
CVC Technical Report TR981028, State University of New York at Stony Brook

A Hybrid LOD-Sprite Technique for Interactive Rendering of Large
Datasets

Baoquan Chen1 J. Edward Swan II2 Arie Kaufman1

Abstract

We present a new rendering technique, termedLOD-spriterender-
ing, which uses a combination of a level-of-detail (LOD) repre-
sentation of the scene together with reusing image sprites (previ-
ously rendered images). Our primary application is an accelera-
tion technique for virtual environment navigation. The LOD-sprite
technique renders an initial frame using a full-resolution model of
the scene geometry. It renders subsequent frames with a much
lower-resolution model of the scene geometry and texture-maps
each polygon with the image sprite from the initial full-resolution
frame. As it renders these subsequent frames the technique mea-
sures the error associated with each low-resolution polygon, and
uses this to decide when to re-render the scene using the full-
resolution model. The LOD-sprite technique can be efficiently im-
plemented in texture-mapping graphics hardware.

The LOD-sprite technique is thus a combination of two currently
very active thrusts in computer graphics: level-of-detail representa-
tions and image-based modeling and rendering (IBMR) techniques.
The LOD-sprite technique is different from most previous IBMR
techniques in that they typically model the texture-map as a quadri-
lateral, as opposed to a lower-resolution scene model. This scene
model, even if only composed of a few polygons, greatly increases
the range of novel views that can be interpolated before unaccept-
able distortions arise. Also unlike previous LOD techniques, the
LOD-sprite algorithm dynamically updates the image sprite every
several frames. The LOD-sprite technique can be implemented with
any LOD decomposition.

Keywords: Image-Based Modeling and Rendering, Texture Map-
ping, Acceleration Techniques, Multi-Resolution, Level of Detail,
Virtual Reality, Virtual Environments.

1 INTRODUCTION

As virtual environments become more complex (into the millions
of polygons), even the most advanced rendering hardware cannot
provide interactive rates. This presents two problems, which can
be quite severe for many applications: 1) the provided frame rate
may be insufficient, and 2) the system latency may be too high. For
many virtual reality systems, latency is a more pressing issue than
frame rate or even image quality [17]. Recently, there has been a
major effort dedicated to finding ways to trade off image quality for
frame rate and/or system latency. Many of these recent efforts fall
into two general categories:

Level-of-detail (LOD): These techniques model the objects in the
scene at different levels of detail. They select a particular LOD for
each object based on various considerations such as the rendering
cost and perceptual contribution to the final image.

1Department of Computer Science, State University of New
York at Stony Brook, Stony Brook, NY 11794-4400, USA. Email:
fbaoquanjarig@cs.sunysb.edu

2Virtual Reality Laboratory, Naval Research Laboratory Code 5580,
4555 Overlook Ave SW, Washington, DC, 20375-5320, USA. Email:
swan@acm.org

Culling
3D

Object

Quality

LOD Renderer

IBMR Renderer

Output
Image

Output
Image

Figure 1:Traditional Method.

Culling
3D

Object

Quality

Output
Image

LOD
+

IBMR
Renderer

Figure 2:LOD-sprite Method.

Image-based modeling and rendering (IBMR): These tech-
niques model (some of the) objects in the scene as image sprites.
These sprites only require 2D transformations for most rendering
operations, which, depending on the object, can result in substantial
time savings. However, the 2D transformations eventually result in
distortions which require the underlying objects to be re-rendered
from their full 3D geometry. IBMR techniques also typically orga-
nize the scene into separate non-occluding layers, where each layer
consists of an object or a small group of related objects. They ren-
der each layer separately, and then alpha-channel composite them.

Some hybrid techniques use both multiple LODs and IBMR meth-
ods [12, 26, 21]. A general pipeline of these techniques is shown
in Figure 1. Each 3D object is first subject to a culling operation.
Then, depending upon user-supplied quality parameters, the system
either renders the object at a particular LOD, or it reuses a cached
sprite of the object.

This paper presents theLOD-sprite rendering technique. An
overview of the technique is shown in Figure 2. The technique is
similar to previous hybrid techniques in that it utilizes view frustum
culling and a user-supplied quality metric. Objects are also mod-
eled as both LOD models and sprites. However, the LOD-sprite
technique differs in that the 2D sprite iscoupledwith the LOD rep-
resentation; the renderer utilizes both the LOD and the sprite as the
inputs to create the output image. The LOD-sprite technique first
renders a frame from high-resolution 3D scene geometry, and then
caches this frame as an image sprite. It renders subsequent frames
by texture-mapping the cached image sprite onto a lower-resolution
representation of the scene geometry. This continues until an im-
age quality metric requires again rendering the scene from the high-
resolution geometry.

