
I-HARPS: An Efficient Key Predistribution Scheme
for Mobile Computing Applications

Mahalingam Ramkumar
Department of Computer Science and Engineering

Mississippi State University, Mississippi State, MS 39762.
Email: ramkumar@cse.msstate.edu.

Abstract— With rapidly decreasing cost of storage, even for
mobile computing applications involving PDAs / mobile phones
storage (using flash memory) is an inexpensive resource. We in-
troduce a novel probabilistic key predistribution scheme (PKPS)
I-HARPS which can make good use of this inexpensive resource
to improve security. I-HARPS is a combination of random subset
allocation schemes first proposed by Dyer et al [1] in 1995,
and the escrowed master key based key distribution scheme
proposed by Leighton and Micali in 1993 [2]. While PKPSs have
received substantial attention recently in the context of highly
resource constrained sensor networks, we argue that the fact
that I-HARPS can resist coalitions of even millions of nodes with
very low computational complexity, and very reasonable storage
requirements, can significantly expand the scope of applications
of PKPSs.

I. INTRODUCTION

In many emerging application scenarios devices are ex-
pected to co-operate with each other to realize synergistic
benefits. For example, in MANETs [3] fixed and mobile
wireless devices will exchange information to facilitate co-
operative routing. In such application scenarios, cryptographic
authentication of data disseminated by nodes, is essential
for reducing the ill-effects of malicious nodes that could
disseminate misleading information.

Cryptographic authentication is facilitated by security asso-
ciations (SA), which in turn are facilitated by key distribution
schemes (KDS). A key distribution scheme (KDS), typically
consisting of a key distribution center (KDC) and N nodes (N
is the network size) is a mechanism for distributing secrets
to all nodes in the network to facilitate establishment of
cryptographic “bonds” or SAs between the nodes. While many
types of SAs are possible, in this paper we limit ourselves
to mutual authentication through establishment of pair-wise
shared secrets.

The use of SAs for securing interactions imposes some
costs, due to the need for bandwidth, computational and stor-
age overheads. While the costs associated with all resources
are rapidly dropping (Moore’s law), for mobile computing
applications bandwidth and computational ability are still
constrained by the need to prolong battery life of mobile
devices. Thus storage is arguably the cheapest of resources
- especially considering the fact that flash based storage cards
up to 8 GB are already very common. Using say a few tens or
even hundreds of MBs of storage for enhancing the security
may be acceptable, if it can reduce reliance on more expensive

resources like bandwidth and computational complexity.
In wireless applications, it is often desirable for KDSs to

facilitate ad hoc authentication (without the need for a trusted
third party). While certificates based public key schemes
facilitate ad hoc authentication, they have high computational
overheads, and large bandwidth overheads for disseminating
certificates. ID based public key schemes [4] have garnered
significant interest recently as they facilitate ad hoc authentica-
tion without the need for disseminating certificates. However
such schemes can be even more computationally expensive
than certificates based public key schemes.

Key predistribution schemes (KPS) [5] are ID-based (fa-
cilitate ad hoc SAs without disseminating certificates), and
use only inexpensive symmetric primitives. However, they are
susceptible to collusions. Increasing collusion resistance of
most KPSs call for 1) increasing storage for secrets and 2)
increased computational complexity. While increase in storage
requirement is not a serious issue, increase in computational
complexity is not acceptable.

The contribution of this paper is a novel KPS, I-HARPS,
for which the collusion resistance is limited only by storage.
Furthermore, the storage does not need any protection. By
taking advantage of the large amounts storage that are readily
available to hand-held devices, I-HARPS can even resist
collusions of many hundreds of thousands of nodes, with very
low computational complexity.

The rest of this paper is organized as follows. In Section
II we briefly review KPSs with more focus on probabilistic
KPSs. We review the PKPS based on random subset allocation
first suggested by Dyer et al [1] in 1995, and the escrowed
master key based KDS proposed by Leighton and Micali [2]
in 1993, which serve as the foundations for the proposed KDS
discussed in Section III. Conclusions are offered in Section IV.

