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Abstract

We present the results from a user study looking at the ability of observers to mentally integrate wind direction and

magnitude over a vector field. The data set chosen for the study is an MM5 (PSU/NCAR Mesoscale Model) simu-

lation of Hurricane Lili over the Gulf of Mexico as it approaches the southeastern United States. Nine observers

participated in the study. This study investigates the effect of layering on the observer’s ability to determine the

magnitude and direction of a vector field. We found a tendency for observers to underestimate the magnitude of

the vectors and a counter-clockwise bias when determining the average direction of a vector field. We completed

an additional study with two observers to try to uncover the source of the counter-clockwise bias. These results

have direct implications to atmospheric scientists, but may also be able to be applied to other fields that use 2D

vector fields.

Categories and Subject Descriptors (according to ACM CCS): H.5.2 [INFORMATION INTERFACES AND PRE-

SENTATION]: Evaluation/methodology, I.3.6 [COMPUTER GRAPHICS]: Methodology and Techniques

1. Introduction

In this paper, we report the design and results of a user study

that investigated the current visualization methods used in

the weather modeling community and determined their effi-

cacy. The study used model output simulating Hurricane Lili

(2002). This study concentrated on the ability of observers

to integrate both the magnitude and the direction of vector

fields over an area and to determine the effects of layering in

a 2D vector field.

2. Background

Hurricane Lili began forming on the west coast of Africa

on September 16, 2002 and became a hurricane on Septem-

ber 30 over Cayman Brac and Little Cayman Islands. As

Lili approached the southeastern United States, it intensi-

fied, reaching a maximum wind speed of 125 knots (cate-

gory four). However, the storm unexpectedly weakened in

the 13 hours before landfall, becoming a category two hur-

ricane. Lili made landfall in the United States on October 3

near Intracoastal City, LA with a maximum wind speed of

80 knots [Law03]. Lili’s path as it approached the U.S. can

be seen in Figure 1.

The Hurricane Lili data used in this study were gener-

Figure 1: Hurricane Lili’s track in Google Earth. Track

data is from the National Hurricane Center [Law03]. Image

credit: Mahnas Jean Mohammadi-Aragh.

ated by Zhang et al. [ZXPF07] using the Fifth-Generation

NCAR / Penn State Mesoscale Model (MM5). They attribute

the rapid weakening of Hurricane Lili to a dry air infu-

sion that can be seen in the MM5 model when output from

the Aqua Moderate Resolution Imaging Spectroradiometer

(MODIS) satellite is included in the model run. To study
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their simulation results, these domain experts created im-

agery using Read/Interpolate/Plot Version 4 (RIP) [Sto06],

a visual analysis package that is a de facto standard in that

community. RIP uses a domain-specific glyph to visualize

flow.

The past two decades have seen a wide variety of new

visualization techniques. Texture-based methods [LHD∗04]

are able to produce high-resolution and visually pleasing re-

sults. However, geometry-based techniques such as stream-

lines and hedgehogs remain the most common visualiza-

tion techniques used to investigate real-world flow phenom-

ena [War08]. For the most part, there is only anecdotal or

assumptive understanding of the effectiveness of these tech-

niques. The visualization research community is beginning

to accept that the efficacy of most visualization techniques

need to be verified by user studies [JMM∗06].

Some flow visualization user studies have been reported.

Laidlaw et al. [LKJ∗05] dealt with detecting and identifying

critical points. They also studied an advection task in which

the observer estimated where a particle in a flow field would

move. This was done using several common flow visual-

ization techniques including arrow glyphs and line-integral

convolution (LIC). They found that arrows on a regular grid

were generally less effective than the other techniques they

tested. Andrysco [And05] only dealt with the advection of

a particle, but included streamlines and pathlines. Also, the

observers were asked to advect a particle back to its origin.

Unfortunately, Andrysco was unable to find statistical signif-

icance, which was contributed to the test methodology and

observers that did not take the tasks seriously.

This weather and flow visualization study is focused on

domain-specific 2D glyphs, a simple and intuitive technique

still in widespread use. While some weather researchers

have started to consider 3D visualization approaches, many

continue to rely on 2D methods. In this study, we are in-

terested in investigating the overall performance of these

glyphs coupled with one or more layers of scalar data. This

will pave the way for future work on other flow visualization

techniques.