We have developed the LOD-sprite technique as part of an ef-
fort to accelerate navigating through large virtual environments, and
that is the application which is discussed in this paper. However,

CVC Technical Report TR981028, State University of New York at Stony Brook

LOD-sprite is a general-purpose rendering technique and could be
applied in many different contexts.

The primary advantage of LOD-sprite over previous techniques
is that when the sprite is transformed, if the 2D transformation is
within the context of an underlying 3D structure (even if only com-
posed of a few polygons), a much larger transformation can occur
before image distortions require re-rendering the sprite from the full
3D scene geometry. Thus the LOD-sprite technique can reuse im-
age sprites for a larger number of frames than previous techniques,
which allows the system to achieve interactive frame rates for a
larger scene database.

The next section of this paper places LOD-sprite in the context
of previous work. Section 3 describes the LOD-sprite technique
itself. Section 4 discusses our implementation of LOD-sprite and
compares our results to a standard LOD technique. In Section 5 we
give some conclusions and ideas for future work.

2 RELATED WORK

The previous work which is most closely related to the LOD-
sprite technique can be classified intolevel-of-detail techniques
and image-based modeling and renderingtechniques. We first re-
visit and classify previous IBMR techniques while also considering
LOD techniques. In particular we focus on those techniques which
have been applied to the problem of navigating large virtual envi-
ronments.

2.1 Image-Based Modeling and Rendering

Previous work in image-based modeling and rendering falls primar-
ily into three categories:

(1) The scene is modeled by 2D image sprites; no 3D ge-
ometry is used . Many previous techniques model the 3D scene
by registering a number of static images [3, 2, 14, 24, 25, 15].
These techniques are particularly well-suited to applications where
photographs are easy to take but modeling the scene would be dif-
ficult (outdoor settings, for example). Novel views of the scene
are created by 2D transforming and interpolating between images
[3, 2, 20, 14]. Some of these techniques create panoramic images
[2, 14, 15, 16, 25], which allow additional areas of the virtual space
to be navigated. By adding depth [13] or even layered depth [22] to
the sprites, more realistic navigation, which includes limited paral-
lax, is possible. Another category samples the fullplenoptic func-
tion, resulting in 3D, 4D or even 5D image sprites [11, 8], which
allow the most unrestricted navigation of this class of techniques.

However, all of these techniques lack the full 3D structure of the
scene, and so restrict navigation to at least some degree. The tech-
niques in this class all either interpolate between multiple image or
from a single panoramic image. In contrast, the LOD-sprite tech-
nique reprojects a single image sprite to represent the scene from a
novel viewpoint.

(2) The scene is modeled using either 3D geometry or
2D image sprites . Another set of previous techniques model
each object with either 3D geometry or a 2D image sprite, based
on object contribution to the final image and / or viewing direction
[16, 12, 5, 18, 21, 26, 10]. There are a number of examples where
this technique is used to accelerate the rendering of large virtual en-
vironments [16, 12, 5, 18, 21, 26, 10]. The LOD-sprite technique
differs from these techniques in that it integrates both 3D geometry
and 2D image sprites to model and render objects.

(3) The scene is modeled using a combination of 3D ge-
ometry and 2D image sprites . There are two techniques which
add very simple 3D geometry to a single 2D image [9, 1]. The 3D

geometry serves to guide the subsequent warping of the image. The
advantage is that the geometry adds 3D information to the image
which allows the warping to approximate parallax, and generally
increases the range of novel views which are possible before image
distortion becomes too severe. The LOD-sprite uses underlying ge-
ometry to achieve a similar advantage. The difference is that with
the LOD-sprite technique this underlying geometry comes from a
low-resolution version of the scene geometry itself.

In any real-time visualization system the frame rate that can be gen-
erated changes as the viewing parameters change and different parts
of the scene move in and out of view [5, 7]. Because IBMR tech-
niques are less sensitive to scene complexity, they tend to gener-
ate frames at a more constant rate than LOD techniques. Even if
frames become quite warped waiting for the next frame generated
from the full scene database, the negative usability effect of looking
at a warped or distorted image may well be less than the effect of
variable latency [17, 27]. This makes IBMR techniques particularly
well-suited for real-time visualization systems.

