
Proceedings of Workshop on Visualization for Cyber Security (VizSec 2009), October 11, pages 39–44.

A Visual Analytic Framework for Exploring Relationships in Textual
Contents of Digital Forensics Evidence

T.J. Jankun-Kelly∗ David WIlson∗† Andrew S. Stamps∗ Josh Franck‡ Jeffery Carver§

J. Edward Swan II∗

Mississippi State University and University of Alabama

ABSTRACT

We describe the development of a set of tools for analyzing the tex-
tual contents of digital forensic evidence for the purpose of enhanc-
ing an investigator’s ability to discover information quickly and ef-
ficiently. By examining the textual contents of files and unallocated
space, relationships between sets of files and clusters can be formed
based on the information that they contain. Using the information
gathered from the evidence through the analysis tool, the visualiza-
tion tool can be used to search through the evidence in an organized
and efficient manner. The visualization depicts both the frequency
of relevant terms and their location on disk. We also discuss a task
analysis with forensics officers to motivate the design.

Index Terms: I.3.3 [Computer Graphics]: Picture/Image Gen-
eration; I.3.8 [Computer Graphics]: Applications—Visualization;
K.6.m [Management of Computing and Information Systems]:
Miscellaneous—Security

1 INTRODUCTION

Computer forensic investigation is still a relatively young field, and
in its youth lies a lack of sophisticated evidence analysis methods.
The difficulty in analyzing forensic evidence is that it is hard to
know what kind of information to expect on digital media, so com-
ing up with a trusted model of automated analysis is theoretically
complex. As a result, most forensics tools just present informa-
tion about files, the filesystem in which the files are contained, and
other aspects of the digital media so that the investigator has to do
all of the analysis him or herself. Since there could be a very large
amount of information stored on a digital storage device, it could
take hours or days to find all relevant information that could be used
to support a computer crime case. The rapid increase of computer-
based crime [4, 16, 23] combined with the difficulty to prosecute
such crimes [14, 22] presents several research challenges.

The most common process forensic investigators use to locate
information is to load up images of digital media into a program
such as EnCase [1], AccessData’s Forensic Toolkit (FTK) [2], or the
Autopsy Forensic Browser [6, 8] and then use the tools in them to
search for useful information, either by manually looking through
the directory hierarchy, registry, web browser history and cache,
and other common locations where evidence could be found. It is
important to note that copies of the original hard drive (disk images)
are used exclusively in this analysis to preserve the integrity of the

∗Department of Computer Science and Engineering, Bagley College of
Engineering, Mississippi State University. Email: tjk@acm.org, {dw152,
ass78}@msstate.edu, swan@acm.org

†Now at Microsoft
‡Department of Psychology, Mississippi State University. Email:

jaf210@msstate.edu
§Department of Computer Science, University of Alabama. Email:

carver@cs.ua.edu

original evidence. Anything of interest that officers find searching
the image is added to their virtual evidence set which will then be
condensed into a report of their findings. Using this process re-
quires an investigator to be very familiar with the areas of digital
media in which useful information might be stored, and also that
they meticulously investigate all of these areas to ensure that noth-
ing has been left out.

While this process has been used successfully for forensic inves-
tigators all over the world, a certain level of automated pre-analysis
would likely be a welcome addition to the investigator’s toolkit.
Currently the most common form of automated pre-analysis is for
a keyword index to be generated from all of the textual contents
of the digital media so that it can be searched using a relatively
naive method. In FTK, only individual words can be searched for
at any given time, but conjunctive searches can be built out of mul-
tiple single-word searches. This allows the investigator to locate
files containing all of the terms together, but the terms may or may
not reside contiguously in the file. This makes it more difficult
to find contextually-bound search terms such as ‘investment fraud’
opposed to just ‘fraud.’

The intention of this project is to expand upon this simple
method by allowing an investigator to see all of the files and clusters
in which a set of words all exist, and also to allow them to easily
find information that they may not have been looking for by show-
ing them the most prevalent words found in the evidence. By vi-
sually depicting the importance of words and their relation to other
information in the evidence, the investigator will be able to find
new potentially useful information with much less effort expended
on their part.

