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1 Introduction

In climate studies, scientists are interested in discovering which environmental
factors influence significant weather phenomena. A prominent weather feature
is a tropical cyclone, defined as a warm-core non-frontal synoptic-scale cyclone,
originating over tropical or subtropical waters, with organized thunderstorms
and a closed surface wind circulation. Tropical cyclones begin as a tropical
depression, with sustained 10-meter winds less than 17 ms−1. Most intensify
into tropical storms (sustained winds between 17 and 32 ms−1). 56% of tropical
cyclones reach winds of at least 33 ms−1, and are then designated with regional
terms such as hurricanes in the Atlantic basin, and typhoons in the Western
North Pacific Ocean. When sustained 10-meter winds reach 49 ms−1, they are
called intense hurricanes in the Atlantic.

Tropical cyclone activity in each ocean basin can vary on a yearly scale as well
as a multidecadal scale due to large-scale atmospheric influences and climate
forcing. As a result, scientists are developing procedures to forecast whether
an upcoming tropical cyclone season will be active, normal, or below normal.
Others are studying causes of multidecadal cycles, and whether anthropogenic
global warming is also an influence (Landsea, 2005). Recent destructive trop-
ical cyclones seasons have escalated these research efforts.

Several atmospheric and climate variables impact the intensity and frequency
of seasonal storm activity. Identifying the most critical environmental vari-
ables help scientists generate more accurate seasonal forecasts which, in turn,
improve the preparedness of the general public and emergency agencies. One
useful method for predicting and understanding the seasonal variability in
tropical cyclones is multiple regression. Predictors are chosen from historical
tropical cyclone data (Vitart, 2004), and provide an ordered list of the most
important predictors for the dynamic parameters.

Researchers can also explore the relationship of one predictor using linear
regression and scatter plots (Fig. 1), or histograms which require several sep-
arate plots or layered plots to analyze multiple variables. But, separate plots
are not very effective when several factors impact a dependent variable. A
major reason for their ineffectiveness is because the viewer is forced to search
for patterns across multiple images, resulting in a phenomenon called change
blindness. Change blindness results in the inability of the low-level human
perceptual system to recall detail outside the viewing area (Ware, 2004). Lay-
ered plots can be used instead, but problems can occur with the occlusion of
underlying layers and interference between the various layers (Healey et al.,
2004). These traditional visualization techniques were not designed to support
rapid or accurate multidimensional analysis. Furthermore, the geographically-
encoded data used in these climate studies are usually displayed in the context
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Fig. 1. A common visualization technique used in climate studies is the scatter plot
overlaid with a linear regression line. This example shows the linear relationship
between June–July SST in the northeastern subtropical Atlantic Ocean, and the
number of hurricanes from 1950 to 2006. The explained variance is 17%.

of a geographical map; although certain important patterns (those directly re-
lated to geographic position) may be recognized in this context, additional
information may be discovered more rapidly using non-geographical informa-
tion visualization techniques. Due to the multivariate nature of climate study
data, researchers need visualization techniques that can accommodate the si-
multaneous display of many variables.

This paper discusses the application and extension of a popular multivari-
ate information visualization technique, parallel coordinates, to a tropical cy-
clone climate study and regression analysis. Parallel coordinates yields a two-
dimensional representation of a multidimensional dataset. The n-dimensional
data is represented as a polyline where its n-points are connected in n par-
allel y-axes. The resulting visualization provides a compact two-dimensional
representation of even large multivariate datasets (Siirtola, 2000). Parallel
coordinates are extended here with dynamic interaction. This paper also dis-
cusses how these techniques increase the scientists’ ability to discover the
relationships between dependent and independent variables. Using a climate
study dataset that consists of several seasonal tropical cyclone predictors, it
is shown that parallel coordinates provides a useful representation of multiple
regression analysis. The results suggest that parallel coordinates can be used
as an alternative method for finding relationships among a set of variables, and
the technique can be used in conjunction with stepwise regression to enhance
and speed up the relationship discovery process.
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Table 1
New interaction and representation features added to the parallel coordinates visu-
alization technique.

