
An Efficient Secure Route Discovery Protocol for
DSR

Kulasekaran A. Sivakumar and Mahalingam Ramkumar
Department of Computer Science and Engineering

Mississippi State University, MS.

Abstract— Ensuring cryptographic integrity of the route dis-
covery process in on demand ad hoc routing approaches like
DSR require the ability to verify that no nodes have been
deleted from the path, and no node can be inserted in the path
without a valid authentication. We discuss the need for early
detection of inconsistencies involving inserted or deleted nodes
in route request (RREQ) packets and investigate the challenges
associated with catering for this requirement. We propose an
efficient strategy to achieve this employing only symmetric
cryptographic primitives, which is made possible due to a recently
proposed multi-source broadcast encryption scheme. We outline
a protocol for secure route discovery in DSR that employs such
a security primitive, and provide quantitative estimates (through
simulations) of gains that can be achieved by early detection of
inconsistent RREQs.

I. INTRODUCTION

Nodes forming multi-hop wireless mobile ad hoc networks
(MANET) [1] are expected to co-operate to a very large extent
to jointly construct routing tables and deliver packets to one or
more destination nodes which may be many hops away from
the source. Efficient solutions to the problem of routing in
MANETs can be challenging under the presence of malicious
nodes that could deliberately violate the protocol and / or
propagate misleading information. Secure routing protocols
usually mandate cryptographic authentication to reduce the
degrees of freedom of attackers to violate rules.

In this paper we restrict ourselves to the problem of securing
on demand source routing based protocols. Many secure
routing protocols based on the dynamic source routing (DSR)
[2] protocol have been proposed in the literature. In such
DSR-like protocols, a source node desiring to find a path to a
destination floods a route request (RREQ) packet. Each node
forwarding the packet inserts its ID. The destination sends a
route response (RREP) along the reverse path when a RREQ
packet reaches the destination.

Secure DSR protocols [3] - [5] employ cryptographic
authentication to facilitate verification the integrity of the
established route. However the nature of the protocol, and
the specific cryptographic primitives used for authentication,
will play a large role in determining when and by whom
inconsistencies can be detected. In most secure DSR protocols,
malicious modifications to RREQ packets cannot be detected
by intermediate nodes that forward the RREQ. In some proto-
cols the destination can detect inconsistencies and drop such
requests. In some only the source, at the end of the reverse
path, can detect inconsistencies after the RREP reaches the

source.
Obviously, it would be very desirable to facilitate inter-

mediate nodes to be able to detect inconsistencies in RREQ
to avoid onwards relay of defective RREQs, which after
wasting network bandwidth, will ultimately fail. Furthermore,
inhibiting such RREQs will also facilitate discovery of other
paths which would otherwise not have been detected (as they
may be preempted by the bad RREQs). In this paper we
discuss some of the issues that render early detection difficult,
and propose an efficient solution, employing only symmetric
cryptographic primitives, for this purpose.

In Section II of this paper we provide an overview of DSR
and secure DSR extensions. We provide a generalized model
of secure DSR protocols, and discuss the some of the issues
that render early detection difficult. In Section III of the paper
provides an overview of a recently proposed [7] multi-source
broadcast encryption scheme and its utility in facilitating
two-hop authentication. Section IV outlines a secure route
discovery protocol (SRD) for source routing which employs
the proposed two-hop authentication strategy to facilitate early
detection of inconsistencies in RREQ packets. Section IV also
includes simulation results to provide quantitative estimates
of the advantages realized by early detection. Conclusions are
offered in Section V.

II. SECURE DSR PROTOCOLS

In DSR the route discovery process starts by broadcasting
of a route request (RREQ) packet by the source, indicating
the source, the destination, a unique sequence number and a
hop-limit. Such RREQ broadcasts are flooded. The sequence
number and hop-limit keep the flooding in check. Every node
will forward only one RREQ packet with the same (source,
sequence number) pair.

