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Abstract—This paper presents a 2D flow visualization user study that we conducted using new methodologies to increase the 
objectiveness. We evaluated grid-based variable-size arrows, evenly spaced streamlines, and LIC variants (basic, oriented, and 
enhanced versions) coupled with a colorwheel and/or rainbow color map, which are representative of many geometry-based 
and texture-based techniques. To reduce data-related bias, template-based explicit flow synthesis was used to create a wide 
variety of symmetric flows with similar topological complexity. To suppress task-related bias, pattern-based implicit task design 
was employed, addressing critical point recognition, critical point classification, and symmetric pattern categorization. In 
addition, variable-duration and fixed-duration measurement schemes were utilized for lightweight precision-critical and 
heavyweight judgment-intensive flow analysis tasks, respectively, to record visualization effectiveness. We eliminated outliers 
and used the Ryan REGWQ post-hoc homogeneous subset tests in statistical analysis to obtain reliable findings. Our study 
shows that a texture-based dense representation with accentuated flow streaks, such as enhanced LIC, enables intuitive 
perception of the flow, while a geometry-based integral representation with uniform density control, such as evenly spaced 
streamlines, may exploit visual interpolation to facilitate mental reconstruction of the flow. It is also shown that inappropriate 
color mapping (e.g., colorwheel) may add distractions to a flow representation. 

Index Terms—Flow visualization, user study, visualization effectiveness, flow synthesis, task design, test strategy, LIC, evenly 
spaced streamlines.  
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1 INTRODUCTION
low visualization seeks to provide insight into flow 
patterns for visual data analysis and plays a crucial 
role in oceanographic-atmospheric modeling, compu-

tational fluid dynamics (CFD) simulation, and electro-
magnetic field analysis. Texture-/image-based visualiza-
tion methods [1] such as Line Integral Convolution (LIC) 
[2] are gaining considerable attention due to the dense 
continuous representation, compared to the sparse dis-
crete representation employed by geometry-/glyph-based 
techniques [3] like arrows and streamlines. Different 
visualization techniques may be advantageous in differ-
ent flow analysis tasks. Of the many flow visualization 
algorithms, only a few have been evaluated to determine 
their effectiveness [4], [5]. As a consequence, the best 
methods may not have been incorporated into visualiza-
tion systems. This situation prevents domain scientists 
from unleashing the power of emerging techniques to 

explore complex flow phenomena. Without their feed-
back, visualization researchers may not realize practical 
needs to improve existing algorithms or find new prob-
lems to devise innovative methods. Thus more user stud-
ies are needed to better understand the relative merits of 
each flow visualization technique [6]. 

As stated in the 2006 NIH-NSF report on Visualization 
Research Challenges [7], user studies are important in the 
research, development, and deployment of flow visuali-
zation. A lot of work needs to be done to resolve bias is-
sues that may occur through various stages or compo-
nents of a user study. Without bias avoidance method-
ologies, a flow visualization user study could be heavily 
compromised. There is more to a flow visualization user 
study than the scenarios (e.g., surface, volume, and time-
varying flows) being considered, the techniques (e.g., 
IBFV [8], IBFVS [9], and ISA [10]) being evaluated, the 
flow features (e.g., separation, attachment, and vortex 
core) being examined, and the specific yet usually ad-hoc 
findings being obtained. Thus conducting objective 2D 
flow visualization user studies, even with traditional and 
well-known techniques, remains an open problem. The 
valid methodologies gained from such efforts will not 
only refine our understanding of some (well-known) 2D 
flow visualization techniques, e.g., by offering quantita-
tive support for qualitative evidence or anecdotal advice, 
but also and more importantly help formulate a general 
framework that is necessary for carrying out convincing 
flow visualization user studies with more complex con-
figurations. 
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Motivated by the necessity for and significance of ef-
fective user study methodologies, we conducted a 2D 
flow visualization user study, which builds on Laidlaw et 
al.’s pioneering work [4] but features new strategies and 
accordingly important improvements. By minimizing 
bias, along with refining the statistical data analysis, we 
made this user study as objective as possible and ob-
tained reliable findings from the results. The contribu-
tions of our work lie in: 

1. Explicit flow synthesis. We propose to use ex-
plicit/parameterized flow synthesis to combat 
data-related bias. We developed one such flow 
synthesizer to automatically generate many flows 
with nearly the same topological complexity but 
with different structures. In particular, symmetric 
flows allowed us to devise novel flow analysis 
tasks such as symmetric pattern categorization. 

2. Implicit task design. To reduce task-related bias, we 
present implicit task design, i.e., designing sample-
free pattern-based flow analysis tasks whose ful-
fillment indirectly requires participants to be highly 
engaged in examining flow directions  the fun-
damental information governing various complex 
flow features. Previous work [4] does not address 
this concept or its importance and hence not all 
tasks are implicit. In this user study, we designed a 
full set of implicit tasks to minimize bias while 
supporting sophisticated flow analysis.  

3. Diverse evaluation perspectives. Despite an inevitable 
limit on the number of techniques under evalua-
tion, we selected a set that allows us to perform 
evaluation from diverse perspectives including 
representation continuity, visual intuition, image 
contrast, and color mapping. Specifically, grid-
based variable-size arrows, evenly spaced stream-
lines, and LIC variants (basic, oriented, and en-
hanced versions) are representative of many ge-
ometry-based and texture-based 2D techniques in 
these aspects, apart from the working mechanism. 

4. Hybrid timing strategy. By characterizing flow anal-
ysis tasks, we integrated two timing schemes to 
collect performance evaluation results: a variable 
duration for lightweight precision-critical tasks and 
a fixed duration for heavyweight judgment-
intensive tasks. This hybrid strategy helps reveal 
the subtle differences in visualization effectiveness 
that may exist between techniques. 

5. Refined statistical analysis. We refined the statistical 
data analysis method used in previous work [4]. 
Outlier results were appropriately processed and 
the Ryan REGWQ post-hoc homogeneous subset 
tests were employed to draw valid conclusions. 

This paper is organized as follows. Section 2 presents 
the particulars of the synthetic flow datasets, the selected 
flow visualization techniques, and the pattern-based task 
design in our user study. Section 3 describes our session-
based test strategy. Experimental results and statistical 
data analysis are given in section 4. We conclude this pa-
per with a brief summary and outlook on future work. 

2 EXPERIMENTAL COMPONENTS 
In this section, we present our approach for three funda-
mental components of a typical flow visualization user 
study, i.e., the flow datasets, the flow visualization tech-
niques, and the flow analysis tasks. In general, flow data-
sets are visualized using various techniques to create im-
ages, which are shown to participants to answer ques-
tions by performing flow analysis tasks. Statistics on both 
answer correctness and response time are recorded to 
determine which techniques are best in which aspects. We 
can synthesize a wide variety of symmetric flows with an 
appropriate degree of topological complexity to reduce 
data-related bias. In addition, our pattern-based task de-
sign mechanism engages participants in thorough flow 
investigation without the bias that sample-based task de-
sign may cause. The ultimate goal was to objectively 
evaluate a set of representative techniques on their effec-
tiveness in 2D flow visualization. 

