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ABSTRACT

A stable frame rate is important for interactive rendering systems. Image-based modeling and rendering (IBMR) tech-
niques, which model parts of the scene with image sprites, are a promising technique for interactive systems because they
allow the sprite to be manipulated instead of the underlying scene geometry. However, with IBMR techniques a frequent
problem is an unstable frame rate, because generating an image sprite (with 3D rendering) is time-consuming relative to
manipulating the sprite (with 2D image resampling). This paper describes one solution to this problem, by distributing an
IBMR technique into a collection of cooperating threads and executable programs across two computers.

The particular IBMR technique distributed here is the LOD-Sprite algorithm. This technique uses a multiple level-
of-detail (LOD) scene representation. It first renders a keyframe from a high-LOD representation, and then caches the
frame as an image sprite. It renders subsequent spriteframes by texture-mapping the cached image sprite into a lower-
LOD representation. We describe a distributed architecture and implementation of LOD-Sprite, in the context of terrain
rendering, which takes advantage of graphics hardware. We present timing results which indicate we have achieved a
stable frame rate. In addition to LOD-Sprite, our distribution method holds promise for other IBMR techniques.

Keywords: Distributed Rendering, Stable Frame Rate, Terrain Rendering, Image-Based Modeling and Rendering, Multi-
Resolution, Level of Detail

1. INTRODUCTION

This paper is concerned with real-time terrain rendering for use in a three-dimensional battlefield visualization system. �

In our system, like other terrain visualization systems which could possibly contain the “whole Earth”, � the terrain
database can potentially be extremely large in size. Two relatively recent thrusts in computer graphics hold great promise
for interactively visualizing very large databases: image-based modeling and rendering (IBMR) techniques, and level of
detail (LOD) techniques. At Visualization ’99 we described the LOD-Sprite algorithm, � which combines both IBMR
and LOD techniques and applies them to terrain rendering. LOD-Sprite first renders a keyframe from a high-LOD terrain
representation, and then caches the frame as an image sprite. It renders subsequent spriteframes by texture-mapping
the cached image sprite onto a lower-LOD terrain representation. As our goal was real-time rendering, we implemented
LOD-Sprite in OpenGL to take advantage of available graphics hardware.

Our Visualization ’99 paper contributed a new algorithm which significantly accelerated rendering a pre-computed
path through a terrain database. However, at that time LOD-Sprite was not really useful for interactive rendering, because
the rendering time for the keyframes was higher than for the spriteframes. This results in unacceptable performance when
interactively flying through a terrain dataset: LOD-Sprite operates smoothly while rendering spriteframes, but this smooth
operation is frequently and somewhat randomly interspersed with noticeable pauses when it renders a keyframe. We refer
to this problem has having an unstable frame rate. In the current paper we describe how we have solved this problem by
decomposing the LOD-Sprite system into a series of cooperating executable programs and threads which are distributed
across two different computers containing OpenGL hardware accelerators.

As mentioned above, we have developed LOD-Sprite for rendering terrain data as part of the rendering engine of a
real-time, three-dimensional battlefield visualization system.� Like most terrain rendering systems, we model the terrain
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Figure 1: The basic operation of the LOD-Sprite algorithm.

as a triangle mesh. For the sake of concreteness, in the rest of this paper we refer only to rendering “triangles” and “terrain
data”. However, LOD-Sprite does not take any particular advantage of the properties of triangles or terrain datasets, and
the technique could easily be applied to general polygons and general polygonal datasets.

The next section gives a condensed description of the LOD-Sprite algorithm, which is described more completely in
our original publication.� Along with this introduction, it also defines a number of key terms, which are presented in this
font. Section 3 describes the Distributed LOD-Sprite implementation, the primary contribution of this paper. We discuss
results in Section 4, and Section 5 places Distributed LOD-Sprite in the context of related work. We end with conclusions
and ideas for further developments in Section 6.

