
9. Complexity Theory : The
Frontier

Sai Divya Enni

9.1 Introduction
Complexity theory is the most active area of research in
the theory of Computation.
This chapter deals above the practical applications of
Complexity theory.
It deals with basically 2 issues :

The complexity of single instances (characterizing the complexity
of a single instance into a worst case behavior or average case
behavior).
The second issue is can we develop complexity classes and
completeness results based on average case.

Much of the complexity theory is about modeling
computation in order to understand it we would naturally
want to study these new devices, develop models for
their mode of computation and compare the results with
current models.

Parallel computing has been applied intensively to
various applications like Optical computing, DNA
computing, Quantum computing.
Parallelism helps us to make many problem tractable but
it does not alas helps us to solve NP-hard problems in
Polynomial time.
The most important development in complexity theory
has been in “Proof theory”.

The researchers have focused in 2 distinct models they are:
One where the prover and checker interact for as many rounds as
the prover needs to convince the checker.
Second one where the prover simply writes down the argument as a
single, non interactive communication to the checker.

Complexity theory has its own side which deals with
internal questions like P vs NP this is called “ Structural
Theory”

Some of what we have covered in the previous chapters
comes under structure theory like polynomial hierarchy.
Some of the blossoming areas of research are
Complexity Learning Theory.
This research into fine structure of NP has also lead to
research in fine structure in P this is called Fixed-
Parameter Tractability.
All these above mentioned researches have been of
theoretical interests only.

9.2 The Complexity of Specific Instances
Complexity core: Complexity core for a problem is an
infinite set of instances all but a finite number of which
are hard by hard meaning we shall look at complexity
cores of P and define hard problems as the problems
that are not solvable in polynomial time.
Theorem 9.1: if a set is not in P then it posses an infinite
subset , such that any decision algorithms must
take more than a polynomial number of steps almost
everywhere on X

Proof: our proof proceeds by diagonalizing over all the
TMs. Denote the ith turing machine in the enumeration
by Mi and the output that it produces when it runs with
string x is Mi(x). Let pi be the sequence of polynomials

x S⊆

0

i
i

i
j

p x
=

=∑

Note that this sequence has following 2 properties:
For any value n>0, i>j→Pi(n)>Pj(n).
Given any polynomial p there exists an I such that Pi(n) >Pj(n)
holds for all n>0.

We construct a sequence of elements of s such that the
nth elements cannot be accpted in Pn|Xn| time by any of
the first n turing machines in the enumeration.
Denote by the Xs the characteristic function of s that is
we have xЄs→Xs(s)=1 and the converse implies that
Xs(s)=0. we construct each element by element s
follows:

Let y be the empty string and let the stage number n be 1.
For each i 1≤ i ≤n such that I is not yet cancelled run machine Mi
on the string y Pn(|y|) until it terminates . If Mi terminates but does
not solve instance y correctly we need not consider Mi again
since it cannot decide membership in S.

For each I not yet cancelled determine if it passed step 2
because machine Mi did not stop in time. If so let Xn=y and
proceed to step 4 if not so replace y y the next string in
lexicographic order and return to step 4.
After replacing increase n by 1 and return to step 2.

If stage n does not terminate it loops back between step
3 and 2 to produce infinite long strings y.
This can happen only if there exists an un canceled i
such that Mi terminates in no more than P|y| steps. But
then we have Mi(y)=Xs(y) since I is not cancelled thus
we have a polynomial time decision procedure for our
problem.
Hence we have proved that for all but a finite number of
instances of X machine Mi must run in super polynomial
time.

Theorem 9.2:
Every NP complete problem has complexity cores of
Super polynomial density.

Definition 9.1:
A hard instance is one that can be solved efficiently only
through table lookup.

Definition 9.2:
Let Iy be the yes instances of some problems ∏, x an
arbitrary instance of the problem and t() some time
bound.

The t bound instance complexity of x w.r.t to ∏, IC^t (x|∏), is
defined as the size of the smallest turing machine that solves ∏
and runs in time bounded by t|x| on the instance x, if no such
machine exists then the instance complexity is infinite.

The descriptional complexity of a string x, K(x) is the size of the
smallest Turing machine that produces x when started with the
empty string.
We write K’(x) if we also require that the turing machine halt in no
more than t|x| steps.

Proposition 9.1:
For every problem ∏ , there exists a contact such that

Holds for any time bound t() and instance x.
Definition 9.3:

Given constant c and time bound t(), an instance x is (t,c)
hard for the problem ∏ if

Cπ
(|) ()t tIC x K x Cπ π≤ +

(|) () .tIC x K x c holdsπ ≥ −

Questions ????

	9. Complexity Theory : The Frontier
	9.1 Introduction
	Slide Number 3
	Slide Number 4
	9.2 The Complexity of Specific Instances
	Slide Number 6
	Slide Number 7
	Theorem 9.2:
	Slide Number 9
	Slide Number 10