II. KEY PREDISTRIBUTION SCHEMES

Key predistribution schemes consist of a key distribution
center (KDC), and a set of N nodes with unique IDs. The KDC
chooses a set of P independent secrets S = {K1 · · ·KP }.
Each node is provided with k secrets. The set of secrets
provided to any node is a function of the P secrets chosen
by the KDC, and the unique ID of the node. Typically, there
is very little constraint on the size P . For most KPSs the KDC
can derive all P secrets using just one (or a few) secrets, and a

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

strong one-way function1 h(). However the number of secrets
assigned to each node, k, will have some constraints.

A. Nonscalable and Scalable KPSs

KPSs can be classified into two basic categories - scalable
(KPS) and nonscalable (NKPS). A trivial example of a non-
scalable KPS is the “basic” key distribution scheme, where
the KDC chooses P =

(
N
2

)
secrets, and assigns k = N − 1

secrets to each node.
A less trivial example of an NKPS is the KDS proposed

by Leighton and Micali [2] (LM-KDS), in which the KDC
chooses a master key K and a hash function h(), and provides
node A with the secret KA = h(K,A). To facilitate mutual
authentication of nodes A and B, node A is provided with a
public value

PAB = h(KA, B) ⊕ h(KB , A) (1)

Only nodes A and B can determine KAB = h(KB , A). Node
B by direct evaluation of KAB = h(KB , A), and node A by
evaluating

h(KA, B) ⊕ PAB = h(KB , A) = KAB (2)

Note that the total number of possible public values are
(
N
2

)
,

and any node may need upto N − 1 of those values. For very
large network sizes storing N − 1 public values may not be
feasible.

1) Scalable KPSs: Scalable KPSs (or just KPSs) are inher-
ently trade-offs between security and complexity. That such
trade-offs are possible was first realized by Blom et al [5]
who proposed the first KPS in the literature. KPSs themselves
may be divided into two broad categories - deterministic and
probabilistic KPSs.

Most KPSs based on finite field arithmetic belong to the
former category. For example, in a n-secure Blom’s scheme [5]
with a network size of N , the KDC chooses P =

(
k
2

)
secrets

from Zq = {0, 1, . . . , q − 1}, where n = �k+1
2 � and q ≥ N

is a prime, and generates a symmetric polynomial f(x, y),
of order k − 1. The P coefficients of f(x, y) are the secrets
chosen by the KDC. Every node is assigned a unique ID from
Zq. A node A (node with ID A ∈ Zq) receives gA(x) =
f(x,A) securely - or node A receives the k coefficients of
gA(x) securely from the KDC. Now two nodes A and B can
calculate KAB = KBA = f(A,B) = f(B,A) = gA(B) =
gB(A) independently.

By extracting k secrets each from more than n = �k+1
2 �

nodes an attacker can construct a system of P independent
simultaneous equations to solve for all P secrets chosen by
the KDC. Even with P − 1 simultaneous equations however,
the attacker learns nothing. A n-secure Blom’s KPS is thus
unconditionally secure as long as n or less nodes have been
compromised, and is completely compromised if more than n
nodes are compromised - or the failure occurs catastrophically.

1For example a master secret M could be used to derive all Ki = h(M ‖
i), 1 ≤ i ≤ P . Only the secret M needs to be stored, and all other secrets
generated on-demand.

2) Scalability vs Collusion Resistance: With O(n) limita-
tion on k, NKPSs can only support network sizes of N =
O(n). Scalable KPSs on the other hand, can support any
network size N (N is limited only by the number of bits
chosen to represent the ID of each node as each node requires
a unique ID), but can only tolerate collusions of n or less
nodes.

B. Probabilistic KPS

The concept of n-secureness of a scalable KPS is how-
ever not an adequate description of probabilistic key pre-
distribution schemes (PKPS). For any PKPS, by exposing
secrets from n nodes an attacker can discover shared secrets
between arbitrary nodes (not part of the n compromised
nodes) with a some probability p. Thus PKPSs are more
aptly characterized as (n, p)-secure. Note that there is nothing
objectionable about “probabilistic assurances.” Even for a
“strong” symmetric cipher employing a 128-bit key, there is
always a probability that the attacker can guess the key in a
single attempt. For 128-bit keys the probability that an attacker
can “pull the secret out of a hat” is roughly p ≈ 10−39. Thus
as long as the probability of failure p for PKPSs is small,
probabilistic assurances are in no way inferior.

