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Background
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Single Core to Multi-Core to Many-Core
Single core

I processor computational capacity improved through
F instruction pipelining
F out-of-order engine
F sophisticated and larger cache
F frequency scaling

I Major computational capacity improvement was due to frequency
scaling.

I But faced limitations due to added power consumption from frequency
scaling.

I This motivated the shift to multi-core processors.
Multi-core

I Computational capacity improvement is due to multiple cores.
I Sophisticated cores give good serial performance.
I Additionally, parallelism provides higher aggregate computational

throughput.
Many-core

I Computational capacity improvement is due to large number of cores.
I When large number of cores are requires, they need to be simple due to

chip area limitations.
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Parallel Programming Paradigms

Distributed memory computing
I Multiple processes, each with separate memory space, located on the

same and/or multiple computers.
I A process is fundamental work unit.
I a.k.a. MPI programming in HPC community.
I Suitable when working set size exceeds a single computer DRAM

capacity.

Shared memory computing
I Single process, with multiple threads that share memory space of the

process.
I A thread is fundamental work unit.
I a.k.a. multihreading.
I Suitable when working set fits in a single computer DRAM.
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Xeon Phi Architecture
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Shadow Node

A node in HPC2 shadow cluster

Xeon (Ivy Bridge) as host
I 1 chip per node
I 2 processors on one chip
I 10 cores per processor
I 1 thread per core
I NUMA architecture
I 2.8 GHz

Xeon Phi (Knight’s Corner) as
coprocessor

I connected to host CPU over
PCIe

I 2 coprocessors per node
I 60 cores per coprocessor
I 4 threads per core
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Xeon PhiTMArchitecture and Operating System

60 cores, 4 threads per core

32 KB L1I, 32 KB L1D shared
by 4 threads

L2 cache
I 512 KB per core
I Interconnected by ring
I 30 MB Effective L2
I Distributed tag directory for

coherency

SIMD capability
I 512 bits vector units
I 16 floats and 8 doubles per

SIMD instruction

8 GB DRAM

Runs Linux 2.6.38.8 with MPSS
3.4.1
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Programming Xeon PhiTM
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Programming Xeon PhiTM

KNCNI instruction set:
I Not backward compatible
I Hence, unportable binaries

Requires special compilation steps
I using Intel 17 compiler and MPSS 3.4.1

Two programming models
I Offload model

F application runs on host with parts of it offloaded to Phi
F heterogeneous binary
F incurs the cost of PCI data transfer between host and coprocessor

I Native model
F applications runs entirely on Phi
F no special code modification
F appropriate for performance measurement
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Native Mode: Compilation
Login to shadow-login or shadow-devel

ssh username@shadow -devel.hpc.msstate.edu

Setup intel 17 compiler

swsetup intel -17

Remove following paths from LD LIBRARY PATH
I /usr/lib64
I /lib64
I /lib
I /usr/lib

Add following path to PATH for micnativeloadex

PATH=/cm/local/apps/intel -mic /3.4.1/ bin:$PATH

Compile using -mmic switch

icpc -mmic <other flags > sample.cpp

1Intel C++ 17 User Guide:
https://software.intel.com/en-us/intel-cplusplus-compiler-17.0-user-and-reference-guide
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Native Mode: Execution

Find dependencies and their path

micnativeloadex <binary > -l

Execute the binary
I Manually:

ssh mic0

export LD_LIBRARY_PATH =/lib:/lib64 :/usr/lib64 :/usr/

local/intel -2017/ compilers_and_libraries_2017

.0.098/ linux/compiler/lib/mic

./a.out

I Using micnativeloadex:

export SINK_LD_LIBRARTY_PATH =/lib:/lib64 :/usr/lib64

:/usr/local/intel -2017/

compilers_and_libraries_2017 .0.098/ linux/compiler

/lib/mic

micnativeloadex ./a.out

1See: https://software.intel.com/en-us/articles/building-a-native-application-for-
intel-xeon-phi-coprocessors/
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Offload Mode

a.k.a. heterogeneous programming model

computationally intensive, highly parallel sections of the code need to
be marked as offload regions

decision to execute the offload regions on the coprocessor is made at
runtime

I if MIC device is missing, the offload sections run entirely on CPU
I there is option to enforce failure if the coprocessor is unavailable
I requires data copying between the host and device

