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ABSTRACT 

We describe a system for extracting ridges and ravines from elevation data.  The application context 
is a map-based military planning tool which allows users to select ridges and ravines by simple mouse 
clicks.  The extracted terrain features are complete in the application-specific sense that they conform to 
what our users expect a single ridge or ravine to look like.  Supervision is supported by a graphical user 
interface, which allows an analyst to modify algorithm parameters as well as perform intelligent mouse-
based editing operations.  Among similar existing systems, ours is unique in that it focuses on the three 
classically difficult operations of (1) combining partial features, (2) splitting multiply-connected features, 
and (3) removing micro-terrain features for extracting high-level structure from classified pixels. 
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INTRODUCTION 

Technologies for collecting digital terrain data, such as satellite imaging, continue to advance at a 
rapid pace, which is making an ever-increasing amount of terrain data available for a wide variety of 
applications. Many of these applications require specific features of the data, such as rivers, ravines, 
forested areas, etc., to be extracted and labeled.  Developing an application-specific feature extraction 
system is difficult, and these systems usually require supervision by a highly skilled analyst. This 
motivates the considerable amount of work that has been performed in the terrain feature extraction field. 

Although the ultimate goal of this field remains completely automatic, unsupervised extraction, 
typically success involves minimizing the amount of supervision required. The work presented in this 
paper falls into this category: we describe a system for extracting ridges and ravines from elevation data, 
where the extracted terrain features are complete in the application-specific sense that they conform to 
what our users expect a single ridge or ravine to look like. Our application area is a system that allows 
military planning operations using multimodal combinations of voice commands and pen-based 
gestures[5].  The extraction system allows us to implement commands such as “place a fortification along 
this ridge”, or “make a new mechanized battalion in this ravine”, where the phrases in italics indicate the 
simultaneous selection of a terrain feature by a pen-based gesture. 

Existing terrain feature extraction efforts can be classified into two major groups: systems which 
extract features at a local pixel level (e.g., Haralick[15], Peucker and Douglas[32]), and systems which 
extract high-level structure from classified pixels or other lower-level structures (e.g., Mark[24], 
Kass[18]). To date, neither approach has been able to completely extract terrain features. Our system fits 
into the second group; we utilize the well-known Topographic Primal Sketch technique of Haralick, et 
al.[15] to perform pixel-level classification. We then extract high-level structure from the classified pixels 
by focusing on three classically difficult operations: (1) combining partial features, (2) splitting multiply-
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connected features, and (3) removing micro-terrain features. These operations are illustrated in Figure 1. 
As described below, this focus has given good results for extracting ridges and ravines from elevation 
data, with relatively minimal supervision. We believe we are among the first groups to apply this 
particular focus to the terrain feature extraction domain. 

 

 
Fig. 1 — Difficult Feature Extraction Operations 

 

In Related Work we discuss related work in the areas of local pixel-level extraction and structure 
extraction schemes. In System Design we describe our system's architecture, user interface, and give 
results. We follow in Conclusions and Future Work with conclusions, a discussion of our system's 
contributions, and our plans for future work. 

RELATED WORK 

This section lists relevant work from the feature extraction literature. More complete details can be 
found in a survey by Mascardi[25]. 

Local Extraction Schemes 

Local extraction schemes operate by matching local topological traits with pre-determined patterns. 
Our system is based on the popular Topographic Primal Sketch algorithm by Haralick et al.[15]. This 
algorithm classifies terrain pixels into basic topological types (ravines, ridges, peaks, etc.) by using 
patterns formed from surface gradients. Similar schemes have been designed by Peucker and 
Douglas[32], Toriwaki and Fukumura[39], Fowler and Little[10], Skidmore[35], and Gauch and 
Pizer[11]. While all of these methods effectively extract topological features at the pixel level, they do not 
yield any information about which particular groups of pixels form complete features. 

Structure Extraction Schemes 

A popular technique for extracting structure for ravines is hydrological analysis, which uses slopes of 
maximum descent to form a drainage network (see Jenson and Domingue[17], Mark[24], and Band[1]). 
These methods apply principles of water flow to connect ravines.  To a degree, ridges can be similarly 
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computed by inverting the data. However, in flat areas these methods produce many false ravine and ridge 
components. 

