  

An appropriate mapping must minimize parallel execution 
time by:  

n  Mapping independent tasks to different processes.  

n  Assigning tasks on critical path to processes as soon as they 
become available.  

n  Minimizing interaction between processes by mapping tasks 
with dense interactions to the same process.  

 Note: These criteria often conflict with each other. For 
example, a decomposition into one task (or no 
decomposition at all) minimizes interaction but does not 
result in a speedup at all! Can you think of other such 
conflicting cases?  



+
Decomposition Techniques  

 So how does one decompose a task into various subtasks?  

 While there is no single recipe that works for all problems, 
we present a set of commonly used techniques that apply to 
broad classes of problems. These include:  

•  recursive decomposition  

•  data decomposition  

•  exploratory decomposition  

•  speculative decomposition  

 



+
Recursive Decomposition  

n  Generally suited to problems that are solved using the 
divide-and-conquer strategy.  

n  A given problem is first decomposed into a set of sub-
problems.  

n  These sub-problems are recursively decomposed further 
until a desired granularity is reached.  

 



Recursive Decomposition: Example  

A classic example of a divide-and-conquer algorithm on which we 

can apply recursive decomposition is Quicksort.  

 In this example, once the list has been partitioned around the pivot, each 
sublist can be processed concurrently (i.e., each sublist represents an 
independent subtask). This can be repeated recursively.  



+
Recursive Decomposition: 
Example  
 The problem of finding the minimum number in a given list (or 
indeed any other associative operation such as sum, AND, etc.) can 
be fashioned as a divide-and-conquer algorithm. The following 
algorithm illustrates this.  

  We first start with a simple serial loop for computing the 
minimum entry in a given list:  

 
 1. procedure SERIAL_MIN (A, n)   
 2. begin 
 3. min = A[0]; 
 4. for i := 1 to n − 1 do 
 5.   if (A[i] < min) min := A[i]; 
 6. endfor; 
 7. return min; 
 8. end SERIAL_MIN 



+
Recursive Decomposition: 
Example  We can rewrite the loop as follows:  

 

 

 1. procedure RECURSIVE_MIN (A, n)  
2. begin  
3. if ( n = 1 ) then  
4.  min := A [0]  ;  
5. else  
6.  lmin := RECURSIVE_MIN ( A, n/2 );  
7.  rmin := RECURSIVE_MIN (  &(A[n/2]), n - n/2 );  
8.  if (lmin  < rmin) then  
9.   min := lmin;  
10.  else  
11.   min := rmin;  
12.  endelse;  
13. endelse;  
14. return min;  
15. end RECURSIVE_MIN  

 
 



Recursive Decomposition: Example 

 The code in the previous foil can be decomposed naturally using a 
recursive decomposition strategy. We illustrate this with the 
following example of finding the minimum number in the set {4, 9, 
1, 7, 8, 11, 2, 12}. The task dependency graph associated with this 
computation is as follows:  



+
Data Decomposition  

n  Basic Idea:  Partition data first, then infer tasks decomposition 
based on how computations access the data 

n  Approach: 
n  Identify the data on which computations are performed.  

n  Partition this data across various tasks.  

n  This partitioning induces a decomposition of the problem.  

n  Data can be partitioned in various ways - this critically 
impacts performance of a parallel algorithm.  



+
Data Decomposition: Output Data 
Decomposition  

n  Often, each element of the output can be computed 
independently of others (but simply as a function of the 
input).  

n  A partition of the output across tasks decomposes the 
problem naturally.  



+
Input Data Partitioning  

n  Generally applicable if each output can be naturally 
computed as a function of the input.  

n  In many cases, this is the only natural decomposition because 
the output is not clearly known a-priori (e.g., the problem of 
finding the minimum in a list, sorting a given list, etc.).  

n  A task is associated with each input data partition. The task 
performs as much of the computation with its part of the data. 
Subsequent processing combines these partial results.  



+
Intermediate Data Partitioning  

n  Computation can often be viewed as a sequence of 
transformation from the input to the output data.  

n  In these cases, it is often beneficial to use one of the 
intermediate stages as a basis for decomposition.  



+
The Owner Computes Rule  

n  The Owner Computes Rule generally states that the process 
assined a particular data item is responsible for all 
computation associated with it.  

n  In the case of input data decomposition, the owner computes 
rule imples that all computations that use the input data are 
performed by the process.  

n  In the case of output data decomposition, the owner 
computes rule implies that the output is computed by the 
process to which the output data is assigned.  