2.2 Level-of-Detail

There is a large body of previous work in level-of-detail (LOD)
techniques, which is not reviewed here. The LOD-sprite technique
requires that geometric objects be represented at various levels of
detail, but it does not require any particular LOD representation or
technique.

The LOD-sprite technique is related to the LOD technique of Co-
hen et al. [4]. Their technique creates a texture and a normal map
from a full-resolution 3D object, and then represents the object at a
lower resolution while utilizing the previously-created texture and
normal maps. The result are 3D objects that retain many percep-
tually important features while being represented by relatively few
polygons. In particular, the normal maps compactly preserve sur-
face curvature information, which greatly improves the appearance
of the low-resolution objects. However, normal-mapping render-
ing hardware is not yet available, and so the technique cannot yet
be applied to real-time systems. Soucy et al. [23] describe a very
similar technique which only applies the texture map to the lower
resolution object. Both techniques are similar to LOD-sprite in that
they use a low-resolution object representation which is texture-
mapped with higher-resolution information. However, the LOD-
sprite technique uses image sprites for the higher-resolution infor-
mation, while the other techniques use information from the object
itself. It would be easy to combine LOD-sprite with these tech-
niques.

2.3 Interactive Virtual Environment Navigation

We have applied the LOD-sprite technique to the problem of inter-
actively navigating a large virtual environment. As stated above,
many LOD and IBMR techniques have been applied to this prob-
lem. In particular, our implementation of LOD-sprite is related to
the techniques of Shade et al. [21], Maciel and Shirley [12], and
Schaufler and Stuerzlinger-Protoy [18]. All three papers present
a similar hybrid LOD / IBMR technique for navigating large vir-
tual environments. They create a hierarchy of image sprites based
on a space partition of the scene geometry (respectively a binary
space partition, a k-d tree, and an octree). In subsequent frames,
for each node the techniques either texture maps the node’s sprite
onto a polygon, or re-renders the node’s 3D geometry if an error
metric is above a threshold. Each reused image sprite means an
entire subtree of 3D geometry need not be rendered, which yields
substantial speedup for navigating large virtual environments. The
main limitation of these techniques is that creating a balanced space
partition is not a quick operation, and it must be updated if objects
move. The LOD-sprite technique differs from these techniques in

2

CVC Technical Report TR981028, State University of New York at Stony Brook

low resolution
object

high resolution
object

old viewpoint
(keyframe)

new viewpoint

Figure 3:The main idea behind the LOD-sprite technique.

that they interpolate the image sprite on a single 2D polygon, while
the LOD-sprite technique interpolates the image sprite on a coarse
LOD of the 3D scene geometry.

3 THE LOD-SPRITE TECHNIQUE

3.1 Algorithm Overview

The main idea of the LOD-sprite technique is demonstrated in Fig-
ure 3. From a certain viewpoint the house is rendered from a
high-resolution object representation, which creates akeyframe.
To render the house from a new viewpoint, which is not very dif-
ferent from the old viewpoint, the LOD-sprite technique uses a
lower-resolution object representation. The sprite obtained from
the keyframe is projected onto the new view, so that even though
the object is simplified, the final image contains the detail of the
high-resolution model.

The mapping function is determined by the viewing parameters
when the keyframe is created. This mapping can be efficiently
implemented in hardware using OpenGL’sprojective texture map-
ping [19], and the keyframe image in the frame buffer can be effi-
ciently copied to texture memory by using theglCopyTexImage2D
OpenGL function.

LOD-sprite algorithm consists of the following steps:

step 1 Render an image from a high-resolution model of the scene.
Cache the image as a keyframe, along with the projection ma-
trix for texture coordinate calculation.

step 2 For a new viewpoint, calculate the error associated with ren-
dering each scene object (see Section 3.2 below), and then
compare this error with a threshold. If the error exceeds the
threshold, return tostep 1above. Otherwise, continue with
step 3below.

step 3 From a new viewpoint, render the scene objects using a
lower-resolution model of the scene. Texture map each poly-
gon with the keyframe.

step4 Gotostep 2above.

θ
v1

v2

C

a

A

B
b

C’

α

Figure 4:Calculating the error metric.

