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Abstract

A highly interactive visual analysis system is presented that is based on an enhanced

variant of parallel coordinates – a multivariate information visualization technique.

The system combines many variations of previously described visual interaction

techniques such as dynamic axis scaling, conjunctive visual queries, statistical indi-

cators, and aerial perspective shading. The system capabilities are demonstrated on

a hurricane climate data set. This climate study corroborates the notion that en-

hanced visual analysis with parallel coordinates provides are deeper understanding

when used in conjunction with traditional multiple regression analysis.
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1 Introduction1

In climate studies, scientists are interested in discovering which environmental2

factors influence significant weather phenomena. A prominent weather feature3

is a tropical cyclone, defined as a warm-core non-frontal synoptic-scale cyclone,4

originating over tropical or subtropical waters, with organized thunderstorms5

and a closed surface wind circulation. Tropical cyclones begin as a tropical6

depression, with sustained 10-meter winds less than 17 ms−1. Most intensify7

into tropical storms (sustained winds between 17 and 32 ms−1). 56% of tropical8

cyclones reach winds of at least 33 ms−1, and are then designated with regional9

terms such as hurricanes in the Atlantic basin, and typhoons in the Western10

North Pacific Ocean. When sustained 10-meter winds reach 49 ms−1, they are11

called intense hurricanes in the Atlantic.12

Tropical cyclone activity in each ocean basin can vary on a yearly scale as well13

as a multidecadal scale due to large-scale atmospheric influences and climate14

forcing. As a result, scientists are developing procedures to forecast whether15

an upcoming tropical cyclone season will be active, normal, or below normal.16

Others are studying causes of multidecadal cycles, and whether anthropogenic17

global warming is also an influence (Landsea, 2005). Recent destructive trop-18

ical cyclones seasons have escalated these research efforts.19
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Several atmospheric and climate variables impact the intensity and frequency20

of seasonal storm activity. Identifying the most critical environmental vari-21

ables help scientists generate more accurate seasonal forecasts which, in turn,22

improve the preparedness of the general public and emergency agencies. One23

useful method for predicting and understanding the seasonal variability in24

tropical cyclones is multiple regression. Predictors are chosen from historical25

tropical cyclone data (Vitart, 2004), and provide an ordered list of the most26

important predictors for the dynamic parameters.27

[Fig. 1 about here.]28

In conjunction with statistical analysis, researchers have relied on simple scat-29

ter plots and histograms which require several separate plots or layered plots30

to analyze multiple variables. Using separate plots, however, is not an opti-31

mal approach in this type of analysis due to perceptual issues such as change32

blindness (a phenomenon described Rensink (2002)), especially when search-33

ing for combinations of conditions. The scatter plot matrix is a more useful34

technique employed by statisticians to uncover patterns in multivariate data35

that contains all the pairwise scatter plots of the variables on a single display36

in a matrix configuration; but it requires a large amount of screen space and37

forming a multidimensional association from a set of two-dimensional displays38

is mentally challenging. Although layered plots condense the information into39

a single display, there are significant issues due to occlusion and interference40

as demonstrated by Healey et al. (2004). Furthermore, the geographically-41

encoded data used in climate studies are usually displayed in the context of42

a geographical map; although certain important patterns (those directly re-43

lated to geographic position) may be recognized in this context, additional44

information may be discovered more rapidly using non-geographical informa-45
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tion visualization techniques. Due to the multivariate nature of climate study46

data, researchers need interactive visualization techniques that can accommo-47

date the simultaneous display of many variables.48

[Table 1 about here.]49

This paper discusses the application of a popular multivariate information vi-50

sualization technique, parallel coordinates, to a tropical cyclone climate study51

and regression analysis. With parallel coordinates, n-dimensional data is rep-52

resented as a polyline where its n-points are connected in n parallel y-axes.53

The resulting visualization provides a compact two-dimensional representa-54

tion of even large multivariate data sets (Siirtola, 2000). In this research,55

several previously introduced interactive parallel coordinate extensions have56

been combined into a unique application for climate analysis. This paper also57

discusses how these techniques increase the scientists’ ability to discover the58

