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Abstract

Bulk Synchronous Parallelism (BSP) is a parallel programming model that abstracts from
low-level program structures in favour of supersteps. A superstep consists of a set of indepen-
dent local computations, followed by a global communication phase and a barrier synchroni-
sation. Structuring programs in this way enables their costs to be accurately determined from
a few simple architectural parameters, namely the permeability of the communication network
to uniformly-random traffic and the time to synchronise. Although permutation routing and
barrier synchronisations are widely regarded as inherently expensive, this is not the case. As
a result, the structure imposed by BSP comes for free in performance terms, while bringing
considerable benefits from an application-building perspective. This paper answers the most
common questions we are asked about BSP and justifies its claim to be a major step forward
in parallel programming.

1 Why is another model needed?

In the 1980s a large number of different types of parallel architectures were developed.
With hindsight we now see that this variety was both unnecessary and unhelpful. It stifled
the commercial development of parallel applications software because, to achieve acceptable
performance, all such software had to be tailored to the specific architectural properties of
the machine.

Today the number of parallel computation models and languages probably greatly exceeds
the number of different architectures with which parallel programmers had to contend ten
years ago. Most are inadequate because they make it hard to achieve portability, hard to
achieve performance, or both. Those based on message passing are inadequate because of
the complexity of correctly creating paired communication actions (send and receive) in large
and complex software. Such systems are prone to deadlock as a result. Furthermore, the
performance of such programs is impossible to predict because of the interactions of large
numbers of individual data transfers.

Some take the view that models based on shared memory are easier to program because
they provide the abstraction of a single, shared address space and so a whole class of placement
decisions are avoided. Moderately-parallel architectures capable of providing this abstraction
can certainly be built, so they also believe that the modest parallelism they provide is enough
to satisfy performance demands for the foreseeable future. We are dubious about both claims.
While shared memory does reduce the need for placement, it creates a need to control simul-
taneous access to the same location. This requires either careful crafting of programs, in
the PRAM style, or expensive lock management. Implementing shared-memory abstractions
requires a larger and larger fraction of the computer’s resources to be devoted to communi-
cation and the maintenance of coherence. Worse still, the technology required to provide the
abstraction is the least likely to be of a commodity nature, and hence even more expensive.

The Bulk Synchronous Parallel (BSP) model [35] provides software developers with an
attractive escape route from the world of architecture-dependent parallel software. The emer-
gence of the model has coincided with the convergence of commercial parallel machine designs
to a standard architectural form with which it is very compatible. These developments have
been enthusiastically welcomed by a rapidly-growing community of software engineers who
produce scalable and portable parallel applications. However, while the parallel-applications
community has welcomed the approach, there is still a surprising degree of skepticism amongst



parts of the computer science research community. Many people seem to regard some of the
claims made in support of the BSP approach as “too good to be true”.

The only sensible way to evaluate an architecture-independent model of parallel compu-
tation such as BSP is to consider it in terms of all of its properties, that is (a) its usefulness
as a basis for the design and analysis of algorithms, (b) its applicability across the whole
range of general-purpose architectures and its ability to provide efficient, scalable performance
on them, and (c) its support for the design of fully-portable programs with analytically-
predictable performance. To focus on only one of these at a time, is simply to replace the zoo
of parallel architectures in the 1980s by a new zoo of parallel models in the 1990s. It seems
likely that this viewpoint on the nature and role of models will gain more and more support
as we move from the straightforward world of parallel algorithms to the much more complex
world of parallel software systems.

2 What is Bulk Synchronous Parallelism?

Bulk Synchronous Parallelism is a style of parallel programming developed for general-
purpose parallelism, that is parallelism across all application areas and a wide range of archi-
tectures [25]. Its goals are more ambitious than most parallel-programming systems which are
aimed at particular kinds of applications, or work well only on particular classes of parallel
architectures [26].

BSP’s most fundamental properties are that:

e [t is simple to write. BSP programs look much the same as sequential programs. Only
a bare minimum of extra information needs to be supplied to describe the use of paral-
lelism.

e [t is independent of target architectures. Unlike many parallel programming systems,
BSP is designed to be architecture-independent, so that programs run unchanged when
they are moved from one architecture to another. Thus BSP programs are portable in
a strong sense.

e The performance of a program on a given architecture is predictable. The execution
time of a BSP program can be computed from the text of the program and a few simple
parameters of the target architecture. This makes design possible, since the effect of a
decision on performance can be determined at the time it is made.

BSP achieves these properties by raising the level of abstraction at which programs are
written and implementation decisions made. Rather than considering individual processes
and individual communication actions, BSP considers computation and communication at
the level of the entire program and executing computer. Determining the bulk properties of
a program, and the bulk ability of a particular computer to satisfy them makes it possible to
design with new clarity.

One way in which BSP is able to achieve this abstraction is by renouncing locality as a
performance optimisation. This simplifies many aspects of both program and implementation
design, and in the end does not adversely affect performance for most application domains.
There will always be some application domains for which locality is critical, for example
low-level image processing, and for these BSP may not be the best choice.
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Figure 1: A Superstep

3 What does the BSP programming style look like?

BSP programs have both a vertical structure and a horizontal structure. The vertical
structure arises from the progress of a computation through time. For BSP, this is a sequential
composition of global supersteps, which conceptually occupy the full width of the executing
architecture. Each superstep is further subdivided into three ordered phases consisting of:

e computation locally in each process, using only values stored in the memory of its
processor;

e communication actions amongst the processes, involving movement of data between
processors;

e a barrier synchronisation, which waits for all of the communication actions to complete,
and which then makes the data that was moved available in the local memories of the
destination processors.

The horizontal structure arises from concurrency, and consists of a fixed number of virtual
processes. These processes are not regarded as having a particular linear order, and may be
mapped to processors in any way. Thus locality plays no role in the placement of processes
on processors. A superstep is shown in Figure 1.

We will use p to denote the virtual parallelism of a program, that is the number of processes
it uses. If the target parallel computer has fewer processors than the virtual parallelism, an
extension of Brent’s theorem [5] can be used to transform a BSP program into a slimmer
version.

4 How does communication work?



Most parallel programming systems handle communication, both conceptually and in
terms of implementation, at the level of individual actions: memory-to-memory transfers,
sends and receives, or active messages. However, this level is difficult to work with because
there are many simultaneous communication actions in a parallel program, and their interac-
tions are complex. This makes it hard to say much about the time any single communication
action will take to complete.

Considering communication actions en masse both simplifies their treatment and makes
it possible to bound the time it takes to deliver a whole set of data. BSP does this by
considering all of the communication actions of a superstep as a unit. For the time being,
imagine that all messages have a fixed size. During a superstep, each process has designated
some set of outgoing messages and is expecting to receive some set of incoming messages.
If the maximum number of incoming or outgoing messages per processor is h, then such a
communication pattern is called an h-relation. The communication pattern in Figure 1 is a
2-relation. Because of the random placement of processes on processors, any structure on
the set of messages in the abstract will almost certainly not be reflected as structure in the
target architecture’s communication topology. Thus the destination processor addresses of
an h-relation are likely to approximate a sequence of permutations of processor identifiers.

The ability of communication network to deliver data is captured by a parameter, g,
that measures the permeability of the network to continuous traffic addressed to uniformly-
random destinations. Both the random placement of processes in processors, and techniques
such as adaptive routing help to make the load generated by h-relations approximate the load
generated by sequences of random permutations. Thus the applied load on the communication
network has the kind of characteristics for which g is an appropriate measure. The parameter
g is defined such that it takes time hg to deliver an h-relation. Subject to some small provisos,
discussed later, hg is an accurate measure of communication performance over a large range of
architectures. The value of g is normalised with respect to the clock rate of each architecture
so that it is in the same units as the time for executing sequences of instructions.

Sending a message of length m clearly takes longer than sending a message of size 1. For
reasons that will become clear later, BSP does not distinguish between a message of length m
and m messages of length 1—the cost in either case is mhg. So messages of varying lengths
may either be costed using the form mhg where h is the number of messages, or the message
lengths can be folded into &, so that it becomes the number of units of data to be transferred.

The parameter g is related to the bisection bandwidth of the communication network but
it is not equivalent. It also depends on other factors such as:

e the protocols used to interface with and within the communication network,
e the buffer management by both the processors and the communication network,
e the routing strategy used in the communication network, and

e the BSP runtime system.

So g is bounded below by the ratio of p to the bisection bandwidth, suitable normalised, but
may be much larger. Only a very unusual network would have a bisection bandwidth that
grew faster than p, so this means that g is a monotonically increasing function of p. The value



of ¢ is, in practice, determined empirically for each parallel computer, by running suitable
benchmarks. A BSP benchmarking protocol is given in Appendix B

Note that g is not the normalised single-word delivery time, but the single-word delivery
time under continuous traffic conditions. This difference is subtle but crucial.