3.2 Error Metric

We decide when to switch back to the full-resolution representation
based on an error metric similar to that described by Shade et al.
[21]. Figure 4 gives the technique, which is drawn in 2D for clarity.
Consider rendering the full-resolution dataset from viewpoint posi-
tion v1. In this case the line segmentsAC andCB are rendered
(in 3D these are polygons). From this view, the ray passing through
vertexC intersects the edgeAB at pointC0. After rendering the
full-resolution dataset, the image fromv1 is stored as a texture map.
Now consider rendering the scene from thenovelviewpointv2, us-
ing the low-resolution representation of the dataset. In this case the
line segmentAB will be rendered, and texture mapped with the
sprite rendered fromv1. Note that this projects the vertexC to the
positionC0 onAB. Fromv1 this projection makes no visible dif-
ference. However, fromv2, vertexC0 is shifted by the angle� from
its true locationC. This angle can be converted to a pixel distance
on the image plane of viewv2, which is our measure of the error of
rendering pointC from viewv2:

� < � � �; (1)

where� is the view angle of a single pixel (e.g. the field-of-view
over the screen resolution), and� is a user-specified error thresh-
old. As long as Equation 1 is true, we render using the LOD-sprite
technique. Once Equation 1 becomes false, it is again necessary to
render from the full-resolution dataset.

Theoretically, we should evaluate Equation 1 for all points in the
high-resolution dataset for each novel view. Clearly this is imprac-
tical. Instead, in our implementation we calculate� for the central
vertex of each low-resolution quadtree square. We then calculate
the average sum of squares of the error for all evaluated vertices
and compare this with(� � �)2:

P
n

i=1
�2i

n
< (� � �)2; (2)

wheren is the number of low-resolution quadtree squares. We re-
render the whole dataset at a high-resolution as soon as this test
fails.

To calculate� for each vertex, we have to knowa (the length
of edgev2C), b (the length of edgeCC0), and angle� (the an-
gle between view vectorsv1 and v2 corresponding to vertexC).
Theoretically,� is different from vertex to vertex, thus, calculat-
ing � for each vertex is expensive. We therefore assume that all
vertices have the same� value. Although not accurate, in prac-
tice, this seems to be a good assumption. As shown in Figure 5,

3

CVC Technical Report TR981028, State University of New York at Stony Brook

COP

v 1

v 2

α

’α

α"

Figure 5:The error from assuming that all vertices have the same
� value.

the circle passes through the COP andv1 andv2. All vertices on
the circle (in 3D, on the sphere) have the same� value. Inside the
circle, �0 is smaller than�; while outside the circle,�00 is larger
than�. Since� is larger than90� (assuming a small view direc-
tion change), givena andb, the larger the� value, the smaller the
calculated� value, which means vertices outside the circle get less
error than they should receive. In contrast, vertices inside the cir-
cle receive a larger error. A justification for this is that in practice,
viewers pay more attention to closer objects (which receive a more
conservative error evaluation), and less attention to far away objects
(which receive a more liberal error evaluation).

To calculateb, we use the distance between vertexC and edge
AB instead. This assumption also causes an error in evaluating the
error, because whenAB is more tilted to viewv1, the calculatedb
is shorter than it should be. However, the more tilt of edgeAB, the
smaller its screen projection becomes, and thus the precision of the
error calculation can be relaxed.

3.3 Visibility Changes

As the viewpoint changes, the visibility of the rendered geometry
changes in two different ways:

1. the original occluded scene geometry becomes visible, and

2. the original culled scene geometry becomes visible.

For the LOD-sprite frames, both visibility changes mean that either
the wrong texture or even no texture is mapped to visible polygons.

The first visibility change occurs when the viewpoint changes.
Therefore objects originally occluded become visible, and objects
originally visible become occluded. The is not addressed by the
rendering hardware, because OpenGL’s projective texture mapping
does not test for depth. To solve this, when we store the keyframe,
we store both thez-buffer and the viewing matrix. Then, for each
vertex, we calculate the(x; y) screen coordinate and thez-depth
value for thekeyframeviewpoint. We compare this depth value to
thez value at location(x; y) in thez-buffer. This tells us whether
the vertex is occluded from the current viewpoint. If all the ver-
tices for a given polygon are unoccluded, then we texture map the

original texture map previous frame
(keyframe)

screen
low resolution

dataset

current frame

Figure 6:Handling view frustum visibility changes by texture map-
ping from both the keyframe and the original texture map.

polygon from the keyframe. However, if any of the vertices are oc-
cluded, we texture map the polygon from the original texture map,
which lets the hardwarez-buffer properly test for occlusion.

