
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

8-17-2013

Minimal Trusted Computing Base for Critical Infrastructure Minimal Trusted Computing Base for Critical Infrastructure

Protection Protection

Arun Velagapalli

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Velagapalli, Arun, "Minimal Trusted Computing Base for Critical Infrastructure Protection" (2013). Theses
and Dissertations. 3109.
https://scholarsjunction.msstate.edu/td/3109

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3109&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/3109?utm_source=scholarsjunction.msstate.edu%2Ftd%2F3109&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

Minimal trusted computing base for critical infrastructure protection

By

Arun Velagapalli

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfllment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

August 2013

Copyright by

Arun Velagapalli

2013

Minimal trusted computing base for critical infrastructure protection

By

Arun Velagapalli

Approved:

Mahalingam Ramkumar David A. Dampier
Associate Professor of Computer Science Professor of Computer Science
and Engineering and Engineering
(Major Professor) (Committee Member)

Yoginder S. Dandass
Associate Professor of Computer Science
and Engineering
(Committee Member)

Edward B. Allen
Associate Professor of Computer
Science and Engineering,
(Graduate Coordinator)

Thomas H. Morris
Assistant Professor of Electrical and
Computer Engineering
(Committee Member)

Jerome A. Gilbert
Interim Dean of the Bagley College of
Engineering

Name: Arun Velagapalli

Date of Degree: August 17, 2013

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Mahalingam Ramkumar

Title of Study: Minimal trusted computing base for critical infrastructure protection

Pages of Study: 195

Candidate for Degree of Doctor of Philosophy

Critical infrastructures like oil & gas, power grids, water treatment facilities, domain

name system (DNS) etc., are attractive targets for attackers — both due to the potential

impact of attacks on such systems, and due to the enormous attack surface exposed by

such systems. Unwarranted functionality in the form of accidental bugs or maliciously

inserted hidden functionality in any component of a system could potentially be exploited

by attackers to launch attacks on the system.

As it is far from practical to root out undesired functionality in every component of a

complex system, it is essential to develop security measures for protecting CI systems that

rely only on the integrity of a small number of carefully constructed components, identifed

as the trusted computing base (TCB) for the system. The broad aim of this dissertation is to

characterize elements of the TCB for critical infrastructure systems, and outline strategies

to leverage the TCB to secure CI systems.

A unifed provider-middleman-consumer (PMC) view of systems was adopted to char-

acterize systems as being constituted by providers of data, untrusted middlemen, and

consumers of data. As the goal of proposed approach is to eliminate the need to trust

most components of a system to be secured, most components of the system are consid-

ered to fall under the category of “untrusted middlemen.” From this perspective, the TCB

for the system is a minimal set of trusted functionality required to verify that the tasks

performed by the middle-men will not result in violation of the desired assurances.

Specifc systems that were investigated in this dissertation work to characterize the

minimal TCB included the domain name system (DNS), dynamic DNS, and Supervisory

Control and Data Acquisition (SCADA) systems that monitor/control various CI systems.

For such systems, this dissertation provides a comprehensive functional specifcation of the

TCB, and outlines security protocols that leverage the trust in TCB functionality to realize

the desired assurances regarding the system.

DEDICATION

To my mother Alice Mary Veda Kumari, father Samuel Rajababu, sister Jessie Ratan,

and wife Ramani for their support and encouragement.

ii

ACKNOWLEDGEMENTS

I would like to thank my major professor and mentor Dr. Mahalingam Ramkumar. I

am grateful for his advise on every step of my research. I simply cannot imagine a PhD

degree without his help and guidance all the way. I also thank him for the fnancial support

provided during my doctoral research.

I would like to thank Dr. Sivakumar Kulasekaran for his advice on choosing the right

advisor.

I would like to thank Pujitha Jammula for her contribution in systems design.

I would like to thank Dr. David A. Dampier, Dr. Yoginder Dandass, Dr. Thomas H.

Morris for serving as members in my PhD Dissertation Committee, and for their sugges-

tions and feedback.

I would like to thank Department of Computer Science and Engineering for providing

the resources required to perform my research.

I would like to thank National Strategic Planning & Analysis Research Center (nSPARC)

at Mississippi State University for funding my Master’s degree. I would like to thank CVM

at Mississippi State University for their partial funding provided during my PhD program.

I would like to acknowledge the source of funding for conducting this research from the

Department of Homeland Security (DHS)-sponsored Southeast Region Research Initiative

(SERRI) at the Department of Energy’s Oak Ridge National Laboratory.

iii

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1. INTRODUCTION . 1

1.1 Hypothesis and Research Goals . 2
1.2 Specifc Contributions of this Dissertation 3

2. LITERATURE SURVEY . 6

2.1 Domain Name System . 6
2.1.1 DNS Records . 8

2.1.1.1 Query-Response Process 9
2.1.2 Securing DNS . 11
2.1.3 Link-Security Approaches . 12
2.1.4 DNSSEC . 13
2.1.5 Authenticated Denial . 15

2.1.5.1 DNS-Walk . 16
2.2 SCADA systems . 17

2.2.1 SCADA System Components 17
2.2.2 SCADA Security . 19
2.2.3 Vulnerabilities . 21

2.2.3.1 Network Layer Vulnerabilities 22
2.2.3.2 Application Layer Vulnerabilities 24

2.2.4 Attacks on SCADA Systems . 25
2.2.5 Related Work . 27

2.2.5.1 Collaborative, Trust-Based Security Mechanism 27
2.2.5.2 DNP3 Secure Authentication 28

iv

2.2.5.3 IEEE SCM . 29
2.3 Merkle Hash Tree . 30

2.3.1 Merkle Tree Limitations . 31
2.3.2 Index Ordered Merkle Tree . 33

3. TCB FOR UNTRUSTED MIDDLEMAN 36

3.1 TCB . 37
3.2 Minimal TCB . 38

3.2.1 Read-proofng and Write-proofng 38
3.3 TCB Models . 40

3.3.1 Security Model . 41
3.4 Critical Infrastructures from the perspective of module T 42

3.4.1 Static vs Dynamic Data . 42
3.4.2 Static vs Dynamic Data Identifers 43
3.4.3 TCB Tasks . 43

3.4.3.1 Stateless TCB . 43
3.4.3.2 Stateful TCB . 44

4. ATOMIC RELAY FOR DNS . 46

4.1 Extending Link-Security Approaches 46
4.2 Principle of Operation . 47

4.2.1 Atomic Relay . 48
4.2.2 “Intelligent” Atomic Relay . 49

4.3 Computing Link Secrets . 51
4.3.1 MLS . 52
4.3.2 Key Distribution for TCB-DNS 53
4.3.3 Multiple KDCs . 54
4.3.4 Renewal . 56

4.4 The TCB-DNS Protocol . 57
4.4.1 The Atomic Relay Algorithm 57
4.4.2 Preparation of TCB-DNS Master File 60
4.4.3 Verifcation of RRSets . 62

4.4.3.1 Events at ANS with TM A 62
4.4.3.2 Events at the PNS with TM P 63
4.4.3.3 At the Stub-Resolver C 66

4.4.4 Proof of Correctness . 67
4.5 Practical Considerations . 68

4.5.1 Ideal TMs . 70
4.5.2 Leveraging TPMs . 72

4.6 TCB-DNS vs. DNSSEC . 74
4.6.1 Authenticated Denial . 76

v

4.6.2 Overhead . 79
4.6.3 Replay Attacks . 81
4.6.4 DNSSEC with TSIG . 81
4.6.5 NSEC3 Opt-out . 83

5. MINIMAL TCB FOR DATA DISSEMINATION SYSTEM 86

5.1 Organization . 87
5.2 A Generic Data Dissemination System 87

5.2.1 Related Work . 89
5.2.1.1 Limitations of Existing Approaches 91

5.2.2 Salient Features of the Proposed Approach 92
5.2.2.1 Query-Response Authentication 93
5.2.2.2 Opportunistic Shared Secrets Between Users 94
5.2.2.3 Potential Applications . 94

5.2.3 TCB Functions . 95
5.2.3.1 Conveying User Secret . 96
5.2.3.2 Inserting and Deleting IOMT leaves 97
5.2.3.3 Updating Records . 99
5.2.3.4 Querying Records . 101

6. MINIMAL TCB FOR SCADA SYSTEM MONITOR 105

6.1 Problem Statement . 106
6.2 Minimal TCB . 107

6.2.1 Principle of Operation . 108
6.3 Background . 109
6.4 Trustworthy SCADA Monitor . 110

6.4.1 Overview of Proposed Approach 111
6.4.2 Example of the Utility of the Proposed Approach 112
6.4.3 Auxiliary Sensor Data . 114

6.4.3.1 Initializing Sensor Data 115
6.4.4 Updating a Sensor Record . 116
6.4.5 Interface Update() . 117
6.4.6 Interface FProof() . 118

7. EVAULATING SCADA SYSTEM STATE 120

7.1 Principle of Operation . 120
7.2 Sensor leaves and Synthetic Leaves 121
7.3 Operation of module . 123

7.3.1 Module Interfaces . 124

vi

8. A SECURITY ARCHITECTURE FOR SCADA SYSTEMS 127

8.1 Overview of STCB Approach . 128
8.1.1 STCB System Components . 130
8.1.2 Evaluating F() . 132

8.1.2.1 Merkle Trees in the STCB Approach 133
8.1.3 STCB Designer and Deployer 134

8.2 STCB Design . 135
8.2.1 STCB Design Tree . 135
8.2.2 Inputs and Outputs of Ui . 136

8.2.2.1 Synthetic Sensors . 138
8.2.2.2 Constants and Look-Up Tables 139

8.2.3 Instruction Set A . 140
8.3 STCB Deployment . 141

8.3.1 STCB Operation . 144
8.3.1.1 STCB Interfaces . 146

8.4 STCB Architecture . 147
8.4.1 Module Registers . 148
8.4.2 Initializing Peer Parameters . 150
8.4.3 Self Certifcates . 151