3. Experimental Task and Setting

To encourage weather researchers to start using visualization

methods that we felt had greater efficacy, we designed a user

study to test some potential improvements to their approach.

We were particularly interested in how image layering af-

fected an observer’s performance. For this study, we defined

layering as the number of different techniques (contours,

color map, state boundaries) that are added to a base image.

Our hypothesis was that as more layers are added, the ob-

server’s ability to interpret the base image will be degraded.

Additionally, we were interested in an observer’s ability to

mentally compute the average direction of vectors over an

area.

3.1. Experimental Design and Procedure

Figure 2: Point selection circle that the observer would see.

The selected point is at the center of the red/white circle.

Figure 3: Area selection box that the observer would see.

The selected area is the area included in the black/white box.

The prevailing wind magnitude and direction is an im-

portant aspect of weather understanding and forecasting. In

this experiment, we presented observers with vector fields

denoted by glyphs (Figure 2) that indicated both wind mag-

nitude and wind direction. While not common in the visu-

alization community, we used the vector glyphs that were

used in [ZXPF07] and are common in the weather modeling

community (e.g. of the nine articles in the January 2008 is-

sue of Monthly Weather Review that contained glyphs for

wind, seven of them used the glyph style shown in Fig-

ure 2) [Sch08]. All of the data sets we used showed the Gulf

of Mexico region during the 24 hours prior to the landfall of

Hurricane Lili, hence all of the data sets contained a spiral

wind field and eye structure (e.g., Figure 2). Note this is the

period when Lili rapidly weakened from a category four to

a category one hurricane on the Saffir-Simpson Scale. We

examined observer performance on two different sub-tasks:

Magnitude Estimation: We asked observers to estimate the
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wind speed at either a point (Figure 2) or over a rectangu-

lar area (Figure 3). The glyphs encoded the wind speed by

the number and type of extensions drawn on the right-hand

side of the glyph; observers always saw this encoding given

in the legend shown in Figure 4. In the point case, the ob-

server’s task was to estimate the magnitude at the specified

location using the glyphs immediately surrounding it. In the

area case, the observer’s task was to average the wind speed

of all of the glyphs contained within the selection area.

Direction Estimation: We asked observers to estimate the

wind direction at either a point (Figure 2) or over a rect-

angular area (Figure 3). The glyphs encoded the wind di-

rection using a weather-vane metaphor: we imagine that we

mount the tip of the glyph on a rigidly-fixed, rotating point;

the wind catches the ‘flags’ along the back of the glyph and

rotates the glyph to point along with wind direction (Fig-

ure 4). As with all low pressure systems in the northern

hemisphere (hurricanes included), the wind field rotates in

a counter-clockwise direction. This can also be seen in Fig-

ure 4. In the point case, the observer’s task was to estimate

the wind direction at the specified point using the surround-

ing glyphs. In the area case, the observer’s task was to vi-

sually integrate the directions of all of the glyphs contained

in the selection area and report the average direction. Two

glyphs of equal magnitude that point in opposite directions

would cancel each other out.

The motivation behind these tasks is that it is important for

atmospheric scientists to understand the magnitude and di-

rection of wind, both at discrete points, as well as over ex-

tended areas. This is different from the tasks presented by

Laidlaw et al. and Andrysco because they tested the ob-

server’s ability to determine where a single particle would

go rather than determining the observer’s understanding over

an area [LKJ∗05, And05]. While in the most general case

atmospheric scientists might be interested in various types

of extended areas, for tractability in this experiment we

only examined rectangular areas of certain sizes. Imagery

for this study was created using Read/Interpolate/Plot Ver-

sion 4 (RIP) [Sto06] and was based off the images included

in [ZXPF07].

During the training and test, observers were in a confer-

ence room with only the test administrator(s). The observer

was asked to sign a consent form and answer a general ques-

tionnaire, as well as given an incentive for completing the

study ($10). The observer was also asked to turn off their

cell phone or set it to silent.

The test was administered on an Apple PowerBook laptop

with a 15.2 inch screen running at the screen’s native reso-

lution of 1280x854. Observers were free to move the laptop

to a comfortable position. Most observers placed the laptop

within an arm’s length, but no specific measurements were

taken of this. A Logitech V270 Bluetooth mouse was placed

beside the computer. The touchpad was still active for ob-

servers that wanted to use it. As many potential distractions

were removed from the screen as possible (e.g., the screen

saver was turned off, icons removed, etc.).