relationships between dependent and independent variables. Using a climate59

study data set that consists of several seasonal tropical cyclone predictors, it60

is shown that parallel coordinates provides a useful representation of multiple61

regression analysis. The results suggest that parallel coordinates can be used62

as an alternative method for finding relationships among a set of variables, and63

the technique can be used in conjunction with stepwise regression to enhance64

and speed up the relationship discovery process.65

2 Related Work66

The parallel coordinates visualization technique was first introduced by Insel-67

berg (1985) to represent hyper-dimensional geometries. Later, Wegman (1990)68

applied the technique to the analysis of multivariate relationships in data.69
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Since then, several innovative extensions to the technique have been described70

in the visualization research literature.71

The system described in this paper implements a dynamic axis re-ordering72

capability, axis inversion, and some details-on-demand features similar to those73

described by Hauser et al. (2002). In addition, some interactive visual query74

and frequency representation (histogram) capabilities described by Siirtola75

and Räihä (2006) are included, as well as a variant of the interactive aerial76

perspective shading technique described by Jankun-Kelly and Waters (2006).77

The system also includes a focus+context technique for axis scaling that is78

similar to the capabilities described by Fua et al. (1999), Artero et al. (2004),79

Johansson et al. (2005), and Novotńy and Hauser (2006).80

The system also provides dynamic query capabilities based on the double slider81

concept of Ahlberg and Shneiderman (1994). The PCP axes also display im-82

portant frequency information between the double sliders in a manner similar83

to the Influence Explorer described by Tweedie et al. (1996). More recently,84

Siirtola and Räihä (2006) implemented these visual query mechanisms with85

parallel coordinates.86

The visual analysis software described in this paper provides a unique parallel87

coordinate based interface by fusing variants of the above mentioned capabil-88

ities. Moreover, this research describes one of the most in-depth validations of89

enhanced parallel coordinate plots for use in climate analysis90

Multiple regression traditionally has been used to identify statistically signif-91

icant variables from multivariate data sets, including tropical cyclones data92

sets. Klotzbach et al. (2006a) use this technique to determine the most impor-93

tant variables for predicting the frequency of tropical cyclone activity for the94
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North Atlantic basin. Similarly, Fitzpatrick applied stepwise regression anal-95

ysis to the prediction of tropical cyclone intensity (Fitzpatrick, 1996, 1997).96

It will be shown that multiple regression and interactive parallel coordinates97

can complement each other, with the regression identifying the relevant as-98

sociations and the interactive software highlighting additional features of the99

variables.100

3 Climate Study Data Set101

This research analyzes a data set containing potential environmental predic-102

tors for a tropical cyclone climate study. This data set was provided by the103

Tropical Meteorology Project at Colorado State University (Klotzbach, 2007),104

and is used to predict the frequency of Atlantic tropical cyclones for the up-105

coming hurricane season by categories. These categories include: 1] number106

named storms (winds 33 ms−1 or more, at which tropical cyclones receive a107

“name”); 2] number of hurricanes; and 3] number of intense hurricanes. These108

variables have known relationships to Atlantic tropical cyclone activity. For109

example, the North Atlantic basin has fewer tropical cyclones during El Niño110

Southern Oscillation (ENSO) years, and active seasons in La Niña years (Chu,111

2004). Because of this relationship, scientists use ENSO signals as some predic-112

tors of seasonal storm activity. Scientists at the Tropical Meteorology Project113

issue six forecast reports based on statistically significant predictors from this114

data set.115

[Table 2 about here.]116

Table 2 lists 16 potential environmental predictors from the data set along117

with their geographical region. In the remainder of this section, the physical118
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relationships of these climate variables to Atlantic tropical cyclone activity119

are discussed.120

3.1 El Niño Variables121

In a normal year, air rises in the western tropical Pacific (where the water122

is the warmest as well as slightly elevated) and sinks in the eastern tropical123

