
1 Nearest Neighbor Search Problem

The nearest neighbor search problem is a problem of computational geometry whereby we are given a a set of
N target points and M search points. For each of the M search points we are to find the closest corresponding
point from the set of N target points. In general these points may be contained within an space of arbitrary
dimension, but for the purposes of this project we will consider only two dimensions for examples, and three
dimensions for the project implementation.

A naive algorithm that solves this problem has an asymptotic complexity of Θ(NM). The naive algorithm
for this problem would simply compare all possible target points to each of the search points and search
for the smallest value. However, this problem can be solved more efficiently, particularly for two and three
dimensional problems, with an average cost of approximately O(M log N). One common technique for
solving this problem is to use spatial decomposition trees such as oct-trees or kd-trees. We will describe how
to solve this problem with kd-trees in the next section.

2 Overview of kd-trees

The kd-tree is a spatial data-structure that provides a simple and elegant way of structuring spatial data
that allows for efficient search and lookup. The kd-tree is a binary tree in which each level of the tree
represents a division of the data set into two subsets that are on either side of a selected cutting plane. The
simplest version of the kd-tree structure selects cutting planes aligned with each of the coordinate vectors
successively. For example, for two dimensional sets, such a kd-tree would first divide with a constant “x”
dimension plane at the root, then “y” at the next level, then “x’, and so on. If the plane is selected by the
median of the current coordinate value, then the resulting kd-tree will be balanced, thus usually kd trees are
constructed using median pivots.

Figure 1 shows how one might construct a two-dimensional kd-tree. In this tree we store nodes at each
level of the tree in addition to the pivots (although in some implementations only the leaves of the tree would
contain nodes). Notice that the cutting planes only extend to where it intersects with a previous cutting
plane.

To understand how this data-structure can help with a nearest neighbor search problem, consider the
following algorithm. Given some point, and the current best closest point, we can determine if the left or
right partition at the current level of the tree intersects with the current circle described by this radius and
the given point. If the partition does not intersect, then it is impossible for a closer point to be contained in
that branch of the tree, so it is not necessary to search the nodes contained there.

We illustrate performing a nearest neighbor search using a kd-tree in figure 2. The search begins at the
root node which also gives the first candidate closest point. First we choose to look at the left side of the
tree and find that the circle that could contain a closer point does intersect this region, and so we proceed
to search the left side of the tree. In the second step we find a closer match (point #2) and revise our circle
that might contain a closer point. Again we consider the left branch of the tree and find that the circle
intersects this partition and so we continue searching on the left branch. In step 3, the partition point isn’t
closer, so we don’t need to update the closest point, however the partition for the left branch still contains
the circle so we must search it. In step 4 we are at the leaf of the tree, but point #8 is not closer than the
current best match so we return to our parent. In step 5 we consider the intersection of our circle with the
right branch partition and find that it intersects so we proceed down this arc of the tree. In step 6 we find
that the leaf node is closer than the previous estimate, and then return to our parent node. In step 7, we are
now check the right partition of this node and find that it doesn’t intersect with the circle so we don’t search
that branch. And finally in step 8 we find that the current best estimate can not be changed by any point
in the right half since the current circle does not intersect this partition. Therefore, we know that point #9
is the closest point even though we haven’t checked points 5,6,7,10,11,12,13,14, and 15.
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Figure 1: An example of a kd tree

3 Parallel kd-trees

We have several options if we want to develop a parallel kd-tree formulation of the nearest neighbor search
problem. The simplest approach would be to collect all of the N target points on all of the processors and
have each processor perform a nearest neighbor search using the the serial kd-tree algorithm. This approach
has the disadvantage that it would require a total memory of O(Np) thus the approach is not memory
scalable.

A memory scalable alternative would be to shift the target points among processors in a circular fashion.
As the target points are stored on your processor, use them to update your local nearest neighbor estimate.
After p steps, the algorithm will be finished. However, this approach will not be very scalable as the parallel
part of the algorithm mimics the sub-optimal O(NM) algorithm.

A better algorithm would distribute the kd-tree among processors. Similarly the search points would
need to be distributed among processors to facilitate efficient searching. Such a parallel technique might
proceed along the following lines: Build the first log(p) levels of the search tree in parallel, dividing the points
among processors as they are partitioned by the kd-tree. After this point all the subsequent partitions will
be contained with a processor and searches after this point can use the serial algorithm. Now, partition the
search points in a similar fashion. Now, one can first locate the closest point within the partition of the
kd-tree that each processor owns. After this, it will be possible to determine that many of the points will not
need to visit the part of the tree that is owned by other processors. Those points that have an intersection
with other processors partitions will need to be sent to those processors so that the search can continue until
all search points can be proven to have located their closest possible partner in the target points.

4 Parallel Programming Assignment

You have been provided with a basic infrastructure for this assignment. This consists of a program that
has a serial kd-tree algorithm for computing nearest neighbors. In addition it contains routines for running
generating distributed random sets of target points and search points, both on the unit cube. In addition,
there is a routine that uses the naive algorithm nearest neighbor algorithm to verify that your program is
working on small sets. A set of job scripts are provided for debugging and performance measurement runs.
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(a) NN search step 1
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(b) NN search step 2
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(c) NN search step 3
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(d) NN search step 4
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(e) NN search step 5
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(f) NN search step 6
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(g) NN search step 7
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(h) NN search step 8

Figure 2: Nearest Neighbor Search using kd trees
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4.1 Undergraduate Assignment

Undergraduates are to implement the non-memory scalable version and the low scalability version of the
nearest neighbors algorithm (the first two parallel algorithms discussed in this document). In addition
to implementing and measuring the performance and scalability of these algorithms, undergraduates are
expected to perform a scalability analysis of these algorithms. A discussion of the approach, analysis,
experimental results, and conclusions should be documented in a project report.

4.2 Graduate Assignment

Graduate students, in addition to performing the undergraduate part of the assignment, will implement
the scalable nearest neighbors algorithm. In addition, graduate students must provide a scalability analysis
of this algorithm. A discussion of the approach, analysis, experimental results, and conclusions should be
documented in a project report.
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