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ABSTRACT
Merrimac uses stream architecture and advanced interconnection
networks to give an order of magnitude more performance per unit
cost than cluster-based scientific computers built from the same
technology. Organizing the computation into streams and exploit-
ing the resulting locality using a register hierarchy enables a stream
architecture to reduce the memory bandwidth required by repre-
sentative applications by an order of magnitude or more. Hence
a processing node with a fixed bandwidth (expensive) can support
an order of magnitude more arithmetic units (inexpensive). This in
turn allows a given level of performance to be achieved with fewer
nodes (a 1-PFLOPS machine, for example, with just 8,192 nodes)
resulting in greater reliability, and simpler system management. We
sketch the design of Merrimac, a streaming scientific computer that
can be scaled from a $20K 2 TFLOPS workstation to a $20M 2
PFLOPS supercomputer and present the results of some initial ap-
plication experiments on this architecture.

1. Introduction
Modern semiconductor technology makes arithmetic inexpen-

sive and bandwidth expensive. To exploit this shift in cost, a high-
performance computer system must exploit locality, to raise the
arithmetic intensity (the ratio of arithmetic to bandwidth) of the
application as well as parallelism to keep a large number of arith-
metic units busy. Expressing an application as a stream program
fulfills both of these requirements. It exposes large amounts of par-
allelism across stream elements and reduces global bandwidth by
expressing locality within and between kernels.

A stream processor exploits the parallelism exposed by a stream
program, by providing 100s of arithmetic units, and exploits the
locality of a stream program, by providing a deep register hier-
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archy. In particular, memory bandwidth is reduced by capturing
short-term producer-consumer locality in large local register files,
and long-term producer-consumer locality in a stream register file.
This locality might not be captured by a reactive cache. More im-
portantly, the stream register file is aligned with individual ALUs
and requires only local on-chip communication while a cache re-
quires global on-chip communication.

We are designing Merrimac1, a scientific computer system tai-
lored to exploit the parallelism and locality of streams. The core
of Merrimac is a single-chip (90nm CMOS) stream processor that
is expected to have 128 GFLOPS peak performance. This proces-
sor chip along with 16 high-bandwidth DRAM chips (2G Bytes of
memory) form a single Merrimac node. Application experiments
suggest that this single-node Merrimac will sustain up to half of
peak performance on a range of scientific applications. With an
estimated parts cost of less than $1K per 128 GFLOPS node (in-
cluding network), we expect a Merrimac machine to provide both
capability and capacity — being more cost effective than machines
based on commodity microprocessors.

Merrimac employs a high-radix interconnection network to con-
nect 16 nodes (2 TFLOPS) on a single board, 512 nodes (64 TFLOPS)
in a cabinet, and 8K nodes (1 PFLOPS) in 16 cabinets. The net-
work provides a flat shared address space across the multi-cabinet
system with flat bandwidth across a board (16 nodes) and a global
bandwidth of 1/8 the local bandwidth anywhere in the system.

We have coded three representative scientific applications as stream
programs and measured their performance on a simulated Merri-
mac node. These initial experiments show that typical scientific
applications cast as stream programs maintain a high arithmetic to
memory bandwidth ratio and achieve a high fraction of peak perfor-
mance. The applications simulated have computation-to-memory
ratios in the range of 7:1 to 50:1, achieving between 18% and 52%
of the peak performance of the machine, with less than 1.5% of
data references traveling off-chip.

The remainder of this paper describes stream processors and the
Merrimac project in more detail. In Section 2 we see that modern
VLSI technology makes arithmetic cheap and bandwidth expen-
sive. Section 3 shows how a stream processor exploits the appli-
cation locality using a bandwidth hierarchy and application paral-
lelism by using large numbers of ALUs. Merrimac, a supercom-
puter based on streams, is described in Section 4. We show the
performance of a simulated stream processor on a number of ap-
plications in Section 5. Issues related to scientific computing with
streams are discussed in Section 6

1Merrimac is a Native American word meaning “fast moving
stream”.
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2. VLSI enables inexpensive arithmetic mak-
ing bandwidth the limiting factor

Modern VLSI fabrication processes make it very inexpensive in
terms of both area and power to put large amounts of arithmetic
capability on a chip. With arithmetic almost free, global band-
width, both on-chip and off-chip, becomes the factor limiting per-
formance.