8.4.3.1 Binary Tree Certifcates 151
8.4.3.2 Offset Certifcates . 152

8.4.4 Initializing STCB Modules . 154
8.4.5 Sensor and State Reports . 156
8.4.6 Sensor Updates and Incremental State Evaluations 158

8.5 STCB Protocol . 160
8.5.1 Generation of Offset Certifcates 161
8.5.2 Generating Static Binary Tree Certifcates 162
8.5.3 Initialization and Regular Operation 162
8.5.4 STCB Design Example . 166

9. CONCLUSIONS AND FUTURE RESEARCH 171

9.1 Contributions . 171
9.2 Future Research . 172

REFERENCES . 174

APPENDIX

A. STCB INSTRUCTION SET . 181

A.1 Opcodes . 183

vii

A.1.1 Internal Functions . 186
A.2 Illustration of STCB System Design 189

A.2.1 Design Steps . 189
A.2.1.1 Valid and Invalid States 190

A.2.2 Design Tree Leaves . 192
A.2.3 Instructions for Leaves PP and HH 193

viii

LIST OF TABLES

4.1 Comparison of TCB-DNS and DNSSEC . 79

8.1 Instruction Set for Thermal Plant . 170

A.1 Memory Layout of Y . 183

A.2 A Partial Listing of Opcodes and their Interpretation 184

A.3 Examples Illustrating 3-byte Instructions. 185

A.4 Karnaugh Maps for Water Tank System. 191

ix

LIST OF FIGURES

2.1 The domain name system (DNS) tree . 7

2.2 SCADA System Architecture . 19

2.3 A Binary Merkle tree -16 leaves. 32

3.1 PMC Model . 36

3.2 Simplifed Trusted Computing Model . 39

3.3 Security Model . 42

4.1 Atomic Relay Function . 58

4.2 Original Confguration . 69

4.3 Bump-in-the-Wire (BITW) Implementation 71

8.1 STCB components . 131

8.2 Information fow in the STCB model . 131

8.3 Static Descriptor ξsp – a specifcation for an STCB system 143

8.4 Example: Simplifed version of thermal power plant 166

A.1 Internal function fexec() . 186

A.2 Internal function feoc() . 188

A.3 Water tank SCADA system . 190

x

CHAPTER 1

INTRODUCTION

The functioning of modern societies rely heavily on the functioning of several complex

systems. Some such systems are seen as critical, as their failure can have a signifcant

impact on the security of a nation. Examples of critical infrastructure systems include

power grids, water supply systems, oil and gas production/transportation systems, mass

transportation systems, and increasingly, the Internet.

From the perspective of benefciaries of a system, the primary requirement for any

system is to effectively provide services. From a perspective of the providers/operators of

the system, the system should be proftable, and inexpensive to operate/maintain. In pursuit

of effective and proftable systems, some systemic risks to the operation of the system are

often ignored.

The components of complex systems are often themselves complex systems. Very

often, in the design and operation of any system, it is simply assumed that all components

of the system can be trusted to faithfully perform their assigned tasks. More specifcally,

while the design of many systems do often cater for accidental failure of components,

failures resulting from carefully orchestrated attacks on components are ignored.

1

The likelihood of hidden malicious/accidental functionality in any hardware/software

component, especially in complex components of questionable provenance, is a serious

threat to the security of critical national infrastructures. The very importance of crucial

systems make them good targets for attackers — both domestic and foreign. With every

passing day, more and more exploitable vulnerabilities in various components of critical

infrastructure systems are discovered. Patching such vulnerabilities may not always be

easy, or even possible (especially in legacy systems). Furthermore, such patches/fxes

themselves may introduce fresh vulnerabilities.

1.1 Hypothesis and Research Goals

Due to the substantial risks posed by failure of critical infrastructure systems, we

simply can not afford to blindly trust all components of the system. For any system with

a desired set of assurances, the trusted computing base (TCB) [35] is a small amount of

hardware/software that needs to be trusted in order to realize the desired assurances. It is

crucial, especially for critical systems, to clearly identify a minimal set of components that

constitute the TCB for the system, and focus our efforts on ensuring that the TCB is indeed

worthy of trust.

The hypothesis of the proposed research is that resource limited hardware modules

capable of performing only logical and hash operations will be able to serve as the TCB

for the critical infrastructures. The main goals of the proposed research are

1. Identifying the minimal TCB for some sample critical infrastructure systems, in
terms of a set of simple functions executed inside the confnes of trustworthy hard-
ware modules.

2

2. Identifying effcient mechanisms to amplify the trust in the TCB in order to provide
the desired assurances.

As examples of critical infrastructure systems, we address the domain name system

(DNS) [43] which is vital to the functioning of the Internet, and Supervisory Control and

Data Acquisition (SCADA) systems [60] responsible for controlling various critical infras-

tructure systems.

1.2 Specifc Contributions of this Dissertation

At the core of the proposed approach is a unifed view of systems as constituted by

providers of data, untrusted middle-men, and consumers of data. Under the provider-

middlemen-consumer (PMC) model, most components of any system to be secured are

assumed to be associated with the untrusted middle-men.

For purposes of arriving at a functional specifcation of the TCB components our re-

search began by investigating various applications/system under the PMC model. Some of

the characteristics of the system that were considered for classifcation of various systems

under this model included

1. dynamics of the provider (static or dynamic number of data sources)

2. dynamics of data (does data have a pre-specifable life time, or is it necessary to
prematurely invalidate some data) and

3. the nature of the tasks performed by middle-men (does middle-men merely relay
data to consumers or do they have to process data before making them available to
consumers)

Under the PMC model, the domain name system (DNS) can be classifed as one with

dynamic number of providers, and static data (DNS records), where the middle-men sim-

ply relay data. SCADA systems can considered as composed of static providers of data
3

(sensors and actuators of SCADA systems) which provide dynamic data (current sen-

sor/actuator states) to middle-men (SCADA system components) that monitor the state

of the SCADA system. The middle-men perform some system dependent tasks to deter-

mine the state of the SCADA system and report the state of the system to the consumer

(stake-holders of the SCADA system).

A characterization of the minimal TCB for the domain name system was obtained,

leading to the publication of a journal article [71]. Specifcally, the TCB was identifed to

be a stateless atomic relay function.

That DNS employs static DNS records is a well appreciated limitation of DNS. If DNS

records are dynamic, then the TCB functionality required to assure the integrity of DNS

records needs to be state-ful. More specifcally, even while the module executing the TCB

functions is constrained to possess very little memory, it is required to “track” potentially

unlimited amounts of data. This was catered for by adding to the TCB functionality, the

ability to maintain an index ordered Merkle tree described in Section 2.3.2. A generic

TCB for a dynamic look-up server was published in a conference proceeding [70].

For effectively monitoring the state of a SCADA system a frst pre-requisite is to ensure

completeness of inputs — or that a fresh snapshot of current states of all sensor/actuators

are available. For this purpose the TCB functionality was expanded to include the ability

to maintain an ordered merkle tree [69]. A conference paper outlining this approach was

presented in [69].

Once completeness of inputs is guaranteed, the next step is to ensure that the system

dependent algorithms for computing the overall state of the system (the output provided to

4

the stake-holder, based on sensor states) can be executed inside a resource limited trustwor-

thy boundary. Due to the fact that the number of the inputs could be different for different

SCADA systems, it is necessary to possess mechanisms to handle any number of sensor

inputs. This was handled by representing sensor data as leaves of a merkle hash tree [42].

The concept of “synthetic sensors” was introduced represent states that are functions of

multiple sensor states. A conference paper outlining this approach was presented in [68].

Our work in [69] and [68] merely addressed some components of the TCB functionality

required to secure SCADA systems. A comprehensive security architecture for SCADA

systems was outlined in [72]. This architecture, based on a trusted hardware module —

which we refer to as a SCADA TCB (STCB) module — is intended to be usable for any

SCADA system, irrespective of the nature and size of the system. The STCB based security

architecture includes specifcations for a) the functionality of STCB modules; b) processes

to be adopted by the designer and the deployer of the system; and c) an STCB protocol,

for updating the state of STCB modules, and obtaining SCADA state reports.

The rest of the document is organized as follows:

Chapter 2 includes a brief introduction to DNS and SCADA systems and a survey

of current efforts to secure such systems. The importance of identifying a minimal TCB

for critical infrastructure systems is discussed in Chapter 3. Chapters 4 and 5 outline

work towards securing DNS. Chapters 6 and 7 outlines work towards identifying TCB

components for SCADA systems. Chapter 8 outlines a comprehensive architecture for

securing SCADA systems. Chapter 9 offers conclusions and discusses future research.

5

CHAPTER 2

LITERATURE SURVEY

2.1 Domain Name System

The domain name system is a tree-hierarchical naming system for services that can

be accessed over the Internet. At the top of the inverted DNS tree (see Figure 2.1) is the

root. Below the root are generic top level domains (gTLD) like com, org, net, edu,

etc., and country-code top level domains (ccTLD) like ca (Canada), in (India), etc. A

leaf named b.cs.univ.edu in the DNS tree is a server-host in a branch cs.univ.edu,

which stems from a thicker branch univ.edu, which stems from an even thicker branch

.edu, stemming from the root of the DNS tree.