The second visibility change is not a problem when the moving
view frustum hides scene geometry (e.g. when zooming in). How-
ever, it is a problem when new scene geometry is revealed — if
there is no texture to map to the new geometry, the result is a se-
vere visibility artifact. Figure 6 shows an example of this problem,
which only occurs when zooming out. In Figure 6, the image sprite
is created when the portion of the dataset represented by the dashed
squares is visible. As the user zooms out, new parts of the dataset
become visible, represented by the shaded squares. Our solution
is to texture map the dashed squares with the image sprite from
the keyframe, and texture map the shaded squares with the original
texture map.

Because the resolution of the two texture maps is different, both
technique can sometimes result in a visible line between the poly-
gons texture mapped from the keyframe and those mapped from
the original texture. However, this line is certainly less visible and
less distracting than either rendering occluded texture, or rendering
blank polygons for the newly visible geometry.

4 IMPLEMENTATION AND RESULTS

Although the LOD-sprite technique is a general-purpose rendering
technique that can be applied to any application area, we have de-
veloped the technique as an acceleration method for the real-time
navigation of large virtual environments. In particular, we are ap-
plying the technique to the problem of 3D battlefield visualization
[6].

This paper does not cover how to create LOD representations of
a terrain. However, the LOD-sprite technique works with all LOD
methods, either view-dependent or view-independent. Here we take
a simple approach and use a quadtree representation for the terrain.
Since we receive our input data in the form of a rectilinear height
field, which easily lends itself to multiple LODs by down sampling

4

CVC Technical Report TR981028, State University of New York at Stony Brook

Figure 7:The camera path for Figures 8–12.

the terrain mesh, a quadtree is a natural data structure.
Results are shown in Figures 13 and 14. The input is a512 �

512 height field and512 � 512 texture map. The full-resolution
scene geometry is5122 = 262; 144 quadrilaterals, while the low-
resolution scene geometry is162 = 256 quadrilaterals, a reduction
of three orders of magnitude.

We first evaluate the image quality of the LOD-sprite technique.
Figures 13(a)–(c) compare the LOD-sprite technique to a standard
LOD technique. In order to better display differences in surface ori-
entation, the terrain is texture-mapped with a red and green checker-
board pattern instead of the real terrain data. Figure 13(a) shows
the terrain rendered from the full512�512 height field, while Fig-
ure 13(b) shows the terrain rendered from a16 � 16 height field.
Comparing 13(a) to 13(b), we see that, as expected, many surface
features are smoothed out. Figure 13(c) shows the same frame ren-
dered with the LOD-sprite technique, using the same16�16 height
field as Figure 13(b) but texture mapped with Figure 13(a). Unlike
Figure 13(b) the surface features are quite well preserved, yet Fig-
ures 13(b) and 13(c) take the same amount of time to render.

Figure 14(a)–(e) show similar results but are texture mapped
with the actual terrain data. Figure 14(a) is the image rendered
from the full512� 512 height field. Figure 14(b) is rendered from
the 16 � 16 height field, and the difference between it and Fig-
ure 14(a) is shown in Figure 14(d). Figure 14(c) is rendered with
the LOD-sprite technique, using the16 � 16 height field and tex-
ture mapped with Figure 14(a). The difference image is shown in
Figure 14(e). Comparing Figures 14(d) and 14(e), we see that the
LOD-sprite technique generates an image that is much closer to
the full-resolution image, and yet requires no more texture-mapped
polygons than the standard LOD technique.

Figures 7–12 give the algorithm’s timing behavior for a given
camera path. Figure 7 shows the camera path. The camera starts
from the zenith, rolls down to the horizon, rotates around the ter-
rain about270 degrees, and then zooms into the center of the scene.
This path represents all typical camera motions, including rotation,
translation, and zooming. The animation contains 460 frames for
all the figures except for Figure 10, where the frame count is var-
ied. Each frame was rendered at a resolution of512 � 512. The
animation was rendered on an SGI Power Challenge with 3G RAM,
Infinite Reality Graphics, an R10000 CPU, and an R10010 FPU.

Figure 8 shows how the error changes as each frame is rendered.
The error always starts from zero for the keyframe. As more novel
views are interpolated from the keyframe, the error increases. When
the error exceeds1:0 pixels, we calculate another keyframe from
the full-resolution scene geometry, which again drops the error to
zero.