Another popular method, Snakes[18], is used to determine curvilinear structures in topographical 
data. The essential idea is to stretch and bend a topographically-based spline until it fits the structure of 
curvilinear terrain features. This method requires a lot of effort in initialization, the underlying spline 
representations, and the formulation of the stretching and bending operations. Steger[36] proposes a 
similar method which utilizes differential geometric properties of the terrain data. Thompson et al.[38] 
have demonstrated good results in extracting micro-terrain ravines and their boundaries by integrating the 
hydrological analysis and snakes techniques. 

Related techniques have been applied for extracting road networks (Guindon[13], Tupin et al.[40]), 
as well as building and tree boundaries (Gerke et al.[12]). Ravines and ridges are easily confused with 
roads and tracks. 

From the point of view of our application domain, the primary drawback of all of these techniques is 
that they do not give any structural information that can be used to separate multiply-connected features. 
For example, in the situation where multiple ridges come together, our application requires us to be able 
to refer to each ridge in isolation. 

NIMA Products 

The National Imagery and Mapping Agency (NIMA) has developed a standard for storing terrain 
feature information called Vector Product Format[30]. They have databases of features for topography, 
littoral, hydrographic and aeronautical data. Some of the features for the topographic data include 
boundaries, elevation and ground obstacles. The primary drawback is that NIMA's systems and 
algorithms are proprietary, and thus cannot be adapted to specific circumstances. 

SYSTEM DESIGN 

Our system takes digital terrain elevation data and extracts complete ridges and ravines in vector 
format. The system is composed of a data processing pipeline with eight major steps. Figure 2 displays a 
flow diagram for these steps. Each step is indicated by a shaded box, where the shade (dark gray, light 
gray, white) signifies the degree of operator supervision required (substantial, medium, minimal). 
Medium supervision takes the form of several adjustable parameters that are accessed using our graphical 
user interface (GUI) (see User Interface and Interaction and Figure 7). Substantial supervision involves a 
combination of intelligent mouse-based image editing and parameter setting. Data flows in Figure 2 are 
labeled (a) through (h). Figure 3 gives an image from each data flow for an example dataset. 
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Fig. 2 — Segmentation Processing Pipeline. Figure 3 Shows Data Flows Labeled (a) through (h). 

 

 
Fig. 3 — Images from the Labeled Data Flows in Figure 2. 
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Processing Pipeline 

1. Data Enhancement: 

The first step in the processing pipeline addresses resolution and contrast between neighboring 
pixels, since both of these properties make feature extraction easier. Higher resolutions yield better 
estimations for topological discriminants such as gradients, which require sub-pixel computations.  
Similarly, edge detection algorithms perform better as contrast increases. 

In our system, we enhance contrast with a sharpening filter and an image intensity dynamic range 
modification method. For each pixel, the sharpening algorithm[22] creates a high-pass filter from a local 
region histogram, which filters out low-frequency pixel intensities. The dynamic range modification 
method[33] modifies the global histogram by increasing the separation of the pixel intensity classes. The 
application of this algorithm results in small height adjustments that increase local contrast. Medium 
supervision is required for these operations. 

2. Pixel-Level Classification: 

In the second processing step we locally classify data points by assigning attributes of terrain features 
at the pixel level. We utilize the well-established Topographic Primal Sketch algorithm[15], which 
classifies by matching predetermined topological patterns built on first- and second-order surface 
gradients. We estimated these gradients by fitting cubic splines to the elevation data. Similar methods 
have been designed by Peucker and Douglas[32], Toriwaki and Fukumura[39], Fowler and Little[10] and 
Skidmore[35]. They all generate a set of basic terrain feature types, which serve as the building blocks for 
forming complete terrain features. The accuracy of these algorithms improves as the data resolution 
increases. Minimal supervision is typically required for this step. 

3. Connectivity: 

The limitation of the local terrain pixel classifications is that they do not provide any high-level 
structural information that describes which sets of terrain pixels form complete features. This motivates 
the current step, which is to cluster like-classified data points together. Most data clustering problems 
arise from sampling resolution issues. Data that is sampled too coarsely produces “holes”, which greatly 
affects the performance of the connectivity algorithms. In this case, the connectivity algorithms usually 
generate sets of partial features. High resolution sampling improves the performance of the connectivity 
algorithms, but does not completely eliminate problems. By increasing the resolution, more fine-detail 
data is added to the datasets. While this allows the algorithms to better connect the components of large-
scale features, high resolution can also cause micro-terrain features, which we define as features that are 
one or more resolution scale-factors smaller than the current resolution. 