2 RELATED WORK

Commercial and open source tools currently provide a text-based
platform for forensics officers. It is our premise that visualization
will augment these tools to improve forensic analysis. Our focus
is in the realm of hard disk forensics. There a few initial efforts
in this area. Teerlink and Erbacher’s work [20, 21] present hard
disk data two ways. The first uses a matrix of squares, one for
each file, each luminance-encoded based upon a chosen metadata
attribute (e.g., last modified date or size); their second display uses
a treemap [3, 19] to show the same information within its hierar-
chical context (not all files are shown in this case, and the color
scheme is altered). While this method does assist in locating files
with unusual metadata characteristics, the issue we are investigat-
ing requires inspection of the file’s contents. For looking at file con-
tents, Schwartz and Liebrock [18] provide a histogram-like version
of Tile-Bars [12] for finding the distribution of search strings across
a disk image. Their visualization is based upon a priori strings (i.e.,
ones provided by the user), and is thus less beneficial when search-
ing for evidence beyond that initial set. In addition, the locations of
the files are only given as strings. The visualization proposed here
provides both the context of the searched strings on the disk while
facilitating discovery of terms of interest.

39

swan
Note
©2009 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes or for creating new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted component of this work in other works must be obtained from the IEEE.




Proceedings of Workshop on Visualization for Cyber Security (VizSec 2009), October 11, pages 39–44.

Figure 1: Experimental setup for our task analysis. Left : Experimental rig with keyboard, mouse, and video capture. Right : Analysis tool we
developed to process expert trials. Webcam input is in the upper-left, screen capture video in the upper right, mouse events on the lower left,
and observer notes and analysis on the lower right.

3 VISUALIZATION AND SYSTEM DESIGN

3.1 Pre-Design Task Analysis

To provide a basis for the design of our textual-relationship visual
analytics tool, we first performed a contextual analysis [11, 13, 17]
with three forensics detectives to understand how they utilize tools
to find textual data; we reported the design of this study previ-
ously [15]. Officers were given a laptop with the Autopsy forensics
software and our two email investment fraud test cases and asked to
“do what they do normally” in their analysis (Figure 1 left). Interac-
tions with the system were recorded and they were allowed to take
notes and encouraged to verbalize their process for the observer.
We then used custom software we developed to analyze the video,
screen-capture, and input logs in a central interface to perform our
analysis (Figure 1 right).

Although three subjects does not produce enough power to do
traditional hypothesis testing, we saw very definite trends to guide
us in our design. For coding the user’s interactions, we categorized
user actions as either Selection (e.g., menu selection, scrolling, and
navigation), Manipulation (e.g., changing the type of view (hex vs.
ASCII) and examining metadata), Search (e.g., textual search using
the interface), or Note (e.g., analog or digital note taking); Search
and Note were further broken down by what was being searched for
(Name, Email, or Other for Search; Copying, Linking data, or Other
for Note). In all three cases, Selection predominated with two to
four times as many events; this is especially true for sessions where
little evidence bearing data was found. When evidence was found,
searching and manipulation had similar frequency. Searching was
spread amongst name and email address searches when evidence
was found.

Based upon our observations, we decided to focus on visualiza-
tions that facilitate drawing the user to the effective searches. For
example, while a name or amount may be found, finding the other
names/amounts related to them took significant searching. It is also
important to detail where this information was on the disk for ev-
idence collecting purposes and to find similar data. The design of
this visualization is presented next.

3.2 Visualization

Our visualization depicts three major pieces of information:

• A search-sensitive file hierarchy (Figure 2a).

• A tag cloud of terms in the selected files (Figure 2b).

A

B

C

Figure 2: Our textual contents forensics visualization system. It con-
sists of a treemap-like depiction of the hierarchy (a), a tag-cloud of
terms in selected files (b, currently empty), and metadata about the
selection. The contextual search and cluster views are not shown.

• Contextual information about the search (Figure 2c).

In additional, conjunctive search and disk cluster-based visualiza-
tion of search terms are also available. Each of these views is
linked, so that changes to one is reflected in the other. Our visu-
alizations extend extant methods (treemaps and tag clouds) with an
eye towards solving our specific forensics analysis problems; they
are also tailored for our audience of forensics officers. These meth-
ods are discussed next.