Focus+Context Interactively scales an axis and zooms

into a subset of relations for that axis.

Aerial Perspective Facilitates visual queries by shading lines

based on proximity to the mouse cursor using a

shading scheme that mimics human perception.

Dynamic Visual Query Explores multidimensional relationships

with double-sided sliders.

Statistical Indicators Indicates statistical

quantities to support interaction model.

Relocatable Axes Reorganizes the axes by dragging with

the mouse to observe the correlation between

variables.

Axis inversion Inverts the axis display scale by swapping

the top and bottom values.

Details-on-demand Shows additional details for the highlighted axis,

and displays the value on the axis scale under the

mouse by clicking on the axis with the

middle mouse button.

Customizable Display Modifies the display (statistics

display, color schemes, tick marks) via a pop-up

menu interface.

2 Related Work

The parallel coordinates visualization technique was first introduced by In-
selberg (1985) to represent hyper-dimensional geometries. Later, Wegman
(1990) applied the technique to the analysis of multivariate relationships in
data. Since then, several innovative extensions to the technique have been
described in visualization research literature. Hauser et al. (2002) proposed
several brushing extensions for parallel coordinates. The software described
in this paper implements a variant of this histogram display technique and
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ascertains its usefulness in the statistical analysis of tropical cyclone climate
relationships. Additionally, a dynamic axis re-ordering feature, axis inversion
capability and some details-on-demand features similar to Hauser et al. (2002)
have been implemented. Furthermore, some interaction capabilities of Siirtola
(2000) (e.g., conjunctive queries) are added, as well as a variant of the interac-
tive aerial perspective shading technique of Jankun-Kelly and Waters (2006).
The aerial perspective shading used in this paper highlights user-defined re-
gions in the visualization using the mouse position and query sliders. The
application also includes a focus+context technique for axis scaling (Novotńy
and Hauser, 2006).

This new software also provides dynamic query capabilities for the axes based
on the double slider concept of Ahlberg and Shneiderman (1994). Furthermore,
the axes display important frequency information between the double slider
widgets in a manner similar to the Influence Explorer of Tweedie et al. (1996).
These features are summarized in Table 1.

Multiple regression traditionally has been used to identify statistically signifi-
cant variables from multivariate datasets, including tropical cyclones datasets.
Klotzbach et al. (2006a) use this technique to determine the most important
variables for predicting the frequency of tropical cyclone activity for the North
Atlantic basin. Similarly, Fitzpatrick applied stepwise regression analysis to
the prediction of tropical cyclone intensity (Fitzpatrick, 1996, 1997). It will be
shown that multiple regression and dynamic parallel coordinates can compli-
ment each other, with the regression identifying the relevant associations and
the interactive software highlighting additional features of the variables.

3 Climate Study Dataset

This research analyzes a dataset containing potential environmental predic-
tors for a tropical cyclone climate study. This dataset was provided by the
Tropical Meteorology Project at Colorado State University (P. Klotzbach,
personal communication), and is used to predict the frequency of Atlantic
tropical cyclones for the upcoming hurricane season by categories. These cat-
egories include: 1] number named storms (winds 33 ms−1 or more, at which
tropical cyclones receive a “name”); 2] number of hurricanes; and 3] number of
intense hurricanes. These variables have known relationships to Atlantic trop-
ical cyclone activity. For example, the North Atlantic basin has fewer tropical
cyclones during El Niño Southern Oscillation (ENSO) years, and active sea-
sons in La Niña years (Chu, 2004). Because of this relationship, scientists use
ENSO signals as some predictors of seasonal storm activity. Scientists at the
Tropical Meteorology Project issue six forecast reports based on statistically
significant predictors from this dataset.
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Table 2 lists 16 potential environmental predictors from the dataset along
with their geographical region. In the remainder of this section, the physical
relationships of these climate variables to Atlantic tropical cyclone activity
are discussed.