In 0.13µm CMOS technology, a 64-bit floating-point unit (FPU)
(multiplier and adder) has an area of less than 1mm2 and dissipates
about 50pJ of energy per operation [1]. Over 200 such FPUs can
fit on a 14mm × 14mm chip that can be manufactured in volume
(including testing and packaging) for less than $100. Even at a
conservative operating frequency of 500MHz this gives a cost of
64-bit floating-point arithmetic of less than $1 per GFLOPS and a
power of less than 50mW per GFLOPS. Even though one cannot
completely fill a chip with FPUs, modern graphics chips come close
to realizing these cost performance levels. For example, the nVidia
NV30 sustains 100 GFLOPS (32-bit floating point) [2].

The already low cost of arithmetic is decreasing rapidly as tech-
nology improves. We describe a CMOS technology by its drawn
gate length L. Most chips today are manufactured with L = 0.13µm.
Historical trends show that L decreases at about 14% per year [3].
The cost of a GFLOPS of arithmetic scales as L3 and hence de-
creases at a rate of about 35% per year [4]. Every five years, L
is halved, four times as many FPUs fit on a chip of a given area,
and they operate twice as fast — giving a total of eight times the
performance for the same cost. Of equal importance, the switching
energy also scales as L3 so every five years, we get eight times the
arithmetic performance for the same power.

Global bandwidth, not arithmetic is the factor limiting the per-
formance and dominating the power of modern processors. The
cost of bandwidth grows at least linearly with distance in terms of
both availability and power [4]. To keep distances constant across
technology generations, we express distance in units of tracks. One
track (or 1χ) is the distance between two minimum width wires on
a chip. In 0.13µm technology, 1χ ≈ 0.5µm. We can put ten times
as many 103χ wires on a chip as we can 104χ wires. More im-
portantly, moving a bit of information over a 103χ wire takes only
1/10th the energy as moving a bit over a 104χ wire. In an 0.13µm
technology, for example, transporting the three 64-bit operands for
a 50pJ floating point operation over global 3 × 104χ wires con-
sumes about 1nJ, 20 times the energy required to do the operation.
In contrast, transporting these operands on local wires with an av-
erage length of 3 × 102χ takes only 10pJ, much less than the cost
of the operation.

Contemporary architectures are not yet tuned to these develop-
ing VLSI constraints. These architectures are unable to use more
than a few arithmetic units because they are designed for applica-
tions with limited parallelism and are hindered by a low bandwidth
memory system. Their main goal is to provide high performance
for mostly serial code that is highly sensitive to memory latency
and not bandwidth. To exploit the capabilities of today’s VLSI
technology requires an architecture that can exploit parallelism —
to keep large numbers or arithmetic units busy while hiding the ever
increasing latency to memory, and locality — to increase the ratio
of arithmetic, which is inexpensive, to global bandwidth, which is
the limiting factor.

3. Stream Architecture exploits the character-
istics of VLSI

A Stream Processor is able to take advantage of the large number
of arithmetic units that VLSI technology enables without exceed-
ing the bandwidth limitations of the technology by using a register
hierarchy to exploit locality in the application. This greatly re-
duces the average distance an operand must travel to reach a FPU.
As shown in Figure 1, a stream architecture consists of an array
of clusters, each with a set of FPUs, a set of local register files
(LRFs), and a bank of a stream register file (SRF). Each FPU in a
cluster reads its operands out of an adjacent LRF over very short,
(≈ 100χ), wires. FPU results are distributed to the other LRFs
in a cluster and accesses to the local SRF bank are made via the
cluster switch over short (≈ 1, 000χ) wires. While the SRF is sim-
ilar in size to a cache, SRF accesses are much less expensive than
cache accesses because they are aligned and do not require a tag
lookup. Each cluster accesses its own bank of the SRF over short
wires. In contrast, accessing a cache requires a global communi-
cation over long (≈ 10, 000χ) wires. The SRF also plays another
crucial role in keeping the arithmetic units busy by allowing the
software to hide long memory latencies. An entire stream is trans-
ferred between the SRF and the memory with a single instruction.
These stream memory operations generate a large number of mem-
ory references to fill the very deep pipeline between processor and
memory, allowing memory bandwidth to be maintained in the pres-
ence of latency. Arithmetic units are kept busy by overlapping the
execution of arithmetic kernels with these stream memory opera-
tions.

To see how a stream processor exploits locality, consider a sim-
ple application expressed as a stream program (Figure 2). This fig-
ure shows a synthetic application that is designed to have the same
bandwidth demands as the StreamFEM application (Section 5). Each
iteration, the application streams a set of 5-word grid cells into a se-
ries of four kernels. The kernels operate on the data, performing the
number of operations indicated, and pass intermediate results on to
the next kernel. To perform a table lookup, kernel K1 generates an
index stream that is used to reference a table in memory generating
a 3-word per element stream into kernel K3.