2.1 Synthetic Flow Datasets 
To conduct a flow visualization user study, participants 
are usually asked to examine a collection of images pro-
duced using the techniques being evaluated. The use of a 
single dataset would introduce a learning effect. Thus it is 
mandatory that different datasets be employed in order to 
avoid memory retention issues. On the other hand, using 
multiple flows may incur data-dependent bias as the 
evaluation is affected by the differing complexities of the 
flows. Fortunately, this kind of bias can be suppressed to 
an acceptable degree by generating equally complex syn-
thetic flows. Laidlaw et al. [4] adopted an implicit flow 
synthesis method, by which nine positions are selected in 
a unit square and the associated vectors are given within 
[-1, 1] × [-1, 1], both using uniform random distribution, 
before vector interpolation is applied between these initial 
positions to yield a flow field defined on a specified 
number of grid points. The topology of the flow [11], [12], 
[13] resulting from this procedure is unpredictable. In 
other words, it is difficult to control the number of critical 
points, their locations, their types, and the overall com-
plexity. Our user study requires a method that can gener-
ate centers and symmetric flow patterns, of which the 
latter are used to design symmetry-categorization tasks. 
To address this need, we propose to use an explicit flow 
synthesis strategy, which provides flexibility and control 
in creating pseudo flows by means of parameterized 
placement and configuration of critical points. 

Zhang et al. [14] gave an informative survey of vec-
tor/flow field design and presented a tri-stage method, 
i.e., initialization, analysis, and editing, for advanced in-
teractive flow synthesis on 2D manifolds. The initializa-
tion stage is based on van Wijk’s basis vector field ap-
proach [8], by which some control parameters are as-
signed to each critical point to define a basis field and 
multiple basis fields are combined to create an entire syn-
thetic flow. We employed such a basis vector field scheme 
while incorporating it with several symmetric pattern 
templates to allow for fast batch-mode generation of 
many flows. Compared to the analysis and editing stages 
of Zhang et al.’s method [14], these pattern templates 
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serve as some specifically-devised constraints on both the 
distribution and the configuration of critical points to 
achieve automatic flow design. Thus our ex-
plicit/parameterized flow synthesis strategy is capable of 
maintaining nearly the same degree of topological com-
plexity among the resulting flows, effectively reducing 
data-related bias. To our knowledge, our flow visualiza-
tion user study is the first to value and apply explicit flow 
synthesis. 

The positions and types of critical points largely de-
termine the structure and behavior of a flow field. Laid-
law et al. [4] employed saddles, foci, and nodes as the 
constituent elements in their task design, whereas we use 
saddles, foci, and centers because it may be difficult for 
participants to distinguish between foci and nodes, since 
their actual shapes may significantly differ from ideal 
illustrations. Our flow synthesizer is built on the explicit 
specification of centers/foci coupled with the derivation 
of saddles (from the interaction among centers and foci). 
It enables not only accurate configuration of centers/foci 
to meet the need of our task design but also more control 
over the number of critical points. 

To build a basis vector field, a force composition ap-
proach is adopted in our flow synthesizer, which governs 
the influence of an explicitly specified critical point 
(ESCP), either a center or a focus, on an arbitrarily placed 
virtual massless particle. The parameters for an ESCP are 
radial force RAD (0 for centers), rotational force ROT, 
clockwise/counter-clockwise orientation, sink/source 
(i.e., attracting/repelling for foci), and a scaling variable λ 
that is used in combination with the inverse squared dis-
tance to emulate force attenuation effects. Given these 
parameters, the two components of the composite force 
on the particle can be analytically represented. The net 
force of multiple ESCPs on an arbitrary particle is ob-
tained through a linear composition with the weight of 
each ESCP inversely proportional to the particle-ESCP 
distance. Despite the inconsistency with Newton’s second 
law in the strict sense, the use of a vector with the two 
components proportional to the two components of the 
net force, respectively, effectively models the motion di-
rection and velocity magnitude of the particle. 

The ability of our flow synthesizer to explicitly place 
and configure centers/foci makes it possible to create 
symmetric flows in support of our pure pattern-based 
task design mechanism. To increase the diversity of 
symmetric flow patterns, ESCPs are randomly placed on 
a per pair basis in a unit square, which is then sampled at 
two resolutions. One resolution TRES is used for texture-
based visualization techniques and the other, GRES, for 
geometry-based OpenGL-dependent techniques. To pre-
vent ESCPs from being either crowded together or sepa-
rated excessively, three ESCP templates are constructed 
via a polar coordinate system to specify both the distance 
range ρ in which each ESCP is radially jittered from the 
center of the square and the angle range ω in which each 
ESCP is circularly jittered off of one of K (an even integer) 
uniformly distributed center-based reference radial lines 
(Fig. 1). The combined effect of radial jittering and circu-
lar jittering leads to random distribution of ESCPs, one 

within each of the truncated-fan-shaped blocks. In this 
way, a wide range of flow fields can be synthesized, each 
with a relatively balanced layout of a fixed number of 
ESCPs and a slightly varying number of derived saddles 
to maintain similar topological complexity. In fact, ran-
dom placement is performed on only one half of the K 
ESCPs, i.e., the primary ESCPs (one within each light blue 
block in Fig. 1), whereas the other half, consistent in the 
center/focus type with the primary, are placed precisely 
by exploiting the specific spatially symmetric property 
and are hence called the mirror ESCPs (one within each 
gray block in Fig. 1). Likewise, the sink/source type and 
the clockwise/counter-clockwise orientation are ran-
domly selected for each primary ESCP, whereas both are 
accordingly determined for its mirror ESCP. Specifically, 
two paired ESCPs are consistent except for the clock-
wise/counter-clockwise orientation for x-axis and y-axis 
symmetric flows. In fact, multiple asymmetric flows can 
be produced by altering the sink/source type and/or the 
clockwise/counter-clockwise orientation of the mirror 
ESCPs of a symmetric flow. Topologically asymmetric 
flows, formed by geometrically symmetric ESCPs, allow 
for thorough evaluation of competitive visualization 
techniques by challenging the participant’s perception of 
the flow both locally (for the flow direction and the types 
of every critical point) and globally (for the position of 
every critical point and the consistency/inconsistency 
between each pair of ESCPs in the types). 

The parameters for the explicit flow synthesizer in our 
user study are: RAD = 0 for centers and 200 for foci, ROT 
= 1000, λ = 0.125, K = 8, ρ = [0.24, 0.42], ω = [-7.5°, 7.5°], 
TRES = 706, and GRES = 400. These values for the first six 
parameters can generate high-quality flow fields. The 
ratio between RAD and ROT guarantees that centers and 
foci are easily distinguishable in an image if the visualiza-
tion technique itself is able to show both of these two 
kinds of flow features. For x-axis/y-axis symmetric flows, 
no ESCP is put at the square center, whereas an ESCP of 
type center may be optionally placed there to make cen-
ter-symmetric flows. Tests with the above settings indi-
cate that the number of all critical points in a synthetic 
flow falls within the range [11, 15]. 

2.2 Flow Visualization Techniques 
A flow visualization user study is usually concerned with 
flow direction, flow orientation, and velocity magnitude. 
In our user study, flow direction is twofold [15], [16], de-
noting both negative and positive directions tangent to 
the flow. However, flow orientation refers to only the 
positive direction of the flow, as is the case with the defi-
nition of oriented LIC [16]. Furthermore, these three flow 
characteristics may be examined indirectly (implicitly) by 
designing pattern-based tasks related to flow topology. 