3.1 El Niño Variables

In a normal year, air rises in the western tropical Pacific (where the water
is the warmest as well as slightly elevated) and sinks in the eastern tropical
Pacific which is a phenomenon known as the Walker Circulation. During an El
Niño event, the easterly surface trade winds that cause this water bulge in the
western Pacific weaken, and the warm water travels eastward. Furthermore,
El Niño conditions shift the upward portion of the Walker Circulation to the
eastern Pacific, creating upper-level westerly winds in the Atlantic Ocean as
well as subsidence. Both of these factors inhibit tropical cyclone formation and
intensification in this region. Opposite conditions (abnormally strong trade
winds and colder than normal eastern Pacific water) are called La Niña. La
Niña years are associated with weak wind shear and little subsidence in the
Atlantic, typically producing active tropical cyclone activity in this basin.

El Niño events are characterized by several possible variables. The June–July
Niño 3 (1) variable represents sea surface temperature (SST) anomalies of
the eastern equatorial tropical Pacific Ocean. Positive values of this variable
indicate an El Niño event, and negative represents a La Niña event. May SST
in the eastern equatorial Pacific (2) represents a similar relationship. The first
clues of an impending El Niño can be detected in February by observing three
variables. Upper-level westerly (zonal) wind anomalies off the northeast coast
of South America imply that the upward branch of the Walker Circulation
associated with ENSO remains in the western Pacific and that El Niño con-
ditions are likely to be present in the eastern equatorial Pacific for the next
4-6 months. This situation is measured by the February 200-mb zonal wind
(U) in equatorial East Brazil (3). Likewise, anomalous late winter meridional
(north) winds at 200-mb in the South Indian Ocean are also associated with El
Niño conditions (February–March 200-mb V in the South Indian Ocean (4)).
Finally, sea level pressure (SLP) in the eastern Pacific south of the equator is
a measure of the trade winds whereby weak trade winds (or westerly surface
winds) are associated with lower SLP and, therefore, El Niño conditions, while
the opposite is correlated to La Niña conditions. Therefore, February SLP in
the eastern South Pacific (5) is a possible variable. Some Fall variables are also
correlated to El Niño conditions, such as the October–November SLP in the
Gulf of Alaska (6), September 500-mb Geopotential Height in western North
America (7), and November SLP in the subtropical northeast Pacific (8).
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3.2 Sea Level Pressure Variables

Pressure in the Atlantic Ocean is also inversely related to tropical cyclone ac-
tivity, and seems to contain both monthly as well as longer term relationships.
Low SLP in the tropical Atlantic implies increased atmospheric instability,
moisture, and ascent (more favorable for the genesis of tropical cyclones), and
weaker trade winds (which correspond to less wind shear that can tear up the
thunderstorms in tropical cyclones). Low SLP in the spring tends to persist
through the summer and fall. Therefore, potential variables include March–
April SLP in the eastern tropical Atlantic (9), June–July SLP in the tropical
Atlantic (10), and September–November SLP in the southeast Gulf of Mexico
(11).

3.3 Teleconnection Variables

The atmosphere is characterized by long-term oscillations which impact global
wind patterns, known as teleconnections. Two of these are the Arctic Oscil-
lation and the North Atlantic Oscillation. When these oscillations are in one
phase, they cause more ridges in the Atlantic, which corresponds to less wind
shear. Also, on decadal timescales, weaker zonal winds in the sub-polar ar-
eas are indicative of a relatively strong thermohaline circulation and therefore
a warmer Atlantic Ocean. A variable which measures this oscillation is the
November 500-mb Geopotential Height in the North Atlantic (12).

3.4 Quasi-Biennial Oscillation Variable

Research has also shown that the Quasi-Biennial Oscillation (QBO) is corre-
lated to tropical cyclone activity. The QBO is a stratospheric (16 to 35 km
altitude) oscillation of equatorial east-west winds which vary with a period
of about 26 to 30 months or roughly 2 years. These winds typically blow for
12-16 months from the east, then reverse and blow 12-16 months from the
west, then back to easterly again. The west phase of the QBO has been shown
to provide favorable conditions for development of tropical cyclones, possibly
because it reduces wind shear. A variable which measures the QBO is the July
50-mb Equatorial Wind (U) around the globe (13).

7



Fig. 2. An annotated view of the parallel coordinate axis display widget. Normally,
an axis is displayed using a muted color scheme (left). However, when the mouse
moves into an axis space, the axis is displayed with the highlighted color scheme
(right).

