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ABSTRACT 
New approaches that combine the strengths of humans and machines are necessary to equip analysts with 
the proper tools for exploring today’s increasing complex, multivariate data sets. In this paper, a visual 
data mining framework, called the Multidimensional Data eXplorer (MDX), is described that addresses 
the challenges of today’s data by combining automated statistical analytics with a highly interactive 
parallel coordinates based canvas. In addition to several intuitive interaction capabilities, this framework 
offers a rich set of graphical statistical indicators, interactive regression analysis, visual correlation 
mining, automated axis arrangements and filtering, and data classification techniques. This chapter 
provides a detailed description of the system as well as a discussion of key design aspects and critical 
feedback from domain experts. 
 

Swan
Sticky Note
The final edited and typeset version of this chapter appears as:

Chad A. Steed, J. Edward Swan II, Patrick J. Fitzpatrick, T.J. Jankun-Kelly, “A Visual Analytics Approach for Correlation, Classification, and Regression Analysis”, in Innovative Approaches of Data Visualization and Visual Analytics, edited by Mao Lin Huang and Weidong Huang, IGI Global, USA, 2013, ISBN13: 9781466643093, pages 25–45.





 2	
  

INTRODUCTION 
A byproduct of continued technological advances is increasingly complex multivariate data sets, which, 
in turn, yield information overload when explored with conventional visual analysis techniques. The 
ability to collect, model, and store information is growing at a much faster rate than our ability to analyze 
it. However, the transformation of these vast volumes of data into actionable insight is critical in many 
domains (e.g. climate change, cyber-security, financial analysis). Without the proper techniques, analysts 
are forced to reduce the problem and discard layers of information in order to fit the tools. New 
techniques and approaches are necessary to turn today’s flood of information into opportunity. 
 
One of the most promising solutions for the so-called big data challenge lies in the continued 
development of techniques in the rapidly growing field of visual analytics. Visual analytics, also known 
as visual data mining, combines interactive visualizations with automated analytics that help the analyst 
discover and comprehend patterns in complicated, heterogeneous data sets. In general, visual analytics 
can be described as “the science of analytical reasoning facilitated by interactive visual interfaces” 
(Thomas, 2005, p. 4). Visual analytics seeks to combine the strengths of humans with those of machines. 
While methods from knowledge discovery, statistics, and mathematics drive the automated analytics, 
human capabilities to perceive, relate, and conclude strengthen the iterative process. 
 
In this chapter, a novel visual data mining framework–called the Multidimensional Data eXplorer 
(MDX)–is presented that utilizes statistical analysis and data classification techniques in an interactive 
multivariate representation to improve knowledge discovery in the complex multivariate data sets that 
characterize today’s data (see Figure 1). In addition to intuitive interaction capabilities, this framework 
introduces a rich set of graphical statistical indicators, automated regression analysis, visual correlation 
indicators, optimal axis arrangement techniques, and data classification algorithms. These capabilities are 
combined into a parallel coordinates based framework for enhanced multivariate visual analysis. 
 

Figure 1. The Multidimensional Data eXplorer (MDX) consists of a settings panel (upper left), a data 
table panel (bottom), and an interactive parallel coordinates panel (upper right).   

 
This chapter features an expanded version of MDX that builds on recent efforts in which MDX was 
applied to tropical cyclone climate studies. In Steed, Fitzpatrick, Jankun-Kelly, Yancey, and Swan II 
(2009b), the initial version of MDX, which lacked integrated statistical processes, was introduced and the 
system was demonstrated in a case study with a set of tropical cyclone predictors. Follow-on work by 
Steed, Fitzpatrick, Swan II, and Jankun-Kelly (2009a) and Steed, Swan II, Jankun-Kelly, Fitzpatrick 
(2009c) presented an enhanced version of MDX that included statistical analytics and deeper analysis of 
the previously analyzed tropical cyclone predictors, as well as analysis of a new set of predictors. In the 
current work, the MDX visual data mining and knowledge discovery capabilities are featured. In addition 
to presenting new features that facilitate visual correlation mining and automated axis arrangements, the 
new contributions in this work are new data classification capabilities, a novel regression analysis 
interface that facilitates interactive model development and confirmation, and a detailed description of the 
visual and automated correlation mining capabilities. 
 
The remainder of this chapter is organized as follows. To begin, a survey of related work is given 
followed by a description of the cars data set–used in the examples throughout this chapter. Next, the 
graphical indicators of descriptive statistics are described. Then, a discussion is provided on the 
interactive correlation analysis indicators and interaction features that are available in the latest version of 
MDX. Next, the automated correlation analysis algorithms are described and the new automated data 
classification capabilities are discussed and demonstrated. Then, the details of the enhanced visual 
regression capabilities are described including the closing of the iterative regression analysis loop. Next, 
the optimal axis arrangement capabilities are described. Significant findings from the development and 
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use of MDX, visual design criteria, and domain expert feedback are given and, finally, conclusions and 
future work are discussed. 
 