2. THE LOD-SPRITE ALGORITHM

The LOD-Sprite algorithm utilizes both a multiple-LOD dataset representation and image-based modeling and rendering
techniques to accelerate rendering. Figure 1 illustrates the algorithm’s basic functioning. LOD-Sprite stores the terrain
geometry at multiple LODs, in a data structure which permits rapid and smooth LOD changes. ��� �� From a particular
viewpoint, LOD-Sprite renders a keyframe, with the scene geometry represented at a high LOD, and texture mapped
with the terrain texture�. LOD-Sprite caches the keyframe as a sprite in texture memory, which allows it to texture map
polygons from subsequent frames with the resulting sprite texture. We refer to the viewpoint from where a keyframe has
been rendered as a keyframe viewpoint. For subsequent viewpoints which are relatively close to the keyframe viewpoint,
LOD-Sprite renders a spriteframe, with the scene geometry represented at a low LOD, but texture mapped with the sprite
texture. We refer to the viewpoint from where a spriteframe is rendered as a spriteframe viewpoint.

When rendering a spriteframe, for every triangle LOD-Sprite must choose between two different texture maps: the
sprite texture and the terrain texture. This is illustrated in Figure 2 — Figure 2a shows two objects from a keyframe
viewpoint, and Figure 2b shows the same two objects from a later spriteframe viewpoint. Regions � are visible from
both the keyframe and the spriteframe viewpoints, and hence triangles in these regions are texture mapped with the sprite
texture. However, regions � are not in the view frustum at the keyframe viewpoint, and region � is occluded at the
keyframe viewpoint. Therefore, triangles in regions � � � must be texture mapped with the original texture.

Figure 3 describes how this texture mapping is implemented. LOD-Sprite allocates a block of texture memory which
is twice the size of the terrain texture, and loads the terrain texture into the lower portion of this memory. As keyframes
become available, the resulting sprite textures are loaded into the upper memory portion. For each triangle, LOD-Sprite
performs a visibility test to determine if the triangle was visible from the keyframe viewpoint. In Figure 3, triangle � �
was visible from the keyframe viewpoint, and LOD-Sprite assigns it texture coordinates which map into the sprite texture.
However, triangle �� was not visible, and so LOD-Sprite maps it into the terrain texture.

�Note that the terrain texture itself may be represented at multiple LODs, e.g. with mip- or clip-mapping.��
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Figure 2. As the viewpoint moves, triangles which were invisible
when the keyframe was generated become visible.

Figure 3. LOD-Sprite texture maps each triangle to either the
sprite texture or the terrain texture.

When a sprite is texture mapped to a triangle in a spriteframe, the sprite texture undergoes a 2D image resampling,
which of course produces various image degradations. ���� The primary advantage of LOD-Sprite over previous sprite-
caching techniques is that when the sprite is resampled, if the 2D resampling is in the context of an underlying 3D
geometry (even if composed of only a few polygons), a much larger viewpoint change is possible for a given level of
image degradation. For example, consider the dramatic viewpoint changes afforded by a single sprite image in Horry et
al.�� This is discussed more fully in our original publication�.

3. THE DISTRIBUTED LOD-SPRITE ALGORITHM

As discussed in the introduction, addressing the problem of an unstable frame rate is our motivation for distributing LOD-
Sprite. In our original implementation,� for each spriteframe we calculated an error metric which measured the amount of
distortion that results from texture-mapping an image sprite at one viewpoint (spriteframe), when the sprite was actually
rendered from a different viewpoint (keyframe). Once this error metric exceeded a user-defined threshold, we rendered
the next frame as a keyframe.

Our first idea was to split LOD-Sprite into two cooperating processes: a server which renders keyframes, and a client
which renders spriteframes. Both processes would run concurrently, and since a new keyframe is always being rendered
and is used as soon as it is available, there would no longer be any need to calculate the error metric. In addition, the
server would use the previous history of viewpoints and keyframe rendering times to predict where the viewpoint will
(probably) be when the next keyframe has been rendered.

We implemented this idea, using multiple rendering threads and Silicon Graphics (SGI) hardware. However, this did
not work, because although at the operating system level we could give the client process a higher execution priority than
the server process, both processes had to share the SGI graphics hardware, and we could not discover a way to control the
execution priority at the hardware level. Furthermore, we discovered that forcing the graphics hardware to continuously
switch between the client and server graphics contexts seriously degraded performance (see the Results section (4) for
further discussion). We next tried implementing this technique on a two-pipe SGI, with one pipe rendering for the client
and another rendering for the server, but we did not get good results.