Observers were given training on the testing software

based on a bulleted training script. There were 15 spe-

cific points that the administrator covered with the observer

during training. The test administrator walked the observer

through four training images (two point and two area). These

locations and images were randomly selected at the same

time the images for the trials were selected. The observer

was taught the meaning of the glyphs, instructed on the use

of the two sliders (magnitude and direction), and instructed

to only use the glyphs in determining their answers (i.e. they

were not to use contours, color map or state lines to an-

swer the questions). Observers were given opportunities to

ask questions before beginning the test.

The observer then began the test. The test administrator

watched as the observers closely during the first few ques-

tions to see if their answers were reasonable. Some contin-

ued to ask questions leading to response time outliers, but

magnitude and direction were generally unaffected by this.

Had an observer’s responses been significantly different than

expected, a new training file could have been generated and

the test restarted. This, however, was not necessary.

The observer was given an opportunity for a break after

every 10 questions. There was no set length for these breaks

and the observer could continue at any point. The magni-

tude and direction the observer entered for each task was

recorded, along with the time it took to complete each sub-

task. The test administrator recorded notes about events that

might affect results (e.g. interruptions or additional ques-

tions). Each observer completed 80 tasks, where one task

was answering the magnitude and direction for one image.

3.1.1. GUI and Software

To implement the study, several scripts and a GUI were writ-

ten. The scripts were written in Perl; the GUI is a Cocoa ap-

plication. The hurricane images presented to the observer are

607x607 pixels. The full GUI occupies 1269x716 pixels.

To generate the list of tests an observer would encounter, a

script randomly selects a data set, time step, and region of in-

terest. The region selected is restricted so that it is not within

100 pixels of the edge of the data (in screen-space). The test

conditions (point/area, color map, state lines, pressure con-

tours) are randomly ordered, but balanced so that there is

an equal number of each test condition for each observer. A

second script determines the ground truth for each selected

location by examining the input data for the imagery.

During a test, the GUI (Figure 4) displays the pre-

determined tests to the observer. It records the magnitude

and direction that the observer selects, along with the time

it takes the observer to make their decisions. The output

is cleaned and formatted before inputting it into the statis-

tics packages Minitab, SPSS, and R. Minitab was used for

publication-quality graphics and statistical tests, SPSS for
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Figure 4: The user study GUI in training mode. Note the correct answer on the right side of the screen. This was removed once

the test began.

statistical tests, and R for exploratory and preliminary anal-

ysis graphics.

3.2. Independent Variables

Layers: All of the images contained wind glyphs. Addi-

tionally, the images contained zero to three additional layers

which we hypothesized would reduce the observer’s ability

to determine the magnitude and direction of the glyphs. The

layers were pressure contour lines, state boundary lines, and

a color map of relative humidity, for a total of eight different

layer combinations. Figure 5 shows the four base images.

Selection: The selection for each question was either a point

or an area (Figures 2 and 3). For a point, we told observers to

use the four vectors surrounding the designated point to de-

termine its value. For an area, we told observers to mentally

integrate all of the vectors surrounded by the box. For black

and white images, a red/white indicator was used; for color

images, a black/white indicator was used. These can also be

seen in figures 2 and 3. These colors were picked because

they provided good contrast when they were applied.

Shapes: For area selections, three shapes were chosen:

square, horizontal rectangle, and vertical rectangle. Two

sizes of each shape were presented to the observer (sizes are

in screen-pixels):

• Square: 100x100 and 175x175

• Vertical rectangle: 50x150 and 100x200

• Horizontal rectangle: 150x50 200x100

3.3. Dependent Variables

There were two main measured quantities: wind magnitude

(velocity in knots) and wind direction (in degrees). For each,

we have a ground truth measurement and the observer’s mea-

surement, as well as the observer’s response time. From

these, we calculated four dependent measures: (1) magni-

tude error, (2) magnitude error response time, (3) direction

error, and (4) direction error response time.

Magnitude Error: The magnitude error is computed as the

difference in the ground-truth-magnitude and the observer-

magnitude. A magnitude error of 0 means the observer has

chosen the ground truth wind speed. A positive magnitude

error means the observer has overestimated the ground truth

wind speed, while a negative magnitude error means the ob-

server has underestimated the ground truth wind speed.