5 Surely this isn’t a very precise measure of how long communication takes?
Don’t hotspots and congestion make it very inaccurate?

One of the most difficult problems of determining the performance of conventional mes-
saging systems is precisely that congestion makes upper bounds hard to determine and quite
pessimistic. BSP largely avoids this difficulty.

An apparently-balanced communication pattern may always generate hotspots in some
region of the interconnection topology. BSP prevents this in several ways. First, the random
allocation of processes to processors breaks up patterns arising from the problem domain.
Second, the BSP runtime system uses routing techniques that avoid localised congestion.
These include randomised routing [36], in which particular kinds of randomness are introduced
into the choice of route for each communication action, and adaptive routing [4], in which data
are diverted from their normal route in a controlled way to avoid congestion. If congestion
occurs, as when an architecture has only a limited range of deterministic routing techniques
for the BSP runtime system to choose from, this limitation on continuous message traffic is
reflected in the measured value of g.

Notice also that the definition of an h-relation distinguishes the cost of a balanced commu-
nication pattern from one that is skewed. A communication pattern in which each processor
sends a single message to some other (distinct) processor counts as a 1-relation. However,
a communication pattern that transfers the same number of messages, but in the form of a
broadcast from one processor to all of the others, counts as a p-relation. Hence, unbalanced
communication, which is the most likely to cause congestion, is charged a higher cost. Thus
the cost model does take into account congestion phenomena arising from the limits on each
processor’s capacity to send and receive data, and from the extra traffic that might occur on
the communication links near a busy processor.

Experiments have shown that g is an accurate measure of the cost of moving large amounts
of data on a wide range of existing parallel computers.

6 Isn’t it expensive to give up locality?

Yes, there will always be application domains where exploiting locality is the key to
achieving good performance. However, there are not as many of them as a naive analysis
might suggest, for the following reason. Most performance-limited problems work with large
amounts of data, and can therefore exploit large amounts of virtual parallelism. However,
most existing parallel computers have only modest numbers of processors. When highly-
parallel programs are mapped to much less parallel architectures, many virtual processes
must be multiplexed onto each physical processor by the programmer. When this is done,
almost all of the locality is lost, unless the communication network happens to match the
structure of the problem domain very closely. Thus problems with apparently large amounts
of locality tend not to have much locality when they actually execute.



7 Most parallel computers have a considerable cost associated with starting up
communication. Doesn’t this mean that the cost model is inaccurate for small
messages, since g doesn’t account for start-up costs?

The cost model can be inaccurate, but only in rather special circumstances. Recall that all
of the communications in a superstep are regarded as taking place at the end of the superstep.
This semantics makes it possible for implementations to wait until the end of the computation
part of each superstep to begin the communication actions that have been requested. They
can then package the data to be transferred into larger message units. The cost of starting
up a data transfer is thus only paid once per destination per superstep and can be folded into
the value of g.

However, if the total amount of communication in a superstep is small, then start-up
effects may make a noticeable difference to the performance. We address this quantitatively
later.

8 Aren’t barrier synchronisations expensive? How are their costs accounted for?

Yes, barriers are often expensive on today’s architectures and so they should be used as
sparingly as possible. On the other hand, barriers are not nearly as inherently expensive
as they are believed to be in high-performance computing folklore [17]. Future architecture
developments may make them much cheaper.

The cost of a barrier synchronisation comes in two parts:

e The cost caused by the variation in the completion times of the computation steps that
participate. There is not much that an implementation can do about this, but it does
suggest that balance in the computation parts of a superstep is a good thing.

e The cost of reaching a globally-consistent state in all of the processors. This depends,
of course, on the communication network, but also on whether or not special-purpose
hardware is available for synchronising, and on the way in which interrupts are handled
by processors.

For each architecture, the cost of a barrier synchronisation is captured by a parameter, [.
The diameter of the communication network, or at least the length of the longest path that
allows state to be moved from one processor to another clearly imposes a lower bound on [.
However, it is also affected by many other factors, so that, in practice, an accurate value of [
for each parallel architecture is obtained empirically.

Notice that barriers, although potentially costly, have a number of attractive features.
There is no possibility of deadlock or livelock in a BSP program because barriers make circu-
larities in data dependencies impossible. Hence there is no need for tools to detect and deal
with them. Barriers also permit novel forms of fault tolerance.

9 How do these parameters allow the cost of programs to be determined?

The cost of a single superstep is the sum of three terms: the (maximum) cost of the local
computations on each processor, the cost of the global communication of an h-relation, and



the cost of the barrier synchronisation at the end of the superstep. Thus the cost is given by

cost of a superstep = MAX w; + MAX h;g + 1
processes processes

where ¢ ranges over processes, and w; is the time for the local computation in process i. Often
the maxima are assumed and BSP costs are expressed in the form w 4 hg + . The cost of an
entire BSP program is just the sum of the cost of each superstep. We call this the standard
cost model.

To make this sum meaningful, and to allow comparisons between different parallel com-
puters, the parameters w, g, and [ are expressed in terms of the basic instruction execution
rate of the target architecture. Since this will only vary by a constant factor across archi-
tectures, asymptotic complexities for programs are often given unless the constant factors
are critically important. Note that we are assuming that the processors are homogeneous,
although it is not hard to avoid that assumption by expressing performance factors in any
common unit.

The existence of a cost model that is both tractable and accurate makes it possible to truly
design BSP programs, that is to consciously and justifiably make choices between different
implementations of a specification. For example, it is clear that the following strategies should
be used to write efficient BSP programs:

e balance the computation in each superstep between processes, since w is a mazimum
over computation times, and the barrier synchronisation must wait for the slowest pro-
cess;

e balance the communication between processes, since h is a mazimum over fan-in and
fan-out of data; and

e minimise the number of supersteps, since this determines the number of times [ appears
in the final cost.

The cost model also shows how to predict performance across target architectures. The
values of p, w, and h for each superstep, and the number of supersteps can be determined
by inspection of the program code, subject to the usual limits on determining the cost of
sequential programs. Values of g, and [ can then be inserted into the cost formula to estimate
execution time before the program is executed. The cost model can be used

e as part of the design process for BSP programs;
e to predict the performance of programs ported to new parallel computers; and

e to guide buying decisions for parallel computers if the BSP program characteristics of
typical workloads are known.

Other cost models for BSP have been proposed, incorporating finer detail. For example,
communication and computation could conceivably be overlapped, giving a superstep cost of
the form

MAX(w, hg) +1



although this optimisation is not usually a good idea on today’s architectures [16,32]. It is
also sometimes argued that the cost of an h-relation is limited by the time taken to send h
messages and then receive h messages, so that the communication term should be of the form

(hin + hout)g

All of these variations alter costs by no more than small constant factors, so we will continue
to use the standard cost model in the interests of simplicity and clarity.

A more important omission from the standard cost model is any restriction on the amount
of memory required at each processor. While the existing cost model encourages balance in
communication and limited barrier synchronisation, it encourages profligate use of memory.
An extension to the cost model to bound the memory associated with each processor is being
investigated.

The cost model also makes it possible to use BSP to design algorithms, not just programs.
Here the goal is to build solutions that are optimal with respect to total computation, total
communication, and total number of supersteps over the widest possible range of values of p.
Designing a particular program then becomes a matter of choosing among known algorithms
for those that are optimal for the range of machine sizes envisaged for the application.

For example two BSP algorithms for matrix multiplication have been developed. The first,
a block parallelization of the standard n? algorithm [26], has (asymptotic) BSP complexity

Block MM cost = n3/p + (712/;01/2)9 +p'2

requiring memory at each processor of size n?/p. This is optimal in time and memory re-
quirement.

A more sophisticated algorithm due to McColl and Valiant [23] has BSP complexity
Block and Broadcast MM cost = n®/p + (n%/p?3)g +1

requiring memory at each processor of size n2/p2/3. This is optimal in time, communication,
and supersteps, but requires more memory at each processor. Therefore the choice between
these two algorithms in an implementation may well depend on the relationship between the
size of problem instances and the memory available on processors of the target architecture.

10 Is BSP a programming discipline, or a programming language, or something
else?

BSP is a model of parallel computation. It is concerned with high-level structure of
computations. Therefore it does not prescribe the way in which local computations are
carried out, nor how communication actions are expressed. All existing BSP languages are
imperative, but there is no intrinsic reason why this need be so.

BSP can be expressed in a wide variety of programming languages and systems. For
example, BSP programs could be written using existing communication libraries such as
PVM [9], MPI [27], or Cray’s SHMEM. All that is required is that they provide non-blocking
communication mechanisms and a way to implement barrier synchronisation. However, the
values of ¢ and [ depend not only on the hardware performance of the target architecture



but also on the amount of software overhead required to achieve the necessary behaviour, so
systems not designed with BSP in mind may not deliver good values of g and [.