Another problem with connectivity algorithms occurs when multiple terrain features connect to each 
other, such as two rivers. It is not an easy problem to automatically separate the two features. It appears 
that more sophisticated algorithms or additional knowledge are required to deal with these types of 
problems. This also applies to separating micro-terrain features, noise and those features that are 
unimportant for the current task. 
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Fig. 4 — (Left) This image shows a large number of small micro-terrain features. (Right) Some of the clutter is reduced by 

removing the smallest 5% of the features. 

 

Our system implements a connectivity algorithm that connects the current pixel with like-classified 
neighboring pixels up to k pixels away.  For k = 1, the algorithm connects the current pixel's immediate 
neighbors if and only if they have the same classification. With values of k > 1, the neighbors less than k 
distance away can have any classifications. The algorithm creates k-connected components, which consist 
of either partial, whole, multiply-connected, or micro-terrain features. It is rare to produce a whole 
feature. Different values for k affect how many partial or multiply-connected features are produced. Small 
values produce more partial features, while large values produce multiply-connected features. 

The software interface has features that allow the parameter k to be adjusted interactively by the user. 
The user can also choose to remove sets of small and large clusters interactively. These interface options 
provide some control for clustering the data into connected components; however, they still leave partial, 
multiply-connected, micro-terrain features, noise and unimportant features. This motivated the 
development of the next three steps in the architecture. A medium level of supervision is required. 

4. Partial Feature Combination: 

This processing step is focused on combining the partial features to make whole terrain features. The 
combining operation is very difficult to automate by computer since it is hard to determine which 
components make up one feature. Typically ridges and ravines are connected in complicated curvilinear 
structures that may bifurcate into many sub-branches. Methods that can be applied for the combining 
operation are hydrological analysis and Snakes, as discussed above in Related Work (Related Work). 
Recall that each of these methods has drawbacks related to their effectiveness and accuracy. 

We implemented an intelligent mouse-based image editing method that combines drawing and 
erasing operations with parameter setting operations. The software interface provides controls for 
selecting drawing modes corresponding with individual feature types and offers options to modify 
parameter settings for the connectivity, cluster thresholding and other algorithms. Once the appropriate 
drawing mode is selected, the interface works similar to a standard mouse-driven drawing package. A 
nice feature of our implementation is the capability to see immediately the effect that each drawing or 
erasing operation has on the high-level structure of the locally classified pixels. This operation is 
performed by re-executing the connectivity, cluster thresholding and related algorithms after each 
drawing operation. Figure 2 indicates this iteration by the backwards flowing arrow that leads from before 
step 7 to before step 3. Unfortunately this step requires significant supervision. 
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5. Multiply-Connected Feature Splitting: 

Splitting multiply-connected features is a difficult operation to perform. Candidate splitting 
operations are boundary tracing algorithms (e.g., Crawford-Hines et al.[7] and Burton[4]) and Snakes 
(described previously). Most boundary tracing algorithms have been shown to work for only specific 
datasets and problem domains. The Snakes method requires a lot of supervised overhead and has other 
drawbacks. The most effective splitting operations for our domain that we are aware of are the intelligent 
mouse-based image editing operations we implemented in step 4. 

6. Micro-Terrain Feature Removal: 

The micro-terrain features and noise are removed in this processing step. The micro-terrain features 
have a scale that is a magnitude smaller than the current sampling interval. Because of this, the 
connectivity algorithms typically produce many small clusters. Noise is typically in the form of small 
clusters as shown in Figure 4 (Left). These features can be removed by eliminating the smallest size 
connected components (Figure 4 (Right)). 

For the remaining micro-terrain features, some are large connected components and the rest are 
attached to normal terrain features. The splitting operation used in step 4 can be applied to the attached 
micro-terrain features. However, determining how to remove the remaining micro-terrain features is more 
difficult. These features typically appear to have more complex or compact shapes. This knowledge can 
be applied to develop an automatic removal algorithm; however, in our system, we simply select them by 
highlighting them manually and remove them. 

7. Feature Selection: 

We have found that terrain segmentation can be made very powerful with the capability to select 
features based on their geometrical characteristics such as length, slope and elevation. Additionally, 
generating ranked lists of features based on these characteristics adds to that power. Operations based on 
these can yield feature sets such as: “the segments of a river containing the lowest elevation points” and 
“the ridges containing the highest peaks”. This capability can be even further enhanced by applying 
Boolean operators to the selections. We implemented these selection capabilities into our system. 