3.5 Atlantic Sea Surface Temperature Variables

The Atlantic SST is another major influence on tropical cyclone activity in
that basin. Like SLP, winter and spring anomalies tend to persist throughout
the season. Therefore, February SST off the northwest European Coast (14),
April–May SST off the northwest European Coast (15), and June–July SST
in the northeast subtropical Atlantic (16) are potential predictors. In addition,
warm SST anomalies also tend to correlate with low SLP.

4 A Dynamic Interactive Parallel Coordinates Application

To facilitate a deeper understanding of the climate data, a parallel coordinates
application with several interactive extensions has been developed. This ap-
plications’ capabilities include focus+context filtering, dynamic visual queries
with sliders, statistical displays, relocatable axes, axis inversion, details-on
demand, a pop-up menu interface, and aerial perspectives.

The viewer is often interested in grouping subsets of data. A method to select
lines using sliders facilitates this need (Siirtola, 2000; Ahlberg and Shneider-
man, 1994). As shown in Fig. 2, each axis has a pair of sliders which define the
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Fig. 4. The axis bar is segmented into four distinct areas: the query area, the focus
area, and an upper and lower context area.

top and bottom range for the query area. The viewer can drag these sliders to
dynamically adjust which lines are highlighted. Lines within the query area
are rendered with a thicker line and a more prominent color while the remain-
ing lines are rendered with a thinner line and shade of gray (more detail on
the shading algorithm is given in Section 4.2). An example of a conjunctive
query using the sliders is shown in Fig. 3. In this image, the sliders show only
two storm seasons had an above average number of named storms but a be-
low average number of intense hurricanes. In other words, when many named
storms are observed, there tends to be an average or above average number of
intense hurricanes as well.

The application also provides a details-on-demand capability. The viewer can
click on an axis with the middle mouse button to display the value on the
axis scale under the mouse (Hauser et al., 2002). The application also displays
values for the top and bottom of the focus area and applies the highlight color
to the axis whose area is intersected by the mouse cursor. Furthermore, the
application display can be customized through a pop-up menu initiated by the
right mouse button. This menu controls statistics, color schemes, tick marks,
and screen captures. These features will now be discussed in more detail.

4.1 Axis Scaling (Focus+Context)

In displays where many relation lines are shown, it is often desirable to in-
teractively tunnel through the relations until a smaller subset of the original
dataset is in focus. This application allows the user to modify the minimum

10



(a) (b)

Fig. 5. A screen shot of the parallel coordinates application before (a) and after
(b) scaling has been performed. In this example, scaling occurs by performing an
upward mouse wheel function in the focus area of the axis which moves the values
for the top and bottom closer together, effectively stretching the display upward
and downward (with the base of the display fixed).

and maximum values of the axes using the mouse wheel. On the axis bar, there
are three distinct areas delineated by horizontal tick marks (Fig. 4) that are
important to the axis scaling capability: the central focus area, and the top
and bottom context areas. When the mouse is hovering over the focus area,
an upward mouse wheel motion expands the display of the focus area outward
and pushes outliers to the context areas (Fig. 5). A downward mouse wheel
motion causes the inverse effect: focus region compression. Alternatively, the
user may use the mouse wheel over either of the two context areas to alter
the minimum or maximum values separately. The scaling capability reduces
clutter making it easier to analyze relation lines of interest.

4.2 Aerial Perspective

Aerial perspective shading is useful for quickly monitoring trends due to the
similarity of data values over multiple dimensions in parallel coordinates (Jankun-
Kelly and Waters, 2006). In this implementation, aerial perspective shading
can be used in either a discrete or a continuous mode. In the discrete mode,
the lines are colored according to the axis region that they intersect. If any
point of a relation line is in the context regions of at least one axis, the line
is shaded with a light gray color and drawn beneath the non-context lines
(Fig. 5). If all the points on a line fall within the query area of each axis (the

11



(a) Discrete aerial perspective shading.

(b) Continuous aerial perspective shading.