We considered 54 techniques, which are categorized 
into hedgehogs, streamlines, and LIC (Table 1). The selec-
tion of an appropriate set from these candidates was 
based on thorough investigation. First, this set contains 
traditional methods, popular approaches [2], [16], [17], 
and recent advances [18] in 2D flow visualization such 
that conclusions may be drawn as to whether the more 
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recent techniques are better. Second, each technique con-
veys at least two flow characteristics. Comparisons may 
be made to determine which techniques outperform the 
others in which aspects. Third, this set addresses geome-
try-based and texture-based methods, exhibiting a transi-
tion in the degree of continuity (0D, 1.5D, and 2D) regard-
ing flow representation. This coverage may help find 
clues for why some techniques are more effective than 
others. Fourth, each technique adopts a color map such 
that hints may be gained on how to exploit the strengths 
while conquering the weaknesses in the use of color. 
Color encoding involves visual perception and human 
cognition issues and is an emerging research area [19] of 
visualization. Our focus is not placed on the design or 
selection of the best color map schemes. Instead the goal 
of our work in this aspect is to evaluate visualization 
techniques equipped with a colorwheel [20] or rainbow 
color map and report their respective advantages and 
disadvantages. 

Table 2 gives a brief description of the seven selected 
techniques, the flow attributes that each conveys, and the 
flow analysis tasks that each supports. Fig. 2 shows the 
images produced by using each technique to visualize the 
same synthetic x-axis symmetric flow, as well as the two 
color maps. 

These seven techniques have each been acclaimed to be 
effective for visualizing 2D flows. Compared to the pin-
like glyph (top left in Table 1) and the intensity-tapering 
icon (top right in Table 1), the arrow shape is relatively 
intuitive and unambiguous in displaying the flow orien-
tation. Variable-size arrows emulate some degree of ran-
dom distribution, alleviating the cluttering problem that 
usually occurs with fixed-size arrows in turbulent flow 
areas. Grid-based arrows outperform jittered ones (i.e., 
actual random distribution) in facilitating mental recon-

struction of directional information [6]. An uncontrolled 
layout of streamlines tends to incur cavities or cluttering, 
whereas an evenly spaced streamline placement [18], [21], 
[22] can produce an aesthetic as well as informative im-
age. The colorwheel [20] maps two characteristics of the 
flow (orientation and magnitude) to the three compo-
nents of HSV color space (hue, saturation, and val-
ue/brightness in Fig. 2i). Preliminary candidates-
screening tests showed that for arrows and evenly spaced 
streamlines, the use of either white primitives over a col-
orwheel background or rainbow color-mapped primitives 
over a black background is more understandable than the 
use of black primitives over a white background in de-
picting the velocity magnitude. One hypothesis is that the 
colorwheel might help with visual interpolation across 
the flow in an image of arrows or streamlines, but the 
preliminary tests indicated that this does not apply to the 
texture-based LIC variants. The indirect orientation rep-
resentation offered by the colorwheel seemed to add con-
fusion to LIC images. 

Although the seven techniques may not be the state of 
the art in flow visualization, they are representative of 
many geometry-based and texture-based methods in im-
portant evaluation aspects such as representation 
continuity, visual intuition, image contrast, and color 
mapping. For example, IBFV [8] is newer than the three 
LIC variants that we selected and is famous for its 
novelty, simplicity, versatility, and performance. Except 
for these advantages that are invisible in a flow 
visualization user study, basic IBFV and enhanced IBFV 
(with a high-pass filtering post-process) are similar to 
BasicLIC and EnhancedLIC, respectively, in the 
aforementioned evaluation aspects. This is also the case 
with many other texture-based techniques [1]. 

A 

A′ 

B 

B′ 

C 

C′ 

D 

D′ 

 For  each  ESCP ℘ in A,  B,  C,  or D,  

 there is an ESCP ℜ in A′, B′, C′, or D′  

 such that ℜx = ℘x and ℜy + ℘y = 1 

                                   (a) 

A′ A 

B′ B 

C′ C 

D′ D 

 For  each  ESCP ℘ in A,  B,  C,  or D,  

 there is an ESCP ℜ in A′, B′, C′, or D′ 

 such that ℜy = ℘y and ℜx + ℘x = 1 

                                   (b) 
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D 

A′ 
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B 

C′ 
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 For  each  ESCP ℘ in A,  B,  C,  or D,  

 there is an ESCP ℜ in A′, B′, C′, or D′ 

 such that ℜx + ℘x = 1 and ℜy + ℘y = 1 

                                 (c) 

Fig. 1. The three ESCP templates employed in our flow synthesizer to define (a) four pairs of x-axis symmetric ESCP blocks, (b) four pairs of 
y-axis symmetric ESCP blocks, and (c) four pairs of center-symmetric ESCP blocks, respectively, for diverse but relatively balanced place-
ment of eight ESCPs in a unit square [0, 1] × [0, 1]. Each primary ESCP is jittered within a light blue block while the mirror ESCP, consistent 
in the center/focus type with the primary, is precisely placed in the opposite gray block based on the specific symmetry. 
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TABLE 1 

THE 54 CANDIDATE TECHNIQUES WE CONSIDERED, FROM WHICH A SMALL SET WAS CHOSEN FOR THE USER STUDY 
 

type    

size fixed variable: magnitude-based map 
layout at regular grid points at jittered grid points 

Hedgehogs 

(0D) 
color white over colorwheel background black over white background rainbow color map over black 
type seeds at regular grid points seeds at jittered grid points evenly spaced placement Streamlines 

(1.5D) color white over colorwheel background black over white background rainbow color map over black 
type basic LIC oriented LIC enhanced LIC LIC 

(2D) color colorwheel color map gray-scale rainbow color map 
* The candidate techniques of each family (hedgehogs, streamlines, or LIC) are derived from all possible combinations across the family’s 
attributes (e.g., type, size, layout, and color for the hedgehogs family). The three families have 36 (= 3 × 2 × 2 × 3), 9 (= 3 × 3), and 9 (= 3 × 3) 
candidate techniques, respectively. 

 
TABLE 2 

THE SEVEN TECHNIQUES SELECTED FOR OUR FLOW VISUALIZATION USER STUDY 
 

Visualization Techniques Selected Flow Attributes Conveyed Analysis Tasks Supported 

ArrowCM 
arrows placed at regular grid points 

variable size based on magnitude 
rainbow color map by magnitude 

over black background 

flow direction 

flow orientation 

velocity magnitude 

locate critical points 

classify saddles 

hard to distinguish circles from foci 

ArrowCW 
arrows placed at regular grid points 

variable size based on magnitude 
white over colorwheel background 

flow direction 
flow orientation 

velocity magnitude 

locate critical points 
classify saddles 

hard to distinguish circles from foci 

StreamCM 
evenly spaced streamlines 

rainbow color map by magnitude 
over black background 

flow direction 

velocity magnitude 

locate critical points 
classify all critical points 

distinguish circles from foci 

StreamCW evenly spaced streamlines 

white over colorwheel background 

flow direction 
flow orientation 

velocity magnitude 

locate critical points 
classify all critical points 

distinguish circles from foci 

BasicLIC 
basic LIC 

rainbow color map by magnitude 

flow direction 

velocity magnitude 

locate critical points 
classify all critical points 

distinguish circles from foci 

EnhancedLIC 
enhanced LIC 

rainbow color map by magnitude 

flow direction 

velocity magnitude 

locate critical points 
classify all critical points 

distinguish circles from foci 

OrientedLIC 
oriented LIC 

orientation by the increase in intensity 
rainbow color map by magnitude 

flow direction 
flow orientation 

velocity magnitude 

locate critical points 
classify all critical points 

distinguish circles from foci 
 

For the seven techniques, we conducted iterative in-
ternal tests (involving six visualization experts) to tune 
their parameters for optimal visualization results. The 
settings chosen for our formal user study are as follows. 
Each synthetic unit-square flow is sampled at two resolu-
tions (Section 2.1), i.e., TRES = 706 for BasicLIC, Enhanc-
edLIC, and OrientedLIC and GRES = 400 for ArrowCM, 
ArrowCW, StreamCM, and StreamCW. Graphical primi-
tives generated using each of the latter four for a 400 × 
400 flow dataset are rendered in anti-aliasing mode to a 
706 × 706 OpenGL view such that the seven techniques 
have the same output image size. For each flow dataset, 
the velocity magnitude is transformed to [1.0, 1000.0] via 
histogram equalization before the colorwheel or rainbow 
color map is applied. The rainbow scheme (Fig. 2h) line-