A branch of the tree (including its sub-branches and leaves) under the administrative

control of an authority, is a DNS zone. The authority for a zone is responsible for i)

assigning names for branches and leaves under the zone; ii) creating DNS resource records

corresponding to such names, and/or iii) delegating an entity as the authority for a branch

within the zone.

The authority for the root zone has delegated a gTLD zone like .edu to a .edu-gTLD

authority, who has in turn delegated the zone univ.edu to another authority, who may

have delegated a zone cs.univ.edu to yet another authority (say Z). All DNS records

for the zone cs.univ.edu (or all DNS records with names ending with cs.univ.edu)

6

https://cs.univ.edu
https://cs.univ.edu
https://cs.univ.edu
https://univ.edu
https://univ.edu
https://cs.univ.edu
https://b.cs.univ.edu

root

.com .org .edu · · · .ca .in · · ·

univ.edu col.eduibib.org

cs.univ.edu cas.univ.edua.ibib.org

b.cs.univ.edu

Figure 2.1

The domain name system (DNS) tree

are created by Z. The zone authority also specifes the names of authoritative name servers

(ANS) for the zone. A “zone master fle” which includes the set of all DNS RRs pertaining

to the zone is then provided every ANS of the zone. ANSs of the root zone are also referred

to as root name-servers.

A client desiring to access a HTTP service www.cs.univ.edu requires the IP address

of the web-server with a domain name www.cs.univ.edu. This information is in an A-

type record in the master fle for a zone under which the name www.cs.univ.edu falls,

and can be obtained by querying any ANS for the zone. To obtain this information, the

querier only needs to know the IP address of a root name-server. While the root name

server cannot directly provide the answer to the query “www.cs.univ.edu, A,” it can

provide the names and IP address of the ANSs for gTLD and ccTLD zones. In this case,

the root server will respond with the names and IP addresses of all .edu ANSs.

7

www.cs.univ.edu
www.cs.univ.edu
www.cs.univ.edu
www.cs.univ.edu

The querier can now send the same query to any of the .edu ANS, which will respond

with the name and the IP address of the ANSs for the zone univ.edu. When the same

query “www.cs.univ.edu, A” is the directed to an ANS for the zone univ.edu, the

response includes the names and IP addresses of ANSs for the zone cs.univ.edu.

Finally, any of the ANSs for the zone cs.univ.edu is queried to obtain the desired

the A-type record. If the zone cs.univ.edu had not been sub-delegated, then the ANS

for the zone univ.edu would have directly provided the response. Thus, knowing only

the IP address of one root name server, any one can obtain any DNS record by specifying

the name and type, and performing a series of queries.

2.1.1 DNS Records

Every DNS resource record (RR) is a fve-tuple consisting of i) name, ii) class, iii)

time-to-live (TTL), iv) type, and v) value; for example, name=www.cs.univ.edu, IN,

TTL=2345, type=A, value=159.43.7.82. The class is always IN (for Internet RRs);

the feld TTL is specifed in seconds, and indicates how long a RR can be cached. In the rest

of this document, to keep notations simple, we shall ignore the felds “class” and “TTL.”

A-type RRs indicate an IP address in the value feld. An NS-type record

name=cs.univ.edu, type=NS, value=ns1.dserv.net indicates that a name-server

with a domain name ns1.dserv.net is an ANS for the zone cs.univ.edu.

A set of records with the same name and type, but with different value felds, is collec-

tively referred to as an RRSet. For example the NS-type RRSet for the name cs.univ.edu

8

https://cs.univ.edu
https://cs.univ.edu
https://ns1.dserv.net
https://value=ns1.dserv.net
https://name=cs.univ.edu
https://value=159.43.7.82
https://name=www.cs.univ.edu
https://univ.edu
https://cs.univ.edu
https://cs.univ.edu
https://cs.univ.edu
https://univ.edu
www.cs.univ.edu
https://univ.edu

may include two NS records - one indicating the ANS ns1.dserv.net, and the other in-

dicating another ANS named ns1.cs.univ.edu.

The NS type records are used for delegation. An RRSet of NS records for a delegated

zone (say) cs.univ.edu can be found in the master fle of the parent zone univ.edu.

Similarly the NS RRSet for univ.edu can be found in the master fle of the zone .edu,

and so on. Along with NS records which specify ANSs, the A-type records for the ANSs

are also included in the master fle as glue records1.

The creator of RRs for a zone, viz., the zone authority, is always off-line. Once the

master fle for zone has been provided to the ANSs, and the names of ANSs conveyed to

authority of the parent zone (and included as NS records in the master fle of the parent), the

zone authority simply expects the ANSs to faithfully accept and respond to DNS queries

regarding the zone.

2.1.1.1 Query-Response Process

DNS queries and responses are typically payloads of UDP packets and have the

same packet format. They include a header, and four sections: QUESTION, ANSWER,

AUTHORITY and ADDITIONAL. In a query packet QUESTION section indicates the queried

name and type (all other sections are empty). The response has an identical QUESTION sec-

tion. The ANSWER section contains the desired RRSet. The AUTHORITY section includes
1Note that zone univ.edu (or even edu) cannot be authoritative for the zone dserv.net. Thus,

while univ.edu can provide an authoritative response regarding the name of the ANS for the child zone
cs.univ.edu, it cannot provide an authoritative A-type record for the server ns1.dserv.net. To
avoid possible circular dependency problems, the necessary non authoritative A-type records are included as
glue records.

9

https://ns1.dserv.net
https://cs.univ.edu
https://univ.edu
https://dserv.net
https://univ.edu
https://univ.edu
https://univ.edu
https://cs.univ.edu
https://ns1.cs.univ.edu
https://ns1.dserv.net

NS records indicating the authoritative zone and the ANS for the zone. The ADDITIONAL

section contains A-type glues for the NS records.

In practice, clients initiate queries using stub-resolvers running on their own host ma-

chine. Stub-resolvers do not directly query ANSs. Instead, they use preferred name-servers

(PNS) as intermediaries. PNSs are also referred to as local DNS servers or local recur-

sive resolvers or caching-only name-servers, and are typically operated by Internet service

providers (ISP).

An application requiring the IP address of (say) www.cs.univ.edu queries a stub-

resolver running on the same host. The stub-resolver redirects the query to a PNS. To do

so, the host (or the stub-resolver) should know the IP address2 of at least one PNS.

All PNS needs to be aware of the IP address of at least one root server. The PNS

queries a root-server for (www.cs.univ.edu,A), and receives NS records (with glued

A-type records) for ANSs of .edu. The PNS then queries a .edu ANS to receive NS

records of univ.edu, and so on. Finally, an ANS of the zone cs.univ.edu responds to

the query with the desired A-type RRSet, which is relayed back to the stub-resolver.

PNSs may cache RRs for a duration specifed by the TTL feld in the RR, and may

respond to queries from stub-resolvers using cached RRs. Similarly stub-resolvers may

also cache RRs and respond to queries from applications running on the same host using

the cached RRs.
2Typically, IP addresses of PNSs are provided to a host by a DHCP server. In UNIX-like machines the

IP addresses of PNS are stored in a fle /etc/resolv.conf.

10

https://cs.univ.edu
https://univ.edu
www.cs.univ.edu,A
www.cs.univ.edu

2.1.2 Securing DNS

The main goal of attacks on DNS is to simply divert traffc away from genuine services,

or more often, to divert such traffc to impersonators phishing for personal information

from unsuspecting clients. A common strategy for attackers is to impersonate ANSs to

provide fake DNS responses to PNSs, thereby “poisoning the cache” of the PNS, and

consequently the caches of many stub-resolvers which employ the poisoned PNS.

The header of a DNS query includes a 16-bit transaction ID tid; the UDP packet carry-

ing the query indicates a 16-bit source port p chosen by the querier. A DNS packet carrying

the query will be accepted only if it is addressed to port p. The DNS response in the UDP

packet will be accepted only if it indicates an expected transaction ID tid.

To create a fake response that will be accepted by an PNS, an out-of-path (or external)

attacker, who does not have plain-sight view of the query packet, will need to guess the

values tid and p. A typical strategy for an out-of-path attacker is to register a domain, run

her own ANS for the domain, and query the targeted PNS for a name under her domain.

When the query from the PNS is ultimately directed to the attacker’s ANS, the attacker

learns enough information to narrow down the two values tid and p within small range.

Recently, Kaminsky [32] pointed out that DNS cache poisoning attacks can have even

more severe consequences. Instead of attempting to poison RRs corresponding to a spe-

cifc zone, the attacker can impersonate a root server and send fake glue records for “IP

addresses of gTLD name servers.” Thus, queries to every .com zone, for example, will

then be directed to a computer under the control of the attacker, which could redirect such

queries to other “ANSs” under her control.

11

2.1.3 Link-Security Approaches

While properly randomizing the two 16-bit values (tid and p) is a good frst step, they

offer no defense against in-path attackers. In-path attackers who may be in the same LAN

as the server or the resolver, or lie in-between the resolver and the server, have plain-sight

access to the values tid and p in the UDP DNS packets, and can thus easily fake responses.

Securing links between DNS servers (for example, by using a secret shared between a

resolver and the server queried by the resolver) can prevent such attacks.

Specifcally, two entities A and B who share a secret KAB can prevent even in-path

attackers from impersonating them by i) encrypting the message sent over the link using

the shared secret KAB , or ii) appending a message authentication code (MAC) h(V k KAB)

where h() is cryptographic hash function, and V may be the message, or a cryptographic

hash of a message M (or V = h(M)); as long as h() is pre-image resistant, only an entity

with access to the secret KAB can compute a valid MAC for a message.