Each node relaying the RREQ packet appends its ID /
network address to it. When the RREQ packet reaches the
destination the node sends a route response (RREP) packet
along the reverse path (the path through which it received the
RREQ) - as each hop is explicitly indicated in the RREQ.

A. Authentication Immutable and Mutable Fields

In secure DSR protocols the RREQ packets that are for-
warded consists of immutable and mutable fields. We shall
henceforth represent the immutable fields of an RREQ by
rreq. The immutable field specifies the source, destination,
sequence number, maximum hop counts, and also typically

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

458

includes an authentication introduced by the source (for ex-
ample a digital signature).

The mutable fields, as the name indicates, are modified by
every intermediate node. Typically every intermediate node
may insert some form of authentication to validate the al-
terations made to the RREQ. In secure DSR extensions the
mutable fields include the path, and authentication information
appended by intermediate nodes.

For example in the case of an RREQ from S to D passing
through a path (A,B,C, . . . ,), a typical structure of the
RREQs relayed by different nodes in the path may be as
follows

S → ∗ RREQ0 = [rreq0 ‖ SS]
A → ∗ RREQ1 = [RREQ0, (A), (SA)]
B → ∗ RREQ2 = [RREQ1, (A,B), (SA, SB)]
C → ∗ RREQ3 = [RREQ2, (A,B,C), (SA, SB , SC)]

(1)

The specific nature of the authentication inserted by any node
will determine who can verify the introduced authentication,
and when it can be verified. If digital signatures are used by
an intermediate node A, any one with access to the certified
public keys of A can verify the authenticity of the signature.
If the authentication introduced by A is a hashed message
authentication code (HMAC) based on some secret K, only
entities that share the secret K can verify the introduced
authentication. For example if every pair of nodes shares a
(pairwise) secret, then authentication inserted by A could be
based on the secret KAD it shares with the destination D.
In Ariadne [4] which employs a time-sensitive authentication
strategy relying on one-way hash chains, only the source of the
RREQ, at the end of the reverse path, can verify the HMACs
inserted by intermediate nodes.

1) Carrying Over Authentication: If digital signatures are
used for authentication, the authentication introduced by node
A for instance, can be verified by all nodes downstream of
A. For example in a path (A,B,C,E, F) from S to D,
if a malicious node C modifies any of the mutable fields
introduced by B or A, nodes downstream of C can verify
that such modifications are not consistent with the signatures
of node B or A. However, mandating that every node insert
a signature (and perhaps a certificate, if certificates cannot be
distributed offline) before forwarding an RREQ implies very
large bandwidth overheads for the RREQ, in addition to the
computational overheads imposed by requiring every node to
check the signatures of all upstream nodes.

One reasonable trade-off is to carry over the appended au-
thentication only for two-hops. For instance, the authentication
introduced by A could be verified by B and C and stripped off
by C. Similarly while C forwards the authentication inserted
by B onwards, this is stripped by downstream neighbors of C
like E. In such a scenario where authentication is carried over
only for two hops, note that colluding nodes could perpetuate
misrepresentations. For example node B could make some
illegal changes to the RREQ sent by A, which will be ignored
by C (as C colludes with B).

B. Node Deletion Attacks

While verification of appended authentication by down-
stream nodes can prevent nodes from illegally inserting fic-
titious nodes in the path or modifying the mutable fields
appended by nodes upstream, a simple attack for an attacker
is to just remove an immediate upstream node (or a set of
upstream neighbors) from the path. For example, if node C
removes all fields inserted by B (both the ID B from the
path, and the authentication appended by B), in effect node
C claims to have received the RREQ directly from A. Even
if the appended authentication is carried over all the way
to the destination there is nothing inconsistent that becomes
apparent from verification of the authentication appended by
intermediate nodes. Similarly, C can also remove both1 B and
A from the path (along with the appended authentication).