The most common approach to BSP programming is SPMD imperative programming
using Fortran or C, with BSP functionality provided by library calls. Two BSP libraries
have been in use for some years: the Oxford BSP Library [28] and the Green BSP Library
[11,12]. A standard has recently been agreed for a library called BSPLib [13]. The BSPLib
contains operations for delimiting supersteps, and two variants of communication, one based
on direct-memory transfer, and the other on buffered message passing.

Other BSP languages have been developed. These include GPL [24], and Opal [21]. GPL
is a first attempt to develop an MIMD language permitting synchronisation of subsets of
executing processes. Opal is an object-based BSP language.

11 How easy is it to program using the BSPLib library?

The BSPLib library provides the operations shown in Table 1. There are operations to:

e set up a BSP program;

e discover properties of the environment in which each process is executing;

e participate in a barrier synchronisation;

e communicate, either directly into or out of a remote memory, or using a message queue;
e abort a computation from anywhere inside it; and

e communicate in a high-performance unbuffered mode.

The BSPLib library is freely available in both Fortran and C from http://www.bsp-worldwide.
org/implmnts/oxtool.htm. A more complete description of the library can be found in Ap-
pendix A.

Another higher-level library provides specialised collective-communication operations. These
are not considered as part of the core library, but they can be easily realised in terms of the
core. These include operations for broadcast, scatter, gather, and total exchange.

12 In what application domains has BSP been used?

BSP has been used in a number of application areas, primarily in scientific computing.
Much of this work has been done as part of contracts with Oxford Parallel (http://www.
comlab.ox.ac.uk/oxpara/).

Computational fluid dynamics applications of BSP include: (a) an implementation of a
BSP version of the OPlus library for solving 3D multigrid viscous flows, used for computation
of flows around aircraft or complex parts of aircraft in a project with Rolls Royce [6], (b) a
BSP version of FLOW3D, a computational fluid dynamics code, (c) oil reservoir modelling
in the presence of discontinuities and anisotropies in a project with Schlumberger Geoquest
Ltd.



‘ Class Operation Meaning

Initialisation bsp_init Simulate dynamic processes
bsp_begin Start of SPMD code
bsp_end End of SPMD code

Enquiry bsp_pid Find my process id
bsp_nprocs Number of processes
bsp_time Local time

Synchronisation bsp_sync Barrier synchronisation

DRMA bsp_pushregister | Make region globally visible
bsp_popregister | Remove global visibility
bsp_put Push to remote memory
bsp_get Pull from remote memory

BSMP bsp_set_tag_size | Choose tag size
bsp_send Send to remote queue
bsp_get_tag Match tag with message
bsp-_move Fetch from queue

Halt bsp_abort One process halts all

High Performance | bsp_hpput Unbuffered versions
bsp_hpget of communication
bsp_hpmove primitives

Table 1: Core BSP operations

Computational electromagnetics applications of BSP [30] include: (a) 3D modelling of
electromagnetic interactions with complex bodies using unstructured 3D meshes, in a project
with British Aerospace, (b) parallelisation of the TOSCA, SCALA, and ELEKTRA codes,
and demonstrations on problems such as design of electric motors and permanent magnets for
MRI imaging, (c) a parallel implementation of a time domain electromagnetic code ParEMC3d
with absorbing boundary conditions, (d) parallelisation of the EMMA-T2 code for calculating
electromagnetic properties of microstrips, wires and cables, and antennae [33].

There is also work involving parallelising the MERLIN code in a project with Lloyds Reg-
ister of Shipping and Ford Motor Company. BSP has also been applied to plasma simulation
at Rensselaer Polytechnic Institute in New York [31].

13 What do BSP programs look like?

Most BSP programs for real problems are large and it is impractical to include their source
here. Instead we include some small example programs to show how the BSPLib interface
can be used. We illustrate some different possibilities using the standard parallel prefix or
scan operation: given zg,...,z,—1 (with z; stored on process i), compute zg + -+ + z; on

each process 1.
All sums: version 1.

The function bsp_allsums1 calculates the partial sums of p integers stored on p processors.
The algorithm uses the logarithmic technique that performs [logp]| supersteps, such that

10
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Figure 2: All sums using the logarithmic technique

during the k' superstep, the processes in the range 21 < i < p each combine their local
partial sums with process i — 2¥~1. Figure 2 shows the steps involved in summing the values
bsp_pid () +1 using 4 processors.

int bsp_allsumsi(int x) {
int i, left, right;
bsp_pushregister(&left,sizeof (int));
bsp_sync () ;

right = x;
for(i=1;i<bsp_nprocs();ix=2) {
if (bsp_pid()+i < bsp_nprocs())
bsp_put (bsp_pid()+i,&right,&left,0,sizeof (int));
bsp_sync();
if (bsp_pid()>=i) right = left + right;
}
bsp_popregister(&left);
return right;

When bsp_put (bsp_pid()+i,&right,&left,0,sizeof (int)) is executed on process bsp_pid(),
then a single integer right is copied into the memory of processor bsp_pid () +i at the address
&left+0 (where left is a previously-registered data structure).

The procedure bsp_pushregister allows all processors to declare that the variable left
is willing to have data put into it during a DRMA operation. The reason that registration is
required is that each processor’s copy of the data structure left is not necessarily stored at
the same address. Registration therefore creates a correspondence between data structures
that have the “same name” on different processors.

The cost of the algorithm is [logp|(1 + g +[) + 1 as there are [logp| + 1 supersteps
(including one for registration); during each superstep a local addition is performed (which
costs 1 flop), and at most one message of size 1 word enters and exits each process.

All sums: version 2.

An alternative implementation of the prefix sums function can be achieved in a single
superstep by using a temporary data structure containing up to p integers. Each process i
puts the data to be summed into the i*" element of the temporary array on processes j (where
0 < j <1). After all communications have been completed, a local sum is then performed on
the accumulated data. The cost of the algorithm is p 4+ pg + 21.

11



int bsp_allsums2(int x) {
int i, result,*array = calloc(bsp_nprocs(),sizeof (int));
if (array==NULL)
bsp_abort ("Unable to allocate %d element array",bsp_nprocs());
bsp_pushregister(array,bsp_nprocs () *sizeof (int));
bsp_sync() ;

for(i=bsp_pid () ;i<bsp_nprocs();i++)
bsp_put (i,&x,array,bsp_pid () *sizeof (int) ,sizeof (int));
bsp_sync() ;

result = array[0];

for(i=1;i<=bsp_pid();i++) result += array[il;
free(array);

bsp_popregister(array) ;

return result;

The first algorithm performs a logarithmic number of additions and supersteps, while the
second algorithm performs a linear number of additions but a constant number of supersteps.
If the operation being performed at each iteration of the algorithm were changed from addi-
tion to another, more-costly, associative operator, then BSP cost analysis provides a simple
mechanism for determining which is the better implementation.

All sums on an array.

Either of the routines defined above can be used to sum n values held in n/p blocks
distributed among p processors. The algorithm proceeds in four phases:

1. The running sum of each n/p block of integers is computed locally on each processor.

2. As the last element of each n/p block contains the sum of each n/p-element segment,
then either of the two simple algorithms can be used to calculate the running sums of
the last element in each block (call this last).

3. Each processor gets the value of last from its left neighbouring processor (we call this
lefts_last).

4. Adding lefts_last to each of the locally-summed n/p elements produces the desired
effect of the running sums of all n elements.

void bsp_allsums(int *array, int n_over_p) {
int i, last, lefts_last;
bsp_pushregister(&last,sizeof (int));

for (i=1;i<n_over_p;i++)
array[i] += array[i-1];

last = bsp_allsums2(array[n_over_p-1]);

if (bsp_pid()==0) lefts_last=0;
else

12



bsp_get (bsp_pid()-1,&last,0,&lefts_last,sizeof (int));
bsp_sync() ;

for(i=0;i<n_over_p;i++)
array[i] += lefts_last;

bsp_popregister(&last);
}

void main() {
int i,j,n_over_p,*xs;
bsp_begin(bsp_nprocs());

n_over_p = 100;

xs = calloc(n_over_p,sizeof (int));
for (i=0;i<n_over_p;i++) xs[i]=1;
bsp_allsums(xs,n_over_p);

for(i=0;i<bsp_nprocs();i++) {
if (bsp_pid()==1i) {
printf ("On process %d: ",bsp_pid());
for(j=0;j<n_over_p;j++) printf("%d ",xs[jl);
printf ("\n");
fflush(stdout) ;
}
bsp_sync();
}

bsp_end () ;

14 What are typical values of g and | for common parallel computers?

Values of the BSP cost model parameters are shown in Table 2. The values of the g and
[ parameters are normalised by the instruction rate of each processor (to aid comparisons
between machines, raw rates are also given in microseconds). Because this instruction rate
depends heavily upon the kind of computations being done, the average of two different
measured values are used:

|s] measures the cost of an inner product, where O(n) operations are performed on a data
structure of size n. The value of n is chosen to be far greater than the cache size on
each processor. This benchmark therefore gives a lower-bound megaflop rate for the
processor as each arithmetic operation induces a cache miss.