BACKGROUND 
As demonstrated by Wong and Bergeron (1997), there have been many approaches to the visual analysis 
of multivariate multidimensional data over the years. However, the techniques employed in operational 
systems are generally constrained to non-interactive, basic graphics using methods developed over a 
decade ago; and it is questionable whether these methods can cope with the complex data of today. For 
example, analysts often rely on simple scatter plots and histograms which require several separate plots or 
layered plots to study multiple attributes in a data set. However, the use of separate plots is not an ideal 
approach in this type of analysis due to perceptual issues described by Healey, Tateosain, Enns, and 
Remple (2004) such as the extremely limited memory for information that can be gained from one glance 
to the next. These issues are illustrated through the so-called change blindness phenomenon (a perceptual 
issue described by Rensink (2002)) and they are exacerbated when searching for combinations of 
conditions. 
 
One approach often used by statisticians to overcome this issue is to use the scatterplot matrix (SPLOM), 
which represents multiple adjacent scatterplots for all the variable comparisons in a single display with a 
matrix configuration (Wong and Bergeron, 1997); but the SPLOM requires a large amount of screen 
space and forming multivariate associations is still challenging. Wilkinson, Anand, and Grossman (2006) 
used statistical measures for organizing both the SPLOM and parallel coordinates plots to guide the 
viewer through an exploratory analysis of high-dimensional data sets. Although the organization methods 
improve the analysis, the previously mentioned perceptual issues with SPLOMs remain to some degree. 
Another alternative is to use layered plots, which condense the information into a single display; but there 
are significant issues due to layer occlusion and interference as demonstrated by Healey et al. (2004). 

 
Figure 2. The polyline in parallel coordinates maps the N-dimensional data tuple C with coordinates 
(c1,c2,,cN )  with points on N parallel axes, which are joined with a polyline whose N vertices are on 

the Xi-axis for i =1,…,N .   
 
The parallel coordinates plot is arguably one of the most popular multivariate visualization techniques and 
it is the basis of the highly interactive canvas in the MDX framework. The parallel coordinates technique 
was initially popularized by Inselberg (1985) as a novel approach for representing hyper-dimensional 
geometries, and later demonstrated in the direct analysis of multivariate relationships in data by Wegman 
(1990). In general, the technique yields a compact two-dimensional representation of even large multi- 
dimensional data sets by representing the N-dimensional data tuple C with coordinates (c1,c2,,cN )  
points on N parallel axes which are joined with a polyline (see Figure 2) whose N vertices are on the Xi-
axis for i =1,…,N  and have xy-coordinates (i−1,ci )  (Inselberg, 2009).  
 
In theory, the number of attributes that can be represented in parallel coordinates is only limited by the 
horizontal resolution of the display device. But in a practical sense, the axes that are immediately adjacent 
to one another yield the most obvious information about relationships between attributes in the classical 
parallel coordinates plot. In order to analyze attributes that are separated by one or more attributes in the 
plot, intelligent interactions and graphical indicators are required. In light of this limitation, several 
innovative parallel coordinates extensions that improve interaction and cognition have been described in 
the visualization research literature since the introduction of the classical technique. For example, Hauser, 
Ledermann, and Doleisch (2002) described a histogram display, dynamic axis re-ordering, axis inversion, 
and some details-on-demand capabilities for parallel coordinates. In addition, Siirtola (2000) presented a 
rich set of dynamic interaction techniques (e.g., conjunctive queries) and Johansson, Ljung, Jern, and 
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Cooper (2005) described new line shading schemes for parallel coordinates. Furthermore, several 
focus+context implementations for parallel coordinates have been introduced by Fua, Ward, and 
Rundensteiner (1999), Artero, de Oliveira, and Levkowitz (2004), Johansson et al. (2005), and Novotńy 
and Hauser (2006). More recently, Qu et al. (2007) introduced a method for integrating correlation 
computations into a parallel coordinates display. The MDX system described in the following sections 
utilizes variants of these extensions to the classical parallel coordinates plot. 
 
The MDX system enhances the classical parallel coordinates axis by providing cues that guide and refine 
the analyst’s exploration of the information space. This approach is akin to the concept of the scented 
widget described by Willett, Heer, and Agrawala (2007). Scented widgets are graphical user interface 
components that are augmented with an embedded visualization to enable efficient navigation in the 
information space of the data items. The concept arises from the information foraging theory described by 
Pirolli and Card (1999) which models human information gathering to the food foraging activities of 
animals. In this model, the concept of information scent is identified as the “user perception of the value, 
cost, or access path of information sources obtained by proximal cues” (Pirolli & Card, 1999). 
The scented axis widgets are also assisted by automated data mining processes that reduce the knowledge 
discovery timelines. In Seo and Shneiderman (2005), a framework is used to explore and comprehend 
multidimensional data using a powerful rank-by-feature system that guides the user and supports 
confirmation of discoveries. Recently, Piringer, Berger, and Hauser (2008) expanded this rank-by-feature 
approach with a specific focus on comparing subsets in high-dimensional data sets. The MDX system is 
designed to support a similar rank-by-feature framework with subset selection capabilities using stepwise 
regression, correlation mining, and interactive visual analysis. 
 