We next decided on a cleaner approach: we would separate the client and server into two separate executable programs,
and run them on two separate SGI computers. We would use a standard network connection to pass keyframes from the
server to the client. This is the implementation described in the rest of this paper.

3.1. Distributed System Architecture

The LOD-Sprite distributed system architecture is described in Figure 4. The legend at the right describes the sym-
bology. Executable programs are shown as light-shaded rounded rectangles. Each program is composed of separate
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Figure 4: Distributed system architecture.

modules, which are shown as labeled rectangles. Modules in heavily-shaded rectangles run in separate, asynchronous
threads. Rhomboids represent mutually exclusive shared data structures, while labeled links indicate data structures
which modules pass to each other.

As indicated in Figure 4, the LOD-Sprite system is divided into two main executable programs, the LOD Client and
LOD Server. The client renders spriteframes; it implements the LOD-Sprite algorithm described in Section 2 above.
The server renders keyframes, and supplies them to the client. LOD Sprite has been split into separate client and server
executables so that each can run on a separate machine. However, both executables can also run on the same machine,
and we have done this as part of development and testing.

The LOD-Sprite system makes use of three important data structures: viewpoint, keyframe, and keyframe queue. A
viewpoint is a tuple:

������ ������

where �, �, �, and � are all 3 dimensional vectors, ����� �� is an orthonormal set of coordinate axes which give the
viewpoint’s orientation, and � is the eye position. A keyframe is also a tuple

�sprite-texture� z-buffer� view-matrix� ����

where sprite-texture is the rendered keyframe image, z-buffer is the rendered keyframe z-buffer, view-matrix is the
keyframe view matrix, and �� is a timestamp which is described in Section 3.3 below. A keyframe queue is also used
by both programs to store keyframes. These queues are accessed using a producer-consumer synchronization algorithm,
where one thread produces and inserts keyframes into the queue, and another thread deletes and consumes keyframes
from the queue. In our current implementation, both keyframe queues hold two keyframes.

The server and client maintain three connections, implemented with Unix sockets, to pass data structures to each
other. As shown in Figure 4, these connections are the control message connection, the viewpoint connection, and the
keyframe connection. Within the server and client, semaphores are used to enforce mutual exclusion on data structures
shared between threads.

3.2. LOD Client

The client contains the user interface and controls all user interaction. The majority of the time, the user specifies a new
viewpoint, although higher-level control functions, such as stopping or starting the system, loading an alternative dataset,
requesting performance statistics, etc., are also necessary. If the user selects a control function, the CLIENT-CONTROL

module performs the relevant operations, and sends a message down the control connection to the server.
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SPRITEFRAME-RENDERER:
1 get viewpoint from user
2 send viewpoint down viewpoint-connection
3 while CLIENT-KEYFRAME-QUEUE contains any keyframes
4 keyframe� next keyframe in CLIENT-KEYFRAME-QUEUE

5 triangles� set of low-resolution terrain triangles
6 for each triangle
7 if triangle was visible when keyframe was rendered then
8 render triangle, map with keyframe.sprite-texture
9 else
10 render triangle, map with terrain-texture

Figure 5: Pseudocode for SPRITEFRAME-RENDERER module.

KEYFRAME-RENDERER:
1 loop
2 keyframe.�� � current time
3 wait until VIEWPOINT-PREDICTOR has a viewpoint
4 viewpoint� VIEWPOINT-PREDICTOR.VIEWPOINT()
5 triangles� set of high-resolution terrain triangles
6 for each triangle
7 keyframe� render triangle, map with terrain-texture
8 wait until SERVER-KEYFRAME-QUEUE is not full
9 insert keyframe into SERVER-KEYFRAME-QUEUE

Figure 6: Pseudocode for KEYFRAME-RENDERER module.