[s] measures the cost of a dense matrix multiplication, where O(n3) operations are performed
on a data structures of size n?. Because a large percentage of the computation can be
kept in cache, this benchmark gives an upper-bound megaflop rate for the processor.

As we have already mentioned, good BSP algorithm design is often based around balanced
patterns of communication. We illustrate the communication capacity g using two balanced
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communications. The first is a particularly easy 1-relation, a cyclic shift of data between
neighbouring processors. This benchmark provides an upper-bound rate for communication.

Parallel computers have far greater difficulty in achieving scalable communication for
patterns of communication that move lots of data to many destinations. As an extreme
example, we consider the p-relation generated by a total exchange among the processors. No
scalable architecture can provide p? dedicated wires because it is too expensive. So sparser
interconnections are used. For example, the Cray T3D uses a 3D Torus, while the IBM
SP2 uses a hierarchy of 8-node fully-connected crossbar switches. The value of g for a total
exchange therefore provides a good measure of the lower-bound rate of communication of an
architecture.

Not very surprisingly, the two values of g, derived directly from a 1-relation, and from
the pg cost of a p-relation total exchange can be quite different. This might mean that
the 1-relation performance of the network is not very good (for example, a ring takes time
proportional to p to deliver both a l-relation and a p-relation), but usually means that the
network’s effective capacity is not as large as the per-link bandwidth would suggest. When
cost modelling algorithms, it is advisable to use the value of g produced by the total exchange
benchmark.

When p = 1, g represents the memory speed of the processor, taking into account any
buffering of communication that may occur in the implementation of BSPLib . The efficiency
of the communication network can also be roughly estimated by comparing the cost of ¢
for one processor with g for p > 1. This gives a ratio of inter-processor communication to
memory speed, which is 9 for the IBM SP2 (8 nodes) with switch communication, 19 for the
SGI Power Challenge (4 nodes), and 8 for the Cray T3D (256 nodes).

Machine Mflops P l g (local) g (total exch.) | nyp
|_SJ |—S-| S flops us flop/word | pus/word | flop/word | pus/word | words

SGI PowerChallenge | 53| 94|74 1| 226| 3.1 0.5| 0.007 0.5| 0.007| 80
21132 153 9.8| 0.13 10.2] 0.14 12

311496 | 20.2 89| 0.12 9.5 0.13 12

411902| 25.7 9.8 0.13 9.3| 0.13 12

Cray T3D 5/ 19|12 1| 68| 5.6 03| 0.02 03| 0.02| 94
2] 164| 13.5 0.7] 0.06 1.0/ 0.08| 71

4| 168 | 13.9 0.7] 0.06 08| 0.65| 66

8| 175| 14.4 08| 0.07 08| 0.65| 59

9| 383| 31.7 0.9 0.07 1.2 0.10 39
16| 181 | 14.9 0.9 0.07 1.0 0.08 61
25| 486| 40.2 1.1 0.09 1.5 0.13 26
32| 201| 16.6 1.1 0.09 14] 0.12 28
64| 148 | 12.3 1.0 0.09 1.7 0.14 27

128 | 301| 24.9 1.1 0.09 1.8 0.15 20

256 | 387 | 32.1 1.2 0.11 24| 0.19 15

IBM SP2 (switch) 25| 27|26 1| 244 9.4 1.3 0.05 1.3 0.05 7
2(1903| 73.2 6.3| 0.24 7.8 0.30 6

43583 |137.8 6.4 0.25 8.0| 0.31 7

815412 | 208.2 6.9 0.27 114 0.43 6

continued on next page ...
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. continued from previous page

Machine Mflops P l g (local) g (total exch.) | nyp
|_SJ| |—S-| | S flops | us flop/word | us/word | lop/word | pus/word | words

Multiprocessor Sun | 3.8 | 16.4 | 10.1| 1 24 2.4 0.4 0.04 0.4 0.04 7
2 54 5.3 3.0/ 0.29 3.4 0.34 7

3 74 7.4 2.9 0.29 4.1 0.41 8

4 118 11.7 3.3 0.32 4.1 0.41 11

Hitachi SR2001 23| 85| 54| 1 31 5.6 0.2 0.05 0.2 0.05 16
2 1165 | 216.1 2.6 0.50 3.0 0.54 8

4 2299 | 426.1 2.8 0.53 3.0| 0.56 8

8 3844 | 712.1 3.0 0.54 3.1 0.59 8

16 4638 | 9114 3.0 0.55 3.0| 0.55 8

32 6906 | 1321.7 4.7 0.90 49| 0.92 6

Convex Exemplar 105 1 60 5.8 0.16 0.02 18
2| 21373| 2035 8.3 0.8 6

4] 64457| 6138 9.2 0.9 7

81194476 | 18521 11.3 1.2 9

Digital Alpha Farm 10.1] 1 29 2.9 0.3 0.03 17
2| 17202|1703.1 81.1 8.0 4

3| 34356 | 3401.6 83.0 8.2 4

4| 47109 | 4664.3 81.3 8.1 4

Parsytec GC 193] 1 98 5.1 1.0 0.05 1.0 0.05 16
2 6309 325 109 5.6 113 5.9 3

4] 23538 | 1219 190 9.9 143 7.4 3

8| 29080 | 1506 252 13.1 254 | 13.2 3

16 | 224977 | 11600 253 | 13.1 342 | 17.7 3

321130527 | 6700 272 14.1 658 | 34.1 3

IBM SP2 (ethernet) | 25| 27| 26| 1 241 9.3 1.3| 0.05 1.3 0.05 8
2| 18759 | 721.5 182.1 7.0 183.6 7.1 3

4] 39025|1500.9| 388.2| 14.9| 628.2| 24.2 5

8| 88795 |3415.2| 1246.6| 47.3| 1224.1| 47.1 2

Table 2: BSP machine parameters. (1) All values for g are for communications of 32-bit
words; (2) benchmarks were performed at the -03 optimisation level; (3) the Cray T3D, SGI
PowerChallenge, IBM SP2, Parsytec GC, and Hitachi SR2001 used native implementations
of the toolset; (4) the toolset used on the multiprocessor Sun was built using generic System
V shared-memory facilities; (5) the Digital Alpha Farm consists of a cluster of Alpha work-
stations connected via FDDI and a giga-switch. The toolset implementation was built on top
of a generic version of MPI (mpich).

Appendix B shows how these figures were obtained. The meaning of nyp is explained in
Section 16.

15 How can the BSPLib be implemented efficiently on today’s architectures?

The semantics of the BSPLib operations reflects the high-level view of BSP in which com-
putation and communication do not overlap. The Oxford implementation of BSPLib keeps
these two phases separate also. Thus while the semantics of calls to put and get permits
them to begin executing concurrently with the local process’s computation, the performance
advantages of postponing them turn out to be larger than of exploiting the potential overlap
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[16]. This approach contradicts current practice in communication libraries, where overlap-
ping computation and communication is considered a good thing, even though it can create
at best a factor of two improvement. Of course, treating communication at the level of single
messages provides no obvious opportunity to improve performance by postponing communi-
cation.

We have found that postponing communication until the end of local computation creates
major performance-enhancement opportunities. Combining all of the messages between each
processor pair means that transmission startup costs are paid only once per superstep, instead
of once per message (although it does require more memory for buffering). The freedom
to reorder transmissions to different processors means that patterns guaranteed to avoid
congestion can be set up in software, rather than requiring expensive hardware solutions
operating during the data transfers. This is important since, although congestion inside the
network is not as significant a problem as it once was, it is common at the processor-network
interface. The performance gains of delaying communication are so large that even the high-
performance versions of the put and get operations, which are designed so that computation
and communication can be overlapped without buffering, postpone transmissions until the
end of the computation phase of each superstep.

The general structure of an Oxford implementation of BSPLib is that all put and get op-
erations initiated in a superstep are delayed until the end of the superstep, and optimisations
whose effect is to minimise both the absolute value of g and its variance are applied to the
entire h-relation.

Regardless of the type of parallel architecture, the ability to reorder messages before trans-
mission is crucial to creating a consistent bulk-communication behaviour without increasing
the value of g. Two mechanisms used are:

e randomly ordering the messages to reduce the likelihood of troublesome patterns, and

e using a latin square to schedule transmissions in a guaranteed contention-free way.