Strategies like SK-DNSSEC [56] and DNSCurve [12] adopt such an approach. In

symmetric key DNSSEC [56] all PNSs have the ability to establish secure channel with the

root servers. ANSs higher in the hierarchy act as trusted servers and facilitate establishment

of secrets with ANSs lower in the hierarchy, using the Needham-Schroeder protocol [45]

(which is the basis for the Kerberos [46] authentication protocol). When a PNS queries

the root server for “cs.coll.edu, A”, the root server’s response includes a Kerberos-like

ticket which permits the PNS to establish a secure channel with a .edu DNS server. The

.edu DNS server then issues a ticket for securely communicating with an ANS for the

zone coll.edu.

12

https://coll.edu
https://cs.coll.edu

DNSCurve [12] employs a Diffe-Hellman scheme over a special elliptic curve C for

setting up a private channel between DNSCurve enabled DNS servers. A DNSCurve en-

abled server A chooses a secret a.

The secret between two DNSCurve enabled servers/resolvers A and B (where B’s

secret is b) is KAB = C(b, α) = C(a, β), where α = C(a, S), β = C(b, S), and S is a

public parameter.

Link-security approaches assume that the DNS servers themselves are trustworthy.

Note that while link-security approaches protect DNS RRs from out-of-path attackers (who

do not have access to values tid and p) and in-path attackers (those with access to tid and

p), there is nothing that prevents an entity controlling the DNS server from modifying an

RR. In practice, such an attacker can be the operator of a DNS server, or some other entity

who has somehow gained control of the DNS server. Such an attacker can receive RRs

over protected links, illegally modify RRs, and relay fake RRs over “protected” links.

2.1.4 DNSSEC

Ideally, the “middle-men” should not be trusted: only the authority of a zone should

be trusted for providing information regarding the zone. This is the approach taken by

DNSSEC [9], where every RRSet in the zone master fle is individually signed by the zone

authority.

Every DNSSEC-enabled zone authority has an asymmetric key pair. The public portion

of the key pair is certifed by the authority of the parent zone. For example, the public key

of the zone cs.univ.edu is signed by the authority of zone univ.edu. The public

13

https://univ.edu
https://cs.univ.edu

key of the zone cs.univ.edu can be obtained by querying for a DNSKEY-type RR for

the name cs.univ.edu. To authenticate the public key in the DNSKEY RR, the parent

zone univ.edu introduces two RRs in its zone fle: a delegation signed (DS) RR which

indicates a key-tag (a hash) for the public key of its child, and an RRSIG(DS) record which

is the signature for the DS record.

For verifying the RRSIG(DS) record the public key of the parent zone univ.edu is

required - which is the DNSKEY RR for the name univ.edu. To authenticate the public

key of the parent, it is necessary to obtain the DS and RRSIG(DS) record from its parent

zone - .edu, along with the DNSKEY RR for .edu. Finally, the public key of .edu can

be verifed by obtaining DS and RRSIG(DS) records from the root zone (by querying any

root server). The public key of the root zone is assumed to be well publicized.

To summarize, for every RRSet in the zone cs.univ.edu is a RRSIG(RRSet) record

which contains the digital signature for the RRSet. In response to a query for an RRSet,

the corresponding RRSIG record is also included in the response. To verify the RRSIG,

the required DNS RRs are

1) DNSKEY RR of cs.univ.edu

2) DS, RRSIG(DS) corresponding to DNSKEY RR of cs.univ.edu, and DNSKEY

RR of the parent zone univ.edu (fetched from the parent zone univ.edu);

3) DS, RRSIG(DS) corresponding to DNSKEY RR of univ.edu, DNSKEY RR of

.edu;

4) DS, RRSIG(DS) corresponding to DNSKEY RR of .edu, from the root zone.

14

https://univ.edu
https://univ.edu
https://univ.edu
https://cs.univ.edu
https://cs.univ.edu
https://cs.univ.edu
https://univ.edu
https://univ.edu
https://univ.edu
https://cs.univ.edu
https://cs.univ.edu

2.1.5 Authenticated Denial

Consider a scenario where the zone authority for the domain wesellstuff.com

outsources its DNS operations to dnsnet.net. It is indeed conceivable that a competitor

wealsosellstuff.com could bribe some personnel in dnsnet.net (or any entity who

has acquired control over the ANS) to remove the record for wesellstuff.com (thereby

driving the competitor out of business).

To ensure that DNS servers and/or their operators need not be trusted, DNSSEC de-

mands a pertinent response from an ANS for every query that falls under the zone. If the

queried name exists, the ANS should provide a signed RRSet. If the queried name does not

exist, the ANS is expected to provide authenticated denial by providing some information

signed by the zone authority3 which demonstrates that the queried record does not exist. If

the ANS ignores the query, or provides a non pertinent response, the resolver will send the

query again, or will query another ANS for the zone, till it receives a pertinent response.

For example, in response to a query for name abc.xyz.fgh the querier expects a

signed RRSet by the authority for the zone under which the name abc.xyz.fgh falls, or

alternately, expects

1) a signed response from the authority of the root zone that no record for a name .fgh

exists; or

2) a signed response from the authority of the zone .fgh that no record for the name

xyz.fgh exists; or
3Only the zone authority is trusted to provide information regarding the zone - even information indicating

that a record does not exist.

15

https://wesellstuff.com
https://dnsnet.net
https://wealsosellstuff.com
https://dnsnet.net
https://wesellstuff.com

3) a signed response from the authority of the zone xyz.fgh that no record for the

name abc.xyz.fgh exists.

As the zone authority is off-line, a response denying every possible (as yet unknown)

query, regarding the almost infnitely many possible names and types that can fall under

the zone, should somehow be signed by the zone authority and included in the master

fle provided to ANSs. This is accomplished cleverly through NSEC records [76]. A

signed NSEC record abc.example.com, NSEC, cat.example.com indicating two

enclosers is interpreted as an authenticated denial of all enclosed names: viz., names that

fall between abc.example.com and cat.example.com in the dictionary order. For

example, if queried for a record named cab.example.com, this NSEC RR signed by the

authority of the zone example.com (the signature included in a RRSIG(NSEC) RR) is

proof that no such record exists.

2.1.5.1 DNS-Walk

Even while DNS RRs are not meant to be private they should only be provided when

explicitly queried by name and type. NSEC permits one to query random names and learn

about unsolicited names of enclosers that do exist in the zone master fle. For example, a

querier may send a query for a random name like axx.example.com and get to know the

two enclosers abc.example.com, cat.example.com that actually exist. The attacker

can then query for a random name like cate.example.com and obtain its enclosers, say

cat.example.com, data.example.com, and so on.

16

https://data.example.com
https://cat.example.com
https://cate.example.com
https://cat.example.com
https://abc.example.com
https://axx.example.com
https://example.com
https://cab.example.com
https://cat.example.com
https://abc.example.com
https://cat.example.com
https://abc.example.com

The ability to easily enumerate all services under a zone is obviously a useful starting

point for any attacker. An attacker wishing to obtain all DNS records for a zone can easily

“walk-through” all records in the zone master by simply making a sequence of random

queries. Such supercilious queries also have the ill-effect of further burdening the DNS

infrastructure.

2.2 SCADA systems

Process Control Systems (SCADA systems) play a major role in present day criti-

cal infrastructures like power grid, water management, petrochemical, oil and natural gas

distribution systems etc. While modern technologies provide solutions for better perfor-

mance, management, reliability of systems, they also expose the critical infrastructure to

crucial attacks which could endanger lives of people along with economy.

2.2.1 SCADA System Components

A typical SCADA system includes the following components:

Master Terminal Unit (MTU): A master terminal unit is a server that is supervised

by some trained personnel through a Human Machine Interface (HMI). A MTU usually

comprises of racks of programmable logic controllers (PLCs). PLCs are programmable,

confgurable systems that run continuously. The PLCs read inputs from some addressed

interfaces, processes the inputs and writes the output to some addresses. The MTU is

responsible for i) collecting the data from different Remote Terminal Units (RTUs) and

ii) sending commands to them through a wide variety of communication channels (Ether-

net/wireless/radio/proprietary). A HMI is software that runs on the MTU provides a graph-
17

ical representation of the supervised system, and is also a central point for confguring the

functionality of the SCADA system - either manually or automatically.

Remote Terminal Unit (RTU): RTUs are generally on the feld close to the sensors

which sense various physical processes. The sensors on the feld report the data to RTUs.

Most RTUs house some PLCs and analog-to-digital (A-D) converters. Typically RTUs

are periodically polled by MTUs for collecting data, and for sending dynamic instruc-

tions/commands. In turn, PLCs at the feld send commands to actuators on the feld to

control some physical process.

Sensors: A sensor is an analog or digital device that measures some parameter of a

physical process and provides analog or digital data to an RTU.

Actuator: An actuator is a mechanical device for moving or controlling a mechanism

or system. It takes energy, usually transported by air, electric current, or liquid, and con-

verts that into some kind of motion [14].

Alarm: Alarms play a major role in SCADA systems by notifying the personnel about

any hazardous situations and/or failure of devices etc. Alarm conditions are programmed

in PLCs that poll an alarm in continuous intervals. A PLC sends a command to raise an

alarm when an abnormal condition is met.

A typical SCADA system consists of all the above mentioned subsystems which col-

lectively work for some very critical systems like Oil/ Gas/ Water / Electricity distribution

where failure could result in hazardous effects on surroundings.