Direction Error: The direction is collected in degrees;

0◦ / 360◦ is due north; degrees are left-handed, meaning they

increase clockwise. For processing purposes, the direction is

converted to –180◦ ≤ direction ≤ +180◦, where 0◦ is still

north. The direction error is the difference in the ground-

truth direction and the observer-direction. A direction error

of 0◦ means the observer has chosen the correct ground truth

direction. A positive direction error means the observer has

overestimated the ground truth direction in a positive left-

handed sense; i.e. the observer’s direction is clockwise from

the ground truth direction. A negative direction error means

the observer has underestimated the ground truth direction

in a negative left-handed sense; i.e. the observer’s direction

is counter-clockwise from the ground truth direction.

Response Time: Response time is defined as the number of

microseconds from the time the observer is shown the ques-

tion until the observer presses the ‘next task’ button. Sepa-

rate values are collected for both magnitude and direction.

3.4. Observers

Initially, we had planned to recruit observers who were Mis-

sissippi State University students and faculty in the Broad-

cast and Operational Meteorology programs. However, as

the study design progressed, we determined that a strong
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Figure 5: Each of the four basic types of images. Combinations of these four formed the eight image types used in the study.

From left, (1) glyphs only (2) glyphs + state lines (3) glyphs + pressure contours (4) glyphs + color map.

background in weather sciences was not necessary to com-

plete the study. Researchers from various fields commonly

look at vector visualizations and should be capable of an-

swering the questions we were asking. As a result, the ob-

servers recruited for this study include students and faculty

with weather, visualization, or computational fluid dynamics

backgrounds. At this point, nine observers have participated

in the main study, comprising six males and three females.

In addition, as described in Section 4 (Results and Discus-

sion), we recruited two additional male observers to study

reversed glyphs. Thus a total of eleven observers have par-

ticipated, but unless otherwise specified, all of the results are

based on the first nine observers. None of the observers re-

ported color blindness in the questionnaire. Since observers

were not interpreting the colors in the images, we did not

perform tests to verify their responses.

4. Results and Discussion

Each of the nine observers who participated in the main

study completed 80 trials, for a total of 720 completed trials.

Each trial produced a value for magnitude error, magnitude

response time, directional error, and directional response

time. We analyzed the data using standard error plots and

univariate analysis of variance (ANOVA). For the ANOVA,

we modeled our experiment as a repeated-measures design

that considers observer a random variable and all other in-

dependent variables as fixed. The distributions on which

ANOVA analysis is based assume that, for each tested ef-

fect, the data is normally distributed and the variance is

homogenous. For repeated-measures designs such as the

ones we report here, these two assumptions are usually vi-

olated [How02]. Therefore, following the recommendations

of Howell (p. 486), for each tested effect we applied the

Huynh and Feldt correction ε; when the F-test is conducted,

the degrees of freedom are multiplied by ε. This results in a

more conservative test that corrects for the degree to which

the ANOVA assumptions are violated. For our analysis, we

applied the Huynh and Feldt correction whenever the data

was completely balanced (and thus it was possible to cal-

culate ε using SPSS). However, some of our F-tests were

over unbalanced data, and thus we were not able to calculate

this correction for every F-test. Therefore, we do not report

Huynh and Feldt-corrected F-tests in this section. However,

whenever we were able to calculate the more conservative

Huynh and Feldt correction we did so, and we did not find

any cases where the Huynh and Feldt correction changed the

outcome of an F-test from significant to non-significant.

We processed outliers in the data with the procedure de-

scribed by Barnett and Lewis [BL94]. We determined out-

liers by examining histograms that summarized each depen-

dent measure; for magnitude error and directional error the

histograms showed symmetric normal distributions, while

for response times the histograms showed skewed normal

distributions. We determined outliers on a case-by-case ba-

sis, by examining the tails of the distributions and noting val-

ues that appeared after conspicuous gaps in the histogram.

Each outlier was replaced by the median of the remaining

values in the experimental cell. Given that outliers are con-

sidered mistaken values, this procedure improves the cal-

culation of means, standard errors, and the sums-of-squares

terms used in ANOVA, which would otherwise be inappro-

priately influenced by the outlying values.