Which of these mechanisms is to be preferred is architecture-dependent.

Recall that a latin square is a p X p square in which each of the values from 1 to p appears
p times, with no repetition in any row or column. Such a square can be used as a schedule
for the routing of the h-relation, using row 4 as the schedule for processor ¢, with the contents
of the row regarded as the destinations for each communication time step.

The use of such mechanisms has a major effect on performance. For example, consider a
total exchange algorithm shown in Figure 3 where each processor 7 has data x; of size n that
is to be exchanged with every other processor. After the communication, each processor will
contain a data structure of size np containing all of the z;, where 1 < j < p. The BSP cost of
the algorithm is png + [ because p messages enter and exit each processor. However, a naive
implementation may have each processor send a message to processor 0 on the first time step,
to processor 1 on the second, and so on. This causes p messages to contend at process 0, then
p to contend at process 1, and so on. The cost of this communication will be O(p?) rather
than the linear cost predicted by the BSP cost formula png + . An alternative ordering that
does not cause contention is for processors to send their data in the order mod (i + j, p); where
1 <7 < p, and 7 is the processor identifier, using a simple latin square. The expected linear
(in p) cost can then be achieved.
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Before
communication

After

communication

Figure 3: Total exchange between four processors

Procs | immediate transmission | BSPLib delaying and reordering
contention | latin square | contention latin square

2 .168 157 157 157

4 .392 194 191 191

8 .461 .239 228 .229

16 .b98 .289 344 .345

32 784 413 .465 .456

64 903 .529 .548 .546
128 .961 575 .599 .599

Table 3: The effects of node contention on the Cray T3D. Entries in the table are in seconds
for routing a 4,000,000-relation. e.g., for 128 processors, 15625 integers per process.

Table 3 shows the results of an implementation that routes total exchanges. The first
two columns show what happens when the programmer writes puts in the order that causes
maximum contention and then in the latin square order that avoids it, as above. Here the
runtime system is neither combining nor reordering, but transmits data as soon as the put is
executed. The final two columns show what happens for the same two user programs when
BSPLib delays messages and reorders them. As expected, reordering makes a significant
difference; and the library reordering induces the improved performance regardless of the
textual form of the program. Reordering makes the implementation consistent with the
model, without a large sacrifice of efficiency.

The precise details of handling communication and building barriers differs depending on
the specifics of target architectures:

Distributed-memory machines with remote-memory access (Cray T3D). A barrier
synchronisation is performed to ensure that each process has finished its local computation.
Once all the processors have passed the barrier, one-sided memory accesses are used to route
messages into the memories of the remote processors. The communication phase of a superstep
is completed by performing a further barrier synchronisation.

Distributed-memory machines with message-passing (IBM SP2,Hitachi SR2001,
Alpha Farm, Parsytec GC). On architectures that provide native non-blocking send and
blocking receive message-passing primitives, the h-relation is routed through the communica-
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tion network in three phases:

1. a total exchange is performed, exchanging information about the number, sizes, and
destination addresses of messages. This total exchange is considered to be the barrier
synchronisation for the superstep.

2. gets are translated into puts and the data they refer to is buffered at the source pro-
Cessor.

3. after the total exchange, each processor knows how many messages, from every other
process, it is expecting. FEach process therefore knows when the communication phase
of the superstep is complete by counting the incoming messages. Communication is per-
formed by interleaving the outgoing and incoming messages, so that minimum buffering
requirements are placed on the underlying message-passing system.

Shared-memory architectures (SGI Power Challenge, Sun, Convex Exemplar).
The implementation on shared-memory architectures combines features from both of the im-
plementations above. The information about the number and size of messages to be sent
between each processor pair is constructed in a region of shared memory by each call to put
and get. After the computation phase, a barrier synchronisation takes place to ensure that
this information is frozen. Because the message information is in shared memory, an implicit
total exchange can be considered to have occurred at this point. The actual exchange of data
is performed in a message-passing style. First messages are copied into buffers associated
with each process in shared memory. These buffers are then inspected by the remote process,
and their contents copied into the remote processor’s memories. Using a contention-limiting
order for messages, the number of message passing buffers associated with each process can
be minimised. Finally, the message information region is cleared and a further barrier syn-
chronisation takes place to allow renewed access to it.

16 How much effect does message size have on the value of g%

As we have already seen, the way in which BSPLib delays communication until the end
of each superstep and then combines messages into the largest possible units reduces the
importance of message size. The cost model makes no distinction between the cost of a
process sending h messages of size one or a single message of size h; both communications
have an h-relation cost of hg. However, a superstep in which very little total communication
occurs may still deviate from the cost model because of the effects of startup costs for message
transmission.

Miller refined the standard cost model [29] using a technique of Hockney [20] to model
the effect of message granularity on communication cost. In the refined model, g is defined
as a function of the message size x:

o) = (M2 +1) g 0

where g is the asymptotic communication cost for very large messages (g reported in Table 2
iS goo) and nyyp 18 the size of message that produces half the optimal bandwidth of the machine

80 (112 ) = 29c0-
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Figure 4: Fitting experimental values of ¢(z) flops/word to Equation (1) using an 8-processor
IBM SP2 with switch communication. The messages are communicated using one-sided put
communication where a process puts data into another processor’s memory. The top curve
represents single-word messages and the bottom curve uses a message-combining scheme.

The value of ny) in Equation (1) is determined experimentally for each machine config-
uration by fitting a curve to actual values of g(z). Figure 4 shows the actual values of g(z)
on an 8-processor IBM SP2. Because messages are combined in each superstep, the value of
nyy; is effectively reduced to 6 words. For comparison purposes, the effect of naively commu-
nicating messages separately is shown by the data points labeled “actual cost of single-word
messages” in the figure. Fitting a curve to this data gives nyp = 202 words.

The n,; parameter can be used to discover the minimum message size for which the
standard cost model is within a given percentage of the more-detailed cost model. For the
standard model to be within y% accuracy of the cost attributed by the model that includes
message granularity, then:

(100 +y
100

n
) hogoo = hog(ho) = <;l—/02 + 1) hogoo (2)

where hg words is Valiant’s parameter [35] that measures the minimum size of h-relation to
achieve nyp throughput. Thus the percentage error in the communication cost hog is

100
y = (%) %. (3)
0

So on the IBM SP2 with switch communication the error in the standard BSP model for
communicating hy=60 32-bit words is 10%. Moreover, as would be expected, as the size of
h-relation increases, the error in the standard BSP model decreases.

17 What tools are available to help with building and tuning BSP programs?
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The intensional properties of a parallel program (i.e., how it computes a result) can often
be hard to understand. The BSP model goes some way towards alleviated this problem if cost
analysis is used to guide program development. Unfortunately, in large-scale problems, cost
analysis is rarely used at the time as program development. The role of current BSP tools
[18] is to aid programmers in understanding the intensional properties of their programs by
graphically providing profiling and cost information. The tools analyse the actual communi-
cation properties of a program, or analyse the predicted performance of the code assuming
the parallel machine the program was run upon acts like a real BSP computer (i.e., a scalable
machine with constant [ and g that routes h-relations in time hg + ).

A central problem with any parallel-profiling system is the effective visualisation of large
amounts of profiling data. In contrast to conventional parallel-profiling tools, which highlight
the patterns of communication between individual sender-receiver pairs in a message passing
system, the BSP approach significantly simplifies visualisation because all of the communica-
tions that occur in a superstep can be visualised as a single monolithic unit.
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Figure 5: All sums of 32,000 elements using the logarithmic technique on an 8-processor IBM
SP2

Figure 5 is an example of the results from a BSP profiling tool running on the IBM SP2.
It shows a communication profile for the parallel prefix algorithm (with n > p) developed on
page 12.

The top and bottom graphs in Figure 5 show, on the y axis, the volume of data moved,
and on the z axis, the elapsed time. Each pair of vertically-aligned bars in the two graphs
represents the total communication during a superstep. Within each communication bar is a
series of bands. The height of each band represents the amount of data communicated by a
particular process, identified by the band’s shade. The sum of all the bands (the height of the
bar) represents the total amount of communication during a superstep. The width represents
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Figure 6: All sums of 32,000 elements using total exchange on an 8-processor IBM SP2

the elapsed time spent in both communication and barrier synchronisation. The label found
at the top left-hand corner of each bar can be used in conjunction with the legend in the right
of the graph to identify the end of each superstep (i.e., the call to bsp_sync) in the user’s
code. The white space in the figure represents the local computation time of each superstep.

