
8.1 Consider the two algorithms for all-to-all personalized communication.
Which method would you use on a 64-node parallel computer withΘ(p) bisection
width for transposing a1024 × 1024 matrix with 1-D partitioning ifts = 100µs
andtw = 1µs? Why?

Recall that there were two hypercube based all-to-all personalized commu-
nication algorithms. One proceeded inlog2 p steps and the other proceeded in
p − 1 steps. Thelog2 p step algorithm hadlog2 p startup costs, but worse overall
cost. Thus, for small messages, thelog2 p algorithm may be faster when thets
associated costs dominate the overall execution time.

When transposing a matrix using 1-D partitioning we can use a all-to-all per-
sonalized broadcast algorithm. If the1024 × 1024 matrix is partitioned to 16
processors, then each processor will contain a matrix of16× 1024. Each16× 16
block of this matrix will be a message in the all-to-all personalized communica-
tion. The size of this message will be 256 words. For this example,ts is 100
times greater thantw. With a message size of 256,ts is not clearly dominate in the
communication time of the optimal broadcast algorithm. However, the only way
to find out which case is optimal is to compute: The hypercube store and forward
algorithm execution time is

tp = (ts + twmp/2) log2 p = (100 + 1 ∗ 256 ∗ 64/2) ∗ log2(64) = 49752µs, (1)

while the ecube routing algorithm execution time is

tp = (ts + twm)(p− 1) = (100 + 1 ∗ 256)(64− 1) = 22428µs. (2)

Clearly the all-to-all personalized using ecube routing is preferred for this case.

1



8.2 Describe a parallel formulation of matrix-vector multiplication in which
the matrix is 1-D block partition along the columns and the vector is equally
partitioned among all the processes. Show that the parallel run time is the same
as in the case of row-wise 1-D block partitioning.

For column partitioning, we have data partitioned to processors such that a
matrix-vector multiplication can proceed immediately without any communica-
tions step. The resulting vector distributed among processors must be accumu-
lated to achieve the final result. Note, that this operation can be performed by
using the dual of the all-to-all broadcast, the all-to-all reduction. The all-to-all
reduction can be performed in time

tcomm = ts log p + (tw + tadd)m(p− 1)
Note that, the message size is equal to the number of elements of the vector

assigned to each processor, which isn/p. Thus the communication cost is similar
(with the exception of the cost of adding). The computation cost, which occurs
first in the computation, is the same as the row partitioning,n2/p Thus the total
time for the matrix-vector multiply with row-wise partitioning is

tp = n2/p + (tw + tadd)(n/p)(p− 1)
Thus the time for row decomposition is the same as column decomposition ex-

cept for thetadd term. However, if we accurately counted the number of adds in the
local computation, we would find that there arep− 1 adds that were over counted
in the current formulation. Thus both algorithm take the exact same amount of
time.

2



8.4The overhead function for multiplying ann× n 2-D partition matrix with
an n × 1 vector using p processes istsplogp + twn

√
p log2 p. Substituting this

expression in equation 5.14 yields a quadratic equation inn. Using this equa-
tion, determine the precise isoefficiency function for the parallel algorithm and
compare it with Equations 8.9 and 8.10. Does this comparison alter the conclu-
sion that the therm associated withtw is responsible for the overall isoefficiency
function of this parallel algorithm?

Substituting as directed, we get

W = n2 = Ktsp log p + nKtw
√

p log p (3)

This gives us the quadratic equation

Ktsp log p + nKtw
√

p log p− n2 = 0 (4)

Solving the quadratic equation (selecting the largest solution) we get (e.g.a =
−1, b = Ktw

√
p log p, c = Ktsp log p whereW = n2 = 1/4(b +

√
b2 + 4c)2 =

1/2b2 + c + 1/4b2
√

1 + 4c/b2.

W = n2 =
1

2
K2t2wp log2 p +

1

4
K2t2wp log2 p

√
1 +

4ts
Ktw log p

+ Ktsp log p (5)

In particular, if we look at the second term in this equation, we find a term
containing

√
1 + 4ts

Ktw log p
which is a function that in the limit asp grows large

approaches 1. Thus we can simplify the above expression whenp is sufficiently
large as

W =
3

4
K2t2wp log2 p + Ktsp log p (6)

From this we can see confirmation of the isoefficiency analysis given in equa-
tions 8.9 and 8.10. Both terms appear. Similarly, the first term is will dominate.
In addition, due to the squaring ofK andtw, it is likely to dominate for relatively
smallp.

3



8.5Strassen’s method for matrix multiplication is an algorithm based on the
divide-and-conquer technique. The sequential complexity of multiplying twon×n
matrices using Strassen’s algorithm isΘ(n2.81). Consider the simple matrix multi-
plication algorithm for multiplying twon×n matrices using p processes. Assume
that then/

√
p× n/

√
p sub-matrices are multiplied using Strassen’s algorithm at

each process. Derive an expression for the parallel run time of this algorithm. Is
the parallel algorithm cost-optimal?

The communication time for the simple algorithm will not change. This is
given as:

tcomm = Θ(log p) + Θ(
n2

√
p
) (7)

However, the computation time will be given by the time to perform
√

p mul-
tiplications using Strassen’s algorithm, thus the computation time is given by

tcomp =
√

p×Θ((
n
√

p
)2.81) = Θ(

n2.81

p0.905
) (8)

The overall parallel time is

tp = Θ(
n2.81

p0.905
+ Θ(log p) + Θ(

n2

√
p
) (9)

The parallel cost is thus

Cp = ptp = Θ(n2.81p0.095) + Θ(p log p)Θ(n2√p). (10)

However, since serial cost defined by the Strassen’s algorithm isΘ(n2.81) this
parallel algorithm will always include an extrap0.095 increase of cost asp is in-
creased. Thus it is not possible to scale the system in such a way that serial cost
remains in proportion to parallel cost and thus the algorithm cannot be cost opti-
mal.

4