18

Figure 2.2

SCADA System Architecture

2.2.2 SCADA Security

Several issues concerning our ability to secure SCADA systems have been addressed

by many researchers for various types of SCADA systems [60], [30], [1], [51]. Practical

solutions to securing SCADA systems have been marred by i) the lack of well accepted

standards (both for hardware and communication protocols), and ii) the uniqueness of

each system, demanding specifc domain knowledge for addressing security issues in each

system.

For many industrial control systems security is not seen as a priority, or even a feature.

Vendors who develop the control systems for the clients do not provide security unless

it is asked for. Clients on the other end do not request for security features as the risk

assessments do not show up any security related risks. Many legacy SCADA systems do

19

not employ any explicit security mechanism on the assumption of an established secure

perimeter through isolation, and their obscure nature.

The SCADA systems that are used today have different sensor devices, data acquisition

and processing units such as RTUs/ PLCs at feld level and servers off the feld usually

monitored through HMI software by maintenance personnel. The unauthenticated data

sent by the devices to a control system (a RTU/PLC) is delivered to the Master Terminal

Unit through communication channels like Ethernet/Radio modem. As the communication

channel between the master terminal unit and a feld device do not typically employ any

kind of authentication, it can be subjected to spoofng attacks like man in the middle attack

and message injection attacks.

Apart from a wide range of easy attacks on the communication channels, several secu-

rity loopholes can be exploited by attackers to gain control of the supervisory system. For

example, operators of a plant may use e-mails, through which Trojan horses and worms

can be planted in applications that can manipulate data or send commands [48]. More

generally, such loop-holes include defects in the SCADA software, bugs in the underlying

operating system, and even untrusted hardware in general purpose computers which run

the software.

Efforts to secure SCADA systems have also been marred by its substantially differ-

ent requirements, compared to better know information technology (IT) systems [18].

“SCADA systems and corporate IT systems focus on very different information assurance

priorities. IT systems priorities are confdentiality, authentication, integrity, availability,

and non-repudiation, SCADA systems on the other hand emphasize reliability, real-time

20

response, and tolerance of emergency situations, personnel safety, product quality, plant

safety, usually to the exclusion of any security mechanism that might hinder these [18]”.

It is no surprise that standard IT security mechanisms are not appropriate for all SCADA

systems as each system has its own requirements and dependencies. Over “90% of ma-

jor SCADA and automation vendors have all of their manuals and specifcations available

on-line to the general public [48] ”. Notwithstanding the fact that frewalls are used to

isolate the SCADA LANs from the Internet, it is not impractical for a cyber attacker who

invests time to learn the specifcations from readily available manuals to create a far reach-

ing disasters on critical infrastructures. In particular, the human machine interface (HMI)

software which servers as the nerve center for many SCADA applications runs on untrusted

general purpose platforms, and is often reachable over a wide area network. Relying on

the integrity of this nerve center to control the system is a dangerous approach.

2.2.3 Vulnerabilities

In a SCADA system several individual components (sensors, actuators, RTUs, MTU ,

etc.) are bridged through a communication network. While each component plays a promi-

nent role in effective functionality of the entire system, any component that is vulnerable

to common cyber attacks will have a cascading effect on the whole system. For most

of the SCADA networks are protected by software frewalls that act as perimeter [61], a

simple misconfguration of frewall can easily open up back doors for various components

connected through the network.

21

Although the workstations inside the perimeter are protected by individual software

frewalls, a rogue employee may plug a fash drive that carries worm/ virus. Apart from the

frewalls, the critical infrastructure systems are monitored by intrusion detection systems

IDS that continuously monitor for any malicious activity over the network. Most advanced

IDS system can only watch for known vulnerabilities. The ineffectiveness of standardized

security schemes in detecting worms like Stuxnet could cost a lot of fscal damage.

Most of the SCADA systems demand high availability, reliability, timeliness. The ven-

dors of the SCADA systems compete more over the mentioned demands and ignore the

security measures like confdentiality, integrity despite of their usage in critical infrastruc-

ture. The SCADA vendors have little to no response to the known critical public exploits.

A very less number of administrators care about patching their systems against exploits. A

study done by ICS-CERT shows 60% [6] of failure rate in patching process.

Different layers of a Distributed Control System (DCS/ SCADA) system have distinct

known vulnerabilities. These vulnerabilities can be broadly categorized as

1. Network Layer Vulnerabilities

2. Application Layer Vulnerabilities.

2.2.3.1 Network Layer Vulnerabilities

A SCADA network comprise of two major subnets

1. Corporate Network.

2. Control Network.

The components in the control network are entrusted with data acquisition from sensors/

actuators, data logging, data storage in historian, processing the data to issue commands
22

etc. On the other hand the business network / corporate network is involved with the

IT issues like management, planning, customer service, inventory control etc. A proper

communication channel wired/ wireless is in place for data exchange between both of

these subnets. For effective monitoring vendors also provide remote access to the system,

which today can be done using a mobile app over a smart phone.

Several different entry points to the control / corporate network area usually guarded

by a single or multi-layered frewall. In a typical scenario, the control network is protected

by two frewalls,

1. Corporate network frewall

2. Control network frewall

The corporate network is connected to internet which indirectly connects every component

in the control network to the internet, but through one or more frewalls and IDS systems.

Any component in control network (SCADA) that is virtually connected to internet is prone

to all the known / unknown cyber attacks probably with an increased level of diffculty to

penetrate for attackers.

The most widely used RTU technology in SCADA systems vendors utilize the dial up

feature offered to perform a mass / individual update of frmware on these components.

Gaining access to vendor’s internal resources would reduce the complexity for an attacker

to compromise the components in the SCADA system [3]. The communication schemes

widely in practice in today’s industry are a. MODBUS, b. DNP3, c. Zigbee.

The communications protocol widely used in legendary SCADA systems- MODBUS

does not offer any security features. Even the most recent protocol DNP3 offers little to no

23

security. The DNP3 protocol is mostly used by utilities like power industry for communi-

cation of master and remote telemetry units. Zigbee is a wireless communication standard

for SCADA systems that is gaining momentum with little evaluation of its security. In this

protocol a smart energy device is tied with a certifcate with serial number and manufac-

turer. Each device authenticates itself to other using its private key based on the asymmetric

key cryptography [11]. Authors in [27] show different tools like KillerBee [81] to expose

the faws in this communication protocol.

2.2.3.2 Application Layer Vulnerabilities

The SCADA systems are integrated with various software applications and hardware

peripheral devices at application layer such as

1. Database systems like SQL Server for data historian, that are used to store/ retrieve
data for reporting, trending and analysis.

2. Human Machine Interface (HMI) that provides entire / partial state of the system.

3. Remote desktop applications for remote control/ monitor.

4. Hardware includes USB, CD-ROM, multimedia cards etc.

The SCADA systems depend on data historian for trending and analysis. The data col-

lected by the devices is saved to and retrieved from a database. For performing operations

on the database a language SQL (Structured Query Language) is widely used by indus-

try. These databases return a response (a record / set of records) for a query issued as a

command. The SQL based databases are prone to SQL injection attacks, if they are not

maintained properly [82].

24

HMI is an interactive interface for administrator and other personnel who monitor the

SCADA system. Highly complex systems like Nuclear reactors, Air traffc control systems

rely on a HMI to visualize the state of entire system at any given instance. For ease and

accessibility, many vendors of this software provide remote control applications to monitor

the system via an app on a mobile. While the feature provides easy access, it stands out

as huge vulnerability. An adversary only requires the login information to remotely access

the HMI application and issue false commands to destabilize the system.

The access points like workstation’s peripheral devices like USB ports, CD-ROMs,

other device ports are highly vulnerable to malware injections, further gaining control over

the system. Very strict access control mechanisms are required to avoid such attacks.

2.2.4 Attacks on SCADA Systems

With high levels of security and well architectured networks, SCADA systems stood

one of the primary targets of cyber attackers. Attackers are able to enter the core of the

system through various entry points of the system. Most of the attacks surfaced recently

are successfully performed on critical infrastructure like nuclear plants, water management

systems etc.

In 2010, a virus known as Stuxnet - specifcally targeted towards nuclear plants to

shutdown the centrifuges inside the plant and overwrite the setpoints of pressure and other

values was undetected for more than a year duration [40]. Stuxnet was able to use about

twenty zero day vulnerabilities [75] to gain control over the plant. Stuxnet has the potential

to turn off pumps, control actuators, and still report that everything is normal. Now, the

25

popularity of this worm made it available on many blogs and websites. Availability of such

powerful worms could lead to more drastic attacks upon re-engineering.

In November 2011, the Illinois Statewide Terrorism and Intelligence Center reported a

cyber-attack on a small, rural water utility outside Springfeld. The report stated that few

attackers have gained access to the system and controlled the pumps remotely. “ A hacker

calling himself “Prof” posted screen shots from his computer showing him logged onto the

control system of a water utility in the Texas town of South Houston” [77].

In May 2003, Slammer worm related to unpatched version of Microsoft SQL surfaced

and resulted in loss of data. The data acquisition server was infected through the corporate

network when an employee installed the software on his laptop which is the primary entry

point for Slammer worm [44] . The Slammer worm along with other virus has affected a

major petroleum company that resulted in remarkable fnancial damage [65].