CARS DATA SET 
 
The 1983 ASA automobile data set is used throughout the current work to illustrate the MDX capabilities. 
This popular data set includes 8 variables on 406 different cars and was used in the 1983 ASA Data 
Exposition. The variables included in this data set are MPG (miles-per-gallon), number of cylinders, 
engine displacement (cubic inches), horsepower, vehicle weight (lbs.), time to accelerate from 0 to 60 
(sec.), model year, and origin of car (1-America, 2-European, and 3-Japanese). The cars data set contains 
14 records with null values, which are ignored by MDX reducing the number of records analyzed to 392. 
 

Figure 3. The scented axis widgets in the parallel coordinates display are augmented with graphical 
indicators of key descriptive statistical quantities, correlation measures, and regression analysis outputs.  
In this annotated figure, the numbered callouts highlight specific features of the axis widgets which are 

described in detail in the remainder of this paper.   
 
VISUAL DATA MINING AND ANALYSIS TECHNIQUES 
In essence, the parallel coordinates panel in MDX (see Figure 1) is a highly interactive canvas that 
visually presents many multivariate associations in a manner that facilitates multifaceted exploratory data 
analysis. In addition to providing several fundamental capabilities such as relocatable axes, axis inversion, 
and details-on-demand, the MDX canvas also provides several novel visual interaction techniques such as 
axis scaling (focus+context), aerial perspective shading, and dynamic visual queries. These interaction 
capabilities are described in detail in prior publications of this ongoing research (Steed et al., 2009a,b,c). 
In conjunction with these interactive visual query capabilities, MDX provides several data mining 
techniques that facilitate more rapid, creative, and comprehensive statistical data analysis than 
conventional systems. As the analyst interacts with the system, several key statistical quantities are 
calculated on-the-fly and mapped to visual features within the parallel coordinates display (see Figure 3) 
to augment the polyline configurations. The statistical indicators guide the analyst in the identification 
and quantification of the key features and associations in the data set. In addition to graphical indicators 
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of descriptive statistical quantities, the framework offers graphical indicators for correlation measures, 
tunable data classification methods, regression analysis, an automatic multicollinearity filter, and 
automatic axis arrangement capabilities. In the remainder of this section, these techniques are presented 
along with several evaluations of these techniques on the cars data set. 
 
Graphical Indicators of Descriptive Statistics 
By providing visual summaries of patterns and general trends in data sets, the graphical statistical 
indicators in MDX support visual data mining in harmony with the EDA philosophy introduced by Tukey 
(1977). Each parallel coordinate axis is represented by a scented widget that includes visual 
representations of several key descriptive statistics. Referring to Figure 3, the median (9a and 10a), 
interquartile range (IQR) (9 and 10), and frequency information (see Figure 4) are calculated for the data 
in the focus area of each axis and presented graphically as modified box plots within the interior of the 
widget. Alternatively, the analyst can switch this display to use the mean and standard deviation range in 
the box plots. 
 
The wide overall box plot on each axis (see 10 in Figure 3) represents the central tendency and variability 
for all the axis samples while the more narrow query box plots (see 9 in Figure 3)–drawn over the overall 
box plots–capture these statistics for only the samples that are selected with the axis query sliders (see 7 
in Figure 3). Within the box plots, the thicker horizontal lines (see 9a and 10a in Figure 3) that divide the 
box vertically represent the median or mean value in the IQR mode or standard deviation range mode, 
respectively. 
 
The axis query sliders are double-ended and can be manipulated with the mouse cursor to dynamically 
adjust which lines are highlighted (queried) in the parallel coordinates display. The sliders facilitate the 
so-called “pinching” query capability described by Inselberg (2009). Lines that are “pinched” between the 
slider limits for all the axes in the display are rendered in a more prominent manner giving the user the 
ability to perform rapid Boolean AND selections. 
 
Figure 4.The values on the Acceleration axis are less dispersed than the adjacent Displacement axis.  The 

dispersion of the axes can be perceived visually via a comparison of the overall box plots on each axis.  
Furthermore, the frequency information, which is displayed as histogram bins shaded according to the 

number of polylines passing through each bin region, provides a more detailed summary of the 
dispersiveness of each axis.   

 
These graphical central tendency and variability indicators provide geometrical shapes that indicate the 
typical value and how spread out the samples are in the distribution, respectively. For example, in Figure 
4 the overall box plots on the Acceleration axis indicate its values are less dispersed than the adjacent 
Displacement axis. The dispersiveness of the samples for a particular axis is also shown in more detail in 
the histogram bins on either side of the axes that encode the frequency information with shading based on 
the number of polylines that pass through the bin regions. The dispersion of samples for an axis can be a 
key indicator of the predictability of an attribute. For this reason, these indicators are key elements in such 
activities as multivariate sensitivity analysis. 
 
The query box plots provide a mechanism to compare subsets of the data with the overall tendencies in 
the data. In Figure 5, the records with above normal fuel economy are queried using by “pinching” the 
regions on the MPG axis. The query boxplots on the Displacement and Weight reveal that the more fuel-
efficient car models tend to have lower displacement and weight. This example also highlights a single 
car record–the queried line connected to the upper range of the Displacement axis box plot–with good 
fuel economy, but significantly higher engine displacement than the other queried records. Without 



 6	
  

effective highlighting, such anomalous records can be difficult, at best, to find in a densely packed 
parallel coordinates display. 
 