arly maps the lowest magnitude to blue and the highest 
to red. The colorwheel mode (Fig. 2i) linearly maps veloc-
ity magnitude to brightness within [0.2, 1.0] and to satura-
tion within [0.4, 1.0]. In addition, it maps flow orientation 
to hue, with red assigned to vector (1.0, 0.0)  the start-
ing radial line. The colormaps we employed, though not 
perceptually linear, are based upon mappings that are 
most commonly used by application scientists and upon 
visualization system defaults. For ArrowCM and Ar-
rowCW, a uniformly spaced lattice of 45 × 45 (out of 400 × 
400) grid points is created through 9 × 9 sub-sampling to 
place arrows. The variable arrow size (in cells) obtained 
by 1.2 × [2.0 + log(magnitude)] falls within [2.4, 10.8], 
with the arrow head fixed to 2.4 in length and width. 
StreamCM and StreamCW, built on the ADVESS algo-
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rithm [18], are configured to generate 1.0% density evenly 
spaced streamlines. BasicLIC and EnhancedLIC adopt a 
15-pixel-wide box kernel and white noise. In particular, 
EnhancedLIC employs two LIC iterations followed by 3 × 
3 Laplace high-pass filtering [17]. OrientedLIC uses a 10-
pixel-wide ramp kernel and sparse noise that is synthe-
sized by jittering 3 × 3 white crosses within uniformly 
distributed 9 × 9 black blocks of a 706 × 706 quad. 

2.3 Flow Analysis Tasks 
Given a collection of images generated using the seven 
techniques for a set of synthetic flows, the techniques can 
be evaluated by asking participants to conduct a series of 

tasks. Thus the performance of an average participant in 
visual flow analysis reflects the effectiveness of the tech-
nique being used.  

Besides critical point recognition and classification, a 
sample-based flow analysis task was devised by Laidlaw 
et al. [4] in their user study. The participant was shown a 
randomly placed circle (of which the center is hence a 
random sample) and asked to click on the point along the 
circle that a particle advected from the center is to hit. 
Since the complexity of a flow usually varies with loca-
tion, it is more difficult to accomplish this task in turbu-
lent areas than in laminar areas and the selection of the 
circle’s radius may further compound this issue. In addi-

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

                              (a) ArrowCM image.                                             (b) ArrowCW image.                                           (c) StreamCM image. 

                           (d) StreamCW image.                                               (e) BasicLIC image.                                         (f) EnhancedLIC image. 

                         (g) OrientedLIC image.                                  (h) Legend for rainbow color map.                     (i) Legend for colorwheel color map. 

Fig. 2. The images (a-g) generated by using each of the seven selected techniques to visualize a synthetic x-axis symmetric flow and the two 
color map schemes (h-i) used. 
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tion, the user’s ability to point and click accurately with a 
mouse, irrelevant of the perception, analysis, and judg-
ment, affects the test result. On the other hand, critical 
point recognition is an implicit, pattern-based, high-level 
task because the associated flow exploration process con-
siders the whole field instead of a single point to detect 
patterns of interest. This is also the case with critical point 
classification that matches topological templates (pat-
terns) to the flow structure exhibited in the area around a 
critical point. These two pattern-based tasks can be pre-
sented to the participant in a simple form, while they im-
plicitly require that the participant thoroughly inspect the 
flow direction across the whole domain (globally) and 
around an area of interest/features (locally), respectively, 
suppressing task-related bias. 

Implicit task design is a new concept that we propose 
to use in flow visualization user studies to deal with flow 
analysis bias. As a vector attribute, flow direction pro-
vides the fundamental information that distinguishes a 
flow field from a scalar field, allowing us to define, rec-
ognize, and interpret many flow features or patterns (e.g., 
critical points, separatrices, and periodic orbits). In this 
sense flow direction is much more important than the 
associated scalar quantities of the flow such as velocity 
magnitude, pressure, temperature, and other derived at-
tributes. In fact, research on flow visualization has been 
primarily focused on ways of displaying flow direction, 
because how well a technique delineates the general, di-
rectional information largely governs its effectiveness in 
conveying specific flow features. With the core objective 
being sample-free flow analysis to overcome bias, implicit 
task design usually includes the direct use of specific 
well-known flow features (e.g., critical point recognition 
and critical point classification) and in-depth flow struc-
tures (e.g., identification of separatrices and periodic or-
bits)  real tasks. It may also work by creating some ap-
propriate ‘synthetic’ pattern-based tasks, analogous to 
generating synthetic flows. While synthetic flows are use-
ful for minimizing data-related bias (originating from 
different topological complexities) and avoiding potential 
size problems with real datasets, these synthetic tasks are 
intended to reduce task-related bias (resulting from flow 
sampling and point-and-click operations) and to relieve 
non-expert participants from understanding complex, 
possibly domain-specific details. Synthetic tasks are pat-
tern-based, involving easy-to-understand but challenging 
questions and requiring intensive analysis of flow direc-

tions. It is worth mentioning that synthetic tasks are com-
plementary to real tasks and these two types constitute 
implicit task design. Motivated by the necessity for and 
significance of implicit task design, we present a synthetic 
task that was integrated with two real tasks, i.e., critical 
point recognition and classification, in our user study. 

Our explicit, template-based flow synthesizer (section 
2.1) enables us to design a synthetic pattern-based flow 
analysis task, i.e., symmetric pattern categorization. This 
task does not require precise point-and-click operations. 
However, it is challenging in that the participant needs to 
be highly engaged in examining the flow direction both 
globally and locally in an effort to determine whether the 
entire pattern is x-axis symmetric, y-axis symmetric, cen-
ter-symmetric, or asymmetric, both geometrically and 
topologically. Merely locating all critical points is insuffi-
cient to fully understand a flow field. Instead the partici-
pant has to observe the flow direction around the critical 
points to determine if two local patterns under considera-
tion are symmetric. For example, some topologically 
asymmetric flows made up of geometrically symmetric 
critical points are very easily mistaken to be symmetric. In 
fact, a similar challenge applies to the case in which the 
participant is shown a flow to choose between three 
symmetry types due to the relatively balanced distribu-
tion of ESCPs (Section 2.1). Thus visualization techniques 
can be evaluated in terms of their effectiveness as the par-
ticipant is indirectly “forced” to study the flow direction 
in a global+local fashion. 

Table 3 lists the three pattern-based tasks of our user 
study, i.e., critical point recognition (CPR), critical point 
classification (CPC), and symmetric pattern categorization 
(SPC). Apart from SPC, there are many synthetic tasks 
that may be used in a flow visualization user study. For 
example, two or three critical points (centers, foci, and 
saddles) can be combined with a variety of configurations 
to define some composite templates (CT) in support of 
CT-based CPR-like pattern recognition and CPC-like pat-
tern classification. Other synthetic tasks include checking 
if flows A and B have a CT pattern in common, judging if 
flow A is a rotational version of flow B, and determining 
if flow A is exactly part of flow B. 