Hidden malicious/accidental functionality in any SCADA system component could be

exploited by an attacker to launch attacks such as the above. Such hidden functionality

could exist in (the logic programmed into) programmable logic controllers (PLC) in RTUs

and MTUs, in any computer used to run SCADA software for programming PLCs, or in

any peripheral of the computer running the HMI software or the SCADA data logger, in the

operating system of such computers, in the HMI software, or even, ironically, in a computer

that runs the intrusion detection system (IDS) intended for protecting the SCADA system.

It is indeed for very good reasons that such threats have been recognized as “Advanced

Persistent Threats” [7, 23, 28, 55, 78]. Due to the high value of targets, the possibility of

sophisticated state sponsored attacks have to be considered. Sophisticated malicious func-

26

tionality may be introduced even during the manufacturing process of various components

that could ultimately end up in SCADA systems. In addition, we can not afford to ig-

nore the possibility that an attacker may have actually participated in the deployment of

the SCADA system, or testing of the deployed system, and taken advantage of such an

opportunity to inject hidden functionality in some component.

2.2.5 Related Work

In the effort towards securing SCADA systems, many security mechanisms are pro-

posed. The emphasis on providing the critical infrastructure requirements like reliabil-

ity, timeliness, availability, etc., overshadows the importance of security. Many secure

strategies developed for critical infrastructure suggest better end to end security and other

schemes of similar nature. A simple attack like turning off an alarm remotely, can invite

more devastating undetected attacks. The fact check that “ Does the system adhere to the

rules laid by its designers, If not, is it detectable ?” is ignored in most of the security

schemes for critical infrastructure.

2.2.5.1 Collaborative, Trust-Based Security Mechanism

Current research towards protection of the critical infrastructure focuses more on com-

munication security and less on the protection of entire system. In a recent work done by

G. Coates and K. Hopkinson, a trust-based security architecture is proposed for securing a

utility network [18]. In their methodology, a trust system is created and added in strategic

locations to protect existing legacy architectures, to enhance security. The trust system is

built with the following characteristics.
27

1. TRUST system is a communication security device, with frewall and intrusion de-
tection capabilities, designed for use with time-critical systems.

2. Trust system, is a software agent performing active security analysis and response.

3. In a network where nodes have suffcient unused hard drive capacity, memory, and
processing power, the agent would be loaded directly onto the node.

4. The agent then provides an active interface between incoming messages and the
nodes code, data, and applications,The emphasis on providing the critical infras-
tructure requirements like reliability, timeliness, availability, etc., overshadows the
importance of security. Many secure strategies developed for critical infrastructure
suggest better end to end security and other schemes of similar nature. A simple
attack like turning off an alarm remotely, can invite more devastating undetected
attacks similar to other software frewalls.

5. The trust system intercepts status messages or commands from network nodes.

6. The trust system validates input, identifes risks and bad data, and initiates appropri-
ate alerts.

7. Trust system thwarts the illegitimate data that does not obey the policies.

8. Trust system provides data fltering feature to guard data from unauthorized person-
nel.

This software agent is simply a collaboration of all the general purpose security fea-

tures like Intrusion detection system, frewalls, access control matrix etc. Authors advise

strategic locations like electronic security perimeter (NIST) [61] for installing this agents.

While such type of trusted agent may be useful for data sanitization and improving the fre-

wall, IDS, and access control mechanisms, it might not be useful in detecting a change of

setpoint made by an attacker, or cannot detect anything about a modifcation of “operation

rule” by an unauthorized personnel.

2.2.5.2 DNP3 Secure Authentication

In an effort to secure the communication over DNP3 protocol, “the user group of DNP3

protocol for SCADA communication has adopted an extension to DNP3 called Secure Au-
28

thentication that meets IEC 62351-5 requirements. This extension is now part of the DNP3

protocol and is also part of IEEE 1815, the IEEE version of DNP3” [11]. In this scheme,

the master station and the RTU share a secret, called update key. For a communication ses-

sion between master terminal and RTU a session key is required for mutual authentication.

The update key is used to compute a session key. After establishing the session secret,

master station or RTU can initiate a challenge-response mechanism to validate authenticity

of sender of the message. “The standard specifes that any message can be challenged, but

all critical messages must be. Critical messages are essentially those that perform some

kind of “write” operation” [11].

2.2.5.3 IEEE SCM

Another ongoing effort towards security in SCADA systems is the IEEE SSPP (Serial

SCADA Protection Protocol). This standard defnes a security protocol for control system

serial communication. “The fundamental objective of SSPP is to ensure the integrity of

SCADA messages, that messages are not forged, modifed, spliced, reordered or replayed.

With an appropriate cipher suite SSPP also provides confdentiality” [2].

The IEEE SCM (SCADA Cryptorgraphic Module) implements a three layer Serial

SCADA Protocol Protection (SSPP) for accomplishing its goals - providing link security

using a BITW approach. At the top is the session layer responsible for formatting methods

and data to be sent in sessions, and for distinguishing between different kinds of messages

and performing session key negotiation and exchange. The transport layer provides cryp-

tographic support for messages passed by the session layer to preserve confdentiality and

29

integrity. The link layer formats the output of the transport layer into octets suitable for

transmission over a communication link.

Ideally, the tasks performed by the SCM should be limited to bare minimum. As the

security requirements for cryptographic operations are different from the requirements for

the performance of auxiliary tasks, they should not be combined in the same module.

2.3 Merkle Hash Tree

A binary Merkle hash tree is constructed using a cryptographic hash function h() (like

SHA-1). A tree with N = 2L leaves has a height L. Let the leaves of the tree be l1 · · · lN .

Let vi = h(li), 1 ≤ i ≤ N be represent N nodes in level-one of the tree (one corresponding

to each leaf). The next level (level 2) of the tree consists of N/2 nodes, each obtained by

hashing a pair of nodes in level 1. At level 3 are N/4 nodes obtained by paired hashing of

the N/2 nodes in level 2, and so on. Level L − 1 has two nodes, and level L has a single

node - the root r of the tree. The root of the tree is a commitment to all leaves.

Corresponding to any leaf li is a set of L intermediate nodes vi (one from each level)

such that r = h0(li, vi), where the function h0() represents a sequence of hash operations.

Specifcally the set of hashes vi are intermediate nodes that can be seen as commitments

to all leaves except li. If h() is pre-image resistant, it is infeasible to “cook-up” a set

of values li
0 , and vi

0 that satisfes r = h0(li, vi). Thus, if provided with values li and vi

satisfying r = h0(li, vi), the entity that possesses r can rest assured that li is indeed a

legitimate leaf of the tree and vi are indeed valid intermediate leaves of the tree.

30

Just as any leaf can be independently verifed against the root, it is also possible to

update each leaf independently. For example, if li is updated to li
0 the root can be updated

to r0 = h0(li
0 , vi) to refect the new leaf li

0 . After the root has been updated, the old leaf li

can no longer be demonstrated to be a part of the tree.

2.3.1 Merkle Tree Limitations

Two well known limitations of the merkle hash tree are i) the power of two require-

ments for the total number of leaves; and ii) the ability to readily recognize non existence

of a record. The implication of the frst limitation is ineffciency in scenarios where the

total number of leaves N is not a power of 2. Specifcally, if 513 records need to be stored,

then a tree of length 1024 need to be maintained.

The second limitation is however more serious. For the module (which maintains only

the root) to be convinced that no record regarding some index a exists, the module should

verify the integrity of every leaf and in this process, deduce that no leaf for a exists. Ob-

viously, this is far from practical. That the module can not verify non existence can be

abused to perform replay attacks.

As a specifc example, consider a scenario where some new information is available

regarding a record for some index a (and thus needs to be updated). However, the untrusted

server (which stores all records) can incorrectly claim that no information exists currently

for a, and request the new information for a to be added as a new record. After this, as both

the old and new records are part of the tree, the server has the ability to advertise either

record.

31

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 la lb lc ld le lf

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve vf

v01 v23 v45 v67 v89 vab vcd vef

v03 v47 v8b vcf

v07 v8f

r

Figure 2.3

A Binary Merkle tree -16 leaves.

32

⎪
⎪

2.3.2 Index Ordered Merkle Tree

The index ordered merkle tree is a simple modifcation to the merkle tree which ad-

dresses both limitations of the merkle tree. In an IOMT a leaf Li (the ithleaf in the IOMT)

associated with data index a is of the form Li = (a, va, a0) where the middle value va is the

data associated with index a, and a0 is the next data-index.

That a leaf Li = (a, va, a0) can be verifed by the module to be consistent with the root

implies that i) a leaf exists for index a, and ii) no leaf exists for any index that falls between

a and a0 . The set of uniquely indexed current leaves is an ordered list where every index

points to the next higher index; the exception is the highest index (address) which wraps

around and points to the least index.

A value x is covered by (a, a0) if (a < x < a0), or (for the wrapped around pair) if

(x < a0 ≤ a) or (a0 ≤ a < x). If a = a0 all values except a are covered, and implies that a

is the only index.

The issues associated with the power of 2 requirement is addressed by simple modif-

cations to hash functions HL() used for deriving a leaf node from an IOMT leaf and HV ()

used for combining two nodes to obtain a parent node. In an IOMT empty leaf is of the

form Li = (0, 0, 0). The function vi = HL(Li) which maps a leaf to a leaf node is defned

as ⎧ ⎪⎨
vi = HL(i, vi, i) = ⎪⎩

h(i, vi, i0)

0

if i 6= 0

if i = 0
(2.1)

33

⎪⎪⎪⎪⎪
⎪⎪⎪⎪⎪

The function HV (u, v) which maps two internal nodes to a common parent is defned as⎧

u if v = 0⎪⎨
p = HV (u, v) = v if u = 0 (2.2)

⎪⎩ h(u, v) if u 6= 0, v 6= 0

Consequently, an IOMT with a root 0 can be seen as a tree with any number of zero leaves

of the form (0, 0, 0).