Hu et al [4] proposed an elegant per-hop hashing strategy to
overcome such deletion attacks. In such a strategy, the source
of the RREQ sends an additional value β0 = h(rreq,KSD,
where KSD is a secret shared by the source and the desti-
nation. The node A replaces β0 with β1 = h(β0, A) before
it forwards the RREQ onward. Similarly node B replaces
β1 with β2 = h(β1, B), and so on. In order to ensure that
intermediate nodes do not change the per-hop hash value, such
values are also authenticated. For example, the authentication
SA introduced by A is for the quantity [rreq ‖ (A) ‖ β1].
Similarly SB , the authentication introduced by B, is for the
quantity [rreq ‖ (A,B) ‖ (SA)β2]. When the destination
receives the RREQ with some value “betai” and i nodes in
the path, the destination can verify that βi is consistent with
all nodes in the path. Note that this is possible because the
source and destination both share a secret KSD and can thus
evaluate β0 = h(rreq,KSD.

With the per hop hashing strategy, C cannot remove B
from the path. By removing B from the path, C is implicitly
claiming that it is a one hop neighbor of A. However, to prove
that it is indeed a one hop neighbor of A, C needs to have
access to the value β1 send by A (which C does not have
access to as only true neighbors of A are privy to this value).

Obviously any two nodes colluding together can delete all
nodes in the path between them. Thus far there is is simply
no solution that caters for assuring integrity of the path in
the face of colluding nodes (and this paper does does not
claim to provide a solution to this problem). Thus most secure
routing protocols strive to assure integrity of the path discovery
process only under the face of non colluding nodes. Under
these circumstances, carrying over authentication by more than
2 hops to prevent illegal node insertions by colluding nodes
is perhaps not so useful.

1) Per-hop Hashing and Carrying Over Authentication:
One of the unfortunate side effects of the per-hop hashing
scheme is that it even renders carrying over authentication
to two-hops (which is required to prevent insertion attacks
even by non-colluding nodes) impossible. For instance in a

1However C cannot afford to remove A and leave B in the path as the
authentication appended by B will not be consistent without A in the path.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

459

path (A,B,C, . . . ,) between S and D, node C can no longer
verify the authentication appended by A. Specifically, the
modifications introduced by A include a quantity β1 which
only one-hop neighbors of A should be privy to. Thus if A’s
authentication includes β1, C cannot verify the appended au-
thentication. On the other hand, if the authentication appended
by A does not include β1, the intermediate node B can modify
β1. Thus only neighbors of A, and the destination (which
can calculate any βi as it has access to β0) can verify the
authentication appended by A.

2) Early Detection of RREQ Inconsistencies: Thus the use
of per-hop hashing technique is thus not conducive to early
detection of RREQ failures. In order to facilitate identification
of inconsistent RREQs by intermediate nodes, we need some
strategy that does not rely on per hop hashing, but is still able
to prevent insertion attacks (assuming no two nodes collude
together).

To see how this can be done, consider the scenario where
a RREQ travels along a path (A,B,C,E, . . . ,), and node C
removes B from the path and announces a path (A,C). What
we desire now is for downstream neighbors of C (receiving
such an RREQ from C) to recognize that A cannot possibly
be a neighbor of C. If this is possible, the bad RREQ will be
dropped as desired.

More specifically, for a RREQ received through a path
· · ·B → C → E, node E should be able to verify

1) the authentication appended by B and C
2) that C is a neighbor of E, and
3) that B is a neighbor of C (to prevent node deletion

attacks)
One way of realizing the above requirements is to ensure that
every node has complete knowledge of their two-hop topology.
However a node cannot merely afford to trust their one-hop
neighbors to provide them with a list of their neighbors, as
a malicious C could easily claim that A is also a neighbor.
Thus nodes require “authenticated knowledge” of the two-hop
topology. This can be achieved if the “neighbor list” infor-
mation supplied by all neighbors of a node (from which two-
hop nodes can be detected), also includes the authentication
appended by every node in the list. Obviously, this is an
expensive proposition, especially in scenarios involving highly
dynamic nodes.