In Figure 5, the start and end of the running sums is identified by the points labelled 0
and 4. The white space in the graphs between supersteps 0 and 1 shows the computation of
the running sums executed locally in each process on a block of size n/p. The first superstep,
which is hidden by the label 1 at this scale, shows the synchronisation that arises due to
registration in the function bsp_allsumsl. The three successively-smaller bars represent the
logarithmic number of communication phases of the parallel prefix technique. Contrasting
the sizes of the communication bars in Figure 5 with the schematic diagram of Figure 2
graphically shows the diminishing numbers of processors involved in communication as the
parallel prefix algorithm proceeds. Contrasting this method of running sums with the total-
exchange-based algorithm in Figure 6 shows that although the number of synchronisations
within the algorithm is reduced from [logp] to 1, the time spent in the total exchange
of bsp_allsums?2 is approximately the same as the algorithm based upon the logarithmic
technique. This is due to the larger amount of data transferred i.e., 1.51 milliseconds spent
in summing p values in p processes using the parallel prefix technique, compared to 1.42
milliseconds when the total exchange is used.

Figures 7 and 8 show profiles of the same two algorithms running on a 32-processor Cray
T3D, with the same data-set size as the IBM SP2. Although the T3D has a lower value for
the barrier synchronisation latency than the IBM SP2 (see Table 2), reducing the number
of supersteps from [log32] = 6 supersteps to 1 has a marked effect on the efficiency. The
version bsp_allsumsli (i.e., logarithmic) takes 1.39 milliseconds compared to 0.91 milliseconds
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Figure 7: All sums of 32,000 elements using the logarithmic technique on a 32-processor Cray
T3D

for bsp_allsums?2 (i.e., total exchange).

These data show that, for today’s parallel computers, it is often better to reduce the
number of supersteps, even at the expense of requiring more communication.

18 How does BSPLib compare with other communication systems such as PVM
or MPI?

In recent years, the PVM message-passing library [1,2, 10] has been widely implemented
and widely used. In that respect, the goal of source code portability in parallel computing
has already been achieved by PVM. What then, are the advantages of BSP programming, if
any, over a message-passing framework such as PVM? On shared-memory architectures and
on modern distributed-memory architectures with powerful global communications, message-
passing models such as PVM are likely to be less efficient than the BSP model, where com-
munication and synchronisation are decoupled. This will be especially true on those modern
distributed-memory architectures that have hardware support for direct remote-memory ac-
cess (or one-sided communications). PVM and all other message-passing systems based on
pairwise, rather than barrier, synchronisation also suffer from having no simple analytic cost
model for performance prediction, and no simple means of examining the global state of a
computation for debugging.

MPI [14] has been proposed as a new standard for those who want to write portable
message-passing programs in Fortran and C. At the level of point-to-point communications
(send, receive etc.), MPI is similar to PVM, and the same comparisons apply. The MPI stan-
dard is very general and appears to be very complex relative to the BSP model. However,
one could use some carefully-chosen combination of the various non-blocking communication
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Figure 8: All sums of 32,000 elements using a total exchange on a 32-processor Cray T3D

primitives available in MPI, together with its barrier synchronisation primitive, to produce
an MPI-based BSP programming model. At the higher level of collective communications,
MPI provides support for various specialised communication patterns which arise frequently
in message-passing programs. These include broadcast, scatter, gather, total exchange, re-
duction, and scan. These standard communication patterns are also provided for BSP in a
higher-level library. There has been one attempt to compare BSP performance with MPT [31]
on a network of workstations. The results show that performance differences are very small,
of the order of a few percent.

Compared to PVM and MPI, the BSP approach offers (a) a simple programming discipline
(based on supersteps) that makes it easier to determine the correctness of programs, (b) a
cost model for performance analysis and prediction which is simpler and compositional, and
(c) more efficient implementations on many machines.

19 How is BSP related to the LogP model?

LogP [7] differs from BSP in three ways:

e It uses a form of message passing based on pairwise synchronisation.

e [t adds an extra parameter representing the overhead involved in sending a message.
This has the same general purpose as the n;, parameter in BSP, except that it applies
to every communication, whereas the BSP parameter can be ignored except for a few
unusual programs.

e [t defines g in local terms. The g parameter in BSP is regarded as capturing the
throughput of an architecture when every processor inserts a message (to a uniformly-
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distributed address) on every step. It takes no account of the actual capacity of the
network, and does not distinguish between delays in the network itself and those caused
by inability to actually enter the network (blocking back at the sending processor). In
contrast, LogP regards the network as having finite capacity, and therefore treats g as
the minimal permissible gap between message sends from a single process. This amounts
to the same thing in the end, that is g in both cases is the reciprocal of the available
per-processor network bandwidth, but BSP takes a global view of the meaning of g,
while LogP takes a more local view.

Over the last few years experience in developing software using the LogP model has shown
that to analyse the correctness and efficiency of LogP programs it is often necessary, or
at least convenient, to use barriers. Also major improvements in network hardware and in
communications software have greatly reduced the overhead associated with sending messages.
In early multiprocessors, this overhead could be substantial, since a single processor handled
both the application and its communication. Manufacturers have learned that this is a bad
idea, and most newer multiprocessors provide either a dedicated processor to handle message
traffic at each node or direct remote-memory access. In this new scenario, the only overhead
for the application processor in sending or receiving a message is the time to move it from
user address space to a system buffer. This is likely to be small and relatively machine-
independent, and may even disappear as communication processors gain access to user address
space directly, so the importance of the overhead parameter in the long term seems negligible.

Given that LogP + barriers — overhead = BSP, the above points would suggest that the
LogP model does not improve upon BSP in any significant way. However, it is natural to ask
whether or not the more “flexible” LogP model enables a designer to produce a more efficient
algorithm or program for some particular problem, at the expense of a more complex style of
programming. Recent results show that this is not the case. In [3] it is shown that the BSP
and LogP models can efficiently simulate one another, and that there is therefore no loss of
performance in using the more-structured BSP programming style.

20 How is BSP related to the PRAM model?

The BSP model can be regarded as a generalisation of the PRAM model which permits
the frequency of barrier synchronisation, and hence the demands on the routing network, to
be controlled. If a BSP architecture has a very small value of g , e.g. g = 1, then it can
be regarded as a PRAM and we can use hashing to automatically achieve efficient memory
management. The value of [ determines the degree of parallel slackness required to achieve
optimal efficiency. The case [ = g = 1 corresponds to the idealised PRAM, where no parallel
slackness is required.

21 How is BSP related to data parallelism?

Data parallelism is an important niche within the field of scalable parallel computing. A
number of interesting programming languages and elegant theories have been developed in
support of the data-parallel style of programming, see e.g. [34]. High Performance Fortran
[22] is a good example of a practical data-parallel language. Data parallelism is particularly
appropriate for problems in which locality is crucial.
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The BSP approach in principle offers a more flexible and general style of programming
than is provided by data parallelism. However, the current SPMD language implemented
by BSPLib is very much like a large-grain data parallel language, in which locality is not
considered and programmers have a great deal of control over partitioning of functionality. In
any case, the two approaches are not incompatible in any fundamental way. For some applica-
tions, the flexibility provided by the BSP approach may not be required and the more limited
data-parallel style may offer a more attractive and productive setting for parallel software
development, since it frees the programmer from having to provide an explicit specification
of the various processor scheduling, communication and memory management aspects of the
parallel computation. In such a situation, the BSP cost model can still play an important role
in terms of providing an analytic framework for performance prediction of the data-parallel
program.

22 Can BSP handle synchronisation among a subset of the processes?

Synchronising a subset of executing processes is a complex issue because the ability of an
architecture to synchronise is not necessarily a bulk property in the sense that its processing
power and communication resources are. Certain architecture provide a special hardware
mechanism for barrier synchronisation across all of the processors. For example the Cray
T3D provides an add-and-broadcast tree, and work at Purdue [8] has created generic, fast,
and cheap barrier synchronisation hardware for a wide range of architectures. Sharing this
single synchronisation resource among several concurrent subsets that may wish to use it at
any time seems difficult. We are currently exploring this issue.

Architectures in which barrier synchronisation is implemented in software do not have any
difficulty in implementing barriers for subsets of the processors. The remaining difficulty here
is a language design one—it is not yet clear what an MIMD, subset-synchronising language
should be like if it is to retain the characteristics of BSP.

23 Can BSP be used on vector, pipelined, or VLIW architectures?

Nothing about BSP presupposes how the sequential parts of the computation, that is the
processes within each processor, are computed. Thus architectures in which the processor uses
a specialised technique to improve performance might make it harder to determine the value
of w for a particular program, but they do not otherwise affect the BSP operation or cost
modelling. The purpose of normalising g with respect to processor speed is to enable terms of
the form hg to be compared to computation times so that the balance between computation
and communication in a program is obvious. Architectures that issue multiple instructions per
cycle might require a more sophisticated normalisation to keep these quantities comparable
in useful ways.