Fig. 6. A screen shot of the aerial perspective shading capability which can be used
in either discrete (a) or continuous (b) shading mode. The line colors are determined
based on the location of the line with respect to the context, focus, and query areas
of the axes and, in continuous mode, the distance from the mouse cursor is encoded
with color value. In the above examples, the mouse cursor is positioned at the
bottom of the second axis (the Intense Hurricanes axis) which highlights the storm
seasons with above average intense hurricane activity. The continuous shading mode
gives more emphasis to the lines representing the most active seasons.

area between the two query sliders), the line is colored using a dark gray that
attracts the viewer’s attention (Fig. 6). The remaining lines are color with a
gray that is slightly darker than the context lines.

12



In the continuous mode, non-context lines go through an additional step to
encode the distance of the line from the mouse cursor. Query lines that are
nearest to the mouse cursor are shaded with the darkest gray color while lines
furtherest from the mouse cursor are shaded with a lighter gray. The other
query lines are shaded according to a non-linear fall-off function that yields
a gradient of gray colors between extremes. Consequently, the lines that are
nearest to the mouse cursor are more prominent to the viewer due to the more
drastic color contrast and depth ordering treatments (Fig. 6) giving the viewer
the ability to effectively use the mouse to perform rapid, visual queries.

4.3 Representing Key Statistics

To support the advanced interaction capabilities of this application, each axis
also shows key statistical quantities for the relation points that are displayed
in the focus region (Siirtola, 2000; Hauser et al., 2002). For each axis, the
mean, standard deviation, and the frequency information are calculated for
points in the focus area. As shown in Fig. 2, the mean value and the standard
deviation range are shown using two yellow half circles and two cyan rect-
angles, respectively. Within each axis bar, the frequency information is also
displayed by representing histogram bins as small, gray rectangles with gray
values proportional to the number of lines that pass through the bin’s region.

5 Parallel Coordinates Validation: North Atlantic Case Study

As discussed previously, regression analysis is often employed to identify the
most relevant climate relationships for tropical cyclone activity. Such tech-
niques are effective in screening data and providing quantitative associations.
However, multivariate analysis can be difficult. This section will outline how
stepwise regression and parallel coordinates can compliment each other in such
an analysis.

Stepwise regression with a “backwards glance” is used which selects the opti-
mum number of most important variables using a predefined significance value
(90% in this study). Stepwise regression can compliment parallel coordinate
visualization by isolating the significant variables in a quantitative fashion.
An interactive parallel coordinates visualization can then be used to develop
a deeper understanding of the complex relationships between the variables.

An extra step is taken to ensure the proper selection of variables. The initially
chosen variables are examined for multicollinearity; if any variables are corre-
lated with each other by more than 0.5, one is removed and the code rerun.
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In this way, the chosen variables are truly independent of each other.

A normalization procedure is also done for equal comparison between the vari-
ables. Denoting σ as the standard deviation of a variable, y as the dependent
variable (named storms, hurricanes, or intense hurricanes in this study), x as
the predictor mean, and y as the dependent variable mean, a number k of
statistically significant predictors are normalized by the following regression:

(y − y)/σy =
k∑

i=1

ci(xi − xi)/σi (1)

The advantage of this approach is that the importance of a predictor may
be assessed by comparing regression coefficients ci between different variables,
and that the y-intercept becomes zero.

In addition, xi may be interpreted (to a first approximation) as a “threshold”
value which distinguishes between positive and negative contributions (for
ci > 0), and the opposite for negative ci. Years when independent variables
contain large deviations from the mean could be associated with very active
or inactive years, and require closer examination. As will be seen, the parallel
coordinates technique facilitates the examination of active and quiet Atlantic
hurricane seasons.

The 16 potential variables listed in Table 2 are examined in the stepwise re-
gression, yielding several independent variables for each dependent variable.
These results show that several climate factors impact tropical cyclone activ-
ity. The chosen predictors are shown in Table 3, along with their normalized
regression coefficient and sample mean. The explained variance (R2) is shown
in the 3 table headings.