Our system can handle many types of terrain feature characteristics such as: the longest, those 
containing the highest peaks or lowest pits, those with the largest or smallest change in elevation, those 
with the highest or lowest average elevation, and those containing the largest or smallest average 
gradients. We also integrated a Boolean-based selection pipeline, so that new combinations of algorithms 
can be made to operate on the remaining selections. The pipeline works by applying a ranked list of 
operations to the current feature selections. For example, the user can rank “the 10 longest features” as 
“1” and “the 5 features containing the highest peaks” as “2”.  Then the pipeline will apply the algorithms 
in their ranked order to the current selected components. The operations can also be run in parallel and 
combined as a Boolean “union” if desired as well. Additionally, the algorithms can be applied separately 
or in combination to specific raw feature types such as ridges and ravines. These algorithms require 
minimal supervision and operate very quickly. 
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Fig. 5 — Simplification Pipeline for Removing Redundant Elements in the Selected Features 

 

8. Data Simplification: 

The last processing step is to simplify the data such that redundant data points are removed. This step 
produces data that can be used to quickly and accurately re-create the terrain features while minimizing 
storage space requirements. Some of the common sources of data redundancy that can be eliminated are: 
(1) thick multi-pixel boundaries, (2) points lying outside the general shape of the terrain features, and (3) 
redundant structural components which may be points, lines or polygonal objects. 

For example, when ravines and ridges are extracted, they typically contain multi-pixel thick 
connected components. These features can be ``thinned'' by using Rosenfeld and Kak's thinning 
algorithm[34]. Ravines and ridges typically contain complex twists and turns. If desired, some of these 
can be smoothed out by fitting piecewise curves[9] to the features and removing outlier points[6]. 
Additionally, the smooth sections can be resampled or redundant points can be removed. For example, a 
linear component that contains more than two points can be reduced to the two end points. 

For our system, we implemented a series of algorithms that remove redundancies in the data. Figure 5 
shows the simplification pipeline we used to remove redundant elements in the selected features. We first 
segmented the tree structure data into branches and subsequently applied a curve reordering filter on the 
branches. We used a least squares curve fitting approach to remove thickness and outlier points[6]. Then 
we applied a cross product filter, which removes points if the angle a point makes with the previous and 
next point is less than some specified threshold[23]. These algorithms require minimal supervision. The 
three major steps of the simplification pipeline are illustrated in Figure 6. 

 

 
Fig. 6 — The three major steps of the simplification pipeline are illustrated here. From left to right, the curve data is (a) 

segmented and re-ordered, (b) a least squares fitting is performed upon the segments and (c) the segments are smoothed using a 
cross product filter. 
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Fig. 7 — A Portion of the Graphical User Interface of the System 

 

The final output from our system is the extracted terrain features stored in a vector format. 

User Interface and Interaction 

Figure 7 shows our system's graphical user interface (GUI), which provides controls for the required 
supervision. This supervision is in two forms: parameter setting, and intelligent mouse-based image 
editing operations. Our GUI contains two display windows and multiple interaction controls including 
sliders, buttons, and text input windows. The two display windows complement each other, such that 
when a processing step is applied, one shows the input, and the other shows the output. 

The GUI contains parameter-setting sliders for the histogram normalization, the sharpening filter, the 
k-connectivity algorithm, the windowed-thresholding scheme for removing percentages of the smallest 
and largest clusters, the feature selections, and the data simplification step. There are nine different sliders 
for feature selection and two for data simplification. 

We designed buttons to allow the user to select or unselect the basic feature types from the pixel 
classification algorithm. The processing algorithms only work on the selected feature types. We also 
implemented buttons to connect (or trace) either individual or combinations of ridge-like or ravine-like 
elements. We combined peaks with ridges and pits with ravines when performing the k-connectivity 
algorithm, which is logical because the ridges are composed of peaks and ravines are composed of pits.  
The interface has buttons and text windows that allow the analyst to specify a ranking order and Boolean 
combinations of feature selection operations. 

Walk-Through of the Pipeline 

We demonstrate the pipeline by proceeding with a walk-through of each of the significant processing 
steps required to extract a set of features. The walk-through is shown in Figure 3. Image (a) shows a gray-
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scale sub-region of the 3D terrain elevation dataset after enhancement. Image (b) shows the raw pixel-
level terrain feature classifications (ridge, ravine, flat, etc.). Image (c) shows only the ravine elements, 
which have been clustered using the k-connectivity algorithm with k=1. Image (d) shows the significant 
features highlighted after the combining operation, (e) shows them with end-point indicators after the 
splitting operation, and (f) shows them after the micro-terrain features have been removed. Image (g) 
shows three ravines containing the lowest peaks, and (h) shows a portion of one segment being 
simplified. 