Figure 5. Using the query sliders for the MPG axis, the car records with above normal fuel economy are 
“pinched” between the sliders to highlight the polylines of interest.  The wider boxplots characterize the 
entire set of axis values while the narrow boxplots characterize the current subset of “pinched” values.  
In this example, the query shows a single record with good fuel economy and significantly higher engine 

displacement than the other 94 records that are currently highlighted with the query sliders.   
 
On each axis bar interior, the frequency information can also be displayed by representing histogram bins 
as small rectangles surrounding the axis bar with shades that are indicative of the number of lines that 
pass through the bin’s region (see Figure 4). That is, the darkest bins have the most lines passing through 
that area of the axis while the lighter bins have less lines. In addition to enabling or disabling the 
histogram display, the user can also fine tune the frequency display by modifying the histogram bin size 
in the settings panel. 
 

Figure 6. The user can modify the display settings to enable an axis summary feature and vertical 
histograms.  The axis summary connects the overall central tendency and variability measures with a 

gray polygon connected between the axes and a blue-gray dashed line.  When the data set polylines are 
not shown, as this figure shows, the summaries and histograms can be combined to explore general 

trends in large data sets without loss of interactivity.   
 
As an alternative to display each individual record as a polyline in the display, the analyst can modify the 
display settings to represent the overall central tendency and variability measures using a gray polygon 
connected between the axes and a blue-gray dashed line, respectively (see Figure 6). The variability 
polygon is drawn beneath the other polylines in the parallel coordinates display by connecting the IQR or 
standard deviation range top and bottom limits between the axes. Similarly, the dashed central tendency 
line is drawn by connecting the median or mean values between the axes. The user can use this feature for 
quickly summarizing the axes during analysis. For example, if the data set is large enough to reduce 
interactivity with the individual polylines, the analyst can disable the drawing of all polylines and enable 
the axis summary to dramatically increase the rendering speed of the system. In addition, the user may 
enable the display of the frequency indicators to see a more detailed overview of the data. The analyst can 
then perform all statistical analysis processes, query subsets, and evaluate the descriptive statistics in this 
summary mode with interactive rendering performance in the display, even with very large data sets. 
When a detailed plot is desired, the individual polyline rendering can be reactivated in the settings panel. 
 
Visual Correlation Analysis 
Correlation mining is an important data mining technique due to its usefulness in identifying underlying 
dependencies between variables. The correlation mining process attempts to estimate the strength of 
relationships between pairs of variables to facilitate the prediction of one variable based on what is known 
about another. The relationship between two variables X and Y can be estimated using a single number, r, 
that is called the sample correlation coefficient (Walpole & Myers, 1993). MDX uses the Pearson 
product-moment correlation coefficient to measure the correlation between the axes visible in the parallel 
coordinates panel. Given a series of n measurements of X and Y written as xi and yi where i =1,2,…,n , 
and r is given by 
 

r =
n xiy i∑ − xi∑( ) yi∑( )

n xi
2 − xi∑( )

2
∑#$%

&
'(
n yi

2 − yi∑( )
2

∑#$%
&
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For each pair of axes in the display, our system computes r, which results in a correlation matrix. The 
correlation matrix is a n×n  matrix where each i, j element is equal to the value of r between the i and j 
variables. As shown in Figure 7, the rows from this correlation matrix are exploded and displayed 
graphically beneath each axis as a series of color-filled blocks. The colors used to fill the blocks are 
calculated based on the value of r between the axis directly above it and the axis that corresponds to its 
position in the set of blocks for the particular axis. For example, the first block in the correlation 
indicators under each axis in Figure 7 represents the correlation strength between the axis above it and the 
first axis, MPG. 
 
Figure 7. The graphical correlation indicator blocks that are displayed beneath each axis in the parallel 

coordinates plot are color-filled representations of the correlation matrix. 
 
The color of each indicator block is calculated using the color scale shown in Figure 8(b), which results in 
shades of blue for negative correlations and red for positive correlations. The color scale maps the 
saturation of the color to the strength of r so that the strongest correlations are displayed more 
prominently. An axis’ r value with itself (the diagonal element) is always equal to one and the 
corresponding indicator block is shaded white with a gray ‘X’ symbol (see Figure 8(a)). Moreover, when 
the absolute value of r is greater than or equal to the user-defined significant correlation threshold, 
rthreshold , the block is shaded with the fully saturated color (either red or blue). The current value of 
rthreshold  is displayed at the bottom of the parallel coordinates plot (see Figure 6) and this value can be 
adjusted via the settings panel. 
 
Figure 8. The correlation indicator blocks that correspond to the diagonal elements are the correlation of 
the axis with itself – a perfect relationship.  In (a), these blocks are shaded white and marked with an ‘X’ 

symbol.  The enlarged blocks indicate the bivariate correlations between the highlighted axis and the 
other axes.  The color scale in (b) is used to shade the blocks red for positive and blue for negative.  A 
saturation scale is applied to encode the strength of the correlations such that correlations above the 

rthreshold  value are shaded with the most saturated colors. 
 