Figure 3 shows how the stream program of Figure 2 maps to
the register hierarchy of a stream processor. The grid cells start
in memory and are read a strip at a time into a buffer in the SRF.
A typical strip might be 1024 5-word records.2 Once a strip of
cells is in the SRF, kernel K1 is run generating a strip of indices
and a strip of intermediate results in the SRF. Kernel K2 is run on
the results, generating a second set of intermediate results while the
indices are applied to memory to read a strip of table values into the
SRF. Table values that are repeatedly accessed are provided by the
cache. The process continues until the updates to the strip of grid
cells, generated by kernel K4, are written back to memory. Each
strip is software pipelined so that the loading of one strip of cells is
overlapped with the execution of the four kernels on the previous
strip of cells and the storing of the strip before that.

This synthetic application shows how the stream architecture ex-
ploits locality. In Section 5 we shall see that actual applications ex-
ploit locality in a similar manner. Kernels K1. . .K4 perform all of
their 300 operations out of LRFs, performing 900 LRF accesses per
grid point. The streams between the kernels are passed through the
SRF generating 58 words of SRF bandwidth per grid point. Finally
memory accesses total 12 words. This gives us a bandwidth ratio
of 75:5:1, 75 LRF references and 5 SRF references for every mem-

2The strip size is chosen by the compiler to use the entire SRF
without any spilling.
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ory reference. Put differently, 93% of all references are made from
the LRFs, where bandwidth is very inexpensive, and only 1.2% of
references are made from the memory system, where bandwidth is
expensive for cache hits and very expensive for misses.3

A stream processor executes a stream instruction set. This in-
struction set includes scalar instructions, that are executed on a
conventional scalar processor, stream execution instructions, that
each trigger the execution of a kernel on one or more strips in the
SRF, and stream memory instructions that load and store (possibly
with gather and scatter) a stream of records from memory to the
SRF. This stream instruction set closely follows that of the Imagine
streaming media processor [5, 6].

Merrimac also provides hardware support for a scatter-add in-
struction. This instruction is an example of a new architectural fea-
ture that is enabled by programming in streams. A scatter-add acts
as a regular scatter, but adds each value to the data already at each
specified memory address rather than simply overwriting the data.
This type of operation was discussed from a parallel algorithm per-
spective in [7].

4. Sketch of Merrimac: a Streaming Scientific
Computer

S
R

F
 B

a
n

k

2.3 mm

1
.6

 m
m

FP/INT
64 Bit
MADD

64 W RF
64 W RF
64 W RF

FP/INT
64 Bit
MADD

64 W RF
64 W RF
64 W RF

FP/INT
64 Bit
MADD

64 W RF
64 W RF
64 W RF

FP/INT
64 Bit
MADD

64 W RF
64 W RF
64 W RF

Figure 4: Floorplan of a Merrimac cluster.

Each Merrimac node contains a stream processor (as illustrated
in Figure 1) with 16 arithmetic clusters. Each cluster contains four
floating-point multiply-add (MADD) units, 768 64-bit words of lo-
cal registers, and 8K words of stream register file. The entire stream
register file has a capacity of 128K 64-bit words, distributed across
the 16 clusters. A floorplan for one cluster is shown in Figure 4.
Each MADD unit measures 0.9mm × 0.6mm and the entire clus-
ter measures 2.3mm × 1.6mm. We conservatively plan to operate
with a clock cycle of 1ns (37 FO4 inverters in 90nm[3]) giving a
performance of 8 GFLOPS per cluster and 128 GFLOPS across the
16 clusters.

A floorplan of the entire Merrimac stream processor chip is shown
in Figure 5. The bulk of the chip is occupied by the 16 clusters. The

3Many of our applications have very large kernels that in effect
combine several smaller kernels — passing intermediate results
through LRFs rather than SRFs. While this increases the fraction of
LRF accesses, it also stresses LRF capacity. Ideally, the compiler
will partition large kernels and combine small kernels to balance
these two effects. We have not yet implemented this optimization.
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Figure 5: Floorplan of a Merrimac stream processor chip.

left edge of the chip holds the remainder of the node. A scalar pro-
cessor [8] fetches all instructions, executes the scalar instructions
itself, and dispatches stream execution instructions to the clusters
(under control of the microcontroller) and stream memory instruc-
tions to the memory system. The node memory system consists of
a set of address generators (not shown), a line-interleaved eight-
bank 64K-word (512KByte) cache, and interfaces for 16 external
DRAM chips. A network interface directs off-node memory refer-
ences to the routers. We estimate that each Merrimac processor will
cost about $200 to manufacture and will dissipate a maximum of
31W of power. Area and power estimates in a standard cell process
in 90nm technology are derived from models based on a previous
implementation of stream processor [1].