Pacific which is a phenomenon known as the Walker Circulation. During an El124

Niño event, the easterly surface trade winds that cause this water bulge in the125

western Pacific weaken, and the warm water travels eastward. Furthermore,126

El Niño conditions shift the upward portion of the Walker Circulation to the127

eastern Pacific, creating upper-level westerly winds in the Atlantic Ocean as128

well as subsidence. Both of these factors inhibit tropical cyclone formation and129

intensification in this region. Opposite conditions (abnormally strong trade130

winds and colder than normal eastern Pacific water) are called La Niña. La131

Niña years are associated with weak wind shear and little subsidence in the132

Atlantic, typically producing active tropical cyclone activity in this basin.133

El Niño events are characterized by several possible variables. The June–July134

Niño 3 (1) variable represents sea surface temperature (SST) anomalies of135

the eastern equatorial tropical Pacific Ocean. Positive values of this variable136

indicate an El Niño event, and negative represents a La Niña event. May SST137

in the eastern equatorial Pacific (2) represents a similar relationship. The first138

clues of an impending El Niño can be detected in February by observing three139

variables. Upper-level westerly (zonal) wind anomalies off the northeast coast140

of South America imply that the upward branch of the Walker Circulation141

associated with ENSO remains in the western Pacific and that El Niño con-142

ditions are likely to be present in the eastern equatorial Pacific for the next143
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4-6 months. This situation is measured by the February 200-mb zonal wind144

(U) in equatorial East Brazil (3). Likewise, anomalous late winter meridional145

(north) winds at 200-mb in the South Indian Ocean are also associated with El146

Niño conditions (February–March 200-mb V in the South Indian Ocean (4)).147

Finally, sea level pressure (SLP) in the eastern Pacific south of the equator is148

a measure of the trade winds whereby weak trade winds (or westerly surface149

winds) are associated with lower SLP and, therefore, El Niño conditions, while150

the opposite is correlated to La Niña conditions. Therefore, February SLP in151

the eastern South Pacific (5) is a possible variable. Some Fall variables are also152

correlated to El Niño conditions, such as the October–November SLP in the153

Gulf of Alaska (6), September 500-mb Geopotential Height in western North154

America (7), and November SLP in the subtropical northeast Pacific (8).155

3.2 Sea Level Pressure Variables156

Pressure in the Atlantic Ocean is also inversely related to tropical cyclone ac-157

tivity, and seems to contain both monthly as well as longer term relationships.158

Low SLP in the tropical Atlantic implies increased atmospheric instability,159

moisture, and ascent (more favorable for the genesis of tropical cyclones), and160

weaker trade winds (which correspond to less wind shear that can tear up the161

thunderstorms in tropical cyclones). Low SLP in the spring tends to persist162

through the summer and fall. Therefore, potential variables include March–163

April SLP in the eastern tropical Atlantic (9), June–July SLP in the tropical164

Atlantic (10), and September–November SLP in the southeast Gulf of Mexico165

(11).166
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3.3 Teleconnection Variables167

The atmosphere is characterized by long-term oscillations which impact global168

wind patterns, known as teleconnections. Two of these are the Arctic Oscil-169

lation and the North Atlantic Oscillation. When these oscillations are in one170

phase, they cause more ridges in the Atlantic, which corresponds to less wind171

shear. Also, on decadal timescales, weaker zonal winds in the sub-polar ar-172

eas are indicative of a relatively strong thermohaline circulation and therefore173

a warmer Atlantic Ocean. A variable which measures this oscillation is the174

November 500-mb Geopotential Height in the North Atlantic (12).175

3.4 Quasi-Biennial Oscillation Variable176

Research has also shown that the Quasi-Biennial Oscillation (QBO) is corre-177

lated to tropical cyclone activity. The QBO is a stratospheric (16 to 35 km178

altitude) oscillation of equatorial east-west winds which vary with a period179

of about 26 to 30 months or roughly 2 years. These winds typically blow for180

12-16 months from the east, then reverse and blow 12-16 months from the181

west, then back to easterly again. The west phase of the QBO has been shown182

to provide favorable conditions for development of tropical cyclones, possibly183

because it reduces wind shear. A variable which measures the QBO is the July184

50-mb Equatorial Wind (U) around the globe (13).185

3.5 Atlantic Sea Surface Temperature Variables186

The Atlantic SST is another major influence on tropical cyclone activity in187

that basin. Like SLP, winter and spring anomalies tend to persist throughout188
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the season. Therefore, February SST off the northwest European Coast (14),189