Search-Sensitive Hierarchy The hierarchy-view provides the
context for a search. It uses a modified squarified treemap [5]; node
size is based upon the number of word occurrences in a file by pass
the user’s initial filters; thus, no image or primarily-binary files are
included in the view. We modified the treemap two ways. First, we
distinguish between file and directory using icons similar to those
found on major operating systems. This was done in order to pro-
vide a familiar starting point to forensic officers as the views are
similar to those in everyday experience, other than the differing el-
ement size; in addition, the icons provide an at-a-glance difference
between an end-point in hierarchy (a file) and one with children (a
directory). Secondly, the left-side provides the context for upper-
levels in the directory (as opposed to eliding them or displaying
them surrounding the child directory). This both saves screen space

40



Proceedings of Workshop on Visualization for Cyber Security (VizSec 2009), October 11, pages 39–44.

Figure 3: Tag cloud for a selected webmail cache file. Selecting
terms here will highlight files containing the term.

(as opposed to the containing view) and has some familiarity (such
as the left-to-right opening hierarchical displays used in OS X).

The hierarchy view is “search-sensitive” since the location of
terms selected in the tag cloud or conjunctive search are indicated
by highlights in the tree-view. The user can choose to update the
node sizes to reflect selected tag cloud terms or searched terms; this
facilitates finding where evidence bearing material is located on the
disk. Currently, the displayed size of the files/directories is fixed
even if words are filtered out by later operations; we are currently
investigating dynamically resizing the nodes but have yet to find
a methods which does not potentially shuffle around the display
disruptively. Selecting a file in the display also triggers a change in
the tag cloud to reflect the terms in the newly selected file.

Term Tag Cloud When a file is selected, a tag cloud is generated
based upon the parsed terms (Figure 3, see System Infrastructure
for term generation details). The size of a word in the display is
based upon its frequency; larger terms occur more often in the file.
We use a quadratic falloff to determine word size; the area of the
word decreases linearly with smaller frequency. Words selected
in the view will be highlighted in the textual display of the file;
in addition, words can be selected to be removed from the view.
Highlighted terms (in red) match search terms from the conjunctive
search view.

Since text on a disk originates from different file types, we have
additional filters that a user can apply. For example, the example in
Figure 3 is from a browser cache of webmail browsing. Such files
contain significant textual “noise” such as HTML tags or custom
markup for the site. Thus, we provide filters that can be enabled
for common data: HTML, email, etc. In addition, users can add
additional filters for specific words manually or by selecting a term
in the tag cloud. The user can also specify the maximum numbers
of terms to show, specify a minimum frequency of occurrence be-
tween a word is shown, and specify a minimum and maximum word
length for filtering. The filtering is propagated to all other views.

Contextual View The contextual view displays metadata about
the selected file or directory. This includes ownership, permissions,
file/directory size, its creation and modification size, and other sim-
ilar information. This space is also used to show the contents of a
selected file as desired. When a term is selected, metadata for how
often the term occurs in the selected file and over the entire disk is
provided.

Contextual Search View Sharing the same space as the tag
cloud view, the contextual search view is used to search for a spe-

Figure 4: Our contextual search interface. As a word is entered,
phrases that begin or end with that term are shown.

Figure 5: Cluster view of the selected terms. The top layer shows
the entire disk, the middle layer a selected subregion (between the
triangles), and the bottom a cluster-by-cluster depiction. Clusters
with the search term are highlighted blue.

cific set of terms (Figure 4). Starting with a given term, such as
“money”, the list view populates with phrases that start or end with
that term. Selecting one of these terms will populate the list with
the next set of phrases starting/ending with the same two words
and so on. The user can then bring up a list of which files that
term is found in and highlight them within the hierarchy view. This
phrase-based search supports finding specific mixed terms such as
“investment fraud” that pure conjunctive-based search would group
with non-phrases.