Anup Zope (Mississippi State University) Programming Intel R© Xeon PhiTM 20 March 2018 13 / 46



Offload Mode: Marking Offload Code

Offload regions

#pragma offload target(mic:target_id) \

in(all_Vals : length(MAXSZ)) \

inout(numEs) out(E_vals : length(MAXSZ))

for (k=0; k < MAXSZ; k++) {

if ( all_Vals[k] % 2 == 0 ) {

E_vals[numEs] = all_Vals[k];

numEs ++;

}

}
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Offload Mode: Marking Offload Code

Offload functions and variables

__attribute__ (( target (mic))) int global = 55;

__attribute__ (( target (mic)))

int foo() {

return ++ global;

}

main() {

int i;

#pragma offload target(mic) in(global) out(i, global)

{

i = foo();

}

printf("global = %d, i = %d (should be the same)\n", global ,

i);

}
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Offload Mode: Marking Offload Code

Offload multiple functions and variables

#pragma offload_attribute (push ,target(mic))

int global = 55;

int foo() {

return ++ global;

}

#pragma offload_attribute (pop)
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Offload Mode: Managing Memory Allocation
Automatic allocation and deallocation (default)

#pragma offload target(mic) in(p:length (100))

Controlled allocation and deallocation

#pragma offload target(mic) in(p:length (100) alloc_if (1)

free_if (0))

// allocate memory of p on entry to the offload

// do not free p when exiting offload

...

#pragma offload target(mic) in(p:length (100) alloc_if (0)

free_if (0))

// reuse p on coprocessor , allocated in previous offload

// do not free p when exiting offload

...

#pragma offload target(mic) in(p:length (100) alloc_if (0)

free_if (1))

// reuse p on coprocessor , allocated in earlier offload

// deallocate memory of p when exiting offload
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Offload Mode: Target Specific Code

Offload compilation takes place in two passes - CPU compilation and MIC
compilation. MIC macro is defined in the MIC compilation pass.

#pragma offload_attribute(push ,target(mic))

class MyClass {

#ifdef __MIC__

// MIC specific definition of MyClass

#else

// CPU specific definition of MyClass

#endif

};

void foo() {

#ifdef __MIC__

// MIC specific implementation of foo ()

#else

// CPU specific implementation of foo ()

#endif

}

#pragma offload_attribute(pop)
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Offload Mode: Offload Specific Code

INTEL OFFLOAD macro is defined when compiling using -qoffload (on
by default) and not defined when compiling using -qno-offload

__attribute__ (( target(mic))) void print() {

#ifdef __INTEL_OFFLOAD

#ifdef __MIC__

printf("Using offload compiler :  Hello from the coprocessor\n"

);

fflush (0);

#else

printf("Using offload compiler :  Hello from the CPU\n");

#endif

#else

printf("Using host compiler :  Hello from the CPU\n");

#endif

}
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Debugging
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Debugging Xeon PhiTMApplication

Two ways
I using gdb on command line (native only)
I using Eclipse IDE (native and offload)

I will cover debugging of native applications remotely using gdb-mic.

See https://software.intel.com/en-us/articles/debugging-intel-xeon-
phi-applications-on-linux-host for more
information.
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Debugging Xeon PhiTMNative Application Remotely
This debugging is performed from host.

Compile native debug binary using
I -g option: generates debug symbols
I -O0: disables all optimization

Start and configure debugger

gdb -mic

target extended -remote | ssh -T mic0 OMP_NUM_THREADS =120

LD_LIBRARY_PATH =/lib:/lib64 :/usr/lib64:/usr/local/

intel -2017/ compilers_and_libraries_2017 .0.098/ linux/

compiler/lib/mic /usr/bin/gdbserver --multi -

set sysroot /opt/mpss /3.4.1/ sysroots/k1om -mpss -linux

file <path to debug binary >

set remote exec -file <path to debug binary >

set args <command line arguments of debug binary >

start

Then use usual gdb commands to perform debugging.

Look at /opt/mpss/3.4.1/sysroots/x86 64-mpsssdk-linux/

usr/share/doc/gdb-7.6.50/GDB.pdf for more information.
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Multithreaded Programming
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Xeon Phi Parallel Programming

MPI can be used for distributed programming on Xeon Phi, but it is
limited to only the native mode.

Efficient utilization of Xeon Phi is usually obtained from
multithreading in both the offload and native mode.

This requires workloads that are highly parallel.
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Threading Technologies
pthreads

I raw interface to threads on POSIX systems
I lacks sophisticated scheduler
I requires extensive manual work to use in production level code

OpenMP (http://www.openmp.org/specifications/)
I supported by many compilers including Intel 17 compiler
I supported by C/C++ and Fortran languages
I variety of parallel constructs suitable for specific situations

Intel Thread Build Blocks (TBB)
(https://www.threadingbuildingblocks.org/)

I allows logical expression of parallelism
I automatically maps parallel tasks to threads
I can coexist with other threading technologies

Intel Cilk Plus (https://www.cilkplus.org/)
I extension of C/C++ to support task and data parallelism
I sophisticated work-stealing scheduler for automatic load balancing
I allows expression of task parallelism with serial semantics

Other technologies: OpenACC, OpenCL
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OpenMP: Introduction

Advantages

platform independence since it is a standard adapted by compilers

much of boilerplate code is hidden behind pragmas

maintains thread pool that eliminates the cost of frequent thread
creation and destruction

has scheduler that automatically performs task scheduling

gives access to raw threads as well as allows abstract expression of
parallelism
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OpenMP: Programming Model and Memory Model

Programming model

fork-join model - master thread spawns a team of threads

incremental adaptation of parallelism into programs

arranged in three parts
I programming API (use #include <omp.h>)
I #pragma directives
I environment variables

Memory Model

All threads share memory of the process they belong to.

Concurrent access to the shared data.

Each thread has its own private data that is not shared by other
threads.
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OpenMP: Parallel for Loop

#pragma omp parallel for

for(int i = 0; i < n; ++i) {

d[i] = a[i] + b*c[i];

}

Compilation

For Intel 17 compiler, use -qopenmp flag to compile.

OpenMP pragmas’s are recognized only when -qopenmp is used.

Execution

How many threads?
I By default, thread team contains the number of threads equal to the

number of hyperthreads on the processor, unless...
F OMP NUM THREADS is set, or
F omp set num threads(nthreads) is called, or
F num threads clause is specified in the pragma.
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OpenMP: Parallel for Loop
Shared/private data: By default, all variables are shared, unless
explicitly marked as private

#pragma omp parallel for shared(a,b,c,n) private(b)

for(int i = 0; i < n; ++i) {

d[i] = a[i] + b*c[i];

++b;

}

Conditional parallelization: if n > threshold is false, the loop is
executed serially.

#pragma omp parallel for if(n > threshold)

for(int i = 0; i < n; ++i) {

d[i] = a[i] + b*c[i];

}

Implicit barrier at the end of the parallel for, unless nowait clause.

#pragma omp parallel for nowait

for(int i = 0; i < n; ++i) {

d[i] = a[i] + b*c[i];

}
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OpenMP: Parallel Region and Worksharing Constructs
Marking parallel region:

#pragma omp parallel [clauses ...]

{

// worksharing constructs

}

Specifying worksharing constructs:
I For loop:

#pragma omp for

for(int i = 0; i < n; ++i) {

...

} // implied barrier unless nowait

I Sections:

#pragma omp sections

{

#pragma omp section

<code block1 >

#pragma omp section

<code block2 >

...

} // implied barrier unless nowait

Anup Zope (Mississippi State University) Programming Intel R© Xeon PhiTM 20 March 2018 30 / 46



OpenMP: Parallel Region and Worksharing Constructs

Specifying worksharing constructs
I Single:

#pragma omp single

{

// executed by only one thread

} // implied barrier unless nowait

I Master:

#pragma omp master

{

// executed by only the master thread - thread 0

} // NO implied barrier

Note:

Woksharing constructs must be enclosed in parallel region.

It must be encountered by all threads.

Only the parallel region launches new threads, work sharing construct
just specifies the parallel work.
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OpenMP: Parallel region/Worksharing Clauses

private(list...):
I Variables in list are private to each thread.
I They are uninitialized on entry to the parallel region.

firstprivate(list...):
I Variables in list are private to each thread.
I They are initialized from original object before the parallel region.

lastprivate(list...):
I Variables in list are private to each thread.
I The original object before the parallel region is updated by a thread

that executes lexically last section/loop iteration.
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OpenMP: Critical, Atomics and Reductions
Consider the example:

#pragma omp parallel for

for(int i = 0; i < n; ++i) {

sum += a[i]; // leads to data races unless protected using

critical or atomic

}

The statement sum += a[i] leads to data races unless protected using
critical or atomic as follows.

Using critical section:

#pragma omp parallel for

for(int i = 0; i < n; ++i) {

#pragma omp critical

{

sum += a[i];

}

}

I Pros: Can execute multiple statements in thread safe manner.
I Cons: Expensive.
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OpenMP: Critical, Atomics and Reductions

Using atomic:

#pragma omp parallel for

for(int i = 0; i < n; ++i) {

#pragma omp atomic

sum += a[i];

}

I Pros: Lightweight
I Cons: Can execute only a single statement with update, read, write or

capture semantics to a variable.

If the purpose is to perform reduction use OpenMP reductions instead.

#pragma omp parallel for reduction (+: sum)

for(int i = 0; i < n; ++i) {

sum += a[i];

}
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OpenMP: False Sharing

Reduction can also be performed as follows.

float * thread_sum = new float[nthreads ];

for(int i = 0; i < nthreads; ++i)

thread_sum[i] = 0.0;

#pragma omp parallel num_threads(nthreads)

{

int t = omp_get_thread_num ();

// calculate iteration space - [start , end) - for this thread

for(int i = start; i < end; ++i)

thread_sum[t] += a[i];

}

float sum = 0.0;

for(int i = 0; i < nthreads; ++i)

sum += thread_sum[i];

delete [] thread_sum;

But DON’T use this approach. Why?
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OpenMP: Tasks

Introduced in OpenMP 3.0

Allows dynamic task graph creation, which is executed in parallel by
in-built OpenMP scheduler.

Consider the example of serial quicksort:

void quickSort(int arr[], int low , int high) {

if(low < high) {

pi = partition(arr , low , high);

quickSort(arr , low , pi - 1); // Before pi

quickSort(arr , pi + 1, high); // After pi

}

}

partition() is serial, but subsequent quickSort()s are data
independent.

This forms a task graph.

OpenMP strategy: create tasks for the independent quickSort()s.
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OpenMP: Tasks
Parallel quicksort using OpenMP:

void quickSort(int arr[], int low , int high) {

if(low < high) {

pi = partition(arr , low , high);

#pragma omp task firstprivate(arr ,low ,pi)

quickSort(arr , low , pi - 1); // Before pi

#pragma omp task firstprivate(arr ,high ,pi)

quickSort(arr , pi + 1, high); // After pi

}

}

Created tasks for each quickSort().

Note that a, low, high and pi are firstprivate since subsequent
quickSort() need them initialized from parent quickSort().

We also need a driver code to start the quicksort in parallel.

#pragma omp parallel shared(a, nelements)

{

#pragma omp single nowait

{ quickSort(a, 0, nelements -1); }

}
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Vectorization
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Vectorization

Data parallel programming which supports operating on multiple data
items in a single instructions.

a.k.a. Single Instruction Multiple Data (SIMD) parallelism according
to Flynn’s taxonomy.

Most of the modern processors support SIMD parallelism.

Xeon Phi has 512 bit SIMD units.
I can perform operations on 16 floats/8 doubles in one instruction
I vectorization is absolutely essential to gain efficiency on Xeon Phi.

Vectorization approaches:
I Autovectorization: This is performed by compiler with or without

assistance from programmers.
I Intrinsics: Programmers control the vectorization using special

functions provided by compiler called as intrinsics. Compiler translates
intrinsics to assembly instructions.
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Autovectorization of Intel C++ 17 Compiler

Compiler always tries to perform vectorization as long as (-qno-vec)
flag is not specified.

To see which code is vectorized use -qopt-report[=n] flag, where n

specifies the level of detail of the optimization report.

Example:

for(int i = 0; i < n; ++i) {

a[i] = b[i]+c[i];

}

The compiler generates vector instructions for the loop body because,

the loop is countable - n does not change in the loop

each iteration is data independent

the loop has single entry and single exit (i.e. no break statement)

the loop body has straight line code

the loop does not call any other functions

data of consecutive loops in each array is contiguous

If these conditions are not met, autovectorization produces scalar code.
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Assisting Autovectorization
If compiler cannot prove that the loop iterations are independent, it does
not perform vectorization of the loop. For example,

void linear_add(float * a, float * b, float * c, int n) {

for(int i = 0; i < n; ++i) a[i] = b[i]+c[i];

}

In this case, compiler cannot know whether the memory pointed by the
pointers overlaps or not. So the loop is not vectorized. The code needs to
be modified as follows to enable vectorization.

void linear_add(float * a, float * b, float * c, int n) {

#pragma ivdep

for(int i = 0; i < n; ++i) a[i] = b[i]+c[i];

}

OR

void linear_add(float * restrict a, float * restrict b, float *

restrict c, int n) {

for(int i = 0; i < n; ++i) a[i] = b[i]+c[i];

}
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Other Autovectorization Hints

#pragma loop count(n): specifies the loop trip count so that
compiler can decide whether to vectorize the loop or not based on
cost analysis

#pragma vector always: requests that the loop be vectorized
irrespective of the cost analysis, if it is safe to do so

#pragma vector align: asserts that the arrays in following loop
point to aligned data

#pragma novector: asks compiler not to vectorize following loop

#pragma vector nontemporal: provides hint to the compiler that
write only array data in following loop can be written using streaming
stores
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Explicit Vectorization

If the compiler autovectorizer is not sufficient, programmers can use
explicit vector instructions.

Intel compiler provides intrinsic functions that allow access to these
instructions.

For example,

void linear_add(float * a, float * b, float * c, int n) {

// a, b and c are assumed aligned on 64 byte boundary since

// the load and store expect aligned address

// otherwise segfault occurs

for(int i = 0; i < n/16; i+=16) {

__m512 breg = _mm512_load_ps (&b[i]);

__m512 creg = _mm512_load_ps (&c[i]);

__m512 res = _mm512_add_ps(breg , creg);

_mm512_store_ps (&a[i], res);

}

}
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Explicit Vectorization

Intel has provided an interactive guide for browsing the intrinsic functions.
See https://software.intel.com/sites/landingpage/IntrinsicsGuide/
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Performance Measurement
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Performance Measurement

Performance is usually measured in the amount of time taken to
execute a code. But there can be other measures as well such as
cache hit/miss rate, power, DRAM traffic.

Timing measurements can be performed using various means.
I omp get wtime() function of OpenMP
I clock gettime() function available on POSIX compliant systems
I Intel VTune Amplifier

(https://software.intel.com/en-us/intel-vtune-amplifier-xe)
I GNU gprof (https://sourceware.org/binutils/docs/gprof/)

Cache hit/miss rate, power etc. can be measured using performance
monitoring unit (PMU) available on various processors. They can be
accessed using,

I Performance API (PAPI) (http://icl.cs.utk.edu/papi/)
I Intel VTune Amplifier
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