24 BSP doesn’t seem to model either input/output or memory hierarchy?
Both of these properties can be modelled as part of the cost of executing the computation
part of a superstep. Modelling the latency of deep storage hierarchies fits naturally into BSP’s

approach to the latency of communication, and investigations of extensions to the BSP cost
model applicable to databases are underway.
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25 Does BSP have a formal semantics?

Several formal semantics for BSP have been developed. The paper [15] shows how these
may be used to give algebraic laws for developing BSP programs. BSP is used as a semantics
case study in a forthcoming book [19].

26 Will BSP influence the design of architectures for the next generation of
parallel computers?

The contribution of BSP to architecture design is that it clarifies those factors that are
most important for performance on problems without locality. It suggests that the critical
properties of an architecture are:

e high permeability of the communication system, that is the ability to move arbitrary
patterns of data quickly, and

e the ability to reach a consistent global state quickly by barrier synchronisation.

More subtly, it also suggests that predictability of communication delivery across a wide
range of communication patterns is more important than extremely high performance for
some special communication patterns, and low performance for others. In other words, low
variance is more significant than low mean.

The two parameters [ and g capture, in a direct way, how well an architecture achieves
these two major performance properties. Details of exactly which topology to use, what
routing technology, and what congestion control scheme are all subsumed in the single con-
sideration of total throughput.

When the BSP model was first considered, it was often felt to be necessarily inefficient
because of its use of permutation routing. After a while, it came to be appreciated that
permutation routing is not necessarily expensive, and architectures that do it well were devel-
oped. Then the BSP model was considered inefficient because of its requirement for barrier
synchronisation. It is now understood that barriers need not be expensive, and architectures
that handle them well are being developed. It may be that total exchange is the next primitive
to be made central to BSP and the same arguments about inefficiency may well be made. New
communication technologies, such as ATM, repay foreknowledge of communication patterns,
and it may be that total exchange will turn out to be a reasonable standard building block
for parallel architectures as well.

27 How can I find out more about BSP?

Development of BSP is coordinated by BSP Worldwide, an organisation of researchers and
users. Information about it can be found at the web site http://www.bsp-worldwide.org/.
A standard for the BSPLib has been agreed. BSP Worldwide organises semiannual workshops
on BSP. Other general papers about BSP are [23, 35].

There are groups of BSP researchers at:

e Oxford — http://www.comlab.ox.ac.uk/oucl/groups/bsp
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Harvard — http://das-www.harvard.edu/cs/research/bsp.html

Utrecht — http://www.math.ruu.nl/people/bisseling.html

Carleton — http://www.scs.carleton.ca/~palepu/BSP.html

Central Florida — http://longwood.cs.ucf.edu/csdept/faculty/goudreau.html

as well as individuals working on BSP at a number of other universities.
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A The BSPLib Library

This Appendix provides slightly more detail about the current major BSP system, the BSPLib
. We describe C interfaces to the library, but a Fortran version is also available.

Initialisation

Processes are created in a BSPLib program by the operations bsp_begin and bsp_end. There
can only be one instance of a bsp_begin/bsp_end pair within a program, although there are
two different ways to start a BSPLib program: If bsp_begin and bsp_end are the first and
last statements in a program, then the entire BSPLib computation is SPMD.

In an alternative mode a single process starts execution and determines the number of
parallel processes required for the calculation. It then spawns the required number of processes
using bsp-begin. Execution of the spawned processes then continue in an SPMD manner,
until bsp_end is encountered by all the processes. At that point, all processes except process
zero are terminated, and process zero is left to continue the execution of the rest of the
program sequentially. One problem with providing this mode is that some parallel machines
available today, for example almost all distributed-memory machines, e.g. IBM SP2, Cray
T3D, Meiko CS-2, Parsytec GC, Hitachi SR2001, do not provide dynamic process creation.
Therefore we simulate dynamic spawning using an operation bsp_init which takes as its
argument a procedure name. The procedure named in bsp_init must contain bsp_begin and
bsp_end as its first and last statements.

The interface for these library operations is

void bsp_init(void (*startproc)(void), int argc, char **argv);
void bsp_begin(int maxprocs);
void bsp_end()
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maxprocs is the number of processes requested by the user.

startproc is the name of a procedure that contains bsp_begin and bsp_end as
its first and last statements.

argc and argv are command line size and arguments.

Enquiry

There are also operations to determine total number of processes and for each process to
identify which it is. The interface for these operations is:

int bsp_nprocs();
int bsp_pid();

If the function bspnprocs is called before bsp_begin, then it returns the number of
processors which are available. If it is called after bsp_begin it returns n, the actual number
of processes allocated to the program, where 1 < n < maxprocs, and maxprocs is the number
of processes requested in bsp_begin. Each of the n processes created by bsp_begin has a
unique associated value m in the range 0 < m < n — 1. The function bsp_pid returns the
associated value of the process executing the function call.

Synchronisation

A BSPLib calculation consists of a sequence of supersteps. The end of one superstep and the
start of the next is identified by a call to the library procedure bsp_sync with interface

void bsp_sync();

DRMA

There are two ways of communicating between processes: one using direct remote-memory
access (DRMA), and the other using a BSP version of message passing.

The DRMA communication operations are defined for stack- and heap-allocated data
structures as well as for static data. This is achieved by allowing a process to reference
only certain registered areas of a remote memory. In a registration procedure, processes
use the operation bsp_pushregister to announce the address of the start of a local area
which is available for global remote use. This makes it possible to execute BSP programs
using heterogeneous processor architectures. Registration takes effect at the next barrier
synchronisation.

void bsp_pushregister (void *region, int nbytes);
void bsp_popregister (void *region);

region is the starting address of the region to be registered or unregistered. The
name region must be the same for all logically-related calls to bsp_pushregister
or bsp_popregister, and implementations may check that this is true.

nbytes is the size of the region (used for range checking).
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Each processor maintains a stack of registration slots. Logically-related calls to bsp_pushregister
in different processes (the ith call in each process is related to the ith call in all of the others)
associate a variable name and the addresses to which it is mapped in each process with the
next available slot. Each bsp_popregister invalidates the slot at the top of the stack and
hence the association of a variable name with its addresses in different processors. The argu-
ment is logically unnecessary but may be used by an implementation to check that the user’s
action and intent match.

The intent of registration is to make it simple to refer to variables in other processes
without requiring their locations to be explicitly known. A reference to a registered name in
a put or get is translated to the address corresponding to the remote variable with the same
name. Here is an example:

Process 0

int x;

bsp_pushregister(&x, sizeof (int));
bsp_sync() ;

x = 3;

bsp_put (1, &x, &x, 0, sizeof (int));
bsp_sync() ;

Process 1

int y;

bsp_pushregister (&x, sizeof (int));
bsp_sync() ;

bsp_sync() ;

Process 0 and Process 1 register x in the first slot. When Process 0 executes a put, using
x as the destination region name, this is mapped to the region whose address is associated
with the first slot in Process 1. Therefore, the variable x in Process 1 has the value 3 placed
in it as the result of the put.

The same, or overlapping, regions may be registered in more than one slot. Because the
slots form a stack, processes must unregister regions in the reverse order to that in which
they were registered.

The operation bsp_put pushes locally-held data into a registered remote-memory area
on a target process, without the active participation of the target process. The operation
bsp_get reaches into the registered local memory of another process to copy data values held
there into a data structure in its own local memory. All gets are executed before all puts
at the end of a superstep in line with the semantics that communications do not take effect
locally until the end of a superstep. Their interfaces are

void bsp_[hp]put(
int pid,
const void *src,
void *dst,
int offset,
int  nbytes);
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pid is the identifier of the process where data is to be stored.

src is the location of the first byte to be transferred by the put operation. The
calculation of src is performed on the process that initiates the put.

dst is the is the base address of the area where data is to be stored. It must be a
previously-registered data area.

offset is the displacement in bytes from dst to which src will copy. The calcu-
lation of offset is performed by the process that initiates the put.

nbytes is the number of bytes to be transferred from src into dst. It is assumed
that src and dst are addresses of data structures that are at least nbytes in
size.

void bsp_[hp|get (
int  pid,
const void *src,
int offset,
void *dst,
int nbytes);

pid is the identifier of the process from which data is to be obtained.

src is the base address of the area from which data will be obtained. src must
be a previously-registered data structure.

offset is an offset from src. The calculation of offset is performed by the
process that initiates the get.

dst is the location of the first byte where the data obtained is to be placed. The
calculation of dst is performed by the process that initiates the get.

nbytes is the number of bytes to be transferred from src into dst. It is assumed
that src and dst are addresses of data structures that are at least nbytes in
size.