When the mouse cursor (see 8 in Figure 3) hovers over an axis in the parallel coordinates panel–the 
mouse cursor is hovering over the HP axis in Figure 9–the axis label (see 1 in Figure 3) is enlarged and 
the correlation coefficient blocks corresponding to it below the other axes are enlarged (see Figure 8(a)). 
This focus+context effect helps the user to ascertain the correlation of the highlighted axis with all other 
axes, at a glance. At the same time, the display shows the full correlation matrix for all pairwise 
combinations of the axes in the display thereby yielding the correlation context. 
 
Figure 9.  The distinct ‘X’ shaped polyline crossings between the MPG and HP axes are characteristic of 
strong negative correlations.  The more horizontal polylines between the HP and Displacement axes are 

characteristic of strong positive correlations.  Visual correlation mining is facilitated via the parallel 
coordinate polyline configurations, scatterplots, correlation indicator block colors, and the numeric 

display of r. 
 
In addition to graphical representations of r, the system also displays small scatterplots (see 11 in Figure 
3) below the axis correlation indicators blocks when an axis is highlighted with the mouse cursor. For 
example, in Figure 9 the MPG axis is highlighted. These scatterplots are created by plotting the points 
from the highlighted variable along the y-axis and the variable directly above the scatterplot along the x-
axis. Each scatterplot also shows the numerical r value associated with this pair of axes below the 
scatterplot (see 12 in Figure 3). The scatterplots in MDX provide a visual mechanism to quickly confirm 
the type of correlation (positive or negative) as well as the strength of the correlation. 
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The type of correlation is also visually detectable in the polyline configurations of the parallel coordinates 
plot. As shown in Figure 9, the parallel coordinates polylines between the MPG and HP axes cross in an 
‘X’ pattern which is characteristic of a negative correlation. The negative correlation is reinforced by the 
slope in the scatterplot, the color of the correlation indicator blocks, and the r value display. On the other 
hand, the polylines between the HP and Displacement axes appear more horizontal and parallel to one 
another, which indicates a positive correlation. Since the visual patterns for the negative correlations tend 
to dominate the parallel coordinates display, the user can invert an axis by clicking on the arrow beneath 
each axis label (see 6 in Figure 3). 
 
Unlike the other correlation indicators, the scatterplot is useful for exploring nonlinear relationships 
between variables. For example, a nonlinear relationship can be observed in a scatterplot even if the 
correlation coefficient is zero. In Figure 9, a nonlinear relationship is revealed in the scatterplot showing 
the MPG and HP axes. However, the nonlinearity is not apparent in the parallel coordinate polyline 
configurations. In Figure 6, the scatterplots beneath the Weight, Displacement, and HP axes reveal 
nonlinear relationships with the highlighted axis, MPG. 
 
Automated Correlation Analysis 
The MDX system provides an automatic multicollinearity filter (see Algorithm 1) to ensure the proper 
selection of axes in subsequent multiple linear regression analysis. This filter examines the visible axes in 
the parallel coordinates display for multicollinearity; if any axes are correlated with each other by more 
than the significant correlation threshold, rthreshold , one axis is removed from the display (see line 11). The 
filter removes the axis that has a lower r with the dependent axis. In this way, the remaining independent 
axes are truly independent of each other. The analyst can tune the multicollinearity filter by changing the 
value of rthreshold . 
 

Algorithm 1.  Multicollinearity Filter. 
 
The user can reduce multicollinearity manually by using the correlation indicators to identify and filter 
correlated axes using a predetermined threshold; but the filter provides an automatic way to ensure 
independence and it can be performed at the click of a button. Removing the strongly correlated 
independent axes will ultimately improve subsequent regression analysis by avoiding over-fitting the 
data. Although the filtered axes are removed, they can be re-inserted in the display using the checkbox in 
the Visible column of the table view (see bottom panel in Figure 1). 
 
Automated Data Classification 
Data classification transforms raw data into classes or groups. Data classification can be useful to help 
discriminate from many differing elements in displays. MDX provides four algorithms from the 
GeoVista 3 library for classifying the data based on a single attribute (axis): Equal intervals, quantiles, 
mean-standard deviation, and Jenks’ optimal. 
 
With the equal interval classification method, each class occupies an equal interval along the selected 
classification axis. Although simple to compute and easy to interpret, a major disadvantage of the equal 
intervals approach is that the class limits do not take into consideration the data distribution along the 
classification axis. The quantile classification method is also simple to compute, but results in the same 
percentages of observations per class. With the quantiles method, data are rank-ordered with equal 
numbers of observations placed in each class and the 50th percentile is logically associated with the 
classes. Like the equal intervals method, the quantiles does not consider how the data are distributed 
along the classification axis. By contrast, the mean-standard deviation method does consider how the data 
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are distributed along the classification axis; but it only works well for data that are normally distributed. If 
the data are normally distributed (or near normal), the mean serves as a good dividing point to facilitate a 
contrast of values above and below it. The Jenks’ optimal classification method places similar data values 
in the same class. Although more difficult to interpret, this optimal classification method is a good choice 
when the intention is to place like values in the same class. There are many criteria to consider in 
selecting the most suitable classification method for a given data set and the reader is referred to the 
detailed overview of these classification methods and criteria for selecting the “best” method given by 
Slocum, McMaster, Kessler, and Howard (2009). 
 