4.1. Wind Magnitude

In the wind magnitude data, there were 31 outliers that

needed to be processed. This is 31 of 720 responses (4.3%

of the values). While this is quite a few outliers, it reflects

the difficulty of determining the magnitude, particularly over

areas. There is negative bias as all observers tended to un-

derestimate wind speed by an average of 4.0 knots; this un-

derestimation is significantly different from zero (F(1,8) =
2629, p < .000). Figure 6 shows the magnitude error results

for each observer. All observers underestimated the magni-

tude, from an average of 1.8 knots for observer 2 to an aver-

age of 5.7 knots for observer 5.

Figure 7 shows the main results for magnitude error. In

the results, we encoded layers as a three-digit binary num-

ber where the digits indicate, from left to right, the presence

or absence of contour lines, color map, and state lines (“1”

indicates presence and “0” indicates absence).

Observers were considerably more accurate with points

than with areas (F(1,8) = 151.2, p < .000). This is expected
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Figure 6: Magnitude Error vs. Observers.
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Figure 7: Magnitude Error vs. Question Type, Layers.

because integrating over areas should be more difficult than

determining the magnitude at a single point. It also shows

that the overall underestimation trend comes mostly from

area tasks. Because the standard error bars overlap within

both area and point questions, there is no evidence that the

number of layers make a systematic difference in observers’

ability to determine the magnitude; analysis showed no ef-

fect of layers (F(7,56) = .392, p = .903), nor any interac-

tion with question type (F(7,56) = .894, p = .518). For us,

these are somewhat negative results, as they do not support

our initial hypothesis that increasing the number of layers in

the imagery would make the task more difficult. It is possible

that the specific portion of the data set queried, and perhaps

the queried value itself, make a much larger difference than

the number of layers.

Figure 8 shows that the task gets harder as the size of

the selection area increases (F(2,16) = 84.5, p < .000). Ob-

servers increasingly underestimate the magnitude for larger

squares or rectangles. We did not find any effect of selection

area shape; observers gave equivalent results for squares,

horizontal rectangles, and vertical rectangles.

We also recoded and analyzed response times for each

magnitude trial. Figure 9 shows that the average response

time for areas was greater than the time for points (F(1,8) =
26.8, p = .001), which is further evidence that the area ques-

tions were harder than the point questions. We found an

overall main effect of layer (F(7,56) = 2.12, p = .057),
which is further analyzed below. We found a trend towards

an interaction between layer and question type (F(7,56) =
1.9, p = .090). Figure 10 shows that observers took longer to
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Figure 8: Magnitude Error vs. Selection Area Size.
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Figure 9: Magnitude Response Time vs. Question Type, Lay-

ers.

answer with larger areas (F(2,16) = 25.4, p < .000), which

is further evidence that larger areas were more difficult. We

found no response time differences for different area shapes.

Figure 9 suggests a layer effect for areas, but not for

points. Indeed, there was a main effect of layers for the

area trials (F(7,56) = 2.75, p = .016). Figure 11 shows the

response times for the absence (“0”) and presence (“1”)

of each layer for the 360 area trials. We found main ef-

fects for the presence or absence of contour lines (F(1,8) =
12.3, p = .008), color maps (F(1,8) = 4.74, p = .061), and

state lines (F(1,8) = 18.1, p = .003), but no interaction ef-

fects. Contrary to our hypothesis, observers were faster in

the presence of contour lines. We conjecture that the contour

lines helped observers estimate the wind speed because they

frame the wind fields (Figure 5). As we expected, observers

were slower when color maps and especially state lines were
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Figure 12: Directional Error vs. Observers (880 trials). Ob-

servers 10 and 11 saw reversed glyphs (Figure 14).

present, which indicates that these layers made the task more

difficult. Interestingly, although color maps are much more

visually salient than the state lines (Figure 5), the magni-

tude of the effect for color maps (1.33 seconds) was much

smaller than for state lines (3.11 seconds). This may occur

because the relative humidity shown by the color maps also

follows the wind field, while the state lines are completely

arbitrary with respect to the wind field. In addition, note that

these results are only for response time — the lack of magni-

tude error results indicates that observers’ accuracy was not

effected by the layers.