April–May SST off the northwest European Coast (15), and June–July SST190

in the northeast subtropical Atlantic (16) are potential predictors. In addition,191

warm SST anomalies also tend to correlate with low SLP.192

4 A Dynamic Interactive Parallel Coordinates Application193

To facilitate a deeper understanding of the climate data, a parallel coordinates194

application has been developed that fuses several previously introduced inter-195

active extensions. In addition to fundamental PCP capabilities such as relo-196

catable axes, axis inversion, and details-on-demand, this application provides197

several intuitive interaction capabilities such as axis scaling, aerial perspec-198

tive shading, and dynamic visual queries. Since these individual capabilities199

are derived (with minor variations) from earlier research publications, the200

main contribution of this application lies in its collective capabilities and its201

application to climate analysis.202

4.1 Dynamic Visual Queries203

[Fig. 2 about here.]204

[Fig. 3 about here.]205

Since the viewer is often interested in grouping subsets of data, a method to206

select lines using double-ended sliders is provided for each axis (Siirtola and207

Räihä, 2006; Ahlberg and Shneiderman, 1994). As shown in Fig. 2, each axis208

has a pair of sliders (the large black triangles on each axis) which define the209

top and bottom range for the query area. Using the mouse cursor, the viewer210
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can drag these sliders to dynamically adjust which lines are highlighted. Lines211

within the query area of every axis are rendered with a more prominent, dark212

color while the remaining lines are rendered with a less prominent, lighter213

shade of gray. An example of a conjunctive query using the sliders is shown214

in Fig. 3. In this image, the sliders show only two storm seasons had an215

above average number of named storms but a below average number of intense216

hurricanes. In other words, when many named storms are observed, there tends217

to be an average or above average number of intense hurricanes as well.218

4.2 Axis Scaling (Focus+Context)219

[Fig. 4 about here.]220

[Fig. 5 about here.]221

In displays where many relation lines are shown, it is often desirable to in-222

teractively tunnel through the relations until a smaller subset of the original223

data set is in focus. This application allows the user to modify the minimum224

and maximum values of the axes using the mouse wheel movement – a unique225

variation of previous axis scaling approaches (Fua et al., 1999; Artero et al.,226

2004; Johansson et al., 2005; Novotńy and Hauser, 2006).227

On the axis bar, there are three distinct areas delineated by horizontal tick228

marks (Fig. 4) that are important to the axis scaling capability: the central229

focus area, and the top and bottom context areas. When the mouse is hover-230

ing over the focus area, an upward mouse wheel motion expands the display231

of the focus area outward and pushes outliers to the context areas (Fig. 5).232

A downward mouse wheel motion causes the inverse effect: focus region com-233

pression. Alternatively, the user may use the mouse wheel over either of the234
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two context areas to alter the minimum or maximum values separately. The235

scaling capability frees space and reduces line clutter, thereby making it easier236

to analyze relation lines of interest.237

4.3 Aerial Perspective238

[Fig. 6 about here.]239

The system also provides an innovative line shading scheme that is useful for240

quickly monitoring trends due to the similarity of data values over multiple241

dimensions (Jankun-Kelly and Waters, 2006). This shading scheme simulates242

the human perception of aerial perspective whereby objects in the distance243

appear faded while objects nearer to the viewer seem more vivid. In this244

implementation, aerial perspective shading can be used in either a discrete or245

a continuous mode. In the discrete mode, the lines are colored according to246

the axis region that they intersect which is similar to the technique described247

by Siirtola and Räihä (2006). If any point of a relation line is in the context248