Figure 10. MDX features and automated data classification capability that transforms raw data into 
classes.  The data classification settings panel provides the user with control over the class count, 

classification method, and classification axis.  In addition, the panel displays the information about the 
individual classes in the panel.  In this example, the Quantiles classification method was executed on the 

MPG axis to produce 4 classes.   
 
Within MDX, the data classification features are controlled by the fields in the Classify tab of the Settings 
panel (see Fig. 10). Within this panel, the analyst can adjust the number of classes that will be produced, 
the classification algorithm to execute, and the classification axis. When the analyst executes the 
classification algorithm by clicking on the Classify by Axis button, the system will start the classification 
algorithm and populate the Classification Classes table in the Classify tab with the information about each 
class (ID, color, and visibility in the parallel coordinates panel). 
 
In Figure 11(a), the quantile classification method has been applied to the MPG axis to create 4 classes. 
For the two extreme classes, class 0 captures the most fuel-efficient car models and class 3 captures the 
least fuel-efficient car models. In addition, the two middle classes (classes 1 and 2) capture the cars with 
average fuel economy. 
 
The checkbox in the Visible column of the class table gives the user control over which polylines are 
shown in the parallel coordinate plot. Whereas Figure 11(a) shows all the classes, the two middle classes 
are hidden in Figure 11(b) to facilitate a direct comparison of the extreme upper and lower classes. As a 
result, only the polylines for class 0 (containing the polylines in the upper range of the MPG axis) and 1 
(containing the polylines in the lower range of the MPG axis) are shown. The resulting visual query 
reveals that the most fuel-efficient car models are those with the lower number of cylinders, displacement, 
horsepower, and weight. Furthermore, the query also shows that the most fuel-efficient car models are 
generally slower to accelerate, produced in all three countries of origin, and are more common in recent 
year models. Meanwhile, the class containing the least fuel-efficient models has a higher number of 
cylinders, displacement, horsepower, and weight. As one might expect, acceleration is better in this class. 
In addition, this class of cars is mostly from the older model years and predominately originate from 
America (country 1). 
 

Figure 11. The Quantiles classification method was executed on the MPG axis to produce 4 classes, 
which are indicated by color in (a).  The color legend is shown in Figure 10.  The Visible column in the 

Classification Classes table of the Classify panel gives the user the ability to interactively determine when 
class polylines are shown in the parallel coordinates plot.  This feature provides the ability to perform 

rapid characterizations and comparisons of a class or a set of classes.  In (b), the classes from the upper 
and lower range of the MPG axis are shown in isolation to reveal the patterns for high and low fuel 

economy respectively. 
 
The classification capabilities provides an automated way to group similar elements for values on a 
particular axis and the interaction lets the analyst investigate patterns in class polylines intuitively. The 
same visual queries facilitated by the classification features can be produced manually using the “pinch” 
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query sliders on the axes. However, the analysis of more than one class of information in a single plot is 
not possible using the “pinch” query alone. But with the classification method and related interaction 
capabilities, the user has the ability to rapidly highlight and analyze subsets of the data set in an efficient 
and iterative manner. 
 
Visual Regression Analysis 
Regression analysis is often exploited to identify the most relevant relationships in a particular data set. 
Such techniques are effective for providing quantitative associations and obtaining an adequate and 
interpretable description of how a set of predictors affect the dependent variable in a system. In addition 
to simple linear regression, MDX offers stepwise multiple linear regression with a backwards glance 
which selects the optimum number of the most important variables using a predefined significance level 
(Walpole & Myers, 1993). 
 
The MDX MLR analysis includes a normalization procedure so that the y-intercept becomes zero and the 
importance of a predictor can be assessed by comparing regression coefficients, bi, between different 
predictors. Denoting σ as the standard deviation of a variable, y as the dependent variable, x as a 
predictor, x as the predictor mean, and y  as the dependent variable mean, a number k of statistically 
significant predictors are normalized by the following equation: 
 

y− y( )
σ y

= bi
xi − xi( )
σ ii=1

k

∑  

 
The interactive visual analysis features in MDX complement the stepwise regression capabilities by 
screening and isolating the significant variables in a quantitative fashion. As illustrated in Figure 12, 
MDX executes a MATLAB process and captures output from the MATLAB regress and stepwisefit 
commands that perform simple and stepwise regression, respectively. The MATLAB textual output 
stream is then parsed and relevant statistical information is extracted and represented graphically within 
the parallel coordinates display. 
 
Referring to 3 in Figure 3, the system graphically encodes b in the parallel coordinates panel using the 
box that is below the axis label and to the left of the arrow. Like a thermometer, the box is filled from the 
bottom to the top based on the magnitude of b. The box is colored red if the coefficient is positive and 
blue if it is negative. The box to the right of the arrow, 5 in Figure 3, encodes the r2 output from the SLR 
process. In addition to the coefficients, the MLR analysis returns an overall R2 value, which provides a 
quantitative indication of how well the model captures the variance between the predictors and the 
dependent variable. Referring to 2 in Figure 3, the box beneath the dependent variable axis name, 1a in 
Figure 3, encodes the overall R2 value from the MLR analysis. The R2 value is also presented numerically 
(see 4 in Figure 3). 
 