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 50 100 150 200 250 300 350 400 450 500

E
rr

or
 T

hr
es

ho
ld

 (
pi

xe
ls

)

Frame Number

Figure 8: The error in pixels versus frame number. 460 frames;
path from Figure 7.

0

100

200

300

400

500

600

700

800

900

0 50 100 150 200 250 300 350 400 450 500

R
en

de
ri

ng
 T

im
e

(m
ic

ro
se

co
nd

s)

Frame Number

Figure 9:The rendering time in microseconds versus frame number.
460 frames; path from Figure 7.

Figure 9 shows the amount of time required to render each frame.
Note that the results congregate at three levels. The upper set of
points gives the rendering time for the keyframes. For this anima-
tion the system generated 28 keyframes using the full512 � 512
height field, at an average time of 830 microseconds per frame.
The lower set of points gives the rendering time for the frames ren-
dered using the LOD-sprite technique. The system generated 403
such frames, at an average time of 15 microseconds per frame. Just
above the lower set of points is another line of points. These are also
rendered with the LOD-sprite technique, but they represent the time
for a frame rendered directly after a keyframe is rendered. These
frames take an average of 36 microseconds to render; the extra time
is spent reading the texture map created in the previous frame into
texture memory. The system generated 28 such frames (one for
each keyframe).

Figure 10 shows the fraction of the total number of rendered
frames which are keyframes. This is plotted against the total num-
ber of frames rendered for the path shown in Figure 7. As expected,
as more frames are rendered for a fixed path, the distance moved
between each frame decreases, and so there is more coherence be-
tween successive frames. This figure shows how our system takes

5

CVC Technical Report TR981028, State University of New York at Stony Brook

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

0 100 200 300 400 500 600 700 800 900

U
pd

at
e

R
at

io

 (
K

ey
 F

ra
m

es
/T

ot
al

 F
ra

m
es

)

Total Number of Frames

Figure 10: The fraction of keyframes versus the total number of
frames rendered. Path from Figure 7.

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 0.5 1 1.5 2 2.5 3 3.5 4

U
pd

at
e

R
at

io

 (
K

ey
 F

ra
m

es
/T

ot
al

 F
ra

m
es

)

Error Threshold (pixels)

Figure 11:Update rate as a function of error threshold. 460 frames;
path from Figure 7.

advantage of this increasing coherence by rendering a smaller frac-
tion of keyframes. This figure also illustrates a useful property of
the LOD-sprite technique for real-time systems: as the frame up-
date rate increases, the LOD-sprite technique becomes even more
efficient in terms of reusing keyframes.

Figure 11 also shows the fraction of the total number of rendered
frames which are keyframes, but this time plots the fraction against
the error threshold in pixels. As expected, a larger error threshold
means fewer keyframes need to be rendered. However, the shape
of this curve indicates a decreasing performance benefit as the error
threshold exceeds1:0 pixels. For a given dataset and a path which
is representative of the types of maneuvers the user is expected to
make, this type of analysis can help determine the best error thresh-
old versus performance tradeoff.

The LOD-sprite technique results in a substantial speedup over
rendering a full-resolution dataset. Rendering 460 frames of the
full-resolution dataset along the path in Figure 7 takes 383.2 sec-
onds. Rendering the same 460 frames with the LOD-sprite tech-
nique, using an error threshold of1:0 pixel, takes 31.1 seconds.
This is a speedup of 12.32. Figure 12 shows how the speedup varies
as a function of the error threshold.

0

5

10

15

20

25

30

35

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Sp
ee

du
p

Error Threshold (pixels)

Figure 12:Speedup as a function of error threshold. 460 frames;
path from Figure 7.

5 CONCLUSIONS AND FUTURE WORK

This paper has described the LOD-sprite rendering technique, and
an implementation which is geared to accelerating rendering for vir-
tual reality applications. The technique is a combination of two rich
directions in accelerated rendering for virtual environments: mul-
tiple level-of-detail (LOD) techniques, and image-based modeling
and rendering (IBMR) techniques. It is a general-purpose render-
ing technique that could accelerate rendering for any application;
it could be built upon any LOD decomposition technique and uti-
lize a number of different IBMR interpolation techniques. It im-
proves upon LOD techniques by preserving surface complexity, and
it improves upon IBMR techniques by increasing the range of novel
views that are possible before requiring the scene to be re-rendered
from the underlying 3D geometry. The LOD-sprite technique is
particularly well-suited for real-time system architectures that de-
compose the scene into coherent layers.