DEMONSTRATION OF THE SYSTEM 

We demonstrate our system by selecting a desired feature dataset. The features we selected are ridges 
and ravines that are significant and are non-bifurcating. By significant, we mean the largest segments that 
are not (and do not contain adjoining) micro-terrain features and noise data. Our choice of features is 
shown in Figure 8 (Left). The red curves are the ravines and the blue are the ridges. Our dataset did not 
include every significant ridge and ravine in the region, but most of them. The image also shows a terrain 
texture of the region to help identify what the area's geography looks like. 

The dataset was generated by using the interface tools to select low-level pixel classifications, 
connect the data, edit the connectivity, remove undesirable branches, select specific mathematical features 
and simplify the data. The desired features are output in a 3D vector format, which is displayed in Figure 
8 (Right). These features were then overlaid on the 3D elevation terrain data to verify the registration. 
Figure 9 shows two images of the vector-formatted features overlaying the terrain raised up a few meters 
in height to make them more visible. In some cases the features appear to have poor registration (see the 
bottom of Figure 9 (Left)). However, this is not the case. The apparent mis-alignments result from the 
interactive curve simplification process. The degree of simplification is adjusted by the user and can be 
used to eliminate certain topological features in the ridge and ravines selections if desired. For the case 
above, the degree of simplification was set too high. 

The red and blue features on the terrain texture map were added after this step and utilized to make 
this step more understandable for the comparison. Initially we compared the vector-formatted features 
with the texture in Figure 8 (Left) and the 3D elevation data. To make the texture maps we merged and 
enhanced the 2D orthogonal projection of the 3D vector data with a colored texture image. We show two 
portions of the dataset in two different visualization packages in Figure 10. The left image shows a hilly 
area with the ravines (red) and ridges (blue) highlighted using a software package called 3D Terrain 
Visualizer (3DTV)[19]. The right image shows a mountainous region in the software Dragon[8] with the 
main ridge highlighted in beige and other minor features showing up in different colors. 

CONCLUSIONS AND FUTURE WORK 

We have described a system for extracting ridges and ravines from elevation data. Our system starts 
with a pixel-level classification scheme, and then extracts high-level structures by iteratively performing 
the following operations: (1) combining partial features, (2) splitting multiply-connected features, and (3) 
removing micro-terrain features. The supervision required by these steps is provided by a GUI that allows 
graphical parameter setting as well as intelligent mouse-based image editing. 

There are three aspects of our system which we believe make it a contribution to the terrain feature 
extraction field. First, while acknowledging that there are many proprietary algorithms (e.g., at NIMA[30] 
and similar places), we are not aware of other published work that extracts high-level structure by 
focusing on the three difficult operations of (1) combining partial features, (2) splitting multiply-
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connected features, and (3) removing micro-terrain features. Second, while applying our system to 
additional linear terrain feature types may require additional operations, we have identified three 
operations that are fundamental in the sense that they will need to be addressed by any system that 
extracts complete high-level terrain structures from classified pixels. Finally, we are focused on extracting 
terrain features that are complete in the application-specific sense that they look like a “single” ridge or 
ravine. This focus gives us a point of uniqueness from most previous work. 

In the future, we plan to further reduce the supervision required by our system. Each of our three 
operations is difficult, and as our literature review has demonstrated, each has already attracted 
considerable previous work. In the literature we have identified a number of techniques that should 
further reduce the supervision each operation requires. We also plan to extend our system to extract 
additional linear terrain features such as roads, rivers, agricultural boundaries created by field placement 
and crop type, urban boundaries, and building boundaries. This extension will test the generality of our 
system design. 
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Fig. 8 — (Left) This image shows the dataset we selected which contains a majority of the most significant ridge (blue) and 
ravine (red) terrain features. (Right) The features extracted from our dataset are stored in 3D vector format and shown in 3D. 

 

    
Fig. 9 — Both images show the features overlaid on the terrain elevation data. The left image also shows a ridge (blue) near the 

bottom in the middle that was over-simplified. 

 

    
Fig. 10 — The images show the vector-formatted features combined and enhanced with the terrain texture. The left image shows 
a hilly area using the 3DTV[19] software with the features highlighted in red and blue (same as before). The right image shows a 

large ridge highlighted in beige in a mountainous region using the software Dragon[8]. 
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