When these boxes are filled with a light gray ‘X’, the value is not defined (the SLR or MLR process has 
not been executed) or, in the case of the MLR analysis, the variable was excluded during the selection 
process. It is also important to note that the axis corresponding to the dependent variable is indicated by 
light gray text on a dark gray box for its title (see 1a in Figure 3)–the reverse shading of the other axes. 
 

Figure 12. MDX features an interactive stepwise multiple regression analysis capability that allows the 
user to choose or exclude variables, execute the automated analysis, and examine the results in the 

augmented parallel coordinates display.  The regression capability represents an iterative loop designed 
to reveal the most significant parameters for the chosen dependent axis.   
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As shown in Figure 12, the stepwise regression process can be represented as an interactive feedback loop 
in which the analyst can designate the dependent axis, choose which axes to consider in the regression 
model, execute the regression analysis via MATLAB, and visually examine the results in the augmented 
parallel coordinates display. Combining the strengths of automated analytics with human intuition, 
creativity, and flexibility, this approach provides an effective means to discover the most significant set of 
predictors. 
 

Figure 13. With the MPG axis designated as the dependent axis, the regression model shown in (a) was 
produced by MDX.  The high number of highly saturated correlation indicator blocks in this plot 

indicates the high number of independent variables that are highly correlated with one another.  To 
reduce this condition, the MDX multicollinearity filter is executed and the regression process is repeated.  

The output of the new regression (b) provides an adequate model with a fewer number of independent 
variables than the first attempt (a). 

 
Figure 13(a) shows the resulting model generated by the MDX stepwise regression analysis for the cars 
data set using MPG as the dependent axis. In this example, the axes are sorted in descending order based 
on the resulting value of b. In addition to the graphical indicators of b, the SLR r2 graphical indicators 
convey information about the significance of each variable with respect to the dependent axis. The plot 
arrangement shows the Weight axis is the most significant axis based on the stepwise regression analysis. 
Furthermore, the “pinch” sliders are used in this example to highlight the most fuel-efficient records. The 
high percentage of highly saturated colors in the correlation indicator blocks beneath each axis in Figure 
13(a) reveal that several of independent variables are highly correlated with one another. This 
multicollinearity condition should be addressed prior to the regression process execution. Using the MDX 
automated multicollinearity filter, all except the Weight, Year, and Acceleration axes are removed from 
consideration by the next execution of the regression process. In Figure 13(b), the new regression model 
is shown. In this model, the Weight and Year axes were retained but the Acceleration axis was not chosen 
by the regression process. Although the overall R2 for the model dropped slightly from the non-filtered 
version, the new model provides an adequate model with a fewer number of independent variables. 
Reducing the number of predictors is helpful to exploratory analysis because it simplifies interpretation 
and it usually means cheaper data collection and analysis. 
 
Furthermore, the small boxplot for the Weight axis in Figure 13(b) reflects the tight clustering of 
polylines, which are mostly below the median value. These characteristics are indicators that Weight can 
be used to effectively predict the fuel efficiency of a car. If the lines were mostly dispersed, the small 
boxplot would be taller and reflect a condition where by the analyst may have difficulty using the 
predictor to predict the dependent variable. The analyst can continue to utilize the interactive interface to 
conduct confirmatory analysis of the resulting regression models and, optionally, iterate to produce new 
regression models. 
 
Optimal Axis Arrangement 
In the classic parallel coordinates plot, adjacent axes reveal the most information about one other. The 
correlation indicators and graphical statistical indicators provide one viable way to reveal information 
between all axes, simultaneously, regardless of the current axis locations. MDX also provides a set of 
optimal axis arrangement schemes that automatically arrange the axes in the parallel coordinates panel 
using one of the following precomputed statistical measures: 
 

• Correlation coefficient (r) 
• IQR / standard deviation range 
• MLR coefficient (b) 
• SLR (r2) value 
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This capability facilitates more rapid statistical comparisons between the displayed axes. The analyst can 
execute the arrangement process using the Process tab in the settings panel or through the pop-up menu 
that is displayed when the user right clicks in the parallel coordinates panel. 
 
Figure 14. MDX can automatically arrange the display axes according to the correlation coefficients, r, 
with a particular axis.  In this example, the axes are arranged based on the correlation with the MPG 
axis.  Axes with negative correlations are arranged on the left of the highlighted axis and positively 

correlated axes are arranged on the right. 
 
When the axes are sorted by r, one axis is selected initially as the target axis. The axes are then sorted 
according to the r value of the target axis and the other visible axes. As shown in Figure 14, the axes with 
negative correlations are arranged to the left of the target axis in ascending order. Similarly, the axes with 
positive correlations are arranged to the right of the target axis in descending order. The strongest 
correlations are placed nearest to the target axis while the weakest correlations are placed farthest away. 
When the axes are sorted in this manner, the analyst can quickly identify the strongest correlations with 
the target axis and engage in more effective correlation analysis. 
 