Cluster View Our final view displays where information is lo-
cated on the physical disk; it is used to highlight clusters associated
with the currently selected terms in the tag cloud view (Figure 5).
This view primarily benefits identifying where deleted files bearing
evidence are located as they will not appear in the hierarchy view.
The display is essentially a horizontal rectangle that contains the
entire range of clusters at one time as individual lines (or rectan-
gles for contiguous cluster ranges). There are two levels of zoom
that can be achieved through clicking this initial single rectangle.
If the user clicks (and optionally drags horizontally) over a region
of the cluster view, two additional rectangular regions will appear
in the same space as the original view, both containing different
zoom levels. The middle zoom region shows whatever arbitrary
region was selected by clicking or dragging in the topmost clus-
ter view. Based on that selection, the third zoom panes selection is
determined, which depicts a one-to-one vertical line to pixel render-
ing of the center of the selected middle zoom region. The middle
zoom region can also be clicked to move around the lowest-level
zoom view for more precise investigation. Triangular glyphs above
both of the upper-most views delineate where the zoom regions in
the following zoom level are coming from. The location and other
metadata for the selected cluster is displayed in the contextual view.

41



Proceedings of Workshop on Visualization for Cyber Security (VizSec 2009), October 11, pages 39–44.

DatabaseDisk Image Visualizer

fls icat

dls dcat

File

Cluster strings tokenizer

Analyzer

Figure 6: Workflow of our forensics visual analytics system. The Analyzer processes the text from the disk image and stores it in a database that
the Visualizer depicts.

3.3 System Infrastructure
To provide interactive exploration, our visual analytic framework
consists of two primary applications (the Analyzer and the Visu-
alizer) built around different tools. Figure 6 summarizes the ap-
plication workflow: The Analyzer processes disk images for string
tokens, writes these to a database with metadata identifying the file
or cluster corresponding to the cluster, and then the Visualizer de-
picts the disk image as discussed previously. The details of these
two systems are detailed here.

For the Analyzer preprocessor, we make extensive use of the
Sleuth Kit [7, 9] to extract the file structure, unallocated sectors,
and textual data. The file hierarchy and unallocated clusters are
treated separately before merging their data with our tokenizer, it-
self written in Python. For a given disk image, we determine the
file structure via the fls tool; walking over this structure, the con-
tents of the file on the image is extracted via icat and the textual
content of this stream is distilled via the UNIX strings utility.
A similar process is used for unallocated clusters: Clusters are enu-
merated via dls, their content extracted via dcat, and their text
distilled via strings. The strings are then processed by our tok-
enizer, which separates the lines into tokens, identifies the tokens as
a word, number, US currency, URL, email addresses, or unreadable
symbols and stores these in our SQLite database. For each token,
the next and previous token is also referenced for contextual text
search, and the corresponding file and cluster is stored with meta-
data for said file and cluster also recorded for the visualization. The
current implementation requires roughly 20 hours to index all the
clusters on a 4.5GB disk; for a subsection of interest (such a 4.5MB
web cache directories), it takes about 20 minutes. This is a one time
process, but we are examining means to accelerate its performance.

The Visualizer, written in Python utilizing the wxPython cross-
platform interface library and OpenGL for hardware accelerated
rendering, extracts information from the database using the Elixir
ORM. The Visualizer uses the database exclusively; it does not re-
quire access to the original disk image. Data is requested as needed.
Most interactions are responsive with no noticeable lag in hierarchy
navigation or contextual searches. Extracting and rendering the tag
cloud is the most costly operation, requiring roughly 5 seconds for
displaying 1000 items; this lag only occurs the first time the cloud is
calculated. Filtering reduces this time, and it is unlikely that an an-
alyst will need to see or be able to make sense of that many tokens
in a single tag cloud.

4 CASE STUDY: EMAIL INVESTMENT FRAUD

To demonstrate our visual analysis framework, we provide a small
case study. For our task analysis, we generated an investment fraud
cases where a fictitious criminal William Slick utilized the email
distribution services of an intermediary “abacus55” to commit the
fraud. We created several test email accounts on different web-mail

services and simulated standard web-browsing and email behav-
ior with the fraudulent behavior interjected. The 4.5GB Analyzer-
processed disk image of this information was then provided for
analysis. All the participants knew of the case was that fraud of
some case was suspected and that it was committed via the inter-
net; the names and specifics were not detailed. In this case study,
we present how analysts could use our tool to find the email fraud
evidence.

