
Probabilistic Algorithms, Integration, and
Empirical Evaluation for Disambiguating

Multiple Selections in Frustum-Based Pointing
Greg Schmidt 1,2 Dennis G. Brown 1 Erik B. Tomlin 1 J. Edward Swan II 1,3 Yohan Baillot 1,2

13D Virtual & Mixed Environments Lab, U.S. Naval Research Laboratory
2ITT Industries, Advanced Engineering & Sciences

3Department of Computer Science & Engineering, Mississippi State University

Abstract— There are a few fundamental pointing-based user
interface techniques for performing selections in 3D envi-
ronments. One of these techniques is ray pointing, which
makes selections by determining intersections of objects
along a single ray cast from the user. This technique is
susceptible to inaccuracy of the user interface tracking
technology and user noise (e.g., jittery hand, see actual
viewing ray in Figure 1 (bottom) and how it misses the
object when error is factored in). Another technique is the
frustum-based (or equivalent cone-based) approach which
casts a frustum from the user into the 3D scene. Selections
are made by performing intersections of objects with the
frustum. This technique resolves the imprecision associated
with the ray pointing technique (see how the lightly shaded
cone in Figure 1 (bottom) still intersects the object), but may
produce multiple ambiguous selections as shown in Figure 2.

This paper presents probabilistic selection algorithms and
integration schemes that address some of the ambiguities
associated with the frustum-based selection technique. The
selection algorithms assign probabilities that the user has
selected particular objects using a set of low-level 3D
intersection-based selection techniques and the relationship
of the objects in a hierarchical database. Final selections
are generated by integating the outputs from each selec-
tion algorithm using one of several weighting schemes.
We implemented the selection algoithms and weighting
schemes within our distributed augmented reality (AR)
and virtual reality (VR) architecture. Next, we performed
several experiments to empirically evaluate the probabilistic
selection techniques and integration schemes. Our results
show that the combined selection and integration algorithms
are effective at disambiguating multiple selections. This
paper thoroughly describes the architecture, experiments,
and results.
Index Terms— interaction, selection, algorithms, augmented
reality, virtual reality, hierarchical databases

I. INTRODUCTION

Many virtual and augmented reality systems present the
user with a rendering of a 3D world containing distinct
objects that the user can query or manipulate. To perform

This paper is based on “Toward Disambiguating Multiple Selections
for Frustum-Based Pointing,” by G. Schmidt, D.G. Brown, E.B. Tomlin,
J.E. Swan II, and Y. Baillot, which appeared in the Proceedings of the
IEEE Symposium on 3D User Interfaces 2006 (3DUI), Alexandria, VA,
USA, March 2006. c© 2006 IEEE.

{gregory.schmidt, dennis.g.brown, erik.tomlin}@nrl.navy.mil
baillot@ittid.com
swan@acm.org

these actions on objects, the user usually must first select
the object. While there are many ways to select objects,
pointing at the desired object is common and natural.
Selection by pointing can happen using a range of devices,
from a common 2D mouse controlling a cursor on a
2D projection of the 3D world, to a full six-degree-of-
freedom (DOF) hand-held tracking device. Selection can
also happen without using the hands at all, by using
head orientation (assuming the head is tracked) or gaze
direction using an eye tracker.

We assert that all user selection operations are suscep-
tible to error. First, there is human error: the imprecision
that comes from lack of experience, not enough motor
control to do fine grained selection, or fatigue developed
during a session; Wingrave et al. [1] studied a number of
correlations between certain attributes of users and their
ability to perform selections. Second, there is equipment
error, which could be noise, drift, and lag in a 6DOF
tracking system, or simply not enough resolution on a
wheel-based device to perform a fine selection. Finally,
there are ambiguities associated with the scene itself,
such as when the user tries to select one object occluded
by another object. In our main application area, mobile
augmented reality, this is a common problem because
users have “x-ray vision” and can see spatial information,
such as the position of a collaborator, that may be
occluded by real or virtual objects—in this example, the
collaborator may be behind a building. These errors can
lead to selections that are totally incorrect, such as when
using a ray-based selection that chooses a single object,
or to ambiguous results when using multiple selection
techniques that can choose many candidate objects.

We designed a pointing-based probabilistic selection al-
gorithm that alleviates some of the error in user selections.
This technique takes into consideration the hierarchical
structure of the scene objects (e.g., a door is a child of
a wall, which is a child of a building, and so on). It
assigns probabilities that the user has selected particu-
lar objects, within a frustum along the user’s pointing
direction, using a set of low-level 3D intersection-based
selection techniques and the relationship of the objects
in a hierarchical database, and makes the final selection
using one of several weighting schemes. We implemented

JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006 1

© 2006 ACADEMY PUBLISHER



Figure 1. Motivation for the problem we address. The ray pointing technique fails to the select object when error is factored in. The cone works
fine, but introduces ambiguity in the selection.

Figure 2. Shows the problem with the frustum-based (or cone-based) technique where multiple objects intersect with the viewing frustum. Left
depicts the cone projecting from User 1’s hand. Right shows an overview of the projected cone and interesecting objects.

the techniques in a testbed consisting of a command-and-
control center (immersive VR and 2D map systems) and
several field operatives (mobile AR, both man-wearable
and vehicle-mounted) all using a shared database. We
used the implementation to perform several experiments
to evaluate the low-level selection techniques, to evaluate
several weighting schemes for the integration algorithm,
and to show that the algorithm can effectively disam-
biguate multiple selections.

After describing related work, we detail the low-level
selection techniques and their implementation within our
testbed. We then present the design and discuss the
results of the experiments described above. This paper
is an invited extension to work published at the IEEE
Symposium on 3D User Interfaces 2006 [2]. This version
adds a detailed discussion of the system architecture and
the implementation of the selection algorithms.

II. RELATED WORK

Selection in 3D environments has been an active re-
search topic since the first virtual environments were im-

plemented. Hinckley et al. [3] presented a survey of, and
a common framework for, techniques for 3D interaction.
Liang and Green [4] developed the spotlight method of
selection, which alleviated some issues with using ray-
based selection for small and far objects, but introduced
the problem of multiple selections, for which they set up
rules to choose one of the possible selections. Mine [5]
described a few techniques for selection, along with other
interactions to be supported in virtual environments. Fors-
berg et al. [6] developed two novel selection techniques,
aperture (an extension of spotlight) and orientation, to
deal with the imprecision of ray-based selection using
a 6DOF input device. Pierce et al. [7] introduced a set
of selection techniques using tracked hands and the 2D
projection of a 3D scene. In his thesis, Bowman [8]
gave a thorough survey of 3D selection techniques at the
time, and introduced a novel technique for selection and
manipulation.