The stepwise regression shows only one significant El Niño variable (late win-
ter South Indian Ocean 200-mb meridional winds (4)) impacts total number
of storms; it is the second most influential predictor. Late winter northwest
coastal European SST (14) is the leading predictor. The North Atlantic Oscil-
lation (manifested by 500-mb geopotential height in the North Atlantic (12))
ranks third, and is also the only variable seen in all three tables. This suggests
that the presence of a ridge in the Atlantic is conducive to an above average
tropical cyclone season. Finally, low SLP in the southeast Gulf of Mexico (11)
also encourages the formation of tropical cyclones. Note that the coefficient
has a negative sign, showing that the lower the pressure, the better the chance
of tropical cyclone activity.

For number of hurricanes, the analysis surprisingly shows that October–November
SLP in the Gulf of Alaska (6) is the most important predictor. The physical
role is not clear, although scientists know it is correlated to El Niño activity.
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Northeast subtropical Atlantic SST (16) and North Atlantic 500-mb geopoten-
tial height (12) are tied for second, and southeast Gulf SLP again ranks fourth
(11). The explained variance is 42% — more than the 34% for named storms.
This suggests stronger predictor relationships for number of hurricanes.

For intense hurricanes, the variance increases to 54%. In this case, the North
Atlantic November 500-mb height variable (12) is the strongest predictor.
Early summer tropical Atlantic SLP (10) ranks number two, followed by
September 500-mb geopotential height in western North America (7) and
February SST off northwest coastal Europe (14). The higher variance and dis-
tinctly different chosen predictors suggests different environmental influences
are required for intense hurricanes. This analysis correlates the presence of
high pressure in the western U.S. and over the Atlantic, low summer Atlantic
SLP, and warm SST as necessary conditions for intense hurricanes.

Because there is unexplained variance and several predictors, can parallel co-
ordinates glean any more information? To answer this question, the datasets
are stratified into below normal, normal, and above normal seasons using the
software’s interactive capabilities, and the significant predictors identified by
the stepwise regression are analyzed visually. Using the key statistical indi-
cators, the below normal, normal, and above normal seasons are determined
by moving the query sliders for the axis of interest to encapsulate the lines
above the standard deviation range, within the standard deviation range, and
below the standard deviation range, respectively. After setting the query slid-
ers, the aerial perspective shading highlights the relationships of interest, thus
enabling analysis of the variables.

Figure 7 shows a plot for seasons with below normal named storms (sample
size of 16). Even though the regression shows February Atlantic SST (14)
as the most important overall predictor, it is not as effective for discerning
inactive seasons. The plot shows considerable scatter, and with only 6 years
of significantly below average SST. The dynamic query capabilities of this
parallel coordinates application make these combined queries and subsample
analysis an intuitive exercise. September–November Gulf of Mexico SLP (11)
also exhibits much scatter, with a slight majority of years with above normal
pressure. However, February–March 200-mb South Indian Ocean meridional
winds (4) — a surrogate measurement of El Niño, shows 15 seasons (94%)
of strong north winds, tightly clustered in the plots. This suggests El Niño
is the major contributor to inactive Atlantic tropical cyclone seasons. Note
also that below normal November North Atlantic 500-mb geopotential heights
(12) plays a pivotal role for quiet seasons. Fourteen seasons (87%) contain
lower geopotential heights in November, suggesting the presence of upper-
level troughs which can shear tropical cyclones. However, this signal is not as
strong as the El Niño predictor. Additionally, many unshaded lines exist for
positive 200-mb V, showing that other factors besides El Niño contribute to
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normal and active seasons. In fact, a similar parallel coordinates stratification
analysis shows that November North Atlantic 500-mb geopotential heights
(12) and September–November Gulf of Mexico SLP (11) tend to be the critical
players for an active tropical cyclone season (not shown).

Figure 8 shows seasons with below normal hurricane activity (19 seasons).
El Niño again tends to dominate the signal through the fall Gulf of Alaska
SLP (6) term. However, in contrast to number of named storms, Atlantic
SST (16) becomes important for number of hurricanes. This suggests that
when water temperature is below normal, tropical storms will have difficulty
reaching hurricane status. For above normal hurricane activity (Fig. 9), June–
July Atlantic SST (16), November North Atlantic 500-mb geopotential height
(12), and Gulf of Mexico SLP (11) tend to exert dominant roles, with El Niño
a secondary factor.