Figure 6 illustrates a single Merrimac board containing 16 nodes
— 16 128GFLOPS stream processors (Figure 5) each with 2 GBytes
of DRAM — and four router chips. The router chips interconnect
the 16 processors on the board, providing flat memory bandwidth
on board of 20 GBytes/s per node. The routers also provide a gate-
way to the inter-board network, with a 4:1 reduction in memory
bandwidth (to 5 GBytes/s per node), for inter-board references.

Larger Merrimac systems are interconnected by a five-stage folded-
Clos [9] network4 using high-radix routers as illustrated in Figure 7.
The routers on each 16-node board serve as the first and last stage
of this network. The basic building block of this network is a 48-
input × 48-output router chip. Each bidirectional router channel
(one input and one output) has a bandwidth of 2.5 GBytes/s (four
5Gb/s differential signals) in each direction. On each 16-processor
board, each of four routers has two 2.5 GByte/s channels to/from
each of the 16 processor chips and eight ports to/from the backplane
switch. The remaining eight ports are unused. Thus each node pro-
vides a total of 32 channels to the backplane. At the backplane
level, 32 routers connect one channel to each of the 32 boards and
connect 16 channels to the system-level switch. A total of 512 2.5
GByte/s channels traverse optical links to the system-level switch
where 512 routers connect all 48 ports to up to 48 backplanes (the
figure shows just 32 backplanes).

Table 1 shows the estimated cost of a streaming supercomputer.
The processor and router chip are modest-sized (10mm × 11mm)
ASICs in 1000-pin flip-chip BGA packages that are expected to

4This topology is sometimes called a Fat Tree [10].
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Figure 6: Sixteen 128 GFLOPS stream processors each with 2
GBytes of DRAM memory can be packaged on a single board.
The board has a total of 2 TFLOPS of arithmetic and 32 GBytes
of memory. Such a board is useful as a stand-alone scientific
computer and as a building-block for larger systems.

Item Cost($) Per Node Cost ($)

Processor Chip 200 200
Router Chip 200 69
Memory Chip 20 320
Board 1000 63
Router Board 1000 2
Backplane 5000 10
Global Router Board 5000 5
Power 1 50
Per Node Cost 718
$/GFLOPS (128/Node) 6
$/M-GUPS (250/Node) 3

Table 1: Rough Per-Node Budget. Parts cost only, does not
include I/O.

cost $200 each in moderate quantities (1000s). DRAM chips are
projected to cost $20 each, making DRAM, at $320 the largest sin-
gle cost item. Board and backplane costs, including connectors,
capacitors, regulators, and other components is amortized over the
16 nodes on each board and the 512 nodes in each backplane. The
router board and global router board costs reflect the costs of the
intra-cabinet and inter-cabinet networks respectively. Supplying
and removing power costs about $1 per W or about $50 per 50W
node. Overall cost is less than $1K per node, which translates into
$6 per GFLOP of peak performance and $3 per M-GUPS5.

5GUPS or global updates per second is a measure of global un-
structured memory bandwidth. It is the number of single-word
read-modify-write operations a machine can perform to memory
locations randomly selected from over the entire address space.
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Application Sustained GFLOPS FP Ops / Mem Ref LRF Refs SRF Refs Mem. Refs

StreamFEM (Euler, quadratic) 32.2 23.5 169.5M 10.3M 1.4M
(93.6%) (5.7%) (0.7%)

StreamFEM (MHD, cubic) 33.5 50.6 733.3M 43.8M 3.2M
(94.0%) (5.6%) (0.4%)

StreamMD 14.2 12.1 90.2M 1.6M 0.7M
(97.5%) (1.7%) (0.8%)

StreamFLO 11.4 7.4 234.3M 7.2M 3.4M
(95.7%) (2.9%) (1.4%)

Table 2: Performance measurements of streaming scientific applications

5. Applications exploit the locality of a stream
processor

Three scientific applications were used to evaluate the single
node performance of the Merrimac stream processor: StreamFEM,
StreamMD, and StreamFLO. These applications feature a number
of characteristics which are common in scientific applications in
general, including regular and irregular multidimensional meshes,
multigrid techniques, and particle-in-cell computations.