In more recent work, researchers have dissected
the task of selection even further, and have created
novel techniques for specific application domains such

2 JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006

© 2006 ACADEMY PUBLISHER



as Augmented Reality (AR) and multimodal systems.
Wingrave et al. [9] discovered that users do not have
an internal model of how they expect the environment
to behave (for example, in performing selections), but
instead they adapt to the existing environment using feed-
back received when performing tasks. Olwal et al. [10]
developed some of the first algorithms for selecting in
AR. Their technique attaches a virtual volumetric region
of interest to parts of a user’s body. When the user moves
the body part, interacting with objects in the environment,
a rich set of statistical data is generated and is used
for processing selections. Kolsch et al. [11] developed a
real-time hand gesture recognition system that can act as
the sole input device for a mobile AR system. Kaiser et
al. [12] developed mutual disambiguation techniques and
evaluated their effectiveness for 3D multimodal interac-
tion in AR and Virtual Reality (VR). They showed that
mutual disambiguation accounts for over 45% of their
system’s successfully recognized multimodal commands.

In designing and implementing our testbed, we looked
at the abundance of work towards developing natural
user interaction techniques. Some of the key contributions
have been: recognizing speech [13], combining pointing
with speech [14]; recognizing sign language [15], hand
movements [16], and body movements [17]; multimodal
mutual disambiguation [18]; and reducing processing of
gestures [19]. Recent work that applies some of these
techniques can be found in [20]–[23]. We utilized some
of the above user interface building blocks in the design
of our architecture.

We acknowledge that multimodal systems, such as
those mentioned above, are an effective way to alleviate
some selection issues (for example, the user points to
a group of objects that includes a window, and says
the word “window,” giving the system the means to
disambiguate the selection), and we have implemented
multimodal (speech and pointing) processing in our sys-
tem for disambiguating different types of objects (for ex-
ample, windows, walls, and buildings). However, if there
is more than one object of the same type (for example,
four windows) in the selection space, then the system
described above will fail since the utterance “window” is
ambiguous and does not help correct a wrong selection.
In this example, either more sophisticated speech seman-
tics or pointing-based selection processing techniques are
needed.

In this paper, we have chosen to focus solely on im-
proving pointing-based selection. Our selection algorithm
introduces the concept of executing multiple selection
techniques in parallel and choosing the final selection
from the results of those techniques using a weighting
scheme. The low-level techniques and the integration
algorithm are described in the next section.

III. PROBABILISTIC SELECTION AND INTEGRATION
ALGORITHMS

Selection by pointing in 3D environments is inherently
imprecise when the user is allowed to select occluded

Figure 3. Flow of the pointing-based selection algorithm.

objects—the user may have the impression of pointing to
a specific object, for example, but the system may not
know for sure which object in the pointing direction is
meant to be selected. Users often make pointing errors,
especially when selecting small objects, objects at a
distance, or when trying to make a selection quickly.
Furthermore, pointing provides the object’s direction, but
not distance, so when several objects lie in the direction
the user is pointing, it remains unclear which object the
user intended to select.

To deal with selection ambiguity, we designed a proba-
bilistic selection algorithm that generates lists of candidate
objects the user may have meant to select, and probability
estimates of how likely it is the user meant to select
each object. The algorithm combines several intersection
algorithms and the hierarchical structure of the dataset,
and then integrates the resulting candidate selections. The
processing steps of the algorithm are shown in Figure 3,
which we describe in each of the following sections.

A. Frustum Intersection Algorithms
We have designed a set of three algorithms which

attempt to mitigate the ambiguity associated with ray
intersection. Each algorithm is based on the concept of
rendering the scene into a small selection frustum (see
Figure 4); the rendered scene is viewed by a camera
pointing coincident to the selection ray, and the frustum is
rendered into an off-screen image buffer. The algorithms
then count and classify the pixels in this buffer, and
use these counts to create a list (o1, p1), . . . ,(on, pn) of
potentially selected objects oi and associated selection
probabilities pi. This list is in the format required for
multimodal integration with other input streams [24], such
as (for example) a list (v1, p1), . . . ,(vn, pn) of probability-
ranked pi interpretations of a voice commands vi.

As described in more detail below, each of these
algorithms has differing utility depending on the user’s
preferences for making selections, on what type of object
the user is trying to select, and on its relationship to

JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006 3

© 2006 ACADEMY PUBLISHER



Figure 4. The operation of the PIXEL-COUNT algorithm. The scene
is rendered into the small selection frustum shown in the center of the
image.

other objects in the scene. We have designed the three
intersection algorithms such that each has a different user
preference for selection. These preferences are: (1) select
the item nearest the central pointing ray; (2) select the
largest item in the viewing frustum; and (3) select using
a combination of the two other approaches. We wanted
to find out if having several algorithms available based
on different user preferences increases the chances for
correctly selecting objects. These algorithms could either
be used individually or executed in parallel and their
results integrated together.

We describe each intersection algorithm in more de-
tail, and then show how their output lists of candidate
selections are integrated when the algorithms are run in
parallel.

Pixel-Count The PIXEL-COUNT algorithm preferentially
orders objects according to their projected size in the se-
lection frustum. PIXEL-COUNT simply counts the number
of pixels occupied by each object, and weighs the objects
accordingly. This pixel-counting technique is a very fast
way of implementing ordering of objects by projected
size. A similar technique has been reported by Olwal [10].

PIXEL-COUNT
Input: 3D direction
Output: list (o1, p1), . . . ,(on, pn) of candidate objects

oi and associated probabilities pi
1 calculate a small frustum about 3D direction
2 for each object oi in the frustum
3 render oi into the frustum
4 pixi← number of pixels covered by oi
5 weights wi← pixi/total-frustum-pixels
6 assign probabilities pi from weights wi
7 sort (oi, pi) list by decreasing probabilities pi

Figure 4 demonstrates PIXEL-COUNT. The green
square in the center of the image demonstrates one size
of the selection frustum; in the lower-right the frustum
contents are enlarged. Note that the frustum size may
be adjusted by the user. The square in the lower left
corner shows a low-resolution re-rendering of the frustum
contents.