+
Exploratory Decomposition  

n  In many cases, the decomposition of the problem goes hand-
in-hand with its execution.  

n  These problems typically involve the exploration (search) of 
a state space of solutions.  

n  Problems in this class include a variety of discrete 
optimization problems (0/1 integer programming, QAP, etc.), 
theorem proving, game playing, etc.  



Exploratory Decomposition: Example  

 A simple application of exploratory decomposition is in the solution to 
a 15 puzzle (a tile puzzle). We show a sequence of three moves that 
transform a given initial state (a) to desired final state (d).  

 Of-course, the problem of computing the solution, in general, is 
much more difficult than in this simple example.  



Exploratory Decomposition: Example  

 The state space can be explored by generating various successor 
states of the current state and to view them as independent tasks.  



+
Speculative Decomposition  

n  In some applications, dependencies between tasks are not 
known a-priori.  

n  For such applications, it is impossible to identify independent 
tasks.  

n  There are generally two approaches to dealing with such 
applications: conservative approaches, which identify 
independent tasks only when they are guaranteed to not have 
dependencies, and, optimistic approaches, which schedule tasks 
even when they may potentially be erroneous.  

n  Conservative approaches may yield little concurrency and 
optimistic approaches may require roll-back mechanism in the 
case of an error.  



+
Speculative Decomposition: 
Example  

 A classic example of speculative decomposition is in discrete event 
simulation.  

n  The central data structure in a discrete event simulation is a time-ordered 
event list.  

n  Events are extracted precisely in time order, processed, and if required, 
resulting events are inserted back into the event list.  

n  Consider your day today as a discrete event system - you get up, get ready, 
drive to work, work, eat lunch, work some more, drive back, eat dinner, and 
sleep.  

n  Each of these events may be processed independently, however, in driving 
to work, you might meet with an unfortunate accident and not get to work at 
all.  

n  Therefore, an optimistic scheduling of other events will have to be rolled 
back.  



+
Hybrid Decompositions  

 Often, a mix of decomposition techniques is necessary for 
decomposing a problem. Consider the following examples:  

•  In quicksort, recursive decomposition alone limits concurrency (Why?). A 
mix of data and recursive decompositions is more desirable.  

•  In discrete event simulation, there might be concurrency in task processing. 
A mix of speculative decomposition and data decomposition may work well.  

•  Even for simple problems like finding a minimum of a list of numbers, a mix 
of data and recursive decomposition works well.  



+
Mapping Techniques for Minimum 
Idling 

 Mapping techniques can be static or dynamic.  

n Static Mapping: Tasks are mapped to processes a-
priori. For this to work, we must have a good estimate of 
the size of each task. Even in these cases, the problem 
may be NP complete.  

n Dynamic Mapping: Tasks are mapped to processes at 
runtime. This may be because the tasks are generated 
at runtime, or that their sizes are not known.  

 Other factors that determine the choice of techniques 
include the size of data associated with a task and the 
nature of underlyingdomain. 



+
Schemes for Static Mapping  

n  Mappings based on data partitioning.  

n  Mappings based on task graph partitioning.  

n  Hybrid mappings.  



+
Mappings Based on Data 
Partitioning  

 We can combine data partitioning with the ``owner-computes'' rule to 
partition the computation into subtasks. The simplest data 
decomposition schemes for dense matrices are 1-D block 
distribution schemes.  



Block Array Distribution Schemes  

  Block distribution schemes can be generalized to higher 
dimensions as well.  



+
Graph Partitioning Dased Data 
Decomposition  

n  In case of sparse matrices, block decompositions are more 
complex.  

n  Consider the problem of multiplying a sparse matrix with a 
vector.  

n  The graph of the matrix is a useful indicator of the work 
(number of nodes) and communication (the degree of each 
node).  

n  In this case, we would like to partition the graph so as to 
assign equal number of nodes to each process, while 
minimizing edge count of the graph partition.  



+
Partitioning the Graph of Lake 
Superior  

Random Partitioning 

Partitioning for minimum edge-cut. 



+
Mappings Based on Task 
Paritioning  

n  Partitioning a given task-dependency graph across 
processes.  

n  Determining an optimal mapping for a general task-
dependency graph is an NP-complete problem.  

n  Excellent heuristics exist for structured graphs.  



+
Hierarchical Mappings  

n  Sometimes a single mapping technique is inadequate.  

n  For example, the task mapping of the binary tree (quicksort) 
cannot use a large number of processors.  

n  For this reason, task mapping can be used at the top level 
and data partitioning within each level.  



+
  An example of task partitioning at top level with data 
partitioning at the lower level.  