The IQR / standard deviation range, b, and r2 arrangement options all sort the axes in descending order 
based on the respective statistical measures. The dependent axis is placed at the leftmost position and the 
other axes are arranged accordingly to the right of it. The IQR / standard deviation range arrangement is 
useful for examining the dispersion characteristics of each axis. The r2 arrangement is useful as an 
alternate method for observing the individual correlation of axes with the dependent axis. The b 
arrangement (see Figure 13(a)) helps to analyze the stepwise regression model results and quantify the 
most significant axes for the dependent axis. 
 
Discussion 
In traditional data analysis tools, a collection of separate visualization and analysis tools are usually 
employed. Furthermore, the visualizations are often comprised of static techniques developed more than a 
decade ago; and it is questionable whether these techniques can meet the demands of today’s data. 
Consequently, the analyst is afforded limited interactivity with the data, thereby hindering the discovery 
of new hypotheses. By integrating statistical and visualization processes, MDX gives the analyst rapid, 
visual query capabilities for faster and more creative knowledge discovery. In case studies that utilized 
MDX to conduct exploratory climate analysis (Steed et al., 2009a,b,c), MDX was compared to more 
traditional, static systems. Whereas the more traditional process took days to reach conclusions, analysis 
with MDX required hours. Perhaps the greatest evidence of the promise of the visual analytics approach 
came during these climate case studies from a weather science expert, Dr. Patrick Fitzpatrick, who, in 
addition to authoring several articles (Fitzpatrick, 1997) and books (Fitzpatrick, 1999) on hurricane 
climate studies, is also a co-author of this chapter. Dr. Fitzpatrick indicated that the MDX system 
facilitated more rapid and comprehensive analysis and validation than traditional static analysis 
techniques. The utilization of coordinated multiple views (CMV) in MDX helps the viewer conduct more 
creative exploratory analysis by offering multiple views of the data where actions in one view are 
propagated to others according to some visual effect. For example, non-linear relationships are more 
difficult to discover in parallel coordinates, but straightforward to identify in a scatterplot. On the other 
hand, the number of variables that can be displayed in a scatterplot is generally restricted to two or three 
dimensions. Moreover, it is difficult to decipher correlations between axes in all but the extreme cases in 
the parallel coordinates plot, but the scatterplot is more useful for more subtle cases that are often 
encountered in real-world data. Having both the parallel coordinates plot and the scatterplots in MDX 
gives the analyst access to both views in a complementary fashion, which offsets said deficiencies. 
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Furthermore, the inclusion of parallel coordinates plot in new areas such as climate analysis forces the 
analyst to consider the data in new ways, which often encourages fresh insight. 
 
As discussed in preceding section on Visual Correlation Analysis, extreme negative and positive 
correlations can be detected by characteristic visual patterns. However, more subtle correlations are not as 
easily detected and it is impossible to grasp the correlations between all pairs of axes using classical 
parallel coordinates. With the graphical correlation indicator blocks, the more subtle correlations are 
conveyed directly using a carefully designed saturation color scale. Also, these correlation indicator 
blocks capture a holistic overview of all correlations between pairs of axes by exploding the correlation 
matrix. As Shneiderman (1996) notes, providing an overview helps the analyst build a mental model of 
how the data covers the attribute space. In turn, the model helps the analyst formulate new queries on the 
data (Plaisant, Shneiderman, Doan, & Bruns, 1999). These linked views provide the level of interactivity 
and coordination necessary to cope with today’s complex, multivariate data. 
 
A significant amount of time has been devoted to formulating an optimal color scheme and layout for the 
MDX interface. The color scheme and layout is based upon color design principles from fine art and 
graphic design (Itten, 1970), as well as empirical perceptual studies (Ware, 2004). For example, muted 
colors are used in most of the graphical elements reserving the most saturated colors for small portions of 
the display. This creates a visual balance that is aesthetically pleasing to the viewer. Furthermore, the 
most vivid colors are placed on the peripheral of the display to further balance the view. The color-coded 
correlation blocks described in the Section on Visual Correlation Analysis are a good illustration of the 
significance of a well-planned color design. The saturation scale directs visual attention to the strongest 
correlations and the blue and red shades cue the analyst to sign of the correlation. When planned 
intelligently, the overall color scheme of the application will greatly improve the user experience by 
reducing fatigue and making important relationships stand out to the viewer. The color scheme can also 
improve the viewer’s confidence in the software’s capabilities, at least initially, which is crucial to 
efficient communication of results. 
 
CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS 
An enhanced version of the MDX framework has been described in this work that offers new visual 
correlation mining, interactive regression analysis, and interactive, semi-automated data classification. 
Several illustrations of this new framework have been demonstrated with the popular ASA cars data set to 
highlight how the approach enhances knowledge discovery in multivariate data sets. 

In the future, the MDX system will be expanded to explore additional data sets. The system has already 
been evaluated with several complex tropical cyclone and oceanographic data sets. In addition to 
additional climate data sets, new methods for transforming unstructured data into insightful 
representations within MDX are being investigated now. The MDX system has shown significant promise 
in several practical evaluations. The results of these evaluations provide compelling evidence that visual 
analytics solutions can meet the complex challenges of deciphering actionable knowledge from today’s 
increasingly complicated data. 
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