The PIXEL-COUNT algorithm is robust to noise and
pointing ambiguity. However, it inherently assumes the

Figure 5. The operation of the BARYCENTRIC-PIXEL-COUNT algo-
rithm. Because d1 < d2, each pixel of object 1 will be weighted more
heavily than the pixels of object 2.

user is attempting to select larger objects, and it does not
work well for selecting small objects near larger objects.

Barycentric-Pixel-Count This algorithm was motivated
by our observation that users tend to point toward the
center of the visible part of the object they wish to select.
Figure 5 describes how BARYCENTRIC-PIXEL-COUNT
operates. The algorithm calculates the center point of the
visible portion of each object (Oc

1 and Oc
2), and then

determines the distance to the center of the selection
frustum (d1 and d2). It then weighs each object’s pixels
with the inverse of this distance; so in Figure 5 object
1’s pixels are weighted by 1/d1 and object 2’s pixels by
1/d2. Since it is assumed that the user is intending to look
at one object, probabilities are estimated by normalizing
the weights across all of the weighted pixels.

BARYCENTRIC-PIXEL-COUNT
Input: 3D direction
Output: list (o1, p1), . . . ,(on, pn) of candidate objects

oi and associated probabilities pi
1 calculate a small frustum about 3D direction
2 let Fc be the center of the frustum
3 for each object oi in the frustum
4 let Oc

i be the center of the visible portion of oi
5 bary-weight← 1/‖Fc−Oc

i ‖
6 render oi into the frustum
7 for each pixel a generated by oi
8 pixi← pixi +a∗bary-weight
9 weights wi← pixi/total-frustum-pixels
10 assign probabilities pi from weights wi
11 sort (oi, pi) list by decreasing probabilities pi

BARYCENTRIC-PIXEL-COUNT works very well for
selecting small objects near larger objects, but it does
not work well if the user points away from the center
of an object, or if the object has a shape such that the
Barycentric center does not lie within the object itself.

Gaussian-Pixel-Count The GAUSSIAN-PIXEL-COUNT
algorithm is also motivated by the general observation
that users tend to center the objects they want to select.
However, this algorithm tries to address the failing of the
BARYCENTRIC-PIXEL-COUNT algorithm, which occurs
when the Barycentric center does not lie within the object
itself. GAUSSIAN-PIXEL-COUNT operates by applying a
Gaussian mask, centered in the selection frustum, to each

4 JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006

© 2006 ACADEMY PUBLISHER



Figure 6. The operation of the GAUSSIAN-PIXEL-COUNT algorithm.
Pixels in objects 1 and 2 are weighted by a circularly symmetric
Gaussian function centered at Fc.

object’s pixels. The mask operates, in effect, by assigning
weights to each pixel based on its distance from the
center ray according to a Gaussian bell curve. Figure 6
describes how GAUSSIAN-PIXEL-COUNT operates. The
filtered output for each individual object is combined
in an accumulation buffer. Probabilities are assigned,
again, assuming one object is intended to be selected,
by normalizing across the weighted pixels.

GAUSSIAN-PIXEL-COUNT
Input: 3D direction
Output: list (o1, p1), . . . ,(on, pn) of candidate objects

oi and associated probabilities pi
1 calculate a small frustum about 3D direction
2 calculate a Gaussian filter G centered in frustum
3 for each object oi in the frustum
4 render oi into the frustum
5 for each pixel a generated by oi
6 pixi← pixi +a∗G
7 weight wi← pixi/total-weighted-frustum-pixels
8 assign probabilities pi from weights wi
9 sort (oi, pi) list by decreasing probabilities

The algorithm is less susceptible to being biased by large
visible objects and it favors selecting objects near the
central viewing ray.

B. Probability Propagation in Hierachical Database
The probability estimates generated by the ray inter-

section algorithms assume that a single object occupies a
given space in the viewing frustum. This assumption is
not the case for a hierarchically-organized database, which
contains objects composed of smaller objects, which in
turn, may be composed of even smaller objects, and so
forth. This type of database can have several objects
occupying a given space, though there will always be a
relationship between the occupying objects. An example
of a hierarchically-organized database, which we use in
our testing, and the inter-relationships between objects, is
illustrated in Figure 7.

In order to assign probabilities properly for a
hierarchically-organized database, we (1) set the ray-
intersection algorithms to probabilities for the lowest level
structure for each pixel, and (2) propagate the probabil-
ities up the tree hierarchy from the leaf nodes. Since

Figure 7. A portion of a hierarchically-organized database that contains
urban data such as buildings, streets, signs, etc.

our ray intersection algorithm returns the lowest-level
structures, we use the following algorithm to propagate
probabilities up the database hierarchy:

PROBABILITY-PROPAGATION
Input: old list LO = (o1, p1), . . . ,(on, pn) of

objects oi and associated probabilities pi
Output: new list LN = (o1, p1), . . . ,(om, pm)

1 create empty list LN
2 for each object oi in LO
3 if oi not in LN then
4 add oi to LN
5 oi.weight← pi
6 for each recursive parent of oi
7 if oi.parent not in LN then
8 add oi.parent to LN
9 oi.parent.weight← oi.parent.weight+ pi
10 for each object oi in LN
11 normalize oi.weight
12 assign probability pi from oi.weight
13 sort LN by decreasing probabilities

One subtlety to note is in line 5, where we consider
the probability for each pair as a “weight” for that pair,
since we perform operations with these values that do not
strictly consider the values as probabilities. The resulting
probability assignments estimate likelihood that any of
the occupying objects for a given space is the desired
selection. For example, using the hierarchy in Figure 7,
for a ray intersecting a window, its probability of selection
is equal to the probability of selecting the wall, building,
city, and world, at the intersecting pixel. Another property
to understand using this probability propagation approach
is the probabilities for the parents are always at least as
much as the probabilities for any child. Keep in mind,
another reasonable and equally valid manner of assigning
probabilities is to consider the hierarchical nature of the
database at a lower level, when the ray intersection algo-
rithms estimate the probabilities. This approach may lead
to different but still similar assignments of probabilities.