StreamFEM is a finite element application designed to solve sys-
tems of first-order conservation laws on general unstructured meshes.
The StreamFEM implementation has the capability of solving sys-
tems of 2D conservation laws corresponding to scalar transport,
compressible gas dynamics, and magnetohydrodynamics (MHD)
using element approximation spaces ranging from piecewise con-
stant to piecewise cubic polynomials. StreamFEM uses the discon-
tinuous Galerkin (DG) method developed by Reed and Hill [11]
and later popularized by Cockburn, Hou and Shu [12]. In the
present StreamFEM implementation, the limiting procedure of Cock-
burn et al. has been replaced by variational discontinuity capturing
terms as discussed in Jaffre, Johnson and Szepessy [13] with fur-
ther overall algorithmic simplifications as discussed in Barth [14].

StreamMD is a molecular dynamics solver [15, 16] that is based
on solving Newton’s equations of motion. The velocity Verlet method
(or Leap-frog) is used to integrate the equations of motion in time;
using this method, it is possible to simulate the complex trajectories
of atoms and molecules for very long periods of time. The present
StreamMD implementation simulates a box of water molecules,
with the potential energy function defined as the sum of two terms:
electrostatic potential and the Van der Waals potential. A cutoff
is applied so that all particles which are at a distance greater than
rcutoff do not interact. A 3D gridding structure is used to accelerate
the determination of which particles are close enough to interact –
each grid cell contains a list of the particles within that cell, and
each timestep particles may move between grid cells. StreamMD
makes use of the scatter-add functionality of Merrimac by com-
puting the pairwise particle forces in parallel and accumulating the
forces on each particle by scattering them to memory.

StreamFLO [17] is a finite volume 2D Euler solver that uses a
non-linear multigrid algorithm. It is based on the FLO82 code
[18][19], which influenced many industrial and research codes. The
choice of the code is motivated by the need for an application that
is representative of a typical computational fluid dynamics appli-
cation, without unnecessary complexity. A cell-centered finite-
volume formulation is used to solve the fluid equations together
with multigrid acceleration. Time integration is performed using a
five stage Runge-Kutta scheme.

Table 2 presents measurements from running these three applica-
tions on a cycle-accurate simulator of one Merrimac node. These
simulations were run on a version of the simulator that included

four 2-input multiply/add units per cluster (for a peak performance
of 64GFLOPS/node) rather than the four integrated 3-input MADD
units (128GFLOPS/node) that is the current design.

The Sustained GFLOPS and FP Ops / Mem Ref columns illus-
trate the arithmetic intensity of the applications; they are able to
sustain from 18% to 52% of the node’s peak arithmetic perfor-
mance, by performing from 7 to 50 floating point operations for
each global memory access. Note that only “real” ops are counted
in this figure, such as floating point add/mul/compare instructions,
and not non-arithmetic ops such as branches. Divides are counted
as single floating point operations, even though each divide requires
several multiplication and addition operations when executed on
the hardware. This leads to the lower performance numbers for
StreamMD and StreamFLO – for example, the sustained perfor-
mance of StreamFLO would double if we counted all the multiplies
and adds required for divisions as well.

The right-most three columns list the respective numbers of LRF,
SRF, and memory references made by the program, along with the
percentage of references satisfied by each level. Note that only a
small fraction of references, usually less than 1%, require commu-
nication over global (> 10, 000χ or off-chip) wires, and that over
95% of all data movement is on local (100χ) wires (at the LRF
level). The register hierarchy of a stream processor exposes costly
global communication and allows the locality inherent in applica-
tions to be exploited to keep communications local.

Exploiting locality using a register hierarchy increases perfor-
mance and reduces power dissipation. By performing less data
movement per arithmetic operation, we can support a much larger
number of arithmetic units before saturating the limited global band-
width. At the same time power per operation is dramatically re-
duced by eliminating much of the global communication that dom-
inates power.

6. Discussion

6.1 Streams vs Vectors
Stream processors share with vector processors, like the Cray1

through Cray C90 [20][21], the ability to hide latency, amortize
instruction overhead, and expose data parallelism by operating on
large aggregates of data. In a similar manner, a stream processor,
such as Merrimac, hides memory latency by fetching a stream of
records with a single stream load instruction. A kernel is performed
on one or more streams of records in the stream register file (SRF)
with a single operate instruction. This both amortizes the overhead
of the operate instruction and exposes data parallelism.