Given the sparse details of the case, a search for fraud related
terms is the first course of action. An initial search for “money”
turns up hits in several files, most of them in the web cache directory
(Figure 7). The contextual search also shows two right-continuation
phrases, “money-getting” (one hit) and “money-home-page” (two
hits). “Money-getting” seems promising; selecting it takes us to
the file containing it. The tag cloud for the file contains a mix of
HTML codes for the web-mail page and text from the rest of the
cached messages (Figure 3). By selecting only word terms, filter-
ing out common HTML and web-mail tags, and looking for words
with a minimum frequency, the tag cloud confirms that money was
mentioned 13 times in the selected file (Figure 8).

Given that fraud is the suspected crime, other terms related to
fraud can be searched. For example, a search for “investment”
turns up one hit. Due to its small number, it would be given lit-
tle screen space in the tag cloud; like all such clouds, it suffers
from the issue of hiding infrequent terms. To address this, we
can filter out terms that are more frequent that a given thresh-
old, allowing us to focus on infrequent terms. Such a search dis-
plays the “investment” hit in the same file that the “money” terms
were found (Figure 9). We note (from the metadata view on the
lower right) that this is the only occurrence of “investment” on
the disk. Now that we have likely found an evidence file, we
can search for specific numeric amounts (by choosing to display
only currency data) or related emails. For example, if we select
email addresses, the address of our suspected is clearly identified:
willieslick@hotmail.com (Figure 10). If desired, we can
inspect the contents of the file directly, find other email addresses,
or search for additional related files on the disk.

5 CONCLUSIONS AND FUTURE WORK

We have described a visual analytics tool for finding relationships
amongst text terms on a disk image. The Analyzer component finds
term occurrence, frequency, and contextual relationships both in
files and unallocated clusters while the Visualizer depicts the re-
lationships. We use a modified treemap display for the hierarchy
and provide several interactions with a tag cloud display for drilling
down to terms of interest; these combine with other functionality to
find related terms. We have demonstrated the efficacy of our con-
tributed framework via a case study and motivated its design via our
task analysis with forensic practitioners.

42



Proceedings of Workshop on Visualization for Cyber Security (VizSec 2009), October 11, pages 39–44.

Figure 7: Initial search for the term “money” on the disk The list on the left enumerates the occurrences of the term.

Figure 8: Filtered tag cloud for one of the selected values for the term “money.”

43



Proceedings of Workshop on Visualization for Cyber Security (VizSec 2009), October 11, pages 39–44.

Figure 9: Filtered tag cloud for one of the selected values for the term
“invest” in the same file as the occurrence of “money.”

Figure 10: Filtered tag cloud for selecting only email addresses; the
address matches our suspect.

For the future, there are three primary avenues of research. First,
as this project is part of a larger Analyze-Visualization-Validate re-
search framework; we are pursing validation of the effectiveness of
the visualization. While we have confidence from our case studies
and domain analysis that the visualization benefits forensic analy-
sis, we do not have any quantitative evaluation of this belief. We
are currently working with the Mississippi State Forensics Train-
ing Center for this task. Second, in terms of the technical details,
we are investigating ways to speed up the caching and display of
search terms. While our current solution works, we believe there is
still more we can do to eek out performance. We also have plans
to speed up the initial Analyzer phase; one idea is to use FPGAs
to generate the terms while the disk is being imaged as was done
for image file search [10]. Finally, there are elements of the visual
display we wish to improve. The unallocated cluster visualization
needs more refinement; the scale of the entire disk requires some-
thing more than our three-stage depiction. In addition, it is worth
pursuing how additional metadata, such as those shown by Teerlink
and Erbacher’s work [20, 21], can be integrated meaningfully into
the display.

ACKNOWLEDGEMENTS

We gratefully acknowledge the support of the numerous law en-
forcement officers which either participated in the study, worked
with us on its design, or answered questions from us. We also
thank Dr. David Dampier, Kendall Blaylock, and Gary Cantrell of
the MSState Forensics Training Center for their assistance. The
work is funded by a National Science Foundation CyberTrust grant

#CNS-0627407.