The operation of the main rendering thread, called when the user specifies a new viewpoint, is described in Figure 5.
SPRITEFRAME-RENDERER begins at line 1 with a viewpoint from the user. At line 2 the module sends the viewpoint
down the viewpoint connection, which is a non-blocking operation. Next, in lines 3–4, the module checks to see if the
CLIENT-KEYFRAME-QUEUE has any new keyframes available, and if it does, it retrieves the most recent keyframe (after
the loop in line 3, the CLIENT-KEYFRAME-QUEUE is empty). Next, in line 5 the SPRITEFRAME-RENDERER chooses a
low-resolution set of terrain triangles, and in line 6 considers each triangle. In line 7 the module uses the keyframe’s view
matrix to calculate whether the triangle was visible when the keyframe was rendered, by comparing the current depth of
each triangle vertex to the depth of the corresponding point in the keyframe’s z-buffer (our original publication � describes
this test in more detail). Lines 8 and 10 texture map the triangle with either the sprite texture or the terrain texture, as
described in Figure 3 above.

The KEYFRAME-RECEIVER module continuously looks for keyframes arriving from the server through the keyframe
connection. As soon as it receives one, it puts the keyframe onto the CLIENT-KEYFRAME-QUEUE, which stores the
keyframe until the SPRITEFRAME-RENDERER is ready for it.

3.3. LOD Server

The server contains no user interface, and is completely controlled by messages arriving from the client. The SERVER-
CONTROL module handles any control functions arriving through the control connection.

The operation the server’s main rendering thread is described in Figure 6. The KEYFRAME-RENDERER loops con-
tinuously at line 1. At the beginning of the loop, in line 2, the module records the current time in the keyframe data
structure. In line 3 it blocks until the VIEWPOINT-PREDICTOR has a viewpoint, which it receives in line 4. This view-
point gives the location where the user is predicted to be when the current keyframe has been rendered and received by
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KEYFRAME-TRANSMITTER:
1 loop
2 wait until SERVER-KEYFRAME-QUEUE is not empty
3 keyframe� next keyframe in SERVER-KEYFRAME-QUEUE

4 send keyframe down keyframe-connection
5 wait until keyframe-connection sends acknowledgement
6 �� � current time
7 Æ�� �� � keyframe���

Figure 7: Pseudocode for KEYFRAME-TRANSMITTER module.

the client. Next, in line 5 the KEYFRAME-RENDERER chooses a high-resolution set of terrain triangles, which it ren-
ders and texture maps with the terrain texture in line 7. In line 8 the module blocks until there is space available in the
SERVER-KEYFRAME-QUEUE, and in line 9 it inserts the newly-rendered keyframe into the queue.

The SERVER-KEYFRAME-QUEUE holds the keyframes until they are needed by the KEYFRAME-TRANSMITTER,
which is described in Figure 7. The KEYFRAME-TRANSMITTER loops continuously at line 1. In lines 2–3 it blocks until
the SERVER-KEYFRAME-QUEUE contains at least one keyframe, and then it reads the keyframe into local storage. In
line 4 it sends the keyframe down the keyframe connection to the client, and then blocks at line 5 until it receives an
acknowledgement. In lines 6–7 it calculates

Æ� � �� � ���

where �� is the time when the KEYFRAME-RENDERER first began rendering the current keyframe and � � is the time when
the server knows the client has received the keyframe.

The VIEWPOINT-PREDICTOR uses Æ� and the latest viewpoint received from the client to predict where the user will
be located when the next keyframe is rendered. We tried several different prediction techniques, and eventually settled
on a simple technique which gives good results. For the orientation ����� ��, we copy the latest orientation received
and perform no interpolation. For the eye position �, we predict the current position by linear interpolation with an
exponential decay window. However, especially with larger terrain databases, we believe we will get better results
from a more sophisticated prediction technique. We are considering implementing a Kalman filter or perhaps Covariance
Intersection.��

4. RESULTS

We implemented the Distributed LOD-Sprite algorithm described in Section 3 above, and (1) ran the client on an SGI
Onyx with 4 R10000 processors and Infinite Reality graphics, and (2) ran the server on an SGI deskside Onyx with 2
R10000 processors and Infinite Reality graphics. These computers communicated through standard 10-base-T Ethernet.
For input we used a ������� height field and a corresponding ������� texture map. Although the client’s user interface
supports interactive terrain navigation, to analyze timing behavior we created a repeatable 600-frame viewpoint path. The
path starts away from the terrain, zooms in, flies over a plain, and then over a mountain range and onto the plain beyond.
This path visits most of the interesting topological features of our dataset; it is the same path reported in our previous
publication.�

4.1. Temporal Performance

Figures 8–12 give the algorithm’s timing behavior for the viewpoint path described above.