Stream processors extend the capabilities of vector processors
by adding a layer to the register hierarchy, and adding a layer of in-
struction sequencing that enables them to operate in record (rather
than operation) order. The functions of the vector register file (VRF)
of a vector processor is split between the local register files (LRFs)
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and the stream register file (SRF) of a stream processor. The LRFs
stage data between ALU operations to exploit fine-grained producer-
consumer locality (sometimes called kernel locality). To support
a large number of ALUs, they have a very high aggregate band-
width. Because they exploit only kernel locality, their capacity can
be modest, a few thousand words - about the same size as a modern
VRF. The stream register file (SRF) of a stream processor stages
data to and from memory and stages data to and from the LRFs
to exploit coarse-grained (sometimes called outer-loop) producer-
consumer locality. Because it is relieved of the task of forwarding
data to/from the ALUs, its bandwidth is modest (an order of magni-
tude less than the LRFs) which makes it economical to build SRFs
large enough to exploit coarse-grained locality.

6.2 Balance
The ratios between arithmetic rate, memory bandwidth, and mem-

ory capacity on Merrimac are balanced based on cost and utility —
so that the last dollar spent on each returns the same incremen-
tal improvement in performance. This balancing by diminishing
returns gives ratios quite different from the common approach of
fixing the ratio of GFLOPS to GBytes irrespective of cost. If we
took this approach with Merrimac, we would have to provide 128
GBytes of memory (costing about $20K) for each $200 processor
chip making our processor to memory cost ratio 1:100. If one needs
128 GBytes of memory, it is more efficient to provide 64 nodes,
even if the additional processors are not required — their cost is
small compared to the memory.

A similar argument applies to the ratio of arithmetic to memory
bandwidth. Merrimac provides only 20 GBytes/s (2.5 GWords/s) of
memory bandwidth for 128 GFLOPS, a FLOP/Word ratio of over
50:1. Many vector machines have FLOP/Word ratios of 1:1 [21],
and conventional microprocessors have ratios between 4:1 and 12:1
[22][23]. Providing even a 10:1 ratio on Merrimac would be pro-
hibitively expensive. We would need 80 external DRAMs rather
than 16. Interfacing to this large number of DRAMs would require
at least 5 external memory interface chips (pin expanders). As with
memory capacity, taking this fixed-balance approach to memory
bandwidth causes the cost of bandwidth to dominate the cost of
processing. Its more efficient to just use Merrimac processor chips
to directly interface to 16 DRAMs each. For memory bandwidth
dominated computations (e.g., sparse vector-matrix product) most
of the arithmetic will be idle. However, even for such computations
the Merrimac approach is more cost effective than trying to provide
a much larger memory bandwidth for a single node.

6.3 High-Radix Routers
In the 1980s and early 90s, when routers had pin bandwidth in

the range of 1-10Gb/s, torus networks gave high throughput while
balancing serialization latency against network diameter. For this
reason, torus networks were quite popular during this period [24,
25, 26]. Today, with router chip pin bandwidths between 100Gb/s
and 1Tb/s possible, a torus can no longer make effective use of
this bandwidth. A topology with a higher node degree (or radix) is
required. When used in conjunction with channel slicing, slicing
each node’s 20GB/s of network bandwidth across eight 2.5GB/s
channels, building routers with high degree (48 for Merrimac) en-
ables a network with very low diameter (2 hops to 16 nodes, 4
hops to 512 nodes, and 6 hops to 24K nodes) compared to a 3-D
torus (with a node degree of 6).6 The use of a Clos network has

6If we employed a butterfly rather than a Clos topology these di-
ameters would be nearly halved. Unfortunately a butterfly network
is not practical because of its poor performance routing certain per-
mutations.

the added advantage that its hierarchical nature facilitates the use
of optical links to cover the long distances required at the top level
[27].

7. Conclusion
Modern VLSI technology makes arithmetic very cheap (100s

of 64-bit FPUs per chip) and bandwidth very expensive (a few
words/cycle of off-chip bandwidth). Expressing an application as
a stream program exposes parallelism — to take advantage of the
large number of arithmetic units and to hide the ever increasing
memory latencies — and locality — to reduce the demand on the
limited bandwidth. A stream processor exploits this parallelism
and locality by providing a deep bandwidth hierarchy that exposes
communication so it can be optimized by a compiler. By capturing
short-term producer-consumer locality in local registers and long-
term producer-consumer locality in a stream register file, a stream
processor significantly reduces an application’s demand on mem-
ory bandwidth.