Intense hurricanes warrant special consideration, since they cause 80% of the
economic damage from tropical cyclones. Figure 10 shows that cold February
Atlantic SSTs (14) and high Atlantic June–July SLP (10) tend to reduce the
number of intense hurricanes, with November North Atlantic 500-mb geopo-
tential heights (12) playing a secondary role and September 500-mb geopo-
tential heights in western North America (7) contributing no role. In contrast,
all four predictors have tightly clustered lines showing they all play dominant
roles in seasons with above normal intense hurricane activity (Fig. 11). These
terms are associated with the presence of ridges in the western U.S. and the
Atlantic, below average Atlantic SLP, and warm wintertime Atlantic SST off
the northwestern European Coast. Ridges are low shear environments, show-
ing that the lack of upper level troughs is an important factor for seasons with
many intense hurricanes. Low SLP indicates minimal subsidence. Sinking air
suppresses cloud growth and also dries the lower atmosphere, both of which
are not conducive to the formation and development of tropical cyclones. Low
SLP also could indicate better organized tropical waves (from which many
Atlantic tropical cyclones form). Warm wintertime northeast Atlantic water
also is a good precursor for above average intense hurricane activity.

This parallel coordinates application can also investigate the differences be-
tween the extremely busy 2005 season and the slightly below average 2006
season. Figure 12 shows the 2005 and 2006 seasons along with the chosen
predictors from all three categories (named storms, hurricanes, and intense
hurricanes) listed in Table 3. This plot reveals that most of the terms are
nearly the same except for October–November SLP in the Gulf of Alaska (6)
(above average in 2005, below average in 2006) and June–July SLP in the trop-
ical Atlantic (10) (below average in 2005, above average in 2006). Klotzbach
et al. (2006b) andBell et al. (2007) show that the tropical Atlantic was quite
dry through most of the 2006 hurricane season due to subsidence associated
with the onset of an unusually late ENSO event (indicated by the Gulf of
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Alaska SLP), as well as frequent outbreaks of African dust storms that year.

6 Conclusion

It has been shown that parallel coordinates, a visualization technique designed
specifically for multivariate information, can be used to confirm and clarify the
results of stepwise regression when enhanced with interactive tools. The added
capabilities discussed in this paper include focus+context filtering, dynamic
visual queries with sliders, statistical displays, relocatable axes, axis inversion,
details-on demand, a pop-up menu interface, and aerial perspectives. An ap-
plication to a tropical cyclone dataset shows that, while multiple regression
provides the most significant variables, visual analysis using a dynamic paral-
lel coordinates system facilitates a deeper understanding of the environmental
causes for above average and below average hurricane seasons.
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Table 3
Significant climate variables chosen from Table 2 by the stepwise regression for
number of named storms, hurricanes, and intense hurricanes in 1950-2006. Also
shown is the explained variance R2, the normalized coefficients c, and the sample
mean.

Number of Named Storms

(R2 is 34%)

Chosen Variables Normalized Sample Mean

Coefficients c

Feb. SST (14) 0.302 13.8

Feb.–Mar. 200-mb V (4) –0.244 2.5

Nov. 500-mb Geopot. Ht. (12) 0.232 5213

Sep.–Nov. SLP (11) –0.175 1015.0

Number of Hurricanes

(R2 is 42%)

Chosen Variables Normalized Sample Mean

Coefficients c

Oct.–Nov. SLP (6) –0.284 1009.6

June–July SST (16) 0.259 22.2

Nov. 500-mb Geopot. Ht. (12) 0.258 5213

Sep.–Nov. SLP (11) –0.208 1015.0

Number of Intense Hurricanes

(R2 is 54%)

Chosen Variables Normalized Sample Mean

Coefficients c

Nov. 500-mb Geopot. Ht. (12) 0.345 5213

June-July SLP (10) –0.315 1016.2

Sep. 500-mb Geopot. Ht. (7) 0.292 5753.3

Feb. SST (14) 0.235 13.8
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