C. Integration of Probability Assignments
The three lists, LP,LB,LG, of objects and associated

probabilities generated by the ray intersection algorithms
and probability propagation algorithm need to be com-
bined into one list LN . One caveat to this process is

JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006 5

© 2006 ACADEMY PUBLISHER



that each list may contain a slightly different set of
object-probability pairs due to differences in the how each
algorithm operates. Thus, the elements of the lists will
have to be matched and like items combined. Another
important note is that, in the process described below, just
as in the probability propagation algorithm, we consider
the probability for each pair as a “weight” for that pair,
since we perform operations with these values that do
not strictly consider the values as probabilities. A naive
integration approach would be, for each object, to simply
average the weights assigned to that object from the
different algorithms. This approach, however, does not
take into consideration the strengths and weaknesses of
each of the three algorithms. A more appropriate way to
integrate them is to assign a weight to each algorithm,
Wi, based on how well each performs in comparison to
the others. The lists are then integrated by the following
WEIGHTED-INTEGRATION algorithm.

WEIGHTED-INTEGRATION
Input: 3 lists LG, LB, LP = (o1, p1), . . . ,(on, pn) of

objects oi and associated probabilities pi
Output: new list LN = (o1, p1), . . . ,(om, pm)

1 create empty list LN
2 for each list L j in LG,LB,LP
3 for each object oi in L j
4 if oi not in LN then
5 add pair to LN
6 else
7 find oi in LN
8 LN .oi.weight← pi ∗W j
9 for each object oi in LN
10 normalize oi.weight
11 assign probability pi from oi.weight
12 sort LN by decreasing probabilities

The integration weights, Wi, i = G,B,P, corresponding
to the intersection algorithms GAUSSIAN-PIXEL-COUNT,
BARYCENTRIC-PIXEL-COUNT, and PIXEL-COUNT, re-
spectively, are initially arbitrarily assigned to 1

3 each
(giving the same effect as the naive method of averaging).
However, we acknowledge that having proper weight as-
signments for data integration is important for optimizing
performance and is a difficult task. We made several
attempts to refine the weight assignments. We used the
performance estimates of the intersection algorithms to
influence the assignment of the weights in the integration.
In one case, we normalized the algorithm performance
estimates and used those as the weight values. For the
other case, we used the normalized performance estimates
as a guide to refine the weight assignments. More details
about the assignment of weights is given in Section V.

IV. ALGORITHM IMPLEMENTATION

In order to test the selection algorithms and integration
schemes, we developed a multimodal interaction sys-
tem and user interface for our combined AR and VR
system, termed BARSTM(Battlefield Augmented Reality
System) [25]. We have been developing this system at

Figure 8. High level architectural view of system and interconnections
with several instances of the architecture on different platforms.

our laboratory since 1998. This multimodal interaction
system adds a range of support for a large number of
input and display devices, interaction and display algo-
rithms, as well as the interface techniques and associated
selection algorithms and integration schemes described in
this paper. The multimodal interaction system operates
as a nexus, handling input communications, converting
and processing heterogenous data, and handling output
communications between computer and user. When mul-
tiple platforms are linked together, each has a copy
of the interaction architecture running on it, and they
share a common distributed database. Figure 8 shows
the interlinking of several different platforms running
the interaction system. Figure 2 (left) shows the system
operating with an overview camera, on two mobile users,
and in a van.

The multimodal interaction system consists of several
interconnected pieces. Figure 9 shows all the major in-
teraction components of the system, including selected
features from BARS and Quickset. Quickset [24] is
an agent-based architecture that supports probabilistic,
asynchronous input events. These pieces include several
modules contained within BARS: Speech UI, Ink UI, and
Selection UI, as well as the QS/BARS bridge. The links
between the systems include object database synchroniza-
tion messages so that each subsystem has a consistent
world database, object selection information so that the
mulitmodal services in Quickset know what’s happening
in BARS, and control of the speech recognizer.

We implemented our probabilistic selection algorithms
and integration schemes within the following four com-
ponents of the testbed architecture:

6 JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006

© 2006 ACADEMY PUBLISHER



Figure 9. Key components and communication channels of the integrated system.

Selection System: The Selection System uses several
sources of input:
• User Viewpoint: A vector projecting forward from

the user’s head.
• Rotational Offset of User Viewpoint: A vector pro-

jecting through the 2D cursor position on the screen.
• Hand-Based 3D Shape: A three-dimensional shape

(cylinder, cone, sphere, etc.) attached to the position
of the user’s hand.

• 2D Digital Ink: A 2D ink stroke.
• 3D Digital Ink: A 3D ink stroke.
• Speech: Speech filtered by grammar and natural

language interpreter.
The first three sources feed the selection algorithms that
are the main focus of this paper.

Speech System: The Speech System gathers the results
of a natural language agent, which is built on top of a
commercial speech-to-text engine. For each context of
the system (selecting objects, issuing commands, etc),
a different grammar is enforced. By limiting the parsed
speech to a specific grammar set, we slot the utterances
into specific words or phrases we expect to hear, in-
creasing the likelihood of getting useful speech from the
user. The system determines the probability that a given
utterance matches each word or phrase in the grammar. In
the object selection context, the grammar consists of the

names of types of selectable objects. The speech provider
determines a list of object types that the user probably
intended to select, along with the probability that each
type was spoken.

Multiparser Integration System: This system consists
of the Quickset Multiparser, Bridge, and Gatekeeper.
The core features of these sub-systems are described in
Cohen [24]. We extended them to link properly with
the BARS system, our selection tasks, and our database,
and we designed a communication protocol for passing
speech and selection-based gestures. In order to utilize
specific grammars, we designed database elements to
process variations of speech commands and references
to different objects in the database. For example, some
commands are “select this”, “reset the”, and “danger on
this”. Some example objects are “building”, “window”,
and “street”. The grammar defines rules to process the
commands, which consist of verbs, articles, and objects.

We augmented the Gatekeeper and Bridge with mod-
ules that perform the proper syntax conversion and pro-
tocol interpretation. These modules communicate with
the speech and Quickset/BARS bridge. They also han-
dle transfers of appropriate database elements and con-
versions to the persistent object types accepted by the
Quickset architecture.

The Multiparser sub-system integrates feature informa-

JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006 7

© 2006 ACADEMY PUBLISHER



tion from the ranked lists of candidate selection objects.
This process rules out inconsistent information while
fusing complementary or redundant information through
a matching process [23]. The process primarily depends
on a type hierarchy and a set of spatio-temporal con-
straints. Speech, object type, and the choice of articles and
prepositions assist in the unification and disambiguation
of some ambiguous selection possibilities.