Merrimac is a stream processor tailored for scientific applica-
tions. Merrimac is scalable from a 2 TFLOPS single-board work-
station to a 2PFLOPS supercomputer. A 90nm CMOS stream pro-
cessor chip with a peak performance of 128 GFLOPS enables Mer-
rimac to sustain a high ratio of arithmetic operations to external
bandwidth. This allows Merrimac to achieve an efficiency of 128
MFLOPS/$ peak and 23-64 MFLOPS/$ sustained on our pilot ap-
plications7. A high-radix network gives Merrimac a flat global ad-
dress space with only an 8:1 (local:global) bandwidth ratio. This
gives Merrimac a memory efficiency of 250 K-GUPS/$. This rel-
atively flat global memory bandwidth simplifies programming by
reducing the importance of partitioning and placement.

Three representative scientific applications have been converted
to stream programs, compiled for Merrimac, and executed on a
cycle-accurate simulation of a Merrimac node. These applications
all exhibit high locality, maintaining arithmetic to memory access
ratios from 7 to 50. Across these applications, over 96% of all
data accesses are from local register files and less than 1.5% are
to memory. These experiments verify that streams can extract suf-
ficient locality from representative scientific codes to sustain high
arithmetic rates with limited memory bandwidth.

The results we present here establish the feasibility of using stream
processing for scientific computing — by showing that stream lo-
cality exists in representative scientific codes — and suggests that
a stream processor can significantly improve the performance per
unit cost of scientific computing.

Scientific stream processing raises many interesting questions
for future research. Our initial experiments used programs that
were manually restructured into stream programs. The develop-
ment of compilation methods to automate this process of partition-
ing a vectorized or parallelized code into kernels would make it eas-
ier to apply stream processing to enhance the locality of a large vol-
ume of existing code. We are also interested in compilation meth-
ods that perform transformations on stream programs, splitting and
merging kernels to balance register use, and rescheduling kernels
and memory operations to most efficiently stage data through the
stream register file.

On the architecture front, we are exploring alternative stream
register file organizations that appear to offer even greater reduc-
tions in required memory bandwidth. We are investigating how
to best use a cache in combination with a stream register file and
how to give the compiler more control over caching policies. We
are also investigating global communication and synchronization

7Projected from the experiments of Section 5.
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mechanisms that are suitable for use with streams. This includes
our scatter-add operation, which reduces the need for synchroniza-
tion in many applications.

Finally our initial experiments used relativley simple 2D codes
running on a single node of a simulated machine. We are currently
exploring the properties of larger and more complex 3D codes run-
ning across multiple nodes of a simulated machine. Initial indi-
cations are positive — that these codes exhibit at least as much
‘stream’ locality as their simpler counterparts.

8. Acknowledgements
We would like to thank Massimiliano Fatica and Eric Darve from

the Mechanical Engineering Department at Stanford, as well as
Timothy J. Barth and Alan Wray from NASA Ames for their great
contribution to the project, and specifically for providing applica-
tions and working with us on their Merrimac implementation. We
would also like to thank Bill Reynolds, Parviz Moin, and Juan J.
Alonso from Stanford University for their support of this work as
part of the Center for Integrated Turbulence Simulation.

9. REFERENCES
[1] Khailany, B., Dally, W. J., Rixner, S., Kapasi, U. J., Owen,

J. D., and Towles, B., “Exploring the VLSI Scalability of
Stream Processors,” Proceedings of the Ninth Symposium on
High Performance Computer Architecture, Anaheim,
California, USA, February 2003, pp. 153–164.

[2] nVIDIA R©, “nVIDIA R© GeFORCETM FX,”
http://www.nvidia.com/docs/lo/2430/SUPP/
PO GFFX Consumer 030503.pdf.

[3] Semiconductor Industry Association, The International
Technology Roadmap for Semiconductors, 2001 Edition.

[4] Dally, W. J. and Poulton, W., Digital Systems Engineering,
Cambridge University Press, 1998.

[5] Khailany, B., Dally, W. J., Rixner, S., Kapasi, U. J., Mattson,
P., Namkoong, J., Owens, J. D., Towles, B., and Chang, A.,
“Imagine: Media Processing with Streams,” IEEE Micro,
March/April 2001, pp. 35–46.

[6] Kapasi, U. J., Rixner, S., Dally, W. J., Khailany, B., Ahn,
J. H., Mattson, P., and Owens, J. D., “Programmable Stream
Processors,” IEEE Computer, August 2003.

[7] Kallinderis, Y. and Vidwans, A., “Generic Parallel
Adaptive-Grid NavierStokes Algorithm,” AIAA Journal,
Vol. 32, 1994, pp. 54–61.

[8] MIPS Technologies, MIPS64 20Kc Core,
http://www.mips.com/ProductCatalog/P MIPS6420KcCore.