(non-focus) area of at least one axis, the line is shaded with a light gray249

color and drawn beneath the non-context lines (Fig. 5). If all the points on250

a relation line fall within the query area of each axis (the area between the251

two query sliders), the line is colored using a dark gray value that attracts the252

viewer’s attention (Fig. 6). The remaining lines (non-query and non-context)253

are colored a shade of gray that is slightly darker than the context lines but254

lighter than the query lines.255

In the continuous mode, non-context lines go through an additional step to256

encode the distance of the line from the mouse cursor in a manner similar to257

the approach described by Jankun-Kelly and Waters (2006). Query lines that258
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are nearest to the mouse cursor are shaded with the darkest gray color while259

lines furthest from the mouse cursor are shaded with a lighter gray. The other260

query lines are shaded according to a non-linear fall-off function that yields261

a gradient of gray colors between extremes. Consequently, the lines that are262

nearest to the mouse cursor are more prominent to the viewer due to the more263

drastic color contrast and depth ordering treatments (Fig. 6) giving the viewer264

the ability to effectively use the mouse to perform rapid, visual queries.265

4.4 Descriptive Statistical Indicators266

To support the interactive analysis capabilities of the system, each axis offers267

visual representations of key descriptive statistics that are identified in Fig. 2268

(Siirtola and Räihä, 2006; Hauser et al., 2002). The mean, standard deviation269

range, and the frequency information are calculated for the data in the focus270

area of each axis. Alternatively, the user can configure the system to display271

the median and interquartile range. All plots and analysis in this paper utilize272

the mean and standard deviation display mode. These central tendency and273

variability measures provide a numerical value that indicates the typical value274

and how “spread out” the samples are in the distribution, respectively. The275

axis box plots represent the descriptive statistics for all the samples within the276

focus area of the axis. In each axis interior, the frequency information is also277

displayed by representing histogram bins as small rectangles with gray values278

that are indicative of the number of lines that pass through the bin’s region279

(see Fig. 2). That is, the darkest bins have the most lines passing through280

while lighter bins have less lines. In Fig. 5, the histogram display is illustrated281

during an axis scaling operation.282
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5 Parallel Coordinates Validation: North Atlantic Case Study283

As discussed previously, regression analysis is often employed to identify the284

most relevant climate relationships for tropical cyclone activity. Such tech-285

niques are effective in screening data and providing quantitative associations.286

However, multivariate analysis can be difficult. This section will outline how287

stepwise regression and parallel coordinates can compliment each other in such288

an analysis.289

Stepwise regression with a “backwards glance” is used which selects the opti-290

mum number of most important variables using a predefined significance value291

(90% in this study). Stepwise regression can compliment parallel coordinate292

visualization by isolating the significant variables in a quantitative fashion.293

An interactive parallel coordinates visualization can then be used to develop294

a deeper understanding of the complex relationships between the variables.295

An extra step is taken to ensure the proper selection of variables. The initially296

chosen variables are examined for multicollinearity; if any variables are corre-297

lated with each other by more than 0.5, one is removed and the code rerun.298

In this way, the chosen variables are truly independent of each other.299

A normalization procedure is also executed for equal comparison between the300

variables. Denoting σ as the standard deviation of a variable, y as the depen-301

dent variable (named storms, hurricanes, or intense hurricanes in this study),302

x as the predictor mean, and y as the dependent variable mean, a number k of303

statistically significant predictors are normalized by the following regression:304

(y − y)/σy =
k∑

i=1

bi(xi − xi)/σi (1)305
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The advantage of this approach is that the importance of a predictor may306

be assessed by comparing regression coefficients bi between different variables,307

and that the y-intercept becomes zero.308

In addition, xi may be interpreted (to a first approximation) as a “threshold”309

value which distinguishes between positive and negative contributions (for310

bi > 0), and the opposite for negative bi. Years when independent variables311

contain large deviations from the mean could be associated with very active312

or inactive years, and require closer examination. As will be seen, the parallel313

coordinates technique facilitates the examination of active and quiet Atlantic314