In the next section we propose an efficient strategy for
realizing this requirement.

III. EFFICIENT TWO-HOP AUTHENTICATION

The two-hop authentication strategy proposed in this section
requires nodes to only maintain a consistent one-hop topology.
This is made feasible by the use of a recently proposed
multi-source broadcast encryption (MSBE) scheme [7], in
conjunction with maintenance of a secure reliable delivery
neighborhood (RDN) by every node.

We shall first discuss why maintaining a secure RDN is
necessary even if we do not require two-hop authentication.
We shall then discuss the implementation of two-hop authen-
tication employing MSBE.

A. Secure RDN

Most secure on-demand routing protocols incorrectly make
an assumption that all links are bidirectional. As a justification
for this assumption it is often pointed out [3], [5] that
MACA2 protocols like 802.11 employ RTS / CTS handshakes
which rule out use of one-way links. However RTS / CTS
handshakes can only be used for unicast packets like RREP
where the sender explicitly specifies an intended receiver. Such
handshakes cannot be used for RREQ packets that are flooded.
Thus an RREQ packet transmitted by a node can reach a
“neighbor” who does not have a reverse link.

Furthermore, even if RREQ packets are conveyed by in-
dividually unicasting them to every neighbor, it still does
not prevent a “neighboring node” without a return link from
gaining access to the packet. If such nodes forward the RREQ,
the RREPs invoked in response to such RREQs will fail.

The assumption that “one-way links do not exist” has to be
supported by some proactive means to ensure that such links
cannot be used. One way of realizing this is for every node to
proactively identify nodes within their RDN and supply such
nodes with a secret. Thus a node A provides a secret KA to all
nodes in its RDN. All transmissions by A could be encrypted
with the secret KA to ensure that “neighbors” not in the RDN
cannot gain access to transmissions from A.

B. Multi-Source Broadcast Encryption

Broadcast encryption (BE) ([8]) provides a means of es-
tablishing a shared secret between g privileged nodes, out of
a universe of N nodes, where g + r = N , and the r nodes
which are not provided with the secret are usually referred to
a “revoked” nodes. For BE applications typically r << N .

Most popular BE schemes in the literature cater only
for encrypted broadcasts by a single source. However such
schemes can be extended to support BE by any node by using
asymmetric cryptographic primitives where the encryption
keys are public and private decryption keys are available to all
receivers. Recently however, a family of MSBE schemes have
been proposed that do not require asymmetric primitives. In
such schemes the encryption secrets and decryption secrets are
related through a simple one-way function. We shall see that
the MSBE scheme is very well suited for achieving efficient
two-hop authentication.

In the MSBE scheme in [7], a key distribution center (KDC)
chooses k secrets K1 · · ·Kk, a simple one way function F (),
and a cryptographic hash function h(). The public function
F (A) = {A1, A2, · · ·Am} determines the indices of secrets
assigned to node A. Now node A is assigned m decryption
secrets SA, and additionally, k encryption secrets SA, where

SA = {KA1 ,KA2 , . . . , KAm
}

SA = {KA
j = h(Kj ‖ A)}, 1 ≤ j ≤ k (2)

Let U represent the set of all nodes that have been provided

2Medium access collision avoidance or MACAW - MACA for Wireless.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

460

with encryption3 and decryption secrets, and let NA ∈ U be
a small subset of r nodes. The node A can now convey a
broadcast secret TA to all nodes except the r “revoked” nodes
in the set NA, by encrypting the broadcast secret TA with a
subset of its encryption secrets S′

A ∈ SA. The specific indexes
of the encryption keys chosen (as part of S′

A) for this purpose
are determined uniquely (through a public algorithm) which
guarantees that

1) none of the r revoked nodes will have access to any of
the keys in S′

A, and
2) Any other node (in U \NA) will have access to at least

one of the secrets in S′
A with a high probability.