By performing some simple checks the IOMT ensures that only one leaf can exist for

an index. Specifcally, a leaf with an index c can be inserted only if can be demonstrated

that no leaf with index c exists currently by providing a leaf that covers c. Specifcally, to

insert a leaf for an index c two leaves need to be provided: i) an empty leaf (0, 0, 0) and

ii) a leaf for some other index a - say (a, va, a0) such that (a, a0) covers c. After insertion

the two leaves will be modifed to (c, vc, a0) and (a, va, c) respectively. To insert a leaf with

index a when the root is zero, the root is simply set to HL(a, va, a). Similarly, when a leaf

(x, vx, x0) needs to be deleted a leaf (b, vb, b0) should be provided such that x0 = b. After

deletion the frst leaf becomes (0, 0, 0) and the second becomes (b, vb, x0). To delete a sole

leaf (a, va, a) the current root HL(a, va, a) is set to 0.

Except for the case of insertion of the frst leaf or deletion of a sole leaf, to insert or

delete a leaf two leaves will need to be modifed simultaneously. Two leaf hashes vl and

vr can be simultaneously mapped to the root r by mapping the leaf hashes to the common

parent, and then mapping the common parent to the root. Let vp be lowest common parent

of two leaf nodes vl and vr. More specifcally, let vp = HV (vp
l , vp

r) where vp
l and vp

r are the

34

left and right child of vp. Let vl, vr and vp be a set of hashes satisfying vp
l = f(vl, vl),

rvp = f(vr, vr), and r = f(vp, vp). Thus,

r = f(HV (f(vl, vl), f(vr, vr)), vp) (2.3)

35

CHAPTER 3

TCB FOR UNTRUSTED MIDDLEMAN

The digital information age is characterized by the unprecedented ability of entities

to disseminate and receive digital information using a wide variety of computing devices.

Depending on the specifc nature of the application, the information could take various

forms like stock quotes, audio/video, blog, tweet, post, HTML document, fle, domain

name system (DNS) record, etc, and exchanged over a variety of communication channels.

Irrespective of the nature of the information any such application can be seen as a set of

information sources P and a set of consumers C. Most often, as it is impractical for such

sources and sinks to interact directly with each other, they rely on a middle-man - or more

generally a set of middle-men M.

P C

M

Figure 3.1

PMC Model

36

For example, In the process of disseminating DNS records [43] created by zone author-

ities to any Internet client, DNS servers are middle-men. In a SCADA system, the sensors

are providers, monitor is a middleman, and consumers are actuators. Numerous network

based applications that exist today, and perhaps several application paradigms that may

evolve in the future can be characterized broadly under this provider-middleman-consumer

(PMC) model.

While the issue of securing interactions between providers and consumers have re-

ceived substantial attention, most research merely address the problem of securing the

channels between i) providers and the middle-men, and ii) middle-men and consumers [12]

, [74]. In doing so it is implicitly assumed that the middle-men are trusted. Most often a

middle-man is a server - an untrusted software running on an untrusted platform, under

the control of untrusted entities. The broad focus of the proposed research are security

strategies to prevent potential abuses by identifying minimal TCB for middle-men.

3.1 TCB

A trusted computing base (TCB) [35] is a resource constraint set of software and

hardware that serves as a base for securing a system amidst of untrusted components within

the system.

It is not feasible to verify and certify a large complex application’s software and hard-

ware for its integrity. The verifcation complexity of a software/hardware increases with

its size and complexity. In order to trust a TCB, the hardware and software that constitutes

the TCB should be trusted. Any trusted system should be verifable. As the verifcation

37

complexity increases with the size and complexity , it is important for a TCB to be as sim-

ple as possible with minimal software and hardware. The question is what is the minimal

functionality to be offered by a TCB to amplify the trust and be verifable.

3.2 Minimal TCB

Any security solution is essentially a strategy to realize some assurances relying on

the integrity of a minimal trusted computing base (TCB). More specifcally, the trust in a

few components/entities that constitute the TCB is amplifed using security protocols to

achieve the desired assurances.

Typically, TCB functionality is offered by tamper-responsive trustworthy computing

modules. Examples of trustworthy computing modules include

1. cryptographic co-processors entrusted with the task of protecting and performing
computations using sensitive secrets; and

2. trustworthy platform modules (TPM), which offer the TCBs functionality in the
TPM-TP model.

3.2.1 Read-proofng and Write-proofng

Just as the guaranteed TCB functionality is leveraged to provide some assurances

regarding the security of the system, for realizing the guaranteed TCB functionality, two

fundamental assurances are leveraged.

The frst is read-proofng of secrets protected by the module. This is necessary to ensure

that the modules cannot be impersonated.

38

Readproofing Writeproofing

TCB Functionality

System Security

Figure 3.2

Simplifed Trusted Computing Model

The second is write-proofng of software executed by the module. The software dictates

the TCB functions. Write-proofng software is necessary to ensure that the TCB functions

cannot be modifed.

The two requirements are however not independent. With the ability to modify software

at will, an attacker can force the module to reveal its secrets (for example, by inserting a set

of commands to write the secret bytes out to the serial port). On the other hand, secrets that

are protected can be used to authenticate software that will be executed by a computer in

the module. Without the knowledge of the secret the attacker cannot modify the software

(more specifcally, such modifcations will be detected due to failure of authentication).

In practice read-proofng is seen as a stepping stone to the more elusive goal of tamper-

proofng software. Attacks aimed at modifying software to reveal secrets can be prevented

by ensuring that software does not have access to at least some of the secrets that are pro-

tected. Some secrets may be generated, stored and used by dedicated hardware [54], [37].

However, authenticating software with the secrets provides a boot-strapping problem [67].

39

After all, some software should be loaded (typically the BIOS) which includes instructions

to load the secret and carry out the steps required to perform authentication.

3.3 TCB Models

In the trusted computing group (TCG) [58] specifcation for trusted platforms, trusted

platform modules (TPM) [59] are used to attest measures of loaded software, thereby per-

mitting third parties to verify that only authorized software has gained control of a plat-

form. To leverage TPMs to realize a trusted platform it is (unfortunately) required to trust

several other components of a general purpose computer like CPU, BIOS, RAM, CPU-

RAM bridge, and possibly other peripherals that have direct access to the RAM. Practical

deployments of TCG trusted platforms have been hindered by several factors like i) sev-

eral attacks that have been identifed to violate the envisioned security goals of the TCG

architecture [57]; and that ii) thorough review necessary to pre-certify software (BIOS,

boot-loader, operating system and application software) is far from practical.

The “late launch” feature in the current version of TPMs (version 1.2) in conjunc-

tion with new instructions supported by Intel and AMD processors (Intel-TXT and AMD-

SKINIT) [41] together provide an assurance that a “small piece of application logic (PAL)”

[41] can be run unmolested on a general purpose platform - by trusting only the CPU,

RAM, a CPU-RAM bridge. More specifcally, the BIOS and other peripherals do not

have to be trusted, and all other software that can take control of the platform need not

be verifed/measured. Unfortunately, some attacks have been found against the late launch

architecture recently [79].

40

Another approach is the use of IBM 4758 [54] trustworthy computing module which

sports a general purpose processor inside a protected boundary, runs a specialized operating

system, and can execute special application code unmolested inside the trusted boundary.

In such an approach the minimal TCB for a SCADA monitor can be executed inside such

modules.

In yet another approach, Chavez et al [17] realize a trust anchor through the use of

secure obfuscation techniques to run protected code. Specifcally [17] suggests the use

of such a trust anchor for a SCADA monitor. However, in the preliminary work reported

in [17] does not describe the precise nature of the tasks performed by the trust anchor.

3.3.1 Security Model

In the envisioned security model an untrusted middle man U is associated with a

trusted module T. The trusted module is assumed to be severely resource limited, and per-

forms a set of simple tasks T . By performing tasks T module T provides some important

assurances regarding the tasks performed by U.

Data provided by providers to the middle-man U are assumed to be public, and are

authenticated by providers for verifcation by T. Data sent by middle-men to consumers

are authenticated by T to vouch for the integrity of the data. However, the module T will

vouch for the data only if untrusted U can prove to T some properties about the data. Thus,

the purpose of the tasks T performed by the module is simply to verify the proof submitted

by U.

41

P C

M \ U

U T
open channel

Figure 3.3

Security Model

3.4 Critical Infrastructures from the perspective of module T

Numerous CI applications that fall under the provier-middleman-consumer (PMC)

model can be classifed into several categories depending on the nature of data, the set of

data identifers, and the specifc tasks performed by middle-men.

3.4.1 Static vs Dynamic Data

Data pertaining to an identifer may be static or dynamic. Static data has a well defned

expiry period (which can be infnite) and cannot be revoked prematurely; dynamic data can

be revoked prematurely. An example of static data is an address-type DNS record (with a

pre-specifed life-time). In scenarios where it is impractical to foresee the validity duration

of data, it is necessary to treat the data as dynamic. An example of dynamic data is routing

information; the route to some destination may change prematurely due to unforeseen

changes in the network topology.

42

3.4.2 Static vs Dynamic Data Identifers

The data identifers may themselves be static or dynamic. For example, at the top

level of the domain name system, the same set of DNS records (corresponding to top-level

domains and country-code domains) are held by root servers. However at lower levels of

DNS, as new zones could be introduced at any time, the identifers are dynamic. Thus, the

data at top-most level of DNS is an example of static data with static identifers. Data at

lower levels of DNS are examples of static data with dynamic data identifers.