[9] Clos, C., “A Study of Non-Blocking Switching Networks,”
Bell System Technical Journal, Vol. 32, 1953, pp. 406–424.

[10] Leiserson, C. E., “Fat-Trees: Universal Networks for
Hardware Efficient Supercomputing,” IEEE Transactions on
Computers, Vol. 34, No. 10, October 1985, pp. 892–901.

[11] Reed, W. H. and Hill, T. R., “Triangular mesh methods for
the neutron transport equation,” Tech. Rep. LA-UR-73-479,
Los Alamos National Laboratory, Los Alamos, New Mexico,
1973.

[12] Cockburn, B., Hou, S., and Shu, C., “TVB Runge-Kutta
Local Projection Discontinuous Galerkin Finite Element
Method for Conservation Laws IV: The multidimensional
case,” Math. Comp., Vol. 54, 1990, pp. 545–581.

[13] Jaffre, J., Johnson, C., and Szepessy, A., “Convergence of the
Discontinuous Galerkin Finite Element Method for
Hyperbolic Conservation Laws,” Math. Models and Methods
in Appl. Sci., Vol. 5, No. 3, 1995, pp. 367–386.

[14] Barth, T., “Simplified Discontinuous Galerkin Methods for
Systems of Conservation Laws with Convex Extension,”
Discontinuous Galerkin Methods, edited by Cockburn,
Karniadakis, and Shu, Vol. 11 of Lecture Notes in
Computational Science and Engineering, Springer-Verlag,
Heidelberg, 1999.

[15] Darve, E. and Pohorille, A., “Calculating Free Energies
using Average Force,” Chemical Physics, Vol. 115, No. 20,
2001, pp. 9169–9183.

[16] Darve, E., Wilson, M., and Pohorille, A., “Calculating Free
Energies using a Scaled-Force Molecular Dynamics
Algorithm,” Molecular Simulation, Vol. 28, No. 1–2, 2002,
pp. 113–144.

[17] Fatica, M., Jameson, A., and Alonso, J. J., “STREAMFLO:
an Euler solver for streaming architectures,” submitted to
AIAA Conference, Reno, Nevada, USA, 2004.

[18] Jameson, A., “Analysis and design of numerical schemes for
gas dynamics 1. Artificial diffusion, upwind biasing, limiters
and their effects on accuracy and multigrid convergence,”
International Journal of Computational Fluid Dynamics,
Vol. Volume 4, 1995, pp. 171–218.

[19] Jameson, A., “Analysis and design of numerical schemes for
gas dynamics 2. Artificial diffusion and discrete shock
structure,” International Journal of Computational Fluid
Dynamics, Vol. Volume 5, 1995, pp. 1–38.

[20] Russell, R. M., “The CRAY-1 Computer System,”
Communications of the ACM, Vol. 21, No. 1, Jan. 1978,
pp. 63–72.

[21] Simmons, M. L., Wasserman, H. J., Lubeck, O. M., Eoyang,
C., Mendez, R., Harada, H., and Ishiguro, M., “A
performance comparison of four supercomputers,”
Communications of the ACM, Vol. 35, No. 8, Aug. 1992,
pp. 116–124.

[22] Intel R©, “Intel R© 850E Chipset,”
http://www.intel.com/design/chipsets/850e/index.htm.

[23] Intel R©, “Intel R© Pentium R© 4 Processor,”
http://www.intel.com/products/desktop/processors/
pentium4/index.htm.

[24] Dally, W. J., “Performance Analysis of k-ary n-cube
Interconnection Networks,” IEEE Transactions on
Computers, Vol. 39, No. 6, June 1991, pp. 775–785.

[25] Kessler, R. E. and Schwarzmeier, J. L., “Cray T3D: a new
dimension for Cray Research,” Proc. of the IEEE Computer
Society International Conferrence (COMPCON), Feb. 1993,
pp. 176–182.

[26] Scott, S. L. and Thorson, G. M., “The Cray T3E Network:
Adaptive Routing in a High Performance 3D Torus,” Proc. of
the Symposium on Hot Interconnects, Aug. 1996, pp.
147–156.

[27] Gupta, A. K., Dally, W. J., Singh, A., and Towles, B.,
“Scalable Opto-Electronic Network (SOENet),” proceedings
of Hot Interconnects (HotI) X, Stanford, California, USA,
August 2002.

Proceedings of the ACM/IEEE SC2003 Conference (SC’03) 
1-58113-695-1/03 $ 17.00 © 2003 ACM 