Most probabilistic KPSs are based on the idea of random
allocation of subsets of keys to each node, from a pool of
keys chosen by the KDC. Such PKPSs are extensions of
similar earlier techniques [6] - [8] that relied on deterministic
strategies for allocation of subsets of keys to every node. Dyer
et al [1] were was the first to point out the simplicity and
effectiveness of random subset allocations. Dyer et al also
provided an elegant analysis of the security of such schemes.
Dyer’s work on random subset allocations has also been used
for broadcast authentication [9]. More recently, this idea has
received substantial attention in the context of sensor networks
[10] - [12]. In this paper, we refer to all such schemes [1], [10]
- [12] as RPS (random preloaded subsets).

1) RPS: RPS [12] is determined by two parameters P
and k. The KDC chooses a indexed set of P secrets S =
{K1,K2, . . . ,KP }. For a maximum network size of N , every
node is assigned a unique d-bit ID, where d > log2 N . Every
node is also assigned k = ξP secrets which are randomly
chosen subsets of S. A public function F () determines the
indexes of secrets assigned to any node. Thus a node with ID A
is assigned indexes F (A) = {A1, A2, . . . , Ak} and therefore
the corresponding secrets SA = {KA1 ,KA2 , . . . ,KAk

}.
Any two nodes will share m̄ = ξk such keys on an average.

Specifically, two nodes A and B will share m ≈ m̄ indexes
determined by F (A) ∩ F (B) = {I1 · · · Im}. In other words,
the secrets shared by A and B are {KI1 · · ·KIm

}. Thus A
and B can independently calculate their SA KAB as a secure
one-way function of all m shared secrets (for example hashing
all secrets together using a cryptographic hash function h()).
Note that an attacker has to discover all the m secrets that A
and B share, to discover KAB .

The probability p with which an attacker who has exposed
all secrets from n nodes, can discover all shared secrets

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

between two nodes (which are not a part of the n compromised
nodes) is [1], [13]

p(n) = (1 − ε(n))k where ε(n) = ξ(1 − ξ)n. (3)

The rationale for the equation above can be seen by consider-
ing a k round game between the node B, who can “legally”
discover KAB , on one side, and an n attacker nodes (who
try to determine KAB through “objectionable” means) on the
other side. In the first round of the game all n + 1 players (B
and the n attackers) attempt to pick the secret with index A1 -
or KA1 , and succeed with probability ξ = k/P (and fail with
probability 1− ξ). Similarly, in the second round they attempt
to pick KA2 , and so on.

Node B winds round i if 1) B picks KAi
, and 2) none of

the n attackers pick KAi
. The probability ε that B wins any

round is ε = ξ(1−ξ)n. While the probability that B wins any
round is low, all that B has to do to “win the match” is win a
single round. Even if the attacker loose a single round A and
B will share an elementary secret used for KAB the attackers
cannot discover (and so the attackers cannot discover KAB).
Thus the probability p(n) that the attacker’s can win every
round (or discover KAB) is given by Eq (3).

III. RPS WITH ID-HASHING

ID-HAshed RPS (I-HARPS), the novel PKPS proposed in
this section, is “a scalable extension” of an NKPS, achieved
by utilizing multiple instances of NKPSs in parallel. I-HARPS
is defined by three parameters P, ξ and L. Like any KPS, I-
HARPS consists of a KDC and N nodes with unique (at least
log2 N -bit) IDs. I-HARPS, which is a generalization of RPS
and LM-KDS, consists of P “mini” LM-KDS deployments in
parallel. Each mini LM-KDS is however limited to a network
size of L.

Each node with a log2 N -bit ID is assigned many log2 L-bit
“minor-IDs”. Specifically, each node is assigned a minor ID in
k of the P mini LM-KDSs where k ≈ k̄ = ξP . Corresponding
to each minor ID, nodes are provided with a secret and L− 1
public values (amounting to a total of k secrets and k(L− 1)
public values for each node).