3 TEST STRATEGY 

In this section we present a session-based test strategy 
adopted in our flow visualization user study. Given N x-

TABLE 3
THREE PATTERN-BASED TASKS USED IN OUR USER STUDY 

 
Pattern Questions Participant Operations Analysis Tasks Investigation Scopes 

CPR Where are critical points? mouse click on points in an image pattern recognition global 
a saddle? 
a center? 

 
CPC 

Is the 
critical  
point a  focus? 

 
mouse click on a radio button 

 
pattern classification 

 
local 

x-axis symmetric? 
y-axis symmetric? 
center-symmetric? 

SPC 

Is the 
overall  

flow   
pattern asymmetric (optional)? 

mouse click on a radio button 
pattern recognition 

pattern classification 

pattern comparison 

 

global + local 
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axis symmetric, N y-axis symmetric, N center-symmetric, 
and optionally N asymmetric flows, we visualize these M 
(M = 3N or 4N) datasets using the seven techniques to 
produce 7M images. Each flow is synthesized with the 
parameters and templates discussed in Section 2.1, which 
define the location and type (either center or focus) of 
every ESCP and the symmetry type of the entire pattern. 
The design of the data generator guarantees that no nodes 
exist in any synthetic flow. Saddles, derived from the in-
teraction among the ESCPs, can be detected (and located) 
through a Newton-Raphson root-finding method. These 
explicit and extracted attributes (i.e., the aforementioned 
locations and types) provide the ground truth of a flow. 

In general, the effectiveness of a visualization tech-
nique is determined by answer correctness and response 
time. A more effective technique allows a user to get a 
correct answer faster. Likewise, given a fixed amount of 
time, more correct answers tend to result from a more 
effective technique than from a less effective one. Thus we 
propose to use a variable-duration test scheme for CPR, but a 
fixed-duration test scheme for both CPC and SPC. In the 
former case, mouse click positions and response time are 
recorded in a session. In the latter case, as many tasks as 
possible are presented to the participant one by one 
within 30 seconds and only radio-button choices are re-
corded in a session. The variable-duration scheme seeks 
to “curb” the participant during relatively quick (consid-
ering the recognition of a single critical point) precision-
critical (yet with an error tolerance, Section 4.1) flow 
analysis, whereas the fixed-duration scheme is intended 
to “push” the participant during relatively slow judg-
ment-intensive flow analysis.  

The session concept integrates different task manage-
ment schemes into task delivery. A session may contain 
one CPR task (for recognizing all critical points), up to 30 
CPC tasks, or up to 40 SPC tasks. A CPR session, a CPC 
session, and an SPC session that are used to evaluate the 
same technique make up a set. Seven sets, one for each 
technique, constitute a cycle. Each participant goes 
through three cycles, with 63 sessions presented in ran-
dom order. The 21 CPR sessions are built on a random 
selection of 21 images produced by using each of the 
seven techniques thrice. Each of the 21 CPC sessions is 
constructed by randomly choosing 30 images that are 
generated using the technique under evaluation. Thirty 
circles are drawn over the 30 images, respectively, to 
mark 10 randomly selected saddles, 10 randomly selected 
centers, and 10 randomly selected foci. These images are 
shown to the participant in random order. Each of the 21 
SPC sessions is created by randomly selecting 40 images 
that are produced using the technique under evaluation 
to visualize 10 x-axis symmetric, 10 y-axis symmetric, 10 
center-symmetric, and 10 asymmetric flows. These 40 
images are shown to the participant also in random order. 
As an option, asymmetric flow images may be excluded 
to make 30-task SPC sessions. The user study reported in 
this paper did not use asymmetric flows to simplify statis-
tical analysis of the result. However, categorizing the 
symmetric patterns proved to be a challenging task (Sec-
tion 4.3). 

We developed a batch mode tool called TestGen for 
implementing the session-based test strategy and a flow 
visualization user study system (FlowVUSS) for executing 
the strategy. TestGen is provided for the experimenter to 
initialize a test, while FlowVUSS runs in a training mode 
or a test mode (Figures 3-5) for the participant to perform 
flow analysis tasks. The test procedure we designed is as 
follows. First the participant is given a brief introduction 
to the goal of the test, the background of flow visualiza-
tion, necessary knowledge about flow topology, and the 
three kinds of flow analysis tasks. Next FlowVUSS runs 
in the training mode with a sequence of pre-designed task 
sessions to familiarize the participant with the user inter-
face and tasks. The submission of any answer is followed 
by immediate feedback with the correct answer. Once the 
training stage is over, TestGen is used to create a test file 
containing 63 randomly generated and randomly sched-
uled sessions of tasks. Then FlowVUSS runs in the test 
mode and accesses the test file to present the task sessions 
to the participant. The answers and response time of the 
participant are written to an output file for the subse-
quent statistical analysis. 
 

 
Fig. 3. FlowVUSS running in the test mode with an EnhancedLIC-
based CPR session. 

 
Fig. 4. FlowVUSS running in the test mode with an ArrowCW-based 
CPC session. 
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4 RESULTS AND DISCUSSIONS 
We recruited four CFD experts and 16 graduate students 
in science and engineering disciplines. Each non-
employee participant was compensated with $10. Our 
user study did not compare expert and non-expert par-
ticipants in flow analysis performance since it has been 
reported [4] that in general these two groups do not ex-
hibit a statistically significant difference. Any difference 
would be mitigated by the introduction to flow visualiza-
tion and the training sessions given prior to each formal 
test. Thus this user study was primarily focused on a 
quantitative comparison between the seven techniques in 
visualization effectiveness. A typical approach is to obtain 
the means and standard errors of some dependent meas-
ures (e.g., response time) of interest across multiple con-
ditions (e.g., various visualization techniques) to observe 
the influence that each variable has on the measures [23], 
[24]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 5. FlowVUSS running in the test mode with a StreamCW-based 
SPC session. 

The participants of our study performed a total of 5079 
CPR trials, 7467 CPC trials, and 4948 SPC trials. We calcu-
lated an error statistic for each type of trials. In addition, 
we recorded recognition time and location error from the 
CPR trials, while we collected classification/categorization 
time from the CPC and SPC trials. We first examined his-
tograms to summarize these dependent measures; as ex-
pected, the response time and the location error showed 
skewed normal distributions. We then determined out-
liers on a case-by-case basis, by investigating the tails of 

the distributions and noting values that appeared after 
conspicuous gaps in the histogram. As recommended by 
Barnett and Lewis [25], we replaced each outlier with the 
median of the responses in the experiemental cell. Table 4 
summarizes the dependent measures that we collected 
and calculated, and describes the outliers that we found 
for each measure. 

We analyzed the data using chi-square tests and uni-
variate analysis of variance (ANOVA). For the ANOVA, 
we modeled our experiment as a repeated-measures de-
sign that considers participant as a random variable and 
all other independent variables as fixed. In addition, since 
we are primarily interested in comparing the performance 
of the seven different visualization techniques, we also 
calculated post-hoc homogeneous subsets using the Ryan 
REGWO test [26]. 

Using our understanding of the seven flow visualiza-
tion techniques and the comments/input from the par-
ticipants, we postulate the underlying reasons for the re-
sults that we obtained. The absolute differences in re-
sponse time for CPR/CPC/SPC turned out to be small in 
our user study, regardless of the statistical differences. 
Thus we assign a higher priority to correctness than 
speed to provide correctness-over-speed-sorting (COSS) 
when evaluating the seven techniques in overall effective-
ness. Less important than these two measures, precision 
(applicable to CPR only) is reported for supplemental 
analysis. 