hurricane seasons.315

[Table 3 about here.]316

The 16 potential variables listed in Table 2 are examined in the stepwise re-317

gression, yielding several independent variables for each dependent variable.318

These results show that several climate factors impact tropical cyclone activ-319

ity. The chosen predictors are shown in Table 3, along with their normalized320

regression coefficient and sample mean. The explained variance (R2) is shown321

in the 3 table headings.322

The stepwise regression shows only one significant El Niño variable (late win-323

ter South Indian Ocean 200-mb meridional winds (4)) impacts total number324

of storms; it is the second most influential predictor. Late winter northwest325

coastal European SST (14) is the leading predictor. The North Atlantic Oscil-326

lation (manifested by 500-mb geopotential height in the North Atlantic (12))327

ranks third, and is also the only variable seen in all three tables. This suggests328

that the presence of a ridge in the Atlantic is conducive to an above average329

tropical cyclone season. Finally, low SLP in the southeast Gulf of Mexico (11)330
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also encourages the formation of tropical cyclones. Note that the coefficient331

has a negative sign, showing that the lower the pressure, the better the chance332

of tropical cyclone activity.333

For number of hurricanes, the analysis surprisingly shows that October–November334

SLP in the Gulf of Alaska (6) is the most important predictor. The physical335

role is not clear, although scientists know it is correlated to El Niño activity.336

Northeast subtropical Atlantic SST (16) and North Atlantic 500-mb geopoten-337

tial height (12) are tied for second, and southeast Gulf SLP again ranks fourth338

(11). The explained variance is 42% — more than the 34% for named storms.339

This suggests stronger predictor relationships for number of hurricanes.340

For intense hurricanes, the variance increases to 54%. In this case, the North341

Atlantic November 500-mb height variable (12) is the strongest predictor.342

Early summer tropical Atlantic SLP (10) ranks number two, followed by343

September 500-mb geopotential height in western North America (7) and344

February SST off northwest coastal Europe (14). The higher variance and dis-345

tinctly different chosen predictors suggests different environmental influences346

are required for intense hurricanes. This analysis correlates the presence of347

high pressure in the western U.S. and over the Atlantic, low summer Atlantic348

SLP, and warm SST as necessary conditions for intense hurricanes.349

Because there is unexplained variance and several predictors, can parallel co-350

ordinates glean any more information? To answer this question, the data sets351

are stratified into below normal, normal, and above normal seasons using352

the software’s interactive capabilities, and the significant predictors identi-353

fied by the stepwise regression are analyzed visually. Using the axis box plots354

(drawn using the standard deviation and mean), the below normal, normal,355

and above normal seasons are determined by moving the query sliders for the356
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axis of interest to encapsulate the lines above the standard deviation range,357

within the standard deviation range, and below the standard deviation range,358

respectively. After setting the query sliders, the aerial perspective shading359

highlights the relationships of interest, thus enabling rapid visual analysis of360

the variables.361

[Fig. 7 about here.]362

[Fig. 8 about here.]363

[Fig. 9 about here.]364

[Fig. 10 about here.]365

[Fig. 11 about here.]366

[Fig. 12 about here.]367

Figure 7 shows a plot for seasons with below normal named storms (sample368

size of 16). Even though the regression shows February Atlantic SST (14)369

as the most important overall predictor, it is not as effective for discerning370

inactive seasons. The plot shows considerable scatter, and with only 6 years371

of significantly below average SST. The dynamic query capabilities of this372

parallel coordinates application make these combined queries and subsample373

analysis an intuitive exercise.374

September–November Gulf of Mexico SLP (11) also exhibits much scatter,375

with a slight majority of years with above normal pressure. However, February–376

March 200-mb South Indian Ocean meridional winds (4) — a surrogate mea-377

surement of El Niño, shows 15 seasons (94%) of strong north winds, tightly378

clustered in the plots. This suggests El Niño is the major contributor to inac-379
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tive Atlantic tropical cyclone seasons. Note also that below normal November380