To convey the secret to nodes in the set U \ NA node A
constructs a broadcast message

BA = [NA ‖ {S′
A(KA)} ‖ MTA

], (3)

MTA
= h(NA,S′

A(KA), TA)

For example, assume that the list of nodes to be revoked by
A are X and Y . Let us assume that the indices of encryption
secrets chosen by A for this purpose are 4, 21 and 46. The
secrets are chosen is such a way that none of the revoked
nodes have decryption secrets with indices 4, 21, 46. Now

NA = {X,Y }, (4)

S′
A(KA) = {KA

4 (TA),KA
21(TA),KA

46(TA)} (5)

and MTA
is a HMAC based on the secret TA.

C. Efficient Two-hop Authentication

Apart from maintaining a secure RDN every node also
constructs a broadcast encryption message which explicitly
revokes all nodes in its RDN. Thus a node A with neighbors
B,G,H in its RDN will construct a broadcast encryption
message BA that revokes nodes B,G and H (or NA =
{B,G,H}) and contains encrypted versions of a secret TA

protected from the nodes in the RDN of A. In other words
1) KA is a secret provided to all nodes in the RDN of A.
2) TA is a secret protected from all nodes in the RDN of

A.
Whenever the RDN of A changes, a new NA is constructed by
A. Whenever A relays or initiates an RREQ for the first time
(since its RDN changed) it encloses the broadcast message BA

along with the RREQ. All one-hop neighbors of A cache this
message till it is overwritten by another such message sent by
A (possibly after a change in the RDN of A).

Any node forwarding an RREQ also includes a HMAC
based on the broadcast secret. For example, in a scenario
where an RREQ reaches D through the path · · ·A → B →
C → D, D can verify the authentication appended by B. To
provide D with access to TB , along with the RREQ, C also
forwards the BE message BB of its predecessor B.

The fact that node C is explicitly revoked in the BE message
of B indicates that C is a neighbor of B. For a malicious

3All nodes that need to perform encrypted broadcasts require encryption
keys. For our purposes all nodes are equipped with both encryption and
decryption keys.

C which desires to delete node B from the path, C has to
produce a BE message from A which revokes C (to convince
downstream nodes that A is a neighbor of C to advertise the
path A → C). C cannot forge a BE message from A which
includes C as a revoked node. Every secret used in such a
forged BE message corresponds to secrets C does not possess.

Note that A has no authenticated knowledge of its two hop
topology. Even though A has access to B’s BE message which
indicates that C is a neighbor, this claim is not verified by A.
This claim will be verified only if A has the opportunity to
forward an RREQ that reaches A through the path C → B →
A. In other words two-hops secrets are established and two
hop neighbors identified only when necessary.

Furthermore, it does not matter if a node Y currently two-
hops away from B (and had gained knowledge of TB) moves
within one-hop of B. When B accepts a Y into its RDN,
it changes the RDN secret KB and the two-hop secret TB .
Similarly it does not matter if a node 2 hops away suddenly
powers itself off of even moves to a 3 hop distance. In other
words, all that a node has to do is to maintain a one-hop
topology.

For scenarios where each node has 5 neighbors on an
average and say 25 nodes within the two-hop radius, a BE
message will need to include 5 to 10 encryptions of the
broadcast secret. Thus a BE message will require bandwidth
overheads comparable to that of digital signatures, but very
low computational overheads. However the BE message does
not need to be forwarded with every RREQ. A node B
broadcasts this meesage to its neighbors only when its RDN
changes. Furthermore, a neighbor C (of B) does not have
to forward the BE message from B every time it forwards an
RREQ from B. Node C forwards the BE message from B only
when ©1 it forwards an RREQ with B as the predecessor, and
©2 there is a change in the either the RDN of B or the RDN
of C. More specifically, a change in the RDN of B invalidates
the old BE message from B. A change in the RDN of C may
imply that new nodes may be present in its RDN who have
not received B’s BE message the last time it was forwarded
by C.