4.1 Critical Point Recognition (CPR) 
We recorded response time, recognition error, and loca-
tion error during CPR sessions (each with many critical 
points to be found in an image). The response time means 
how long it takes to recognize a critical point. A critical 
point is (properly) recognized if and only if there is a 
mouse click within a threshold radius (e.g., 35 pixels 
based on our flow synthesizer), with any duplication re-
jected. A recognition error refers to either a false negative 
(negligence) or a false positive (mis-identification) occur-
rence. The absolute error, a non-negative integer, denotes 
the number of neglected critical points plus number of 
invalid mouse clicks (including false positives and dupli-
cate recognitions). The location error, associated with a 
correct recognition, is defined as the distance (in pixels) 
between the critical point and the mouse click position. 

Figures 6-7 show the absolute recognition error and 
mean response time, respectively, for each of the seven 
techniques. In correctly recognizing critical points, En-

TABLE 4 
THE DEPENDENT MEASURES THAT WE COLLECTED AND CALCULATED 

Measure N Outlier Definition Number of Outliers Outlier Percentage Figure 
CPR Error 143    6 
CPR Recognition Time 5079          > 10 seconds 45 0.9% 7 
CPR Location Error 5079          > 35 pixels 68 1.3% 8 
CPC Error 753    9 
CPC ClassificationTime 7467          > 20 seconds 5 0.07% 10 
SPC Error 323    11 
SPC Categorization Time 4948          > 25 seconds 3 0.06% 12 
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hancedLIC was the most effective, followed by 
StreamCM, BasicLIC, OrientedLIC, StreamCW, Ar-
rowCM, and ArrowCW. This order indicates that 
StreamCM even outperformed two texture-based tech-
niques BasicLIC and OrientedLIC, whereas StreamCW 
fell behind these two LIC variants apparently due to the 
use of a different color map. ArrowCM and ArrowCW 
were largely inferior to the other five and reiterated the 
influence of color mapping on geometry-based tech-
niques. Regarding response time, no statistical differences 
existed either between StreamCM, BasicLIC, OrientedLIC, 
and EnhancedLIC or between ArrowCM and StreamCW, 
while the former four allowed for faster user response 
than the latter two. ArrowCW required the longest time 
for users to recognize a critical point. The loose consis-
tency between the order in correctness and that in speed 
demonstrates that fewer recognition errors were actually 
not due to more time consumption. Instead it is the more 
effective flow representation of a technique that allows 
users to respond to CPR more quickly and more correctly. 
Strengthened by this loose consistency, our COSS rule 
sorts the seven techniques by CPR effectiveness in de-
creasing order as 
� EnhancedLIC, StreamCM, BasicLIC, OrientedLIC, 

StreamCW, ArrowCM, ArrowCW.  
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Fig. 6. Number of CPR errors for each visualization technique (N = 
143). EnhancedLIC was the most effective in correctly recognizing 
critical points. The error count was different for each visualization 
technique (χ2(6) = 132, p < 0.001). 

EnhancedLIC was the most effective for the dense rep-
resentation with clear-cut flow streaks produced by LIC 
iterations and high-pass filtering. The 2D continuity en-
ables intuitive perception of the flow without visual in-
terpolation. Sharp yet thin flow streaks provide strong 
direction cueing to expose topological elements. BasicLIC 
was inferior to EnhancedLIC since the blurring effect of 
low-pass filtering hinders participants from finding criti-
cal points. OrientedLIC was less effective than Enhanc-
edLIC because the decrease in density of flow depiction 
demands visual interpolation and because 3D-like, thick, 
intensity-tapering flow streaks pose distractions for dis-
cerning saddle points. With these weaknesses, Orient-
edLIC was even slightly less effective than BasicLIC, and 
both were a little bit worse than StreamCM. Although 
StreamCM is a geometry-based technique with 1.5D con-
tinuity, an evenly spaced streamline placement provides 
an organized informative representation, without clutter-

ing or loss of information, to facilitate visual interpolation 
across the flow. The ADVESS algorithm [18] underlying 
StreamCM (and StreamCW) is capable of minimizing 
cavities around critical points to highlight salient features. 
StreamCM offers relatively straightforward direction cue-
ing and clean feature display, whereas BasicLIC requires 
more direction extraction and topology reconstruction 
from a blurry LIC texture. Although the rainbow color 
map is visually nonlinear, its use in StreamCM provides 
some degree of spatial correlation between flow direction 
and velocity magnitude, as is the case with the LIC vari-
ants. The local correlation tends to lend itself to the identi-
fication of critical points. This effect is particularly helpful 
in StreamCM as the black background creates high image 
contrast to make flow features easily discernible. 
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Fig. 7. Mean time (in seconds) to recognize a critical point (N = 
5079). There was a main effect of visualization technique on the time 
to recognize a critical point (F(6,115.3) = 19.9, p < 0.001). Means 
with the same letter are not significantly different at p ≤ 0.05 (Ryan 
REGWQ post-hoc homogeneous subset test). 

One major goal of including StreamCW and ArrowCW 
in the user study was to explore the effectiveness of 
equipping geometry-based techniques with a color map 
background to emulate a dense representation. The col-
orwheel scheme establishes a one-to-one map between 
the hue of the background and the flow orientation. We 
assumed this map would aid in visual interpolation 
across lines or arrows to create a continuous impression 
of the flow, though StreamCW fell significantly behind 
the LIC variants and even StreamCM in CPR. The com-
parison between StreamCM and StreamCW indicates that 
the colorwheel scheme was less effective than the rain-
bow color map. This result was probably due to the rare 
use, complex legend, and low contrast of the colorwheel, 
and even worse, due to the visual distraction that affects 
CPR at a global scale. Similar findings and reasons hold 
when we compare ArrowCM and ArrowCW. These two 
arrow-based techniques were far inferior to the other five 
in CPR because of 0D continuity. 

Fig. 8 shows the mean location error for each tech-
nique. StreamCM, StreamCW, BasicLIC, OrientedLIC, 
and EnhancedLIC performed nearly the same in locating 
recognized critical points, except that EnhancedLIC was 
better than BasicLIC due to the large difference in image 
contrast. The two arrow-based techniques were less accu-
rate than the others since the discreteness both along and 
across the flow direction hinders visual interpolation. 
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Users achieved more precise location using ArrowCW 
than using ArrowCM. This result was probably due to the 
bright ‘dot’ that the colorwheel map creates at the core of 
each center/focus.  

4.2 Critical Point Classification (CPC) 
We collected response time and classification error during 
CPC sessions. Under the fixed-duration test scheme, the 
response time is an average value, equal to 30 seconds 
divided by the number of CPC tasks completed in a ses-
sion. A classification error occurs if a wrong type is se-
lected for a critical point (one randomly marked in each 
image). Figures 9-10 show the number of classification 
errors and mean response time, respectively, for each of 
the seven techniques. In correctly classifying critical 
points, EnhancedLIC was the most effective, followed by 
StreamCW, which was marginally better than StreamCM. 
BasicLIC was less effective than StreamCM, but much 
more effective than OrientedLIC. ArrowCW and Ar-
rowCM performed nearly the same, but much worse than 
the other five. In terms of time, users responded more 
quickly with StreamCM and EnhancedLIC than with Ba-
sicLIC and OrientedLIC. Compared to StreamCW, 
StreamCM required less time for a CPC task. ArrowCM 
and ArrowCW resulted in the slowest user response. 
Based on the COSS rule, the seven techniques may be 
sorted by CPC effectiveness in decreasing order as 
� EnhancedLIC, StreamCW, StreamCM, BasicLIC, 

OrientedLIC, ArrowCW, ArrowCM. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8. Mean location error (in pixels) for a recognized critical point 
(N = 5079). There was a main effect of visualization technique on the 
mean location error (F(6,114.8) = 40.1, p < 0.001). Means with the 
same letter are not significantly different at p ≤ 0.05 (Ryan REGWQ 
post-hoc homogeneous subset test). 