North Atlantic 500-mb geopotential heights (12) plays a pivotal role for quiet381

seasons. Fourteen seasons (87%) contain lower geopotential heights in Novem-382

ber, suggesting the presence of upper-level troughs which can shear tropical383

cyclones. However, this signal is not as strong as the El Niño predictor. Addi-384

tionally, many unshaded lines exist for positive 200-mb V, showing that other385

factors besides El Niño contribute to normal and active seasons. In fact, a386

similar parallel coordinates stratification analysis shows that November North387

Atlantic 500-mb geopotential heights (12) and September–November Gulf of388

Mexico SLP (11) tend to be the critical players for an active tropical cyclone389

season (not shown).390

Figure 8 shows seasons with below normal hurricane activity (19 seasons).391

El Niño again tends to dominate the signal through the fall Gulf of Alaska392

SLP (6) term. However, in contrast to number of named storms, Atlantic393

SST (16) becomes important for number of hurricanes. This suggests that394

when water temperature is below normal, tropical storms will have difficulty395

reaching hurricane status. For above normal hurricane activity (Fig. 9), June–396

July Atlantic SST (16), November North Atlantic 500-mb geopotential height397

(12), and Gulf of Mexico SLP (11) tend to exert dominant roles, with El Niño398

a secondary factor.399

Intense hurricanes warrant special consideration, since they cause 80% of the400

economic damage from tropical cyclones. Figure 10 shows that cold February401

Atlantic SSTs (14) and high Atlantic June–July SLP (10) tend to reduce the402

number of intense hurricanes, with November North Atlantic 500-mb geopo-403

tential heights (12) playing a secondary role and September 500-mb geopo-404

tential heights in western North America (7) contributing no role. In contrast,405

18



all four predictors have tightly clustered lines showing they all play dominant406

roles in seasons with above normal intense hurricane activity (Fig. 11). These407

terms are associated with the presence of ridges in the western U.S. and the408

Atlantic, below average Atlantic SLP, and warm wintertime Atlantic SST off409

the northwestern European Coast. Ridges are low shear environments, show-410

ing that the lack of upper level troughs is an important factor for seasons with411

many intense hurricanes. Low SLP indicates minimal subsidence. Sinking air412

suppresses cloud growth and also dries the lower atmosphere, both of which413

are not conducive to the formation and development of tropical cyclones. Low414

SLP also could indicate better organized tropical waves (from which many415

Atlantic tropical cyclones form). Warm wintertime northeast Atlantic water416

also is a good precursor for above average intense hurricane activity.417

This parallel coordinates application can also investigate the differences be-418

tween the extremely busy 2005 season and the slightly below average 2006419

season. Figure 12 shows the 2005 and 2006 seasons along with the chosen420

predictors from all three categories (named storms, hurricanes, and intense421

hurricanes) listed in Table 3. This plot reveals that most of the terms are422

nearly the same except for October–November SLP in the Gulf of Alaska (6)423

(above average in 2005, below average in 2006) and June–July SLP in the trop-424

ical Atlantic (10) (below average in 2005, above average in 2006). Klotzbach425

et al. (2006b) and Bell et al. (2007) show that the tropical Atlantic was quite426

dry through most of the 2006 hurricane season due to subsidence associated427

with the onset of an unusually late ENSO event (indicated by the Gulf of428

Alaska SLP), as well as frequent outbreaks of African dust storms that year.429
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6 Conclusion430

This research has shown that a visual analysis system based on interactive431

parallel coordinates can be used to confirm and clarify the results of step-432

wise regression in climate analysis. The effectiveness of the system concepts433

are demonstrated via a real-world case study to identify the most significant434

predictors for seasonal tropical cyclone statistics. While multiple regression435

provides an ordering of the most significant variables, the visual analysis us-436

ing the PCP system facilitates a deeper understanding of the environmental437

causes for above average and below average hurricane seasons.438
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Fig. 1. A common visualization technique used in climate studies is the scatter plot
overlaid with a linear regression line. This example shows the linear relationship
between June–July SST (16) in the northeastern subtropical Atlantic Ocean, and
the number of hurricanes from 1950 to 2006. The explained variance is 17%.
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Fig. 2. An annotated view of the parallel coordinate axis display widget. Normally,
an axis is displayed using a muted color scheme (left). However, when the mouse
moves into an axis space, the axis is displayed with the highlighted color scheme
and focus area limits are shown (right).
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Fig. 4. The axis bar is segmented into four distinct areas: the query area, the focus
area, and an upper and lower context area.
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(a) (b)