IV. A SECURE ROUTE DISCOVERY PROTOCOL

The secure route discovery (SRD) protocol to be outlined
in this section employs broadcast encryption for two-hop au-
thentication. The protocol assumes the presence of an off-line
KDC who has distributed encryption and decryption secrets
for the MSBE scheme. Further, the SRD protocol also assumes
the existence of a suitable KDS for pairwise authentication of
nodes. Recently schemes that are well suited for this purpose
have been identified [10]. Specifically, the scheme in [10]
takes advantage of the fact that even mobile devices can
have easy access to large amounts of inexpensive storage (for
example pluggable flash cards). Even with 100 MB of storage4

of public values (that need not be protected) per device,

4With SD cards supporting several GBs of storage already being common,
this is perhaps a reasonable requirement.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

461

the key pre-distribution scheme in [10] can resist collusions
of over 100,000 nodes pooling their secrets together. More
importantly, it mandates very low computational complexity
(a few tens of symmetric cipher operations).

Every node maintains a secure RDN by providing a group
secret to every node in the RDN (by encrypting the group
secret individually using pair-wise secrets shared with neigh-
bors). We shall represent the one-hop RDN secret of a node A
(provided to all nodes in the set NA, the RDN of A) by KA,
and the broadcast secret (which is protected from all nodes in
the set NA) by TA.

A. RREQ Propagation

Let us now consider a scenario where a source S desires
to find a path to a destination D. The source creates a RREQ
packet with immutable fields

rreq = [S ‖ D ‖ seq ‖ hc] (6)

where seq is a sequence number and hc is the maximum hop
count. The node S now broadcasts an RREQ packet

RREQ0 = [S ‖ KS([rreq ‖ M0 ‖ h0])]
h0 = h(rreq,KSD)
M0 = h(rreq, h1, TS), where h1 = h(h0)

(7)

where KSD is a secret shared between S and D. In other
words, h0 is a HMAC meant for verification by the destination,
and M0 is HMAC for verification by two-hop nodes. Note that
all fields of the RREQ packet are encrypted by the one-hop
secret of S.

A node A one hop from S decrypts the RREQ packet and
broadcasts

RREQ1 = [A ‖ KA([rreq ‖ (A) ‖ M0 ‖ M1 ‖ h1])]
M1 = h(rreq, (A), h2, TA), where h2 = h(h1)

(8)

A node B one-hop away from A and two-hops away from S
decrypts the RREQ, verifies that h1 sent by A is consistent
with the HMAC M0 appended by S. Having verified M0, node
B strips off M0 and appends an HMAC M2 for verification
by nodes two hops downstream of B. Thus B airs

RREQ2 = [B ‖ KB([rreq ‖ (A,B) ‖ M1 ‖ M2 ‖ h2])]
M2 = h(rreq, (A,B), h3, TB), where h3 = h(h2)

1) RREP: When the node D receives the RREQ packet
with a per-hop hash value hi and i nodes in the path, D can
verify that hi is consistent with h0 (which D can evaluate
as it is based on a secret KSD shared between the source
and destination). Let us assume that the RREP reached the
destination through a path (A,B, . . . ,W,X, Y, Z)

The RREP raised by D takes the form

rrep = [S ‖ D ‖ seq ‖ (A,B, . . . ,W,X, Y, Z)].

Now D unicasts the RREP packet

RREP0 = [D ‖ KD([rrep ‖ q0 ‖ MDY])
MDY = h(rrep, q1,KDY), where q1 = h(q0)

Note that the RREP packet has two HMACs - q0 for verifi-
cation by the source at the end of the RREP, and MDY for
verification by a node Y two hops away in the RREP path.