An example of a system with static identifers and dynamic data is a SCADA system.

In such a system a fxed number of sensors are information sources that provide dynamic

measurements. A central monitor (middle-man) processes the data to check if the moni-

tored system is in an acceptable state. If not, an alarm should be triggered. In this case the

alarm module can be considered as the consumer of data.

3.4.3 TCB Tasks

Depending on the nature of application and functionality of middleman, the tasks of a

TCB bound to middleman can be classifed as a. Stateless, b. Stateful.

3.4.3.1 Stateless TCB

In several applications middle-men simply store and relay data. In such applications,

on receipt of a query for a data with a specifc identifer, the middle-men is expected to

provide the requested data.

43

The modules associated with such middlemen do not have to be aware of the exact

nature or format of the data. The modules do not store any data that is specifc to the

application and hence stateless. Examples of such applications include well know services

like WWW, DNS, Email, and so on.

The stateless TCB approach does not suit the applications with dynamic data. For

example, if a zone authority is allowed to add records, or a web service that provides

updates of stock quotes etc. The Stateless TCB does not maintain any state of the system.

In other words, a Stateless TCB does not store any data pertaining to the application.

Our approach towards securing DNS through a Stateless TCB by performing a simple

atomic relay is provided in Chapter 4.

3.4.3.2 Stateful TCB

In some applications, when queried for a data corresponding to some identifer, middle-

men may need to process data associated with multiple data identifers to respond to the

query. In such cases, in order to assure the operations performed by the middle-man, the

module T may require to perform some additional application-domain specifc functions.

Examples of such services include web-brokering (matching a clients request with many

possible service offerings), and SCADA systems (where the monitor has to check data

from all sensors to decide if the system is in an acceptable state), and a dynamic lookup

service (unlike static DNS, the data in the records is dynamic / expire prematurely).

Our approach towards securing SCADA systems through a TCB performing trusted

process check is provided in Chapters 6, 7. A generic solution by using Stateful TCB

44

is provided for data dissemination systems with dynamic data, dynamic identifers, and

dynamic consumers is given in Chapter 5

45

CHAPTER 4

ATOMIC RELAY FOR DNS

DNSSEC has seen poor levels of adoption as upgrading a “plain-old” DNS server to

support DNSSEC will often necessitate a hardware upgrade due to an order of magnitude

increase in the size of DNSSEC records (compared to plain DNS records), and substantial

increase in the size of DNS responses [5]- [22]. In many cases DNSSEC may require more

expensive TCP instead of UDP as the transport protocol for carrying large DNS responses.

DNS resolvers and clients will also need to endure substantial computational burden due

to the need to verify multiple digital signatures. Furthermore, the feasibility of zone enu-

meration also encourages attackers to perform supercilious queries, thus exacerbating the

issue of high DNSSEC overhead.

4.1 Extending Link-Security Approaches

Cryptographic mechanisms for individually securing each link traversed by DNS records,

viz., the links i) between the off-line zone authority and ANSs of the zone (for securely con-

veying master fles); ii) between PNSs and ANSs; and iii) between clients and their PNSs,

demand substantially lower overhead compared to the hierarchical PKI-like approach em-

ployed by DNSSEC. Unfortunately, link-security approaches implicitly assume that the

46

middle-men are trustworthy: while RRs are protected in transit, there is no protection for

RRs while they reside in the DNS servers.

Specifcally, symmetric key DNSSEC [56] and DNSCurve [12] simply assume that

1) the keys employed by DNS servers (which are used to compute the link secrets) are

well protected from untrustworthy entities (else, any entity with access to the secrets of a

DNS server can impersonate the DNS server to send fake RRs); and that

2) the intermediary DNS servers i) will not modify RRs, and ii) will not deny RRs that

do exist.

The proposed TCB-DNS, where every DNS server houses a low complexity trustwor-

thy module (TM), is also a link-security approach. However, TCB-DNS does not make

such unjustifable assumptions regarding the trustworthiness of DNS servers. Instead,

TCB-DNS assumes that

1) secrets protected by the TM (which are used to compute link-secrets) cannot be

exposed; and

2) the trivial functionality of the TM cannot be modifed.

To warrant trust, an obvious requirement is that the TM functionality is as simple as

possible. To motivation for TCB-DNS stems from the intuition that TMs that perform

trivial functions are suffcient to provide the desired assurances A1, A2 and A3.

4.2 Principle of Operation

In TCB-DNS every DNS server is equipped with a low-complexity TM. From the

perspective of DNS servers, the TMs are black boxes that accept a formatted stream of bits

47

as input, and output a message authentication code (MAC). Such MACs accompany plain

DNS responses sent by DNS servers. The operations performed inside the TM (to map the

input bits to a MAC) are a fxed sequence of logical and cryptographic hash operations.

This simple TM functionality is the TCB of a DNS server, which is leveraged to realize all

three assurances A1 - A3 with negligible overhead.

4.2.1 Atomic Relay

In the path of a RRSet originating from zone authority Z to the client (a stub-resolver

C), are an ANS for the zone Z and the PNS used by the host C. An atomic relay, as the

name suggests, relays a value from one entity to another, in one atomic step. A TM A in

the ANS performs an atomic relay of a value V from the zone authority Z to a PNS TM

P , thus eliminating the need to trust the ANS in which the TM A is housed. Similarly

the TM P in the PNS performs an atomic relay of the value V from the ANS TM A to a

stub-resolver C, eliminating the need to trust the PNS.

From the perspective of the TM A, it receives some input bits which specify the identity

of the source Z, a value V to be relayed, a message authentication code (MAC) MV,ZA,

and the identity of the entity P to which the value V needs to be relayed. The TM A uses

its secrets to compute pair-wise secrets KZA and KAP (the precise mechanism for doing

this is explained later Section 4.3.1). Using the pair-wise secret KZA, TM A verifes the

MAC MV,ZA = h(V, KZA) appended by Z. Following this, the TM A computes a MAC

MV,AP = h(V, KAP) using the secret KAP .

48

The values relayed by TMs are hashes of RRSets. The hashes of RRSets are computed

by zone authorities and individually authenticated to each ANS TM using MACs. ANS

TMs can atomically relay the hashes to any PNS TM which can then atomically relay the

hash to any stub-resolver. The TMs thus provide a parallel channel for securely conveying

hashes of RRSets by leveraging link-secrets (which are computed using secrets protected

by the TM).

Note that in both DNSSEC and TCB-DNS end-to-end integrity of an RRSet is real-

ized by securely conveying a pre-image resistant hash of the RRSet. In DNSSEC this is

achieved by signing the hash. In TCB-DNS the integrity of the hash is assured to the extent

we can trust the TMs involved in relaying the hashes.

DNSSEC provides assurance A1 by signing hashes of regular DNS RRs, and provides

assurance A2 by signing hashes of NSEC/NSEC3 RRs. Obviously, by atomically relaying

the hashes of regular RRSets and NSEC/NSEC3 records, TCB-DNS can also provide both

assurances provided by DNSSEC. However, a simple addition to the capability of the TMs

can provide TCB-DNS with yet another useful feature - the ability to provide assurance

A3, and thereby eliminate the possibility of DNS-walk.

4.2.2 “Intelligent” Atomic Relay

If we merely relay hashes of NSEC/NSEC3 records, then TCB-DNS will also be sus-

ceptible to DNS-walk. Fortunately, to realize assurance A3, the only additional intelligent

feature required of TMs is the ability to recognize that “a value V falls inside an enclosure

(Vl, Vh).”

49

The atomic relay function performed by a TM with identity X , takes the form

MXD = ARX (S, D, V, Vl, Vh,MSX). (4.1)

In executing this TCB function the TM X accepts some fxed-length inputs like i) S and

D: the identities of a source and destination; ii) cryptographic hashes V , Vl, and Vh; and

iii) a MAC MSX provided by the source S. The TM outputs a MAC for the value V under

two conditions:

1. the MAC MSX is consistent with V ; or

2. the MAC MSX is consistent with values Vl k Vh, and V is enclosed by (Vl, Vh).

In the latter case, the TM interprets a pair of values (Vl, Vh) authenticated by the zone

authority as proof that no value enclosed by (Vl, Vh) exists in the master fle. If V is

enclosed, the TM outputs a MAC for V to inform D that an “enclosure for V was found.”

In DNSSEC that a value V is enclosed by (Vl, Vh) is checked by the querier. The need

to reveal the enclosures to the querier is the reason that assurance A3 cannot be provided.

In TCB-DNS the enclosure is checked by the ANS TM (not provided to the querier). To

the extent that the TM can be trusted, the querier trusts that an enclosure exists for the value

V (and consequently, is convinced that an RR with the name corresponding to V does not

exist).

More specifcally, in TCB-DNS,

1) if the queried name and type exists the response includes the desired RRSet in the

ANSWER section; a MAC for a value V (where V is hash of the RRSet) is also included in

the response.

50

2) to deny a name and type ni k ti the ANSWER section indicates the name and type

ni k ti; the MAC for the value V = h(ni k ti) is included in the response to imply that the

indicated name and type does not exist.

Typically, to provide authenticated denial for a queried name-and-type, a plurality

name-and-types will have to be explicitly denied (as will be explained later in Section 4.6.1).

4.3 Computing Link Secrets

For performing the atomic relay, a TM needs to compute two pairwise secrets - one

shared with the sender (the previous hop), which is used to verify the hash V (or the

encloser (Vl, Vh) for authenticated denial), and one shared with the destination