In I-HARPS, as in RPS, the KDC chooses an indexed set
of P secrets K1 · · ·KP , which are now the master keys of
the P mini LM-KDSs. A public function F () (as in RPS)
determines the indexes of k LM-KDS (out of P) assigned
to any node. Thus for node A, F (A) = {A1 · · ·Ak}. A
second public function aAi

= f(A,Ai), 1 ≤ i ≤ k is used
to generate a uniformly distributed integer between 1 and L,
corresponding to each assigned index. Now {aA1 · · · aAk

} are
the k minor-IDs of node A in the mini LM-KDS systems
indexed by {A1 · · ·Ak}. Node A is assigned the set of secrets

SA = {KaA1
A1

· · ·KaAk

Ak
}, K

aAi

Ai
= h(Ki, aAi

), 1 ≤ i ≤ k.

In addition, node A is also assigned L − 1 “public values”
corresponding to each of the k secrets assigned to A. For
instance, the L − 1 public values corresponding to the index
Ai (and the secret K

aAi

Ai
) are

P
aAi

,j

Ai
= h(KaAi

Ai
, j) ⊕ h(Kj

Ai
, aAi

), (4)

where j takes all values from the set {1, 2, . . . , aAi
−1, aAi

+
1, . . . L} of cardinality L − 1.

2) Evaluation of Security Association KAB: Let
{I1 · · · Im} be the indexes shared by A and B (or
{I1 · · · Im} = F (A) ∩ F (B)). Let the corresponding
minor IDs of A and B in the m mini LM-KDS systems
be {aI1 · · · aIm

} and {bI1 · · · bIm
} respectively. Now define

SIi
= h(KbIi

Ii
, aIi

), i = 1 · · ·m.
The SA KAB for mutual authentication of A and B is now

evaluated using m secrets {SI1 · · ·SIm
}. Both nodes A and

B can evaluate all (m) such Sis. While node B (which has
access to K

bIi

Ii
) can directly evaluate SIi

, node A cannot do so
directly. This the reason for providing node A with the public
values, with which A can evaluate any SIi

as

SIi
= h(KaIi

Ii
, bIi

) ⊕ P
aI−i,bIi

Ii
= h(KbIi

Ii
, aIi

). (5)

The SA KAB between A and B can now be derived inde-
pendently by both A and B using all m “elementary shared
secrets” SI1 · · ·SIm

as KAB = h(SI1 ‖ SI2 ‖ · · · ‖ SIm
).

A. Analysis

The analysis of I-HARPS can once again be performed by
considering a k round game. The difference is that while the
probability that B can discover an elementary secret SAi

=
h(KbAi

Ai
, aAi

) (used for deriving KAB) is ξ, where aAi
and

bAi
are the “short-IDs” of A and B respectively corresponding

to the index Ai, for calculating the elementary secret it is not
sufficient for an attacker (say C) to pick the index Ai. Apart
from picking the index Ai, the short ID of the attacker cAi

should be such that cAi
∈ {aAi

, bAi
}.

As aAi
, bAi

, cAi
are iid and uniformly distributed integers

between 1 and L,

Pr {cAi
∈ {aAi

, bAi
}} =

2L − 1
L2

= γ ≈ 2
L

. (6)

Thus the probability that B wins any round is ε′ = ξ(1−γξ)n,
and the probability p′(n) that the attacker can discover KAB

is p′(n) = (1 − ε′)k. Note that

ε′(n) = ξ(1 − ξγ)n ≈ ξ(1 − ξ)nγ = ε(nγ). (7)

Thus for the same k and P , the number of compromised nodes
that I-HARPS can tolerate is increased by a factor 1/γ ≈ L/2.
However, while RPS needs storage of k secrets, I-HARPS
needs storage for k secrets and k(L − 1) public values.