Quickset/BARS Distribution System: A special type
of BARS application is the bridge type. A bridge joins
the BARS distribution system and an outside system,
translating object creation and change events between
BARS and the outside system. A bridge represents objects
in BARS and a connected system by maintaining a map
that links the BARS and outside system’s objects. To
connect BARS and Quickset, we created a new bridge
implementation that acts as both a Quickset agent and a
BARS instance.

V. PERFORMANCE EVALUATION

We conducted several experiments to gain a better un-
derstanding of the effectiveness of the algorithms for dis-
ambiguating multiple pointing selections. We approached
this task by first comparing empirically the three inter-
section algorithms head-to-head to learn the strengths
and weaknesses of each algorithm for specific dataset
cases. Second, we evaluated the integration algorithm,
exploring several weighting schemes, to determine how
best to utilize combinations of the intersection algorithms
in parallel. Lastly, we conducted a short experiment
to demonstrate and empirically evaluate how well the
algorithms work for disambiguating selections.

A. Comparison of Intersection Algorithms
We conducted three experiments to compare the three

intersection algorithms head-to-head. The first experiment
was designed to test the experimental protocol, flushing
out any design and testing issues, and used a simple real-
world urban dataset and a few test cases. Each succes-
sive experiment increased the detail of the datasets and
complexity of the test cases. Comparing any algorithm
thoroughly typically requires running an extensive set of
experiments with multiple datasets and conditions. The
goal of these experiments was to get a general feel for
the accuracy of each algorithm for performing selection
using a real-world urban dataset.

Since our overall goal is to apply these algorithms for
disambiguating multiple selections, we acknowledge that
precision plays a role in how we evaluate the algorithms.
In particular, the selection cases we address only become
interesting when high precision is required, otherwise the
selections could be easily performed using well-known
ray-based pointing techniques. We ran a set of preliminary
tests to evaluate the degree of precision needed for the
experiments and tested the selection techniques on a range
of sizes for objects and varying amounts of space between
each. Some of the test cases are shown in Figure 10. We

Figure 10. Three of the test cases used to determine the degree of
precision needed by the experiments. We varied the size of several
windows, and the spacing between each, and asked several users to
perform selections of the windows for each test case. Statistics were
collected to determine the precision required for our experiments.

used the precision estimates to guide our choice of the test
cases for the experiments, making sure that the required
degree of precision was high, but low enough to collect
meaningful data to compare the three algorithms. Later,
when we tested the algorithms for disambiguating selec-
tions of smaller, distant objects, we increased the degree
of precision required. We next describe the experiment
preparations, experimental protocol, and each experiment.

Experimental Protocol For each of the three experi-
ments, we recruited two to four subjects from our devel-
opment team. Each subject wore a tracked, see-through
head-mounted display (HMD) that included a microphone
for the speech recognizer. The orientation of the head
was used as the pointing direction. The system showed
a cross-hair cursor at the center of the view frustum for
the pointing direction. The view frustum’s borders were
made invisible to the user and its size was kept fixed
throughout the experiments. The experiments operated
under the assumption that the user’s selection strategy
was to point directly through the center of the object
intended to be selected. Other strategies, such as selecting
the largest item in the view frustum, are evaluated later
in Section V-C.

Each subject was given a training session to become
familiar with the pointing and speech input interaction
mechanism. The subjects were prompted by the exper-
iment administrator to perform selections using head
direction combined with a voice command. For example,
the subject is asked to point at the upper right window of
the left building, shown in Figure 10, while speaking “se-
cure this window.” The system responds by changing the
color, based on the voice command, of what the system
determines to be the correct selection. In Figure 10, the
verb “clear” triggers a change in the color of the upper
right window to green.

The trials of each experiment asked the subjects to
perform a sequence of selections over a range of test
cases. The selection test cases presented were sets of
windows, doors, walls, and buildings. The speech actions
included “danger on this object,” “clear this object,” and
“reset this object” — these commands are meaningful
in the urban situational awareness domain of the BARS
system [25]. Data were collected for the three frustum-
based algorithms. Cases where the speech recognizer

8 JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006

© 2006 ACADEMY PUBLISHER



Figure 12. The accuracy (mean percentage of correct selections) given
by the three intersection algorithms in Experiments 1–3.

failed were thrown out, since we are not evaluating
the speech recognizer nor the multimodal features of
the system. The test cases were presented in a counter-
balanced manner in order to eliminate any learning-effect
biases.

Experiment 1 The first experiment used a small subset
of the dataset shown in Figure 11. The dataset contains
semantic information about the buildings surrounding our
laboratory—it is a real-world database used by our system
for various development, demonstration, and evaluation
purposes. We ran the experiment, following the experi-
mental protocol above, using two subjects. Each subject
was asked to perform selections of windows and doors
in three different buildings. We collected statistics for
12 different cases per user, for a total of 24 cases. We
recorded the accuracy of the intersection algorithms; we
recorded a boolean value of ‘1’ if an algorithm made
a correct selection, and a ‘0’ if it made an incorrect
selection. Figure 12 shows the accuracy performance of
each of the three algorithms for Experiment 1.

Experiment 2 The second experiment expanded on the
first experiment, this time using a larger dataset and a
broader set of test cases. As before, the dataset chosen
is a subset of Figure 11’s dataset. We only presented the
ground-level view of the dataset to the subjects. The test
cases were determined based on observed strengths and
weaknesses of the three intersection algorithms. We de-
signed the test protocol such that the subjects would make
selections for situations where each of the algorithms is
weak, and cases where each is strong; we tested an equal
number of “good” and “bad” test cases for each algorithm.
We used four subjects and collected the performance
statistics for 192 selection cases (48 per subject). The
users were asked to make selections of windows and
buildings. We recorded the accuracy performance for each
of the three algorithms; the results for Experiment 2 are
shown in Figure 12.

Experiment 3 The third experiment used the largest
portion of our test dataset (Figure 11), as well as the
broadest set of test cases, which we believe better ex-
plored the strengths and weaknesses of the intersection
algorithms. This experiment followed the same protocol
as Experiment 2, with three subjects and 144 selection

cases (48 per subject), and an equal amount of good and
bad test cases for each algorithm. We again recorded the
accuracy performance for each of the three algorithms;
the results are shown in Figure 12.

