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A Brief Terrain Rendering Literature Review
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1 Introduction

Rendering terrain data is an important application area in computer
graphics. Much early work in computer graphics was motivated by
building flight simulators. This is a very taxing application, which
requires real-time rendering of potentially very large databases. In
addition, terrain rendering is important for geographic information
systems and architectural landscape previewing systems.

The most common source of terrain data is earth terrain data
obtained from aerial or satellite imagery [2]. The terrain data typ-
ically comes in the form of two datasets: a color or texture image
(typically from an aerial or satellite photograph) and topology or
elevation samples. The color dataset is usually at a much higher
resolution than the elevation dataset [1]. These two data sources
are registered and merged [2] to form two arrays: a 2D array of
height values, and a 2D array of color values. Typically the color
values have three channels corresponding to red, green, and blue;
but other color channels (such as infrared, ultraviolet, etc.) are pos-
sible. These two arrays are the typical input to a terrain renderer.

Another source of terrain data are fractal techniques (e.g. Mus-
grave et al. [15]), which generate realistic-looking yet artificial ter-
rains. These techniques motivated much of the terrain rendering
research in the 1980s.

2 Previous Work

Terrain rendering algorithms can be classified according to how the
terrain is rendered. This classification groups the algorithms into
ray casting, shear-warp, and object order methods.

2.1 Ray Casting

The ray-casting methods typically cast a ray from each pixel and
sample the terrain at the resulting intersection point. Unlike volume
ray casting, which samples each ray many times, terrain ray casting
algorithms usually only sample one point per ray. These algorithms
typically store the height and color information in grid form; the
grids are interpolated at the intersection point. They can be further
characterized by how they represent rays and step through the data
structure:

Incremental Techniques: Dungan [7], Coqillart and Gangnet
[6], and Musgrave [14, 15] all trace the 2D projection of the ray
across the baseplane of the terrain grid. At each step, the height
of the ray is compared to the height of the terrain data at that step.
When the ray height drops below the terrain, the exact intersection
point is found.

Space-Leaping Techniques: Cohen-Or et al. [3] and Lee and
Shin [12] use a similar incremental technique, but accelerate the
process by starting the traversal of each ray above the intersection
point of the previous ray.

Hierarchical Techniques: Cohen and Shaked [5] store the
height grid at multiple resolutions in a quadtree data structure. The
ray steps first across the largest quadtree node, which contains the
highest point of the terrain. If the ray height is below this, then the
ray is recursively compared to the heights of the proper quadrants.

This continues until the ray intersects the terrain data at a quadtree
leaf node.

Distance Transform Techniques: Paglieroni and Petersen [16,
17] compute a distance transform of the height grid. This gives an
area of empty space around every voxel, where it is guaranteed that
the ray will not encounter other voxels. The ray is stepped from a
given voxel to the edge of the voxel’s distance transform.

Because ray casting point-samples the terrain grid, all of these
methods are particularly subject to aliasing artifacts. Many of the
above methods perform some anti-aliasing by storing the terrain
grid at multiple levels of resolution; the lower resolution grids are
used for pixels which show areas of the terrain that are far from the
view point. This still results in aliasing artifacts, however. Cohen-
Or [4] describes a ray-casting terrain rendering technique that area-
samples the terrain grid, resulting in high-quality terrain images.

2.2 Shear-Warp

The shear-warp methods create a perspective projection of the
height and color grids through a series of 1D shearing and warping
operations. The data is resampled into a regular grid which is de-
signed so that all voxels which might occlude a particular voxel are
located in the same row or column. Then a back-to-front traversal
along these rows or columns results in the correct visibility. This is
followed by an inverse resampling that restores the data to a per-
spective projection. The basic implementation of this technique
is described by Robertson [18]. Another implementation using a
spherical projection is given by Miller [13]. The technique’s ad-
vantages are that each 1D pass can be made quickly, and that the
technique is easy to parallelize. Vezina and Robertson [21], Kaba
et al. [9], and Kaba and Peters [10] all describe parallel implemen-
tations, some of which can render 30 frames per second [9, 10].
Robertson [19] also describes how the technique can be extended
to rapidly generate shadows on a terrain surface.

2.3 Object Order

Most of the object-order techniques fit polygons or patches to the
terrain height field, and then render these using standard polygon or
patch rendering techniques. The terrain color grid is texture mapped
onto the polygons or patches. An example is Coqillart and Gangnet
[6], which fits the surface with bilinear patches. Another is Kaneda
et al. [11], which fits polygons that vary in size in such a way that
they sample approximately equal areas of the terrain when rendered
from a perspective projection. This is similar to Geymayer et al.
[8], except that the polygons are pre-fit into a pyramid data struc-
ture, and thus the terrain does not have to be resampled with each
frame. Kaneda et al. [11] also demonstrates an advantage of poly-
gon/patch fitting methods: it is easy to include additional polygons
representing buildings or other ground structures.

Agranov and Gotsman [1] describe a hybrid order algorithm.
They use ray-casting to determine the pixels along the screen bor-
der; this projects the screen as a polygon onto the terrain dataset.
They then project all the triangles contained in this polygon onto
the screen using a z-buffer.

Wright and Hsieh [23] model the terrain as a set of voxel grids at
different resolutions. The voxels are visited and projected onto the

— 1 —



Course Notes for Volume Graphics, Course 41, Proceedings of the 26th International Conference on Computer Graphics and Interactive
Techniques (SIGGRAPH 1999), Los Angeles, CA, USA, August 8-13, 1999.

image plane in order of increasing distance from the image plane;
as the distance to the image plane increases voxels from lower res-
olutions are used. This ensures that the projected voxels span ap-
proximately the same area of the image plane.

Swan et al. [20] utilize the splatting [22] technique to render
terrain grids. They model the terrain as a thin voxel sheet, and visit
the voxels in order of decreasing distance to the image plane. They
describe an anti-aliasing technique which successfully handles the
severe compression which occurs at the horizon of terrain datasets.
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