Fig. 5. A screen shot of the parallel coordinates application before (a) and after
(b) scaling has been performed. In this example, scaling occurs by performing an
upward mouse wheel function in the focus area of the axis which moves the values
for the top and bottom closer together, effectively stretching the display upward
and downward (with the base of the display fixed).
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(a) Discrete aerial perspective shading.

(b) Continuous aerial perspective shading.

Fig. 6. A screen shot of the aerial perspective shading capability which can be used
in either discrete (a) or continuous (b) shading mode. The line colors are determined
based on the location of the line with respect to the context, focus, and query areas
of the axes and, in continuous mode, the distance from the mouse cursor is encoded
with color value. In the above examples, the mouse cursor is positioned at the top of
the second axis (the IH axis) which highlights the storm seasons with above average
intense hurricane activity. The continuous shading mode gives more emphasis to
the lines representing the most active seasons.
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Table 1
Interaction and representation features included in the parallel coordinates based
visualization system developed in this research.

Focus+Context Interactively scales an axis and zooms

into a subset of relations for that axis.

Aerial Perspective Facilitates visual queries by shading lines

based on proximity to the mouse cursor using a

shading scheme that mimics human perception.

Dynamic Visual Query Explores multidimensional relationships

with double-sided sliders.

Statistical Indicators Indicates statistical

quantities to support interaction model.

Relocatable Axes Reorganizes the axes by dragging with

the mouse to observe the correlation between

variables.

Axis inversion Inverts the axis display scale by swapping

the top and bottom values.

Details-on-demand Shows additional details for the highlighted axis,

and displays the value on the axis scale under the

mouse by clicking on the axis with the

middle mouse button.

Customizable Display Modifies the display (statistics

display, color schemes, tick marks) via a pop-up

menu interface.

38



T
ab

le
2.

E
nv

ir
on

m
en

ta
l

tr
op

ic
al

cy
cl

on
e

cl
im

at
e

va
ri

ab
le

s
ev

al
ua

te
d

as
pr

ed
ic

to
rs

in
th

e
m

ul
ti

pl
e

re
gr

es
si

on
pr

oc
ed

ur
e.

V
ar

ia
b
le

N
am

e
G

eo
gr

ap
h
ic

al
R

eg
io

n

(1
)

J
u
n
e–

J
u
ly

N
iñ
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Table 3
Significant climate variables chosen from Table 2 by the stepwise regression for
number of named storms, hurricanes, and intense hurricanes in 1950-2006. Also
shown is the explained variance R2, the normalized coefficients b, and the sample
mean.

Number of Named Storms (NS)

(R2 is 34%)

Chosen Variables Normalized Sample Mean

Coefficients c

Feb. SST (14) 0.302 13.8

Feb.–Mar. 200-mb V (4) –0.244 2.5

Nov. 500-mb Geopot. Ht. (12) 0.232 5213

Sep.–Nov. SLP (11) –0.175 1015.0

Number of Hurricanes (H)

(R2 is 42%)

Chosen Variables Normalized Sample Mean

Coefficients c

Oct.–Nov. SLP (6) –0.284 1009.6

June–July SST (16) 0.259 22.2

Nov. 500-mb Geopot. Ht. (12) 0.258 5213

Sep.–Nov. SLP (11) –0.208 1015.0

Number of Intense Hurricanes (IH)

(R2 is 54%)

Chosen Variables Normalized Sample Mean

Coefficients c

Nov. 500-mb Geopot. Ht. (12) 0.345 5213

June-July SLP (10) –0.315 1016.2

Sep. 500-mb Geopot. Ht. (7) 0.292 5753.3

Feb. SST (14) 0.235 13.8
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