Results and Discussion We analyzed the accuracy per-
formance results with a one-way analysis of variance
(ANOVA). In addition to the p-values, the measure of
effect significance, we calculated and reported ω2, a
measure of effect size. ω2 is an approximate measure
of the percentage of the observed variance that can be
explained by the effect.

As suggested by Figure 12, we found a strong effect
of algorithm for each of the experiments (Experiment 1:
F(2,69) = 5.07, p = .009, ω2 = 10.3%; Experiment 2:
F(2,573) = 20.7, p < .000, ω2 = 6.4%; Experiment 3:
F(2,429) = 12.7, p < .000, ω2 = 5.2%). The error bars
in Figure 12, which show ±1 standard error, indicate
that BARYCENTRIC-PIXEL-COUNT had greater accu-
racy than both GAUSSIAN-PIXEL-COUNT and PIXEL-
COUNT for all three experiments. For Experiments 2 and
3, GAUSSIAN-PIXEL-COUNT had greater accuracy than
PIXEL-COUNT.

This analysis empirically validates that the choice of
intersection algorithm makes a difference in selection
accuracy. Approaches similar to what we are calling
Barycentric have been presented as Liang and Green’s
spotlight method [4] and the aperture method of Fors-
berg et al. [6], but here we present the first empirical
evidence for the general effectiveness of this technique.

However, although the data show that the
BARYCENTRIC-PIXEL-COUNT algorithm clearly
outperforms the other algorithms (for this choice of
dataset and degree of pointing precision), we can observe
some interesting test cases if we allow the user to
view the same dataset from above the buildings. For
example, we observed that concave shape patterns
show up more often looking from above than from the
ground-level views—see Figure 13. One weakness of
the BARYCENTRIC-PIXEL-COUNT algorithm is how
it operates on concave objects. The algorithm relies
on an estimation of the center of the objects trying
to be selected. As seen in Figure 13, one estimation
of the center of Building 1 is located at the position
where the ‘o’ is shown. Due to the complex nature of
the behavior of the algorithm’s weighting function, we
decided to empirically evaluate the test case. We ran a
quick study collecting statistics for how well different
regions of the buildings could be selected properly using
the BARYCENTRIC-PIXEL-COUNT algorithm. Pointing
in the regions shown in blue (lighter shade) properly
select the correct building, while the red (darker shade)
regions fail. Empirical results show regions ‘B’ and ‘C’
fail 85% of the time.

B. Evaluation of Integration
We conducted three experiments to evaluate different

weighting schemes for the integration algorithm. Our
objective was to determine how to best utilize different

JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006 9

© 2006 ACADEMY PUBLISHER



Figure 11. The dataset used in Experiments 1–3. Progressively smaller subsets of the dataset, with different test cases, were used in Experiments 1
and 2. (Left) Ground-level views; these are the views that subjects saw during the experiments. (Right) Elevated view; given to give the reader a
feel for the dataset’s layout.

Figure 13. The effect of BARYCENTRIC-PIXEL-COUNT on selection
involving a concave shape. The blue (lighter shade) regions work
properly, while the red (darker shade) fail. Empirical results show
regions B and C fail 85% of the time.

combinations of the intersection algorithms, including
determining when to use an intersection algorithm by
itself or when to combine the algorithms in parallel. We
focused mainly on finding an optimal weight assignment
for the typical use case and compared it against the best
intersection algorithm (BARYCENTRIC-PIXEL-COUNT).
In each experiment, we used the datasets and experimental
protocol from the experiments in Section V-A. We applied
several different weighting schemes (described below) to
the integration algorithm, and for each scheme, ran an ex-
periment and assessed the performance of the integration.
We show the weight assignments for each experiment in
Table I and the performance results of the integrations in
Figure 14. TABLE I.

WEIGHT ASSIGNMENTS FOR EXPERIMENTS.

Exp Scheme WP WB WG
1 Equal Weighting .3333 .3333 .3333
1 Performance-Proportional .3103 .4138 .2759
1 Performance-Differential .3031 .4238 .2731
2 Equal Weighting .3333 .3333 .3333
3 Equal Weighting .3333 .3333 .3333
3 Performance-Proportional .28 .38 .34
3 2-Parm-Search (Scheme A) .1894 .4688 .3418
3 2-Parm-Search (Scheme B) .1138 .5400 .3462
3 Adhoc (Scheme C) .1000 .5000 .4000
3 Majority Voting (Scheme D) n/a n/a n/a

Weighting Schemes The weighting schemes listed in
Table I and Figure 14 are:
• Equal Weighting: Simply assign the weights WP =

WB = WG = 1
3 .

• Performance-Proportional Weighting: Assign the
weights Wi = norm(Ai), f or i = P,B,G, where Ai are
the accuracy estimates for i-th intersection algorithm.

• Performance-Differential Weighting: Assign the
weights Wi = sum(Pcorrect

i, j −Pnext highest
i, j )/n, f or i =

P,B,G, f or j = 1..n, where Pcorrect and Pnext highest

are the probabilities of the correct and next highest
selection, n is the number of trials used to estimate
the performance of algorithm i. Negative differences

Figure 14. The accuracy of the integration schemes versus
the BARYCENTRIC-PIXEL-COUNT intersection algorithm in Experi-
ments 1–3.

can be assigned zero.
• Two-Parameter-Search Weighting: Start with an

estimate for one of the weights (assume weight W1).
Next, use performance estimates of the algorithms
to compute the ratio r = A1−A2

A1−A3
, where A1, A2, and

A3 are the respective algorithm accuracies. Compute
the weights by solving the two equations: W1 +W2 +
W3 = 1 and W1−W2 = r(W1−W3).

• Adhoc Weighting: Assign the weights by hand,
based on observed trends in the performance of the
other weighting schemes.

• Majority Voting: Select the candidate object that
has the majority of the votes across the intersection
algorithms. Empirical data, when using the equal
weighting scheme, shows: (a) if all three vote for one
object, the integration always votes for that object;
and (b) if two of the three vote for the same object,
the integration algorithm selects the same object a
majority of the time.