The RREP packets relayed by nodes Z and Y take the form

RREP1 = [Z ‖ KZ([rrep ‖ q1 ‖ MDY ‖ MZX])
MZX = h(rrep, q2,KZX), where q2 = h(q1)

RREP2 = [Y ‖ KY ([rrep ‖ q2 ‖ MZX ‖ MY W])
MY W = h(rrep, q3,KY W), where q3 = h(q2)

2) Comparison With Other Secure DSR Protocols: In the
secure routing protocol (SRP) [3] by Papadimitritos et al.,
intermediate nodes do not introduce any authentication. Thus
even external nodes can take part and disrupt the routing
process. In Ariadne [4] every intermediate node appends a
HMAC based on a TESLA key that will not be disclosed at
least until the destination receives the RREQ. The TESLA keys
used for authentication during the forward path are released
during the reverse path. Thus at the end of the RREP the
destination can discover node deletion attacks. Node insertion
attacks can be discovered by the source at the end of the
reverse path. If Ariadne is used in conjunction with pairwise
secrets instead of TESLA intermediate nodes append a HMAC
based on the pairwise secret they share with the destination. In
this case the destination can detect both insertion and deletion
attacks.

In [5] the authors present many different forms of authenti-
cation strategies for securing route discovery. The main focus
of the protocols in [5] is to reduce the overheads for carrying
over authentication by employing authentication strategies that
can be aggregated to save bandwidth. However the schemes
proposed in [5] do not consider node deletion attacks.

B. Need for Early Detection

One of the primary motivations for SRD is to ensure that
malicious modifications to RREQ are detected early so that
defective RREQs can be dropped as soon as possible. To see
how dropping malicious RREQs soon enough can improve
the performance of the route discovery process consider the
topology in Figure 1 where D receives two RREQs, through
paths (A,B,C,E) and (J,K,L,M,N, P,Q). Assume that
both paths have a malicious node - say C in the first path and
N in the second path - which perform illegal modifications to
the RREQ which are recognized by the destination D.

The fact that no good path was discovered in this
instance, does not necessarily mean that no good
path exists. In this specific scenario, several good
paths (without attackers) like (J,K,L,G,H,U,E, F),
(A,B,G,H,U,E, F), (J,K,L,M,U,E, F),
(J,K,L,M,U, V, F), (J,K,L,M,U, V, P,Q) exist.
Unfortunately, as the RREQ relayed by C reaches node
E earlier than RREQs from other paths, the first three paths
will not be discovered. Similarly as node U receives the
RREQ from C first, the fourth and fifth good paths will
not be discovered. On the other hand, if defective RREQs
can be detected immediately and stopped from further

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

462

S

A
B C E

D

G

H

F
J

L

M

PQ

R

V
N

W

Y X

Fig. 1. Topology of an ad hoc subnet for illustrating the advantages of early
detection of inconsistencies in RREQs.

propagation, the chances of discovering good paths can
increase significantly.

1) Simulations: To obtain a more quantitative estimate of
the benefits of early detection of inconsistencies in RREQs
we have performed extensive simulations to determine the
percentage of route discovery attempts (between randomly
chosen node pairs) that succeed.

For the simulations we generated many random realizations
of 200 nodes in a square with unit edges. The range of each
node was assumed to be 0.1 units. Out of the 200 nodes
40 nodes were assigned as malicious. It is assumed that
the malicious node will illegally modify the RREQ. In our
simulations each node had (on an average) 5 neighbors. Note
that each node could receive as many RREQs as the number
of its neighbors. We assume that the route discovery attempt
between two nodes fail if every such RREQ path includes a
malicious node.