Figure 8 gives the primary client results, plotting rendering time per frame, overlaid with frame type (either keyframe
or spriteframe). The overall rendering time per client frame is 61.9 milliseconds. Keyframes arrive at a relatively steady
rate; on average 34.3 spriteframes are interpolated from each keyframe. The average time for a frame where the client
receives a keyframe is 96.2 milliseconds, while the average rendering time for other spriteframes is 60.9 milliseconds; this
means it takes the client on average 35.4 milliseconds longer to process a keyframe. Note how in Figure 8 the rendering
time peaks when a spriteframe is received. This extra time is required to copy the keyframe from the keyframe queue into
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Figure 8. Distributed client rendering time (�) per frame, over-
laid with frame type (keyframes are vertical spikes).

Figure 9. Non-distributed client rendering time (upper line) per
frame, together with distributed client rendering time (lower line;
same data as Figure 8).
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Figure 11. Timing information from the distributed server’s
KEYFRAME-RENDERER module (Figure 6). Shown is the
keyframe production time (�), the viewpoint wait time (Æ), the
keyframe render time (�), and the queue insert time (�).

texture memory. However, the average 35.4 millisecond latency difference is not perceptible while using the system; this
is best demonstrated by the animation which accompanies this paper. Along with the distributed architecture presented in
Figure 4 above, this small latency difference is the primary research contribution of the current work.

Figures 9 and 10 explore what happens when we run both the client and the server on a single computer (the 4-
processor SGI Onyx mentioned above). Figure 9 shows the rendering time for the non-distributed client (upper line),
together with the distributed client (lower line; same data as Figure 8). The results here are similar to the results we
received with the multithreaded single-executable version mentioned in Section 3 above. The non-distributed client not
only took longer to render spriteframes than the distributed client (average 256 versus 61.9 milliseconds), but as visually
indicated in Figure 9 the frame rate is much more unstable for the non-distributed versus the distributed client (standard
deviation 225 versus 14.8 milliseconds). This is further reinforced by Figure 10, which shows the frame type for the
non-distributed client (keyframes are vertical spikes). Compared to the relatively steady keyframe rate of the distributed
client in Figure 8, the non-distributed keyframes arrive in a bursty manner. As we mention in Section 3 above, we believe
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Figure 12. Timing information from the distributed server’s KEYFRAME-TRANSMITTER module (Figure 7.) Shown is Æ� (�), the
keyframe production time (�), the queue retrieve time (Æ), and the keyframe transmission time (�).

these poor results are due to (1) our inability to control the scheduling of the two executables at the graphics hardware
level, and (2) the inefficiency of rapidly switching between the client and server graphics contexts.

Figures 11–12 show the timing information collected by the distributed server. Figure 11 gives the timing of the
KEYFRAME-RENDERER. This figure shows the keyframe production time (�), which is the total time it takes for a
complete cycle of the KEYFRAME-RENDERER loop (lines 2–9 of Figure 6). The keyframe production time is composed
of the other times shown in Figure 11: (1) the viewpoint wait time (Æ), which is the time spent waiting for a viewpoint
from the VIEWPOINT-PREDICTOR (lines 2–3 of Figure 6), (2) the keyframe render time (�) (lines 6–7), and (3) the
queue insert time (�), which is the time it takes to insert the keyframe into the SERVER-KEYFRAME-QUEUE (lines 8–9).

The keyframe production time averages 2140 milliseconds. Figure 11 shows that the viewpoint wait, which averages
0.06 milliseconds, is a very insignificant component of the keyframe production time. The keyframe render time, which
averages 517 milliseconds and is directly proportional to the number of triangles in the current view frustum, is also
a relatively small component. The dominant factor is the queue insert time, which at an average of 1590 milliseconds
is almost 3 times greater than the keyframe render time. Note that for the first two keyframes, when the SERVER-
KEYFRAME-QUEUE is empty, the keyframe production time is only slightly higher than the keyframe render time, but by
the 4th keyframe the queue insert time dominates the keyframe production time, and this trend continues for the rest of
the viewpoint path.