Results and Discussion We again analyzed the accu-
racy performance with a one-way ANOVA. We found
a strong effect of algorithm/integration scheme for Ex-
periment 1 (F(3,116) = 4.37, p = .006, ω2 = 7.8%)
and Experiment 2 (F(1,382) = 10.8, p = .001, ω2 =
2.5%). In addition, we found an effect for Experiment 3
(F(6,809) = 2.17, p = .044, ω2 = .85%), and while this
effect is significant, it is a substantially weaker effect
than the others reported in this paper. The error bars
indicate that in Experiment 1, performance breaks down
into two groups: (1) the Barycentric intersection algorithm
and the Performance-Proportional integration scheme, and

10 JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006

© 2006 ACADEMY PUBLISHER



(2) the Equal Weighted and Performance-Differential
schemes, with group (1) performing better than group
(2). In Experiment 2, the Barycentric algorithm performed
better than the Equal Weighted scheme. We only tested
one integration scheme in this experiment because we
decided it would be more interesting to look at test
cases where the best intersection algorithm (Barycentric)
had a lower global effectiveness, which motivated the
next experiment. In Experiment 3, the Equal Weighted
and Performance-Proportional schemes appear worse than
the others, but otherwise the performance of all the
schemes (and the Barycentric algorithm) is comparable.
This relative equality is why the effect significance and
size is substantially smaller for Experiment 3.

C. Evaluation of Disambiguation
The overall goal of our research was to develop meth-

ods for disambiguating multiple selections. We made
strides towards this goal by developing several intersec-
tion algorithms and an integration algorithm that can com-
bine them in many ways. The combination can be auto-
matic, by using one of the schemes described previously,
or it can be manual, by allowing the user to explicitly
set the weights in the integration algorithm—for example,
to only use the BARYCENTRIC-PIXEL-COUNT algorithm,
the weights are set to WB = 1 and WP =WG = 0. However,
we have not yet shown that the integration algorithm is
effective at disambiguating multiple selections, and we
will address that now.

We conducted Experiment 4 to demonstrate, and eval-
uate empirically, the effectiveness of the integration al-
gorithm in a simple disambiguation scenario. The exper-
iment was performed using two subjects. We developed
a dataset that requires a higher degree of precision for
selecting by pointing than was necessary in the previous
experiments. The dataset consists of a wall with nine
windows; we placed a large window in the center and
arranged eight smaller rim windows surrounding the
center window. We asked subjects to select each of the
nine windows separately, and the order of selection was
random.

We collected statistics for 18 selections of the middle
window and 31 selections of the outer windows. We
analyzed the data considering how different selection
strategies could be used for the scenario. Specifically,
we considered how the windows could be selected using
four strategies. The first strategy is to simply point at the
window—“select object by pointing at it.” The second
strategy is to select the largest window, no matter where
the user is pointing—“select largest object.” The third and
fourth strategies are combinations of the previous two,
called “select largest object while pointing at it” and “se-
lect largest object while not pointing at it.” We analyzed
the data considering these four selection strategies and
show the results in Figure 15.

The PIXEL-COUNT algorithm worked perfectly for
selecting the largest object across all the selection cases.
The most interesting result is the overlapping case, “select

Figure 15. Comparison between the PIXEL-COUNT and
BARYCENTRIC-PIXEL-COUNT algorithms over a range of user
selection strategies. The dataset contains small, distant objects that
are very difficult to select by pointing. The noise in pointing is high
enough that BARYCENTRIC-PIXEL-COUNT fails often.

largest object while pointing at it,” where the results show
the success of the PIXEL-COUNT algorithm in compar-
ison to the weaker performing BARYCENTRIC-PIXEL-
COUNT algorithm. This result seems to indicate that as the
precision required increases, the BARYCENTRIC-PIXEL-
COUNT algorithm will not be as reliable as the PIXEL-
COUNT for selecting the largest item.

The difference in the performances between the “select
largest object while pointing at it” and the “select object
by pointing at it” strategies indicate that the surrounding
objects may be selected correctly more often than the
middle object. This phenomenon may occur because the
rim objects have free space on some of their sides. If this
is the case, the middle object has a slight disadvantage
using the “select object by pointing at it” strategy.

VI. CONCLUSIONS AND FUTURE WORK

We presented three 3D pointing-based object selection
techniques, PIXEL-COUNT, GAUSSIAN-PIXEL-COUNT,
and BARYCENTRIC-PIXEL-COUNT, and applied them to
the case of selection using a hierarchically-organized
object database. We empirically demonstrated the gen-
eral effectiveness of the BARYCENTRIC-PIXEL-COUNT
technique. However, there are cases where that technique
fails, so we developed an integration algorithm to try to
leverage the strengths of each technique by combining
their results using one of many weighting schemes. We
evaluated these schemes and presented a careful analysis
of the results. The bottom line is that different selec-
tion schemes work best in different scenarios, and the
selection integration algorithm can disambiguate multiple
selections.

There are several ways to improve this work. First, we
need to take advantage of the semantic information in our
database, for example, if it seems the user is selecting a
window, it could be that the user is actually trying to select
an object behind that window. Second, we can involve
the user in the selection process beyond simple pointing.
Perhaps the user could manipulate a dial or similar
controller to scroll though the multiple selections until

JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006 11

© 2006 ACADEMY PUBLISHER



the correct object is selected. Third, we could determine
the best sets of weights for certain common types of
databases, or even for different areas within a single
database, and establish “weight profiles” to be employed
for those databases or areas of databases. A modification
of that idea is to classify weight assignments by the
situations in which they work best, and then use that
information for developing better performing automated
selection techniques that adjust to the situation on-the-
fly by swapping weight assignments. Another possibility
is to have the algorithms learn from user indications
as to whether the correct item was chosen or not. An
implementation issue to address is how to properly handle
ties in probabilities. For future studies, we would also like
to add more subjects in the experiments.

ACKNOWLEDGEMENTS

We thank Matt Wesson, Dave McGee, Phil Cohen,
Dennis Lin, Eric Burns, John Park, Elliott Cooper-Balis,
Derek Overby, Aaron Bryden, Jason Jerald, Brian Hurley,
Joshua Eliason, Jesus Arango, Eric Klein, Doug Maxwell,
Simon Julier, Patrick Violante, and Mark Livingston for
their contributions. This research was sponsored by the
Office of Naval Research under grants #N00014-04-
WR-2-0049, #N00014-02-1-0038 and #N00014-04-WX-
2-0053 and by the Naval Research Laboratory Base
Program grant #N00014-04-WX-3-0005.

REFERENCES

[1] C. Wingrave, R. Tintner, B. Walker, D. Bowman, and
L. Hodges, “Exploring individual differences in raybased
selection: Strategies and traits,” in Proc. of IEEE Virtual
Reality Conference, 2005, pp. 163–170.

[2] G. Schmidt, D. Brown, E. Tomlin, J. Swan, and Y. Baillot,
“Toward disambiguating multiple selections for frustum-
based pointing,” in Proceedings of the IEEE Symposium
on 3D User Interfaces 2006 (3DUI).

[3] K. Hinckley, R. Pausch, J. Goble, and N. Kassell, “A
survey of design issues in spatial input,” in Proceedings
of User Interface Software and Technology 1994, 1994,
pp. 213–222.

[4] J. Liang and M. Green, “Jdcad: A highly interactive 3d
modeling system,” Computers and Graphics, vol. 18, no. 4,
pp. 499–506, 1994.

[5] M. Mine, “Virtual environment interaction techniques,
Tech. Rep. UNC Chanel Hill Computer Science Technical
Report TR95-018, 1995.

[6] A. Foresberg, K. Herndon, and R. Zeleznik, “Aperture
based selection for immersive virtual environments,” in
Proceedings of User Interface Software and Technology
1995, 1995, pp. 95–96.

[7] J. Pierce, A. Forsberg, M. Conway, S. Hong, R. Zeleznik,
and M. Mine, “Image plane interaction techniques in 3d
immersive environments,” in Proceedings of 1997 Sympo-
sium on Interactive 3D Graphics, 1997, pp. 39–43.

[8] D. Bowman, “Interation techniques for common tasks
in immersive virtual environments: Design, evaluation,
and application,” Ph.D. dissertation, Georgia Institute of
Technology, Atlanta, Georgia, 1999.

[9] C. Wingrave, D. Bowman, and N. Ramakrishnan, “To-
wards preferences in virtual environment interfaces,” in
Proc. of Eighth Eurographics Workshop on Virtual Envi-
ronments, 2002, pp. 63–72.

[10] A. Olwal, H. Benko, and S. Feiner, “Senseshapes: Using
statistical geometry for object selection in a multimodal
augmented reality system,” in Proc. IEEE Intl. Symposium
on Mixed and Augmented Reality (ISMAR’03), Tokyo,
Japan, Oct. 2003, pp. 300–301.

[11] M. Kolsch, M. Turk, and T. Hllerer, “Vision-based inter-
faces for mobility,” in Proc. of Intl. Conference on Mobile
and Ubiquitous Systems, 2004.

[12] E. Kaiser, A. Olwal, D. McGee, H. Benko, A. Corradini,
X. Li, S. Feiner, and P. R. Cohen., “Mutual disambiguation
of 3d multimodal interaction in augmented and virtual re-
ality.” in Proc. Intl. Conference on Multimodal Interaction-
Perceptual User Interfaces, Vancouver, BC, Canada, Nov.
2003.

[13] J. Forgie and C. Forgie, “Results obtained from a vowel
recognition computer program,” Journal of Acoustic Soci-
ety of America, vol. 31, no. 11, pp. 1480–1489, 1959.

[14] R. Bolt, ““put-that-there”: Voice and gesture at the graph-
ics interface,” in SIGGRAPH ’80: Proc. of Computer
graphics and interactive techniques, New York, NY, 1980,
pp. 262–270.

[15] L. Messing, R. Erenshteyn, R. Foulds, S. Galuska, and
G. Stern, “American sign language computer recognition:
Its present and its promise,” in Intl. Society for Augmenta-
tive and Alternative Communication, 1994, pp. 289–291.

[16] J. Rehg and T. Kanade, “Digiteyes: Vision-based human
hand tracking, Tech. Rep. CMU TR CMU-CS-93-220,
Extended version of paper in ECCV May 1994 Stock-
holm, [ftp://reports.adm.cs.cmu.edu/usr/anon/1993/CMU-
CS-93-220.ps.Z, 1993. [Online]. Available: cite-
seer.ist.psu.edu/rehg93digiteyes.html

[17] D. Gavrila and L. Davis, “Tracking of humans in action:
A 3d model-based approach,” in Image Understanding
Workshop, 1996, pp. 737–746.

[18] S. Oviatt, “Mutual disambiguation of recognition errors in
a multimodel architecture,” in Proc. of SIGCHI Conference
on Human Factors in Computing Systems, New York, NY,
1999, pp. 576–583.

[19] G. Schmidt and D. House, “Model-based motion filtering
for improving arm gesture recognition performance,” in
Gesture-based Communication in Human-Computer Inter-
action: Selected and Revised Papers from Intl. Gesture
Workshop 2003, Lecture Notes in Computer Science, vol.
2915. Springer-Verlag, 2004, pp. 210–230.

[20] M. Latoschik, “Designing transition networks for multi-
modal vr-interactions using a markup language,” in Proc.
4th IEEE International Conference on Multimodal Inter-
faces, 2002, pp. 411–416.

[21] A. Wilson and S. Shafer, “Xwand: Ui for intelligent
spaces,” in CHI ’03: Proc. of SIGCHI conference on
Human Factors in Computing Systems, New York, NY,
2003, pp. 545–552.

[22] B. Thomas and W. Piekarski, “Glove based user
interaction techniques for augmented reality in
an outdoor environment,” Virtual Reality, vol. 6,
no. 3, pp. 167–180, Oct. 2002. [Online]. Available:
http://www.springerlink.com/index/10.1007/s100550200017

[23] M. Johnston, P. Cohen, D. McGee, S. Oviatt, et al.,
“Unification-based multimodal integration,” in Proc. Meet-
ing of Assoc. for Computational Linguistics, 1997, pp.
281–288.

[24] P. Cohen, M. Johnston, D. McGee, S. Oviatt, et al.,
“Quickset: multimodal interaction for distributed applica-
tions,” in Proc. of Intl. Multimedia Conference, New York,
NY, 1997, pp. 31–40.

[25] S. Julier, Y. Baillot, M. Lanzagorta, D. Brown, and
L. Rosenblum, “Bars: Battlefield augmented reality sys-
tem,” in NATO Symp. on Information Processing Tech-
niques for Military Systems, Oct. 2000.

12 JOURNAL OF MULTIMEDIA, VOL. 1, NO. 3, JUNE 2006

© 2006 ACADEMY PUBLISHER