B. PKPS Efficiencies

For RPS, the optimal choice of ξ (which minimizes k̄
for some desired upper bound on the probability of attacker
success) is ξ∗ = 1/(n+1) ≈ 1/n for large n. Correspondingly,
k, P and m̄ are

k ≈ nm̄ P ≈ m̄n2 m̄ = e log(1/p) (8)

From Eq (7) it is clear that if for some P and ξ, RPS is (n, p)-
secure, I-HARPS with P, ξ is (n/γ, p)-secure (by choosing
L ≈ 2/γ). Thus the optimal choice of P and ξ for an (n, p)-
secure I-HARPS is the same as that of an (nγ, p)-secure RPS

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

scheme. Thus for a (n, p)-secure I-HARPS, ξ∗ ≈ 1
γn (subject

to the condition that ξ ≤ 1), and analogous to Eq (8) for RPS,
we have

k ≈ nγm̄ < 2nm̄
L m̄ = e log(1/p). (9)

and P ≈ γ2n2m̄ < 4n2m̄
L2 . In addition, for I-HARPS we also

need to account for storage of the public values. For each of
the P keys, the KDC generates

(
L
2

)
< L2/2 public values.

Thus the total number of public values to be generated by
the KDC is less than 2m̄n2. As each node needs to store k
secrets and k(L−1) public values, the total storage complexity
for each node is Q ≈ 2m̄n. A comparison of the overheads
involved for (n, p)-secure RPS and I-HARPS are summarized
together in the table below.

Parameter RPS I-HARPS
k (Secret Storage in nodes) m̄n 2n

L m̄
Q Total Storage in nodes m̄n 2m̄n

The value k determines the computational complexity of
the public function, and Q is the storage complexity. It can be
readily seen that for (n, p)-security, I-HARPS requires twice
as much storage (including storage for public values) as RPS.
However computational complexity for F () can be reduced to
any desired extent by increasing L (as k ∝ n/L). Thus the
security of I-HARPS is limited only by available (unprotected)
storage. Arguably, in most evolving application scenarios,
storage is less constrained than computational ability.

In most scenarios where multiple secrets need to be stored,
it is common practice [14] to encrypt all secrets using a single
master secret which is afforded a higher level of protection.
Or all secrets can be stored encrypted in storage locations that
do not need any protection. Thus, to be fair, the fact that I-
HARPS needs to store less number of keys may not seem like
an advantage. However, note that for scenarios where A and B
interact, only one node needs access to the public values. So
in many application scenarios involving a storage constrained
device and another device that is less constrained, this feature
can be very useful. For instance node A (which stores secrets
and public values) may be a PDA used to query a tiny wireless
sensor B (which stores only k secrets). As another example B
may be a infra-red / blue-tooth remote control device operating
a more capable set top box A.

The main advantage of I-HARPS, however, is that the
complexity of the evaluating F (A)∩F (B) can be significantly
lower for I-HARPS, as illustrated in the next section with an
example.

C. Numerical Illustration

Consider RPS with P = 225 64-bit keys, and k = 216 (or
ξ = 1/29). For such a scheme an attacker needs to expose
all secrets from n = 512 devices to discover SAs (like KAB)
with probability p ≈ 3.7×10−21. Alternately, the attacker can
expose one in 2.7×1020 pair-wise SAs by exposing all secrets
from 512 nodes. For ξ = 2t efficient evaluation of F (A) will
involve generation of k uniformly distributed number between

1 and 2t - or generation of kt random bits. Thus RPS involves
generation of 2 × 9 × 216, or 1.18 million random bits. The
storage complexity for k = 216 is 512 KB for k 64-bit secrets,
and roughly m̄ = ξ2P = 128 cryptographic operations with
secrets are required. If we desire to increase n by a factor 27

(to n ≈ 65000), k would increase to 216+7, implying storage
of 64 MB for secrets, and complexity of F (A) ∩ F (B) of
2 × 16 × 223 = 268 million bits.

On the other hand, consider I-HARPS with L = 214, k =
210, and P = 213. Such a scheme can resist compromise of
about 66,000 devices for the same p ≈ 3.7 × 10−21. The
approach here is to choose the parameters P, ξ for a (23 =
8, 10−20) RPS and choose L = 214 (or γ ≈ 1/213) so that 8/γ
is around the desired n (about 216). Evaluation of F (A)∩F (B)
involves generation of 2 × 210 × 3 = 6144 bits (as k = 210

and ξ = 1/23). The second public function f() (generating
2m = 256 14-bit integers or minor IDs) involves generation
of 3584 bits. Thus the total complexity is less than 10,000 bits
(compared to 268 million for RPS). The storage complexity
for kL = 224 values, is 8 KB for k secrets and less than 128
MB for k(L − 1) public values. The number of operations
with secrets is m̄ = ξ2P = 128 secrets, which is the same
as RPS. A ready comparison of the complexities of (n, p)-
secure RPS and I-HARPS for n = 216, p < 10−20 is tabulated
below (both need roughly the same number of block cipher
operations, m = 128).