Figure 12 gives the timing of the KEYFRAME-TRANSMITTER. It shows Æ� (�), which is the total time spent processing
a keyframe (line 2 of the KEYFRAME-RENDERER to line 7 of the KEYFRAME-TRANSMITTER). Æ� is composed of the
other times shown in Figure 12: (1) the keyframe production time (�) (the same data as Figure 11), (2) the queue retrieve
time (Æ), which is the time spent waiting for and retrieving a frame from the SERVER-KEYFRAME-QUEUE (lines 2–3 of
Figure 7), and (3) the keyframe transmission time (�), which is the time it takes to send the keyframe down the keyframe
connection and receive an acknowledgement.

Figure 12 shows that the queue retrieve time, which averages 25 milliseconds, is quite small relative to Æ�; this indicates
that there is always a keyframe waiting in line 2 of the KEYFRAME-TRANSMITTER. Æ� (8940 milliseconds average) is
about half composed of the keyframe production time (2140 milliseconds average) and the keyframe transmission time
(2320 milliseconds average). The rest of Æ� comes from the time the keyframe sits in the SERVER-KEYFRAME-QUEUE

before it is transmitted.

Taken together, the server timing statistics from Figures 11 and 12 indicate that network delays clearly dominate over
keyframe rendering. A faster connection between the server and client would both increase the keyframe production rate
and reduce the keyframe latency, both of which would enhance the visual quality of the spriteframes.
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Figure 13. A series of frames from early in the animation, with a new keyframe introduced in the middle row. There is no discernable
visual change when the new spriteframe is introduced.

4.2. Visual Performance

Figures 13 and 14 give visual results from the 600-frame viewpoint path. In both figures, the first column shows the actual
LOD-Sprite client images which the user sees. For comparison, the second column shows images from the same viewpoint
rendered from the full-resolution terrain geometry, and the third column shows difference images between the first and
second columns. If LOD-Sprite worked perfectly, the LOD-Sprite images would be identical to the high-resolution
images, and the difference images would be completely black, so any information in a difference image indicates visual
quality loss.

Figure 13 shows three frames (26, 27, 28) from early in the viewpoint path. Frame 26 is the 13th spriteframe generated
from the last keyframe. In Frame 27 a new keyframe is introduced, and Frame 28 is the first spriteframe generated after
the new keyframe. The sequence of images shows that, in this part of the animation, introducing a new keyframe results
in no perceptual effects whatsoever — it is not possible to detect that a keyframe has been introduced.

Figure 14 shows three frames (592, 593, 594) from late in the viewpoint path. Frame 592 is the 12th spriteframe
generated from the last keyframe received by the client. In Frame 593 a new keyframe is introduced, and Frame 594 is
the first spriteframe generated after the new keyframe is received. The sequence of images shows that, in this part of the
animation, introducing a new keyframe does result in a perceptual “popping” effect in the central portion of the image —
note the image information that abruptly changes between frames 592 and 593 in the difference images (white arrows).
When viewed as an animation, the visual effect is a slight “popping” in the central part of the image.

5. RELATED WORK

Distributed LOD-Sprite fits into the general fields of (1) image-based modeling and rendering, (2) level-of-detail model
representations, and (3) terrain rendering. These are all well-established fields in computer graphics and are not reviewed
here. This section reviews other attempts at frame rate management for interactive systems.
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Figure 14. A series of frames from late in the animation, with a new keyframe introduced in the middle row. This produces a slight
popping artifact in the middle part of the image (white arrows).

The most general approach for achieving a steady frame rate is to predict, based on the current scene complexity
and other visual parameters, how to best choose LODs to meet a given frame time. Completely solving this problem is
NP-complete, and thus researchers have presented various optimization schemes for approximate solutions. Examples of
this approach are Funkhouser and Séquin,	 Maciel and Shirley,�� Gobbetti and Bouvier,
 and Mason and Blake.�	 An
easier approach is to adjust LODs based on feedback from the time required to render previous frames. This technique
has been used in flight simulators for decades,�
 although it suffers various problems such as being at least one frame late
as well as oscillating between frame rates.��

A large number of researchers have developed techniques for LOD and image sprite management based on view-
dependent parameters such as (for example) screen-space projected error. While they do not directly consider frame time,
these methods all tend to stabilize the frame rate. Among those which at least discuss their frame rate stability are Aliaga
et al.,�� � Hoppe,��� �� Lindstrom et al.,�� Shade et al.,�� Maciel and Shirley,�� and Duchaineau et al.�

The most novel aspect of Distributed LOD-Sprite is that it utilizes a distributed rendering architecture to achieve a sta-
ble frame rate; we are not aware of other techniques that use this approach. LOD-Sprite requires an LOD decomposition,
and we currently use the techniques of both Lindstrom et al., �� and Luebke and Erikson.�� However, LOD-Sprite could
utilize and augment any of the LOD and frame-rate management approaches described above.

