Design of Parallel Algorithms

Bulk Synchronous Parallel
A Bridging Model of Parallel Computation
Need for a Bridging Model

- The RAM model has been reasonable successful for serial programming
 - The model provides a framework for describing the implementation of serial algorithms
 - The model provides reasonably accurate predictions for algorithm running times

- A bridging model is a model that can be used to design algorithms and also make reliable performance predictions

- Historically, there has not been a satisfactory bridging model for parallel computations. Either the model is good at describing algorithms (PRAM) or is good at describing performance (network model) but not both.

- Leslie Valiant proposed the BSP model as a potential bridging model
 - Basically an improvement on the PRAM model to incorporate more practical aspects of parallel hardware costs
What is the Bulk Synchronous Parallel (BSP) model?

- Processors are coupled to local memories.
- Communications happen in synchronized bulk operations:
 - Data updates for the communications are inconsistent until the completion of a synchronization step.
 - All of the communications that occur at the synchronization step are modeled in aggregate rather than tracking individual message transit times.
- For data exchange, a one-sided communication model is advocated:
 - E.g. data transfer through \texttt{put} or \texttt{get} operations that are executed by only one side of the exchange (as opposed to 2 sided where send-receive pairs must be matched up.)
- Similar to a coarse grained PRAM model, but exposes more realistic communication costs.
- BSP provides realistic performance predictions.
Bulk Synchronous Parallel Programming

- Parallel Programs are developed through a series of super-steps

- Each super-step contains:
 - Computations that utilize local processor memory only
 - A communication pattern between processors called an h-relation
 - A barrier step whereby all (or subsets) of processors are synchronized
 - The communication pattern is not fully realized until the barrier step is complete

- The h-relation:
 - This describes communication pattern according to a single characteristic of the communication pattern called h
 - h is defined as the larger of the number of incoming or outgoing interactions that occur during the communication step
 - Time for communication is assumed to be $mgh + l$ where m is the message size, g is an empirically determined bulk bandwidth factor, and l is an empirically determined time for barrier synchronization
Architecture of a BSP Super-Step

- The super-step begins with local computations
- In some models, virtual processors are used to give the run-time system flexibility to balance load and communication
- Local computations are followed by a global communication step
- The global communications are completed with a barrier synchronization
- Since every super-step starts after the barrier, computations are time synchronized at the beginning of each super-step
Cost Model for BSP

- The network is defined by two bulk parameters
 - The parameter g represents the average per-processor rate of word transmission through the network. It is an analog to t_w in network models.
 - The parameter l is the time required to complete the barrier synchronization and represents the bulk latency of the network. It is an analog to t_s in network models.

- The cost of a super-step can be computed using the following formula
 \[t_{step} = \max(w_i) + mg \max(h_i) + l \]
 - w_i is the time for local work on processor i
 - h_i is the number of incoming or outgoing messages for processor i
 - m is the message size
 - g is the machine specific BSP bandwidth parameter
 - l is the machine specific BSP latency parameter
Example of BSP implementations of broadcast (central scheme)

- Since there is no global shared memory in the BSP model, we need to broadcast a value before it can be used by all processors.

- There are several ways to implement broadcast algorithms, a central scheme would perform the broadcast by using one super-step with one processor communicating with all other processors. This we call the central scheme.

- In this approach the h relation will be $p-1$ since one processor will need to send a message to all other processors.

- The cost for this scheme is $t_{central} = gh + l = g(p-1) + l$
Example: BSP broadcast using binary tree scheme

- Broadcast using a tree approach where the algorithm proceeds in $\log p$ steps

- Each step, every processor that presently has broadcast data sends to a processor that has no data
 - Processors that have broadcast data doubles in each step

- Since each processor either sends or receives one or no data each step, the h relation is always $h=1$

- The time for each step of this algorithm is $t_{\text{step}} = g+l$

- The time for the overall broadcast algorithm that includes all $\log p$ steps
 - $t_{\text{tree}} = (g+l) \log p$
The central algorithm time:
- \(t_{central} = g(p-1) + l \)

The tree algorithm time:
- \(t_{tree} = (g+l) \log p \)

If \(l \gg g \) then for sufficiently small \(p \), then \(t_{central} < t_{tree} \)

Can we optimize broadcast for specific system where we know \(g \) and \(l \)?
- There is no reason that we are constrained only double in each step, We could triple, quadruple, or more each step.
- Combining the central and tree algorithm can yield an algorithm that can be optimized for architecture parameters.
Cost of the hybrid broadcast algorithm

- Each step of the algorithm, processors that have data will communicate with \(k-1 \) other processors, therefore \(h=k-1 \) in each step.

- After \(\log_k p \) steps, all processors will have shared the broadcast data.

- Therefore the cost of each step of the hybrid algorithm is \((k-1)g\) and so the cost of the hybrid algorithm is \(t_{\text{hybrid}} = ((k-1)g + l) \log_k p \).