There were 753 classification errors out of 7,467 CPC 
answers, with about 12% from the misjudgment between 
saddles and centers/foci. The majority of the 12% 
stemmed from ArrowCM and ArrowCW as arrows are 
weak in conveying saddles. The other five techniques 
produced only a few saddle-versus-center/focus errors, 
apparently because of the 1.5D/2D continuity and the 
better distinction between the shape of saddles and cen-
ters/foci. Thus our analysis of the CPC effectiveness be-
low is focused on the 88% of the classification errors  
the misjudgment between centers and foci. Furthermore, 
the statistics show that the majority of these errors were 
caused by the misclassification of centers as foci. Thus the 

analysis turns into a discussion about the effectiveness of 
the techniques in conveying centers (closed ellipses), 
which may be actually visualized as tightly spiraling foci 
(open curves). Besides numerical accuracy issues (e.g., 
involved in integration-based techniques), flow field rep-
resentation plays an important role in depicting centers. 
Specifically, spatial continuity determines if a center can 
be entirely delineated. Without enough spatial continuity, 
even a great deal of visual interpolation may result in a 
center being misclassified as a tightly spiraling focus. An-
other factor is visual intuition, meaning how easily the 
user perceives or recognizes a center. Insufficient intui-
tion poses a visual burden of curve extraction to deter-
mine if there is a center embedded in a dense texture. 
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Fig. 9. Number of CPC errors for each visualization technique (N = 
753). EnhancedLIC was the best to correctly classify critical points. 
The error count was different for each visualization technique (χ2(6) 
= 772, p < 0.001). 
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Fig. 10. Mean time (in seconds) to classify a critical point (N = 7467). 
There was a main effect of visualization technique on the time to 
classify a critical point (F(6,116.2) = 30.9, p < 0.001). Means with the 
same letter are not significantly different at p ≤ 0.05 (Ryan REGWQ 
post-hoc homogeneous subset test). The streamline and LIC meth-
ods exhibited a statistically significant difference from the arrow 
methods. 

With 0D continuity, ArrowCM and ArrowCW per-
formed the worst in visualizing centers. Since the user 
concentrates on a region of interest during each CPC task, 
color mapping is less critical than spatial continuity and 
hence did not make a noticeable difference between these 
two techniques. This implies that the colorwheel intro-
duces visual distraction globally (for CPR, Fig. 6) more 
than locally (Fig. 9). As an image-based representation, 
OrientedLIC exploits the synthesized flow streaks to 
show some centers and was far more effective than Ar-
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rowCM and ArrowCW in the test. However, the use of 
sparse noise in OrientedLIC produces cavities, compro-
mising 2D continuity. As a result, OrientedLIC was less 
effective than BasicLIC since the latter achieves real 2D 
continuity (Fig. 9). The ADVESS algorithm [18], [27] un-
derlying StreamCM and StreamCW provides robust de-
tection of centers and places at least one closed streamline 
around each center. This capability, along with 1.5D con-
tinuity and the better visual intuition, appears to make 
StreamCM and StreamCW more effective than BasicLIC, 
which suffers from blurring issues. Color mapping 
seemed to make a tiny difference, as StreamCW was a 
little bit better than StreamCM. This can probably be at-
tributed to the more time that users spent with StreamCW 
than with StreamCM (Fig. 10), among other reasons. En-
hancedLIC was even better than the two streamline-based 
techniques in displaying centers, because it supports not 
only 2D continuity but also strong visual intuition or high 
image contrast in the form of accentuated thin flow 
streaks. Under uniform density control, not all stream-
lines around each center are placed (and shown) as closed 
curves in a StreamCM/StreamCW image. Thus some 
insufficiently integrated, open streamlines may prevent 
the user from seeing the closed ellipse(s) around a center. 

4.3 Symmetric Pattern Categorization (SPC) 
We measured response time and categorization error dur-
ing SPC sessions. Under the fixed-duration test scheme, 
the response time is an average value, equal to 30 seconds 
divided by the number of SPC tasks completed in a ses-
sion. A categorization error occurs if a wrong symmetry 
type is selected for a flow image. Figures 11-12 show the 
number of categorization errors and mean response time, 
respectively, for each of the seven techniques. In correctly 
categorizing symmetric patterns, EnhancedLIC and 
StreamCM were equally effective, marginally preceding 
BasicLIC. BasicLIC slightly outperformed OrientedLIC. 
After OrientedLIC were StreamCW and ArrowCM. Ar-
rowCW was the worst for SPC tasks. With regard to time, 
users responded the slowest with ArrowCW. The other 
six led to statistically approximate user responses, with 
an exception that StreamCW required more time than 
StreamCM, BasicLIC, and EnhancedLIC. As users were 
engaged in these challenging global+local flow analysis 
tasks, they spent more time on SPC than on CPR/CPC 
(Fig. 7 and Fig. 10). Based on the COSS rule, the seven 
techniques may be sorted by SPC effectiveness in decreas-
ing order as 
� EnhancedLIC, StreamCM, BasicLIC, OrientedLIC, 

StreamCW, ArrowCM, ArrowCW 
where EnhancedLIC and StreamCM are equally effective, 
as are StreamCW and ArrowCM. 

Performing an SPC task may involve four steps: (glob-
ally) recognize a critical point p; (semi-globally) detect if 
there is another critical point q that seems to form an x-
axis/y-axis/center symmetric pair with p; (locally) clas-
sify critical points p and q; (semi-globally) determine if p 
and q match in the type. Since CPR and CPC are sub-tasks 
of SPC, our discussions about CPR effectiveness (Section 
4.1) and CPC effectiveness (see Section 4.2) apply to the 

analysis of SPC effectiveness. Special treatment is given 
below to some issues that we feel made a great impact on 
the SPC test result. First, the switches between global, 
semi-global, and local sub-tasks impose memory over-
head on the participant. This side effect seemed to de-
grade the visual intuition of EnhancedLIC as users were 
comparing the shape of two critical points. Consequently 
StreamCM caught up with EnhancedLIC in SPC, despite 
being left behind in CPR and CPC. Second, the visual dis-
traction that the colorwheel introduces, mostly at a global 
scale (Section 4.1), increases as multiple global/semi-
global sub-tasks are executed during SPC. This might 
partially account for the big gap between ArrowCW and 
ArrowCM, and for ArrowCM being as effective as 
StreamCW. Third, although the rainbow color map is 
based on the velocity magnitude, it may aid in perceiving 
the flow direction due to some degree of correlation be-
tween the flow direction and the velocity magnitude. Its 
use in ArrowCM, BasicLIC, OrientedLIC, StreamCM, and 
EnhancedLIC probably contributed to narrowing the 
gaps between the former three and the latter two since 
some users might try using color patterns to accelerate 
sub-tasks 2 and 4 of SPC (though they were not trained or 
told such). On one hand, the SPC test result may reiterate 
the importance of color mapping in a flow representation. 
On the other hand, it also indicates some issues that are 
usually encountered when designing a sophisticated user 
study, e.g., the trade-off between a number of techniques 
(7), resources (time duration and task intensity of each 
test), and a wide range of issues of interest (color map-
ping, continuity of flow representation, coverage of recent 
advances, flow analysis task design, etc.). 
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Fig. 11. Number of SPC errors for each visualization technique (N = 
323). The error count was different for each visualization technique 
(χ2(6) = 70.1, p < 0.001). EnhancedLIC and StreamCM were the best 
to correctly categorize symmetric patterns. Note the considerable 
difference that color mapping made. 