A novel approach to frame-rate management, which is also given in the context of a terrain rendering system, is the
work of Qu et al.�� They describe a keyframeless image-based system which uses ray-casting. Their technique generates
a frame by warping the previous frame; it measures the age of each pixel, and re-casts a ray through the pixel once it
gets too old. They stabilize the frame rate by only re-casting a certain number of old pixels per frame. They achieve
an impressively stable framerate (on exactly the same dataset that we use!), but because their technique does not take
advantage of rendering hardware, their overall frame rate is slower that what we report in Section 4 above.

Yet another large class of applications guarantee a steady, interactive frame rate, no matter how bad images might
look while in motion. However, these tend to be systems with different usage characteristics than interactive terrain
visualization. For example, Rusinkiewicz and Levoy�� describe a system for interactively viewing high-resolution scanned
models of Michelangelo’s statues. In this case, users typically manipulate the statue in order to observe it from a particular
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orientation, and then do not move it for a period of time. While the model is stationary, the system gradually updates the
image quality. IRIS Performer�� has API hooks to directly support this class of applications.

6. CONCLUSIONS AND FUTURE WORK

In this paper we have described the Distributed LOD-Sprite technique, and our application of the technique to real-
time, interactive terrain rendering. By decomposing LOD-Sprite into a client which renders spriteframes and a server
which renders keyframes, we have demonstrated a solution to the unstable frame rate problem. This problem is of great
importance to real-time, interactive rendering systems, and applies in a general way to many image-based modeling and
rendering (IBMR) techniques in addition to LOD-Sprite. Our solution is a promising approach which could be applied to
many other IBMR systems.

In addition to a steady frame rate, we have demonstrated a real-time, interactive rendering system which has the
additional benefits of LOD-Sprite. It is a general-purpose rendering technique that could accelerate rendering for any
application. It could be built upon any LOD decomposition technique. It improves the image quality of LOD techniques
by preserving surface complexity, and it improves the efficiency of IBMR techniques by increasing the range of viewpoint
changes that are possible for a given level of image degradation.

We have several ideas for future work on this project. We first want to experiment with a faster network connection
between the client and server, for as discussed in Section 4.1 above the majority of the total keyframe processing time Æ�
can be attributed to the network. A 100-base-T Ethernet is available in our building, and we may also explore a direct
connection between the two machines.

We also intend to revisit the idea of a multi-threaded but single executable implementation which runs on one machine.
Although our initial effort to implement Distributed LOD-Sprite on a two-pipe Onyx were unsuccessful, there seems to
be no reason in principal why we could not get the client thread to use one pipe and the server thread to use another pipe.
We are also interested in an implementation on a fast PC with two graphics cards.

We are integrating Distributed LOD-Sprite into a battlefield visualization system�; this system will further test Dis-
tributed LOD-Sprite with realistically-sized terrain databases. As we mention in Section 3.3 above, we predict these
larger databases will necessitate a more sophisticated viewpoint prediction technique. In addition, a common problem
with many continuous-LOD techniques, including those we use in Distributed LOD-Sprite, ��� �� is caused by the sudden
creation and destruction of triangles as the resolution level changes. This results in a continuous popping effect during
interactive navigation. The solution is geomorphing, where the geometry is slowly changed over several frames. �� We
are investigating adding geomorphing to LOD-Sprite.

Finally, there are at least two aspects of the OpenGL graphics hardware we used for this project which yield inefficient
performance. One key addition to graphics hardware, which would benefit not only LOD-Sprite but many other IBMR
techniques as well, is a fast connection between graphics texture memory and general CPU memory. Another is a
relaxation of the requirement that texture maps only have dimensions which are powers of two.
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