We simulated RREQ propagation between every pair of
good nodes. The simulation results are shown for two cases
©1 bad RREQs are detected only by the destination (late
detection) ©2 bad RREQs are detected within two hops (early
detection) and stopped from further propagation. Simulation
of RREQ propagation was performed for over 200,000 node
pairs, chosen from 5 different random realizations of the
network. In each realization 40 nodes were randomly assigned
to be malicious. For purposes of comparison between the two
cases under different hop counts between the source and the
destination, the plots have the hop-count between the chosen
source-destination pair (in terms of the number of hops in
the shortest path) as the x-axis. The y-axis is the fraction of
node-pairs that succeed in the route discovery attempts.

The dashed line represents late detection and the solid
line represents early detection. As seen from the plots, early
detection of RREQ inconsistencies can substantially improve
the performance of any on demand routing algorithm by
preventing preemption of good paths by defective RREQs.

V. CONCLUSIONS

We discussed the need for early detection of inconsistencies
in RREQ packets and proposed an efficient strategy employ-
ing only symmetric cryptographic primitives to achieve this
requirement. This was achieved by mandating every node to
maintain a consistent one-hop RDN information and providing

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 4 5 6 7 8 9 10
Number of hops (between source and destination)

Late Detection

Early Detection

F
ra

ct
io

n
of

 S
uc

ce
ss

fu
l A

tt
em

pt
s

Fig. 2. Plots depicting the quantitative improvement in performance realized
due to early detection of inconsistencies in RREQ packets.

1) a secret to all nodes in the RDN and 2) a broadcast
encryption message that carries a secret accessible by any node
except the nodes in the RDN. We pointed out the existence
of efficient KDSs for pairwise authentication to facilitate
establishment of RDN secrets and an efficient multi-source
broadcast encryption scheme to broadcast a secret to any node
except the nodes in the RDN. We outlined a secure route
discovery protocol (SRD) for DSR and obtained quantitative
estimates of the advantages of facilitating early detection of
inconsistencies like node deletions and insertions in RREQ
packets.

REFERENCES

[1] Web Link, http://www.ietf.org/html.charters/manet-charter.html
[2] D. Johnson, D. Maltz, Y-C. Hu, J. Jetcheva, “The Dynamic Source

Routing Protocol for Mobile Ad Hoc Networks,” Internet Draft, draft-
ietf-manet-dsr-05.txt, June 2001.

[3] P Papadimitratos, Z. J.Haas, “Secure Routing for Mobile Ad Hoc
Networks,” Proceedings of the SCS Communication Networks and
Distributed Systems Modeling and Simulation Conference(CNDS 2002),
San Antonio, Texas ,2002.

[4] Y-C Hu ,A Perrig,. D B.Johnson, “Ariadne:A Secure On-Demand
Routing Protocol for Ad Hoc Networks,” The 8th ACM International
Conference on Mobile Computing and Networking, Atlanta, Georgia,
September 2002.

[5] J. Kim, G. Tsudik, “SRDP: Securing Route Discovery in DSR,” IEEE
Mobiquitous’05, July 2005.

[6] A. Perrig, R. Canetti, D. Song, D. Tygar, “Efficient and Secure Source
Authentication for Multicast,” in Network and Distributed System Se-
curity Symposium, NDSS ’01, Feb. 2001.

[7] M. Ramkumar, “Broadcast Encryption with Probabilistic Key Distribu-
tion and Applications,” Journal of Computers, June 2006.

[8] A. Fiat, M. Noar, “Broadcast Encryption,” Lecture Notes in Computer
Science, Advances in Cryptology, Springer-Verlag, 773, pp 480–491,
1994.

[9] D. Noar, M. Noar, J. Lotspiech, “Revocation and Tracing Routines for
Stateless Receivers,” Lecture Notes in Computer Science, Advances in
Cryptology, Springer-Verlag, 2139, 2001.

[10] M. Ramkumar, “I-HARPS: An Efficient Key Predistribution Scheme for
Mobile Computing Applications,” IEEE Globecom, San Francisco, CA,
Nov 2006.

1930-529X/07/$25.00 © 2007 IEEE
This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE GLOBECOM 2007 proceedings.

463