4.4 New Insights and Pragmatic Lessons 
Although Laidlaw et al.’s work [4] and ours address 2D 
flow visualization user studies, ours uses explicit flow 
synthesis, implicit task design, diverse evaluation per-
spectives, a hybrid timing strategy, and a refined statisti-
cal analysis. The significant difference in the set of visu-
alization techniques prevents a direct comparison in the 
evaluation results and findings. On the other hand, this 
difference allows us to compare the two in evaluation 
perspectives that are largely governed by the selection of 
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visualization techniques. The phrase “evaluation perspec-
tives” refers to the intrinsic visual aspects of a flow repre-
sentation, which, closely related to and helpful for visu-
alization algorithm design and improvement, are investi-
gated via flow analysis tasks in a user study. They may 
involve color mapping, representation continuity, visual 
intuition, and image contrast. 
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Fig. 12. Mean time (in seconds) to categorize a symmetric flow pat-
tern (N = 4948). There was a main effect of visualization technique 
on the time to categorize the flow pattern symmetry (F(6,123.1) = 
8.74, p < 0.001). Means with the same letter are not significantly 
different at p ≤ 0.05 (Ryan REGWQ post-hoc homogeneous subset 
test). ArrowCW caused the slowest user response to an SPC task. 
ArrowCM was comparable to streamlines and LIC in user response. 

Laidlaw et al.’s user study [4] employs three hedgehog 
techniques (grid-based arrows, randomly distributed ar-
rows, and wedges), two streamlet (very short streamline) 
techniques (grid-based and evenly-spaced), and basic 
LIC. First, they all utilize gray-scale encoding, without 
addressing color mapping. Second, the small size of 
streamlets causes discontinuities along the flow direction 
and hence the two streamlet techniques may not be used 
to evaluate 1.5D representation continuity. Third, besides 
the hedgehog techniques, neither the streamlet techniques 
nor basic LIC provides good visual intuition for locating 
and classifying critical points. Fourth, the mere selection 
of basic LIC (without enhanced LIC) and the lack of color 
mapping prohibit a study in image contrast. The visuali-
zation techniques selected in our user study support di-
verse evaluation perspectives (Sections 4.1, 4.2, and 4.3) 
such as the four aforementioned aspects, bringing new 
insights into 2D flow visualization techniques. 

We also learned some pragmatic lessons. Despite in-
formative training sessions, a priori familiarity of the par-
ticipant with the technique may remain a factor in the 
evaluation results. Our participants were familiar with 
arrows and streamlines, though many of them still did 
not know about LIC. This strengthens the necessity for 
more user studies and raises concern when evaluating 
more current techniques [1], [3]. Likewise, a priori famili-
arity of the participant with specific flow features may be 
an issue that needs to be taken into account when adding 
tasks involving complex flow features (e.g., shear layers). 
This supports the usefulness of synthetic tasks. Although 
it is useful for synthetic flows to be used in a user study, 
some real flows (with contextual boundaries) in addition 
to synthetic ones may be used in training sessions to en-
hance the participant’s understanding of the visualization 

techniques. Also, care needs to be taken to predict the 
overall duration of a user study. Statistical data analysis 
requires a sufficient number of sessions and tasks while 
fatigue effects need to be avoided. According to some 
participants, our user study was a little bit long, with the 
average overall duration being about 90 minutes covering 
the training, formal test, and breaks.      

5 CONCLUSIONS AND FUTURE WORK 
We have presented a 2D flow visualization user study 
that evaluated grid-based variable-size arrows, evenly 
spaced streamlines, basic LIC, oriented LIC, and en-
hanced LIC. We chose techniques that reflect some impor-
tant advances in geometry-based and texture-based flow 
visualization, addressing 0D, 1.5D and 2D continuity of 
representation. Our selection, involving the colorwheel 
and rainbow color maps, allows us to compare seven 
techniques in visualization effectiveness and explore the 
impact that each color map has on flow representation. 

We employed two new methodologies, i.e., explicit 
flow synthesis and implicit task design, to make this user 
study as objective as possible. Explicit flow synthesis uses 
template-based parameterized specification of critical 
points to produce many diverse, relatively balanced x-
axis/y-axis/z-axis symmetric and even geometrically 
symmetric but topologically asymmetric flows. Its capa-
bility of maintaining approximate topological complexity 
between flows combats data-related bias. Implicit task 
design adopts pattern-based flow analysis such as critical 
point recognition, critical point classification, and sym-
metric pattern categorization to ‘force’ the participant to 
inspect the flow direction both extensively and inten-
sively. In contrast with sample-based task design, this 
indirect high-level mechanism diminishes task-related 
bias by avoiding the influence that variance of flow com-
plexity (or an explicitly specified region) may have on 
visual analysis performance. 

To help differentiate one technique from another in vi-
sualization effectiveness, we utilized a session-based test 
strategy that incorporates variable-duration with fixed-
duration performance measurement schemes, with the 
former for relatively quick precision-critical flow analysis 
and the latter for relatively slow judgment-intensive flow 
analysis. We present the evaluation results by fixing out-
liers, in combination with the Ryan REGWQ post-hoc 
homogeneous subset tests, to derive the findings as 
accurately as possible. In addition, we discuss the reasons 
for the findings by combining our understanding of the 
techniques and the feedback from the participants. Three 
task-wise correctness-over-speed orderings of the 
techniques reveal that a texture-based dense representa-
tion with crispy thin flow streaks such as enhanced LIC 
and a geometry-based integral representation with uni-
form density control such as evenly spaced streamlines 
are most effective for 2D flow visualization. It is also 
shown that color mapping plays a very important role in 
overall flow representation and that in most cases the 
rainbow color map is better than the colorwheel. 

User studies of flow visualization techniques are an 
emerging topic and there may still be some issues with 
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our work as we try our best to create a convincing user 
study. This preliminary effort laid a foundation for us to 
improve on the selection of visualization techniques, flow 
data synthesis, and flow analysis task design in future 
work. It may be useful to compare various 2D streamline 
placement algorithms surveyed in [28]. The algorithm 
proposed in [28] allows us to design real tasks for investi-
gating complex flow features such as separatrices and 
periodic orbits. It is worthwhile to evaluate (direct) fea-
ture extraction techniques [12] with dense flow represen-
tations [1] as the context. We also plan to adopt surface 
flow generators [14], [29], [30] and devise new implicit 
tasks for a surface flow visualization user study. In par-
ticular, these flow synthesizers can remove [14], [29] or 
minimize [30] unexpected critical points such as saddles 
derived from the interaction among centers and foci. 
There are several techniques [9], [10] to be evaluated and 
new issuess to be addressed, such as the choice between 
fixed viewpoints and arbitrary user navigation, which 
will influence the perception of surface flows in 3D. 
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