Complexity RPS I-HARPS
Public function 268 million 10,000
Total storage 64 MB 128 MB

Like all PKPSs, the security if I-HARPS degrades grace-
fully. The same (216, 10−20)-secure I-HARPS can resist coali-
tion of upto 145,000 nodes with p ≈ 10−6 (or an attacker who
has exposed all secrets from 145,000 devices can discover one
in a million SAs).

D. Deployment Issues

With any key distribution scheme involving a KDC who
escrow (or can calculate) all secrets, compromise of the
KDC, or misuse of powers by the all powerful KDC, is
an undesirable possibility. Fortunately (with any PKPS) it is
trivially possible for the KDC to be split into independent
entities. In fact, the KDC could consist of P different trusted
authorities, each using a single master secret and generating(
L
2

)
public values, and making the public values available in

public repositaries for download.
Note that nodes do not even need to authenticate themselves

to download (and store) public values. Thus the public values
could even be made available in untrusted public repositories
that anyone can access (or even say distributed in optical
storage devices that can be picked up near payment counters
in super-markets). However, while modification of public
values will not result in compromise of secrets, they can
result in a lot of inconvenience (as nodes cannot establish
security associations). In the LM-KDS scheme, Leighton and
Micali [2] suggest a complete secondary KDS exclusively for

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

authentication of public values of the primary KDS. However
this may be an overkill.

Only nodes that have the secret Ka
i = h(Ki, a) or Kb

i =
h(Ki, b) make use of the public value P a,b

i . Thus for the
convenience of permitting downloads of public values from
untrusted public repositaries, for each public value, two mes-
sage authentication codes W a

i and W b
i could be appended.

Specifically, W a
i is the authentication code for P a,b

i created
using (a fixed function of) Ka

i , and W b
i , likewise, employing

a function of Kb
i .

Furthermore, the MACs W a
i and W b

i need not be the same
size as the keys themselves. For instance the keys and public
values could be 128 bits. While the MACs that are computed
could be 128-bits, only a few (say b) LSBs may be appended
for authentication. Note that without the knowledge of the
secret used for authentication, any one who tries to alter the
public value has only one viable option - guess the b-bit MAC
- which will be detected by the verifier with a probability
1 − 1/2b (for example 0.99609 for b = 8). Any end user
who receives inconsistent public values from a repository will
tend to avoid such repositories in the future. Thus there is no
motivation for providers of such public repositories to take the
risk of guessing MACs. Even b = 8 or b = 16 may be more
than adequate.

For public values distributed in optical storage discs (in
supermarkets) each disc could contain t folders, each with

(
L
2

)

public values corresponding to t out of P LM-KDS systems.
For each of the t folders, for example the folder corresponding
to the master secret Ki, will include L message authentication
codes (using secrets K1

i ,K2
i , . . . ,KL

i) for the entire set of
(
L
2

)

values.

IV. CONCLUSIONS

We introduced a novel key distribution scheme, I-HARPS,
which makes very good use of the most inexpensive of re-
sources, storage, and consequently results in significant reduc-
tion in computational complexity, and gains in the achievable
security of key pre-distribution schemes.

The reason for the improvement of I-HARPS over RPS
is an advantageous trade-off. By choosing an independent
parameter L, I-HARPS permits reduction in secure storage
(or storage for secrets) by a factor γ = 2/L and reduction in
computational complexity by a factor γ. The price paid is the
doubling of required storage. Consequently, the computational
complexity of I-HARPS can be made as small as we desire,
and the security of I-HARPS is only constrained by storage
- a resource with perhaps the fastest Moore’s law growth
rate. With SD cards of upto 8 GB already in the market, and
with no end in sight of saturating Moore’s law (at least for
storage), even storage of a few GBs in each node may be
considered “free” (if not now, surely in the very near future).
Thus I-HARPS that can resist even millions of colluding
nodes, without any increase in computational complexity, is
very much practical.