Our primary applied thrust with this work is to fully integrate it
into the Dragon battlefield visualization system. However, the work
also has numerous areas for future research efforts, including:

� When the previously rendered image is texture-mapped onto
an object to create a new image, the texel from the original
texture is resampled twice. It should be possible to character-
ize this process using the language of sampling theory. This
would not only be interesting, but it might lead to better error
metrics.

� Our current implementation utilizes a fixed LOD representa-
tion. We plan to integrate the LOD-sprite technique into a
system which utilizes dynamic, viewpoint-dependent LODs.

� Another issue is the latency required to render the keyframe.
One optimization is to use a dual-thread implementation,
where one thread renders the keyframe while another renders
each LOD-sprite frame. Another optimization is to render the
keyframe in advance by predicting where the viewpoint will
be when it is next time to render the keyframe. We can pre-
dict this by extrapolating from the past several viewpoint lo-
cations. Thus we can begin rendering a new keyframe imme-
diately after the previous keyframe has been rendered. If the
system makes a bad prediction (perhaps the user made a sud-
den, high-speed maneuver), two solutions are possible: 1) we
could use the previous keyframe as the sprite for additional

6

CVC Technical Report TR981028, State University of New York at Stony Brook

frames of LOD-sprite rendering, with the penalty that suc-
ceeding frames will have errors beyond our normal threshold.
Or, 2) if the predicted viewpoint is closer to the current view-
point than the current viewpoint is to the previous keyframe,
we can use the predicted viewpoint as the keyframe instead.
We are currently implementing both techniques.

� We also intend to implement a cache of keyframes. This will
accelerate the common user navigation behavior of moving
back and forth within a particular viewing region. Issues in-
clude how many previous keyframes to cache, and to evaluate
different cache replacement policies.

� Finally, an important limiting factor for the performance of
the LOD-sprite technique, as well as other image-based mod-
eling and rendering techniques ([21], for example), is that
OpenGL requires texture maps to have dimensions which are
powers of 2. Thus many texels in our texture maps are actually
unused. The LOD-sprite technique could be more efficiently
implemented with graphics hardware that did not impose this
constraint.

ACKNOWLEDGMENTS

This work was supported by The Office of Naval Research grant
N000149710402, and The National Science Foundation grant MIP-
9527694. We acknowledge Larry Rosenblum for advice and direc-
tion during this project.

References

[1] G. U. Carraro, J. T. Edmark, and J. R. Ensor. Techniques for
handling video in virtual environments. InSIGGRAPH 98
Conference Proceedings, pages 353–360, July 1998.

[2] S. E. Chen. Quicktime vr - an image-based approach to virtual
environment navigation. InComputer Graphics Proceedings,
Annual Conference Series (Proc. SIGGRAPH ’95), pages 29–
38, 1995.

[3] S. E. Chen and L. Williams. View interpolation for image syn-
thesis. InComputer Graphics Proceedings (Proc. SIGGRAPH
’93), pages 279–288, 1993.

[4] J. Cohen, M. Olano, and D. Manocha. Appearance-preserving
simplification. InSIGGRAPH 98 Conference Proceedings,
pages 115–122, July 1998.

[5] D. Cohen-Or, E. Rich, U. Lerner, and V. Shenkar. A real-
time photo-realistic visual flythrough.IEEE Transactions on
Visualization and Computer Graphics, 2(3), Sept. 1996.

[6] J. Durbin, J. E. Swan II, B. Colbert, J. Crowe, R. King,
T. King, C. Scannell, Z. Wartell, and T. Welsh. Battlefield
visualization on the responsive workbench. InProceedings
IEEE Visualization ’98, Oct. 1998.

[7] T. A. Funkhouser and C. H. S´equin. Adaptive display al-
gorithm for interactive frame rates during visualization of
complex virtual environments. InComputer Graphics (SIG-
GRAPH ’93 Proceedings), volume 27, pages 247–254, Aug.
1993.

[8] S. J. Gortler, R. Grzeszczuk, R. Szeliski, and M. F. Cohen.
The lumigraph. InComputer Graphics Proceedings (Proc.
SIGGRAPH ’96), pages 43–54, 1996.

[9] Y. Horry, K. ichi Anjyo, and K. Arai. Tour into the picture:
Using a spidery mesh interface to make animation from a sin-
gle image. InSIGGRAPH 97 Conference Proceedings, pages
225–232, Aug. 1997.