- To optimize set \(k \) such that \(t_{\text{hybrid}}'(k) = 0 \), from this we find optimal \(k \) set by
 - \(\frac{l}{g} = 1 + k \times (\ln(k) - 1) \).

- For a general message of \(m \) words, the broadcast algorithm can be shown to be \(t_{\text{hybrid}} = (m(k-1)g + l) \log_k p \), and the optimal setting for \(k \) becomes
 - \(\frac{l}{mg} = 1 + k \times (\ln(k) - 1) \).
Practical application of BSP

- Several parallel programming environments have been developed based on the BSP model.

- The second generation of the MPI standard, MPI-2, has an extended its API to include a one-sided communication structure that can emulate the BSP model (e.g. it is one-sided + barrier synchronization).

- Even when using two sided communications, parallel programs are often developed as a sequence of super-steps. Using the BSP model, these can be analyzed using a bulk view of communications.

- The BSP model assumes that network is homogenous, but architectural changes, such as multi-core architectures, present challenges.
 - Currently model is being extended to support hierarchical computing structures.
Discussion Topic

- Implementation of summing n numbers using BSP model

- Serial Implementation:

```c
int sum = 0;
for(int i=0; i<n; ++i)
    sum = sum + a[i];
```
Dependency graph for serial summation

\[\text{Final sum} = (((((sum+a[0])+a[1])+a[2])+a[3])+a[4]) \]
Problems with parallelizing the serial code

- The dependency graph does not allow one to perform subsequent operations.
 - It is not possible, as the algorithm is formulated, to execute additions in parallel.

- We note that the addition operation is associative.
 - NOTE! This is not true for floating point addition!
 - Although floating point addition is not associative, it is approximately associative.
 - Accurately summing large numbers of floating point values, particularly in parallel, is a deep problem.
 - For the moment we will assume floating point is associative as well, but note that in general an optimizing compiler cannot assume associativity of floating point operations!

- We can exploit associativity to increase parallelism.
How does associativity help with parallelization?

- We can recast the problem from a linear structure to a tree:
 - $(((a_0+a_1)+a_2)+a_3) = ((a_0+a_1)+(a_2+a_3))$
 - Now a_0+a_1 and a_2+a_3 can be performed concurrently!
What are the costs of this transformation

- Using operator associativity we are able to reveal additional parallelism, however there are costs
 - For the serial summing algorithm only one register is needed to store intermediate results (we used the sum variable)
 - For the tree based summing algorithm we will need to store \(n/2 \) intermediate results for the first concurrent step

- For summing where \(2n \gg p \), maximizing concurrency may introduce new problems:
 - Storing extra intermediate results increase memory requirements of algorithm and may overwhelm available registers
 - Assigning operations to processors (graph partitioning) is needed to parallelize the summation. Some mappings will introduce significantly more inter-processor communication than others
Mapping Operators to Processors
Round Robin Allocation
BSP model for round robin allocation of the tree

- Since there is communication for each level of the tree, there will be $\log n$ super-steps in the algorithm.

- For level i in the tree, the algorithm will perform $\max(n/(2ip), 1)$ operations on at least one processor.

- For level i in the tree, the algorithm will utilize an h relation where $h = \max(n/(2ip), 2)$.

- Therefore the running time to sum n numbers on p processors using the BSP model is

$$t_{\text{sum}} = \sum_{i=1}^{\log n} \left\{ \left\lfloor \frac{n}{2ip} \right\rfloor t_c + \left\lfloor \frac{n}{4ip} \right\rfloor 2g + l \right\} \approx \frac{n}{p} (t_c + g) + l \log n$$
Mapping Operators to Processors
Communication Minimizing Allocation
BSP model for optimized allocation sum

- Notice that only the last $\log p$ levels of the tree will require communication between processors, therefore there will be only $\log p$ super-steps.

- The first step will require $n/p - 1$ operations per processor, and the remaining steps will only require 1 operation.

- During these final $\log p$ steps, at most a processor either receives or sends one piece of information, and so $h = 1$ for the h-relation.

- From this the BSP model running time can be derived:

$$t_{\text{sum}} = \left(\frac{n}{p} - 1\right) t_c + \sum_{i=1}^{\log p} \left\{ t_c + g + l \right\} = \left(\frac{n}{p} - 1\right) t_c + (t_c + g + l) \log p$$
Comments on BSP analysis

- Obviously, in the BSP model, different allocations of work to processors can have radically different running times even though the work is equally balanced.

- For a PRAM model, both allocations would have had the same cost which is unrealistic.

- The cost structure of the BSP algorithms favors algorithms that have greater locality.

- Even if we do not explicitly use a BSP model, we typically think of our algorithm going through a sequence of steps even if the implementation never explicitly enforces a barrier to get all processors to a unified state. Therefore the BSP model closely matches how we typically think about practical parallel programs.