The semantics adopted for BSPLib bsp_put communication is buffered-locally/buffered-
remotely. When a put is executed, the data to be transferred is copied out of user address
space immediately. The executing process is free to alter the contents of those locations after
return from the call to put. While the semantics is clean and safety is maximized, puts may
unduly tax the memory resources of an implementation, thus preventing large transports
of data. Consequently, BSPLib also provides a high-performance put operation bsp_hpput
whose semantics is unbuffered-locally/unbuffered-remotely. The use of this operation requires
care, as correct data delivery is only guaranteed if neither communication nor local/remote
computations modify either the source or the destination areas during a superstep. The main
advantage of this operation is its economical use of memory. It is therefore particularly useful
for applications which repeatedly transfer large data sets.

The bsp_get and bsp_hpget operations reach into the local memory of another process and
copy previously-registered remote data held there into a data structure in the local memory
of the process that initiated them.
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BSMP

Bulk synchronous remote-memory access is a convenient style of programming for BSP com-
putations that can be statically analysed in a straightforward way. It is less convenient
for computations in which the volumes of data being communicated are irregular and data-
dependent, or where the computation to be performed in a superstep depends on the quantity
and form of data received at its start. A more appropriate style of programming in such cases
is bulk-synchronous message passing (BSMP).

In BSMP, a non-blocking send operation delivers messages to a system buffer associated
with the destination process. The message is guaranteed to be in the destination buffer at
the beginning of the subsequent superstep, and can be accessed by the destination process
only during that superstep. A collection of messages sent to the same process has no implied
ordering at the receiving end. However, since messages may be tagged, the programmer can
identify them by their tag.

In BSPLib , bulk-synchronous message passing is based on the idea of two-part messages,
a fixed-length part carrying tagging information that will help the receiver to interpret the
message, and a variable-length part containing the main data payload. We will call the fixed-
length portion the tag and the variable-length portion the payload. In C programs, either part
could be a complicated structure. The length of the tag is required to be fixed during any
particular superstep, but may vary between supersteps. The buffering mode of the BSMP
operations is buffered-locally/buffered-remotely.

The procedure to set tag size must be called collectively by all processes. Moreover, in any
superstep where bsp_set_tag_size is called, it must be called before sending any messages.

void bsp_set_tag_size (int *tag_bytes);

tag bytes, on entry to the procedure, specifies the size of the fixed-length portion
of every message from the current superstep until it is updated; the default
tag size is zero. On return from the procedure, tag-bytes is changed to reflect
the previous value of the tag size to allow for its use inside procedures.

The tag size of incoming messages is prescribed by the outgoing tag size of the previous
step.

The bsp_send operation is used to send a message that consists of a tag and a payload
to a specified destination process. The destination process will be able to access the message
during the subsequent superstep. Its interface is

void bsp_send(int pid,
const void *tag,
const void *payload,
int payload_bytes);

pid is the identifier of the process where data is to be sent.
tag is a token that can be used to identify the message. Its size is determined by
the value specified in bsp_set_size_tag.
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payload is the location of the first byte of the payload to be communicated.
payload bytes is the size of the payload.

It copies both the tag and the payload of the message out of user space into the system
before returning. The tag and payload inputs may be changed by the user immediately after
the bsp_send.

To receive a message, the operations bsp_get_tag and bsp_move are used. The operation
bsp_get_tag returns the tag of the first message in the buffer. The operation bsp_move copies
the payload of the first message in the buffer into payload, and removes that message from
the buffer. Its interface is

void bsp_get_tag(int *status,
void *tag);

status returns -1 if the system buffer is empty. Otherwise it returns the length
of the payload of the first message in the buffer. This length can be used to
allocate an appropriately-sized data structure for copying the payload using
bsp_move.

tag is unchanged if the system buffer is empty. Otherwise it is assigned the tag
of the first message in the buffer.

void bsp_move(void *payload,
int reception_nbytes);

payload is an address to which the message payload will be copied. The buffer is
then advanced to the next message.

reception nbytes specifies the size of the reception area where the payload will
be copied into. At most reception nbytes will be copied into payload.

int bsp_hpmove(void **tag_ptr_buf, void **payload_ptr_buf);

bsp_hpmove is a function which returns -1, if the system buffer is empty. Otherwise
it returns the length of the payload of the first message in the buffer and (a)
places a pointer to the tag in tag_ptr_buf; (b) places a pointer to the payload
in payload_ptr_buf; and (c¢) conceptually removes the message (by advancing
a pointer representing the head of the buffer).

Note that bsp.move flushes the corresponding message from the buffer, while bsp_get_tag
does not. This allows a program to get the tag of a message (as well as the payload size in
bytes) before obtaining the payload of the message. It does, however, require that even if a
program only uses the fixed-length tag of incoming messages the program must call bsp_move
to get successive message tags.

bsp_get_tag can be called repeatedly and will always return the same tag until a call to
bsp_move.
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Halt

The function bsp_abort can be used to print an error message followed by a halt of the
entire BSPLib program. The routine is designed not to require a barrier synchronisation of
all processes. A single process can therefore halt the entire BSPLib program.

void bsp_abort(char* format,...);

format is a C-style format string as used by printf. Any other arguments are
interpreted in the same way as the variable number of arguments to printf.

The function bsp_time provides access to a high-precision timer—the accuracy of the
timer is implementation-specific. The function is a local operation of each process, and can
be issued at any point after bsp_begin. The result of the timer is the time in seconds since
bsp-begin. The semantics of bsp_time is as though there were bsp_nprocs timers, one per
process. BSPLib does not impose any synchronisation requirements between the timers in
each process.

double bsp_time();

B Benchmarking
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Figure 9: Cyclic shift, followed by total exchange, on an 8-processor Cray T3D

The BSP parameter | measures the minimum time for all processors to barrier synchronise.
It is benchmarked by repeatedly over-sampling barrier synchronisation, whilst measuring
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the wall-clock time of the synchronisations. Repeated barrier synchronisation produces a
pessimistic value for / as it models the case where the computation part of each superstep
completes in each processor at the same moment. This produces most contention in whatever
resources are used for synchronising.

Two values for the BSP parameter g are calculated. The first is the value of g experienced
when routing a local communication (a cyclic shift), and the second a global communication
using a total exchange. As well as calculating the value of g, the benchmark also calculates
the value for ny, used in Equation 1. This is done by routing a fixed-sized h-relation (a
over-sampling of 10 iterations is performed for each h-relation) using first a single message of
size h; then two messages of size h/2; through to h/4 messages of size 4 words. Figures 9,
10, and 11 show communication profiles [18] for the benchmark program running on the
Cray T3D and IBM SP2. Each figure contains two graphs. The upper graph contains a
breakdown of the communication patterns that arise in each superstep of the benchmark. As
the benchmark repeatedly routes the same h-relation, albeit with a different mix of message
sizes each time, the bars in upper graph are all the same size. The lower graph shows the
actual value of g attained on a superstep-by-superstep basis, calculated from the execution
time of the superstep.
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Figure 10: Cyclic shift, followed by total exchange, on an 32-processor Cray T3D

The first exponential curve in Figure 9 shows the value of g during the local-communication
phase (cyclic shift) of the benchmark. Notice how the curve is a good match of Equation 1
which uses the ny parameter to account for the extra cost of communicating small messages.
The second curve in Figure 9 shows the value of g when routing a series of total exchanges.
The same size of h-relation, and mix of message sizes are used in this benchmark as in
the local communication benchmark. This ensures that the two benchmarks have the same
total theoretical cost, and should therefore take the same time to run. The left-hand side of
each curve shows the value of go, of the communication device calculated by the benchmark
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program, whereas the dotted line in the graph shows the value of g, from Table 2.

It should be noted that the implementation of BSPLib on the Cray, does not use the
optimisation that combines small messages together (although it does use the contention-
limiting optimisation). There is little need for this optimisation on the T3D as it is a close
fit to a “BSP computer” with constant, scalable, and predictable values for [ and g. This is
borne out when a larger number of processors are used in the benchmark, as can be seen from
Figure 10.
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Figure 11: Cyclic shift followed by total exchange on an 8-processor IBM SP2

Figure 11 shows the same benchmark running on a eight-processor IBM SP2. Unlike the
Cray, the value of ¢ is more unpredictable. However, although ¢ has a value which is three
times larger than that of the Cray, the SP2 has a per-node computation rate twice that of the
T3D, so the absolute values of g are closely matched on the two machines. From the upper
graph of Figure 11 it can be seen that the amount of data communicated gradually grows, even
though the benchmark routes a fixed size h-relation. The reason for this difference is that, on
the SP2, small messages are combined. For the combining to work, information concerning the
size and destination of the individual communications are sent with the combined individual
communications, so that the destination process can unpack the data correctly. Therefore,
the total size of data sent may triple due to the extra unpacking information. Nevertheless,
this difference is an implementation issue, and is not reflected in the values of g reported in
table 2, as the benchmark calculates a value for g for a fixed size of data communicated.
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