[10] J. Lengyel and J. Snyder. Rendering with coherent layers.
In SIGGRAPH 97 Conference Proceedings, pages 233–242,
Aug. 1997.

[11] M. Levoy and P. Hanrahan. Light field rendering. InCom-
puter Graphics Proceedings (Proc. SIGGRAPH ’96), pages
31–42, 1996.

[12] P. W. C. Maciel and P. Shirley. Visual navigation of large
environments using textured clusters. In1995 Symposium on
Interactive 3D Graphics, pages 95–102, Apr. 1995.

[13] L. McMillan. An Image-Based Approach to Three-
Dimensional Computer Graphics. PhD thesis, Department
of Computer Science, University of North Carolina at Chapel
Hill, 1997.

[14] L. McMillan and G. Bishop. Plenoptic modeling: An image-
based rendering system. InComputer Graphics Proceedings
(Proc. SIGGRAPH ’95), pages 39–46, 1995.

[15] P. Rademacher and G. Bishop. Multiple-center-of-projection
images. InSIGGRAPH 98 Conference Proceedings, pages
199–206, July 1998.

[16] M. Regan and R. Post. Priority rendering with a virtual reality
address recalculation pipeline. InProceedings of SIGGRAPH
’94, pages 155–162, July 1994.

[17] P. Richard, G. Birebent, P. Coiffet, G. Burdea, D. Gomex, and
N. Langrana. Effect of frame rate and force feedback on vir-
tual object manipulation.Presence, 5(1):95–108, 1996.

[18] G. Schaufler and W. Stuerzlinger-Protoy. A three dimensional
image cache for virtual reality. InProceedings of Eurograph-
ics ’96, pages 227–235, Aug. 1996.

[19] M. Segal, C. Korobkin, R. van Widenfelt, J. Foran, and P. E.
Haeberli. Fast shadows and lighting effects using texture map-
ping. In Computer Graphics (SIGGRAPH ’92 Proceedings),
volume 26, pages 249–252, July 1992.

[20] S. M. Seitz and C. R. Dyer. View morphing: Synthesizing 3D
metamorphoses using image transforms. InSIGGRAPH 96
Conference Proceedings, pages 21–30, Aug. 1996.

[21] J. Shade, D. Lischinski, D. Salesin, T. DeRose, and J. Snyder.
Hierarchical image caching for accelerated walkthroughs of
complex environments. InSIGGRAPH 96 Conference Pro-
ceedings, pages 75–82, Aug. 1996.

[22] J. W. Shade, S. J. Gortler, L. He, and R. Szeliski. Layered
depth images. InSIGGRAPH 98 Conference Proceedings,
pages 231–242, July 1998.

[23] M. Soucy, G. Godin, and M. Rioux. A texture-mapping ap-
proach for the compression of colored 3D triangulations.The
Visual Computer, 12(10):503–514, 1996.

[24] R. Szeliski. Video mosaics for virtual environments.IEEE
Computer Graphics and Applications, pages 22–30, Mar.
1996.

[25] R. Szeliski and H.-Y. Shum. Creating full view panoramic
mosaics and environment maps. InSIGGRAPH 97 Confer-
ence Proceedings, pages 251–258, Aug. 1997.

7

CVC Technical Report TR981028, State University of New York at Stony Brook

[26] J. Torborg and J. Kajiya. Talisman: Commodity Real-time 3D
graphics for the PC. InSIGGRAPH 96 Conference Proceed-
ings, pages 353–364, Aug. 1996.

[27] C. Ware and R. Balakrishnan. Reaching for objects in vr dis-
plays: Lag and frame rate.ACM Transactions on Computer-
Human Interaction, 1(4):331–356, 1994.

8

CVC Technical Report TR981028, State University of New York at Stony Brook

(a)Standard LOD technique with512�512
height field.

(b) Standard LOD technique with16 � 16
height field.

(c) LOD-sprite technique with16 � 16
height field(b).

Figure 13:Comparing the LOD-sprite technique to a traditional LOD technique, using a synthetic texture.

(a)Standard LOD technique with512�512
height field.

(b) Standard LOD technique with16 � 16
height field.

(c) LOD-sprite technique with16 � 16
height field(b).

(d) Difference between high-resolution
LOD (a) and low-resolution LOD(b).

(e) Difference between high-resolution
LOD (a) and LOD-sprite(c).

Figure 14:Comparing the LOD-sprite technique to a traditional LOD technique, using the actual terrain texture.

9