REFERENCES

[1] EnCase. http://www.guidancesoftware.com/
products/ef_index.aspx. Last checked May 2009.

[2] AccessData. Forensic toolkit 2.0. http://www.accessdata.
com/forensictoolkit.html. Last checked May 2009.

[3] B. B. Bederson, B. Shneiderman, and M. Wattenberg. Ordered and
quantum treemaps: Making effective use of 2D space to display hier-
archies. ACM Transactions on Graphics, 21(4):833–854, Oct. 2002.

[4] A. Bequai. Syndicated crime and international terrorism. Computers
and Security, 21(4):333–337, 2002.

[5] M. Bruls, K. Huizing, and J. J. van Wijk. Squarified treemaps. In
Proceedings of the Joint Eurographics/IEEE TVCG Symposium on Vi-
sualization 2000, pages 33–42, 2000.

[6] B. Carrier. Autopsy forensic browser. http://www.sleuthkit.
org/autopsy/. Last checked May 2009.

[7] B. Carrier. The Sleuth Kit. http://sleuthkit.org/
sleuthkit/. Last checked May 2009.

[8] B. Carrier. Know Your Enemy, chapter Ch. 11: Computer Forensics
Basics. Addison Wesley, 2nd edition, 2004.

[9] B. Carrier. File System Forensic Analysis. Addison Wesley, 2005.
[10] Y. S. Dandass. Hardware-assisted scanning for signature patterns in

image file fragments. In 40th Annual Hawaii International Conference
on System Sciences, page 268. IEEE Computer Society, 2007.

[11] J. T. Hackos and J. C. Redish. User and Task Analysis for Interface
Design. John Wiley & Sons, Inc., New York, 1998.

[12] M. A. Hearst. Tilebars: Visualization of term distribution information
in full text information access. In CHI, pages 59–66, 1995.

[13] D. Hix and H. R. Hartson. Developing User Interfaces: Ensuring
Usability through Product & Process. John Wiley & Sons, Inc., New
York, 1993.

[14] A. Householder, K. Houle, and C. Dougherty. Computer attack trends
challenge internet security. IEEE Computer, 35(4):5–7, 2002.

[15] T. J. Jankun-Kelly, J. Franck, D. Wilson, J. Carver, D. Dampier, and
J. E. Swan II. Show me how you see: Lessons learned from studying
computer forensics experts for visualization. In J. Goodall, G. Conti,
and K.-L. Ma, editors, Proceedings of the Fifth International Work-
shop on Visualization for Computer Security, volume 5210 of Lecture
Notes in Computer Science, pages 80–86. Springer, September 2008.

[16] G. Kessler and M. Schirling. Computer forensics: Cracking the books,
cracking the case. Information Security, pages 68–81, 2002.

[17] D. Mayhew. The Usability Engineering Lifecycle: a Practitioner’s
Handbook for User Interface Design. Morgan Kaufmann Publishers,
San Francisco, 1999.

[18] M. Schwartz and L. M. Liebrock. A term distribution visualization ap-
proach to digital forensic string search. In J. R. Goodall, G. J. Conti,
and K.-L. Ma, editors, Proceedings of the Fifth International Work-
shop on Visualization for Computer Security, volume 5210 of Lecture
Notes in Computer Science, pages 36–43. Springer, 2008.

[19] B. Shneiderman. Tree visualization with treemaps: a 2-d space-filling
approach. ACM Transactions on Graphics, 11(1):92–99, Jan. 1992.

[20] S. Teelink and R. F. Erbacher. Foundations for visual forensic analysis.
In Processings of the 7th IEEE Workshop on Information Assurance,
pages 192–196, 2006.

[21] S. Teelink and R. F. Erbacher. Improving the computer forensic anal-
ysis process through visualization. Communications of the ACM,
49(2):71–75, 2006.

[22] R. Thompson. Chasing after ’petty’ computer crime. IEEE Potentials,
18(1):20–22, 1999.

[23] H. Wolfe. Computer forensics. Computers and Security, 22(1):26–28,
2003.

44