4.2. Wind Direction

The second dependent measure in this study was wind di-

rection. Out of 720 wind direction responses, 27 (2.9%)

outliers were removed. The directional error shows a neg-

ative (counter-clockwise) bias of −6.1◦, which is signifi-

cantly different from zero (F(1,8) = 41.8, p < .000). Fig-

ure 12 shows the directional error results for each observer;

observers 10 and 11 saw “flipped” glyphs and are discussed

in more detail later. All observers showed a negative bias,

which ranged from an average of −3.41◦ for observer 2 to

an average of −10.84◦ for observer 8.

Figure 13 shows that the magnitude of the negative bias

increased as the size of the shape increased (F(2,16) =
16.9, p < .000). We did not find any effects of area shape

on directional error.

We also analyzed the response time for directional error.

Our only response time finding was that it took observers
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Figure 13: Directional Error vs. Selection Area Size.

Figure 14: The glyph that is produced by RIP is shown on

the left. In order to prove that the counter-clockwise bias is

caused by the shape of the glyph, we implemented a small

study (2 observers) where the glyph shape is flipped, as

shown on the right.

longer to enter the direction for area questions (11.3 sec-

onds) than for point questions (10.0 seconds) (F(1,8) =
6.08, p = .039).

4.3. Directional Error Study

Considering that these glyphs are commonly used by

the weather science community, it is interesting that ob-

servers consistently (1) underestimated the wind magnitude

shown by the glyphs, and (2) showed a consistent counter-

clockwise bias when estimating wind direction. We hypoth-

esized that the counter-clockwise bias was likely due to the

glyphs’ asymmetric visual design, where the wind-speed

flags are always on the left (Figure 14). To quickly test this

hypothesis, we flipped the glyph orientation (Figure 14), and

ran two additional observers through exactly the same pro-

tocol. We expected that this would give us a clockwise bias

with a similar magnitude as the RIP’s regular glyphs did.

Figures 12 and 15 show the results. Contrary to our hypoth-

esis, our two observers still displayed a counter-clockwise

bias with the flipped glyphs, and the magnitude of the bias

is comparable to what we found with our first nine ob-

servers. The difference between the groups is not significant

(F(1,878) = 1.41, p = .235). Further study will be required

to determine what, if any, role glyph shape plays in this di-

rectional bias.

5. Conclusions and Future Work

Our experiment has empirically verified some expected re-

sults, as well as revealed some surprising and unexpected

results. Among the expected results is that determining the

magnitude and direction of wind speed over an area is a

c© 2008 The Author(s)
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Figure 15: Directional Error vs. Glyph Orientation (880 tri-

als).

harder task than at a point. Another unsurprising result is

that the larger the area that needs to be mentally integrated,

the harder the task and the longer it takes.

This experiment revealed three surprising findings. First,

although some data layers (state lines) increased the re-

sponse time for wind speed estimation over areas by as

much as 3.11 seconds, overall we did not find that addi-

tional data layers made the glyphs more difficult to read.

Second, observers underestimated wind speed by an average

4.0 knots; and their underestimation became worse as the

area over which they were estimating increased. Third, ob-

servers showed an average counter-clockwise bias of –6.1◦

in wind direction, and this bias also became worse as the

area over which they were estimating increased. The wind

direction bias cannot be entirely explained by the asymmet-

ric nature of the glyph shape.

As discussed in the introduction, the glyphs studied here

are widely used in the weather science community. Our un-

expected positive finding is that these glyphs can be reliably

read in the presence of additional data layers. However, our

unexpected negative finding is that observers reliably under-

estimated wind speed and showed a bias in estimating wind

direction. Because understanding wind speed and direction

are fundamental tasks in weather data analysis, this is a po-

tentially serious finding.

5.1. Future Work

It is well-known in the visualization field that the design

space for any glyph-based vector field visualization tech-

nique is very large. A fruitful goal for future work would

be to study related glyph techniques to see if they exhibit

the same sorts of biases we found here. Another fruitful

goal would be to tweak the parameters of the current glyphs,

which are widely used, to see if they can be improved. For

example, perhaps the wind speed underestimation could be

reduced if the flags that denote wind speed were made larger

(Figure 4).

Finally, while a strength of the current study is that it used

real-world data, it is possible that the nature of the dataset in-

fluenced the results. In particular, we suspect that the direc-

tional bias might have arisen because every dataset showed

a counter-clockwise circular wind field around a northern

hemisphere tropical cyclone. We would like to repeat the

study with a southern hemisphere tropical cyclone data set,

where the wind field would rotate in a clockwise direction.
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