While KPSs have received substantial attention in the recent
past mainly in the context of highly resource constrained

sensor networks, I-HARPS expands the scope of possible uses
of KPSs. After all, I-HARPS can easily withstand collusions
of even hundreds of thousands of nodes with very little
computational complexity and very reasonable storage require-
ments (a few hundred MBs). In any practical application
scenario, even with very simple mechanisms for protection
of secrets - for example if the secrets stored in devices (like
PDAs/ mobile phones) are protected by passwords or biometric
authentication (to prevent attackers from exposing secrets from
stolen devices) - it is indeed inconceivable that an attacker
can enlist hundreds of thousands of willing colluders (even
for network sizes of the order of billions).

Furthermore, as the storage need not be trusted, even access
over insecure networks to storage resources may be sufficient.
In most application scenarios, including wireless sensors with-
out physical access to large storage devices, even for scenarios
where both interacting nodes do not have physical access to
storage, it is conceivable that one of the sensors have access to
some central facility over a (possibly insecure) network. The
public values could be sent over such networks on demand. It
is important to note that while a large number of public values
may be stored, only m ≈ 128 values are needed for evaluating
any particular SA. Thus even the bandwidth overheads that
are called for (in case direct physical access to storage is not
possible) is low.

REFERENCES

[1] M. Dyer, T. Fenner, A. Frieze and A. Thomason, “On Key Storage in
Secure Networks,” Journal of Cryptology, 8, 189–200, 1995.

[2] T. Leighton, S. Micali, “Secret-key Agreement without Public-Key
Cryptography,”Advances in Cryptology - CRYPTO 1993, pp 456-479,
1994.

[3] Web Link, http://www.ietf.org/html.charters/manet-charter.html
[4] D. Boneh, M. Franklin, “Identity-based encryption from the Weil

pairing,” Advances in Cryptology – Crypto’2001, Lecture Notes on
Computer Science 2139, Springer-Verlag (2001), pp. 213–229.

[5] R. Blom, “An Optimal Class of Symmetric Key Generation Systems,
” Advances in Cryptology: Proc. of Eurocrypt 84, Lecture Notes in
Computer Science, 209, Springer-Verlag, Berlin, pp. 335-338, 1984.

[6] L. Gong, D.J. Wheeler, “A Matrix Key Distribution Scheme,” Journal
of Cryptology, 2(2), pp 51-59, 1990.

[7] C.J. Mitchell, F.C. Piper, “Key Storage in Secure Networks,” Discrete
Applied Mathematics, 21 pp 215–228, 1995.

[8] P. Erdos, P. Frankl, Z. Furedi, “Families of Finite Sets in which no Set
is Covered by the union of 2 Others,” Journal of Combinatorial Theory,
Series A, 33, pp 158–166, 1982.

[9] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, B. Pinkas,
“Multicast Security: A Taxonomy and Some Efficient Constructions,”
INFOCOMM’99, 1999.

[10] L. Eschenauer, V.D. Gligor, “A Key-Management Scheme for Dis-
tributed Sensor Networks,” Proceedings of the Ninth ACM Conference
on Computer and Communications Security, Washington DC, pp 41-47,
Nov 2002.

[11] H. Chan, A. Perrig, D. Song, “Random Key Pre-distribution Schemes for
Sensor Networks,” IEEE Symposium on Security and Privacy, Berkeley,
California, May 2003.

[12] M. Ramkumar, N. Memon, R. Simha, “Pre-Loaded Key Based Multicast
and Broadcast Authentication in Mobile Ad-Hoc Networks,” Globecom-
2003, San Fransisco, CA, Dec 2003.

[13] M. Ramkumar, N. Memon, “An Efficient Random Key Pre-distribution
Scheme for MANET Security,” IEEE Journal on Selected Areas of
Communication, March 2005.

[14] S. M. Matyas, C. H. Meyer, “Generation, Distribution and Installation
of Cryptographic Keys,” IBM Systems Journal, 2, pp 126 – 137, 1978.

©1-4244-0357-X/06/$20.00 2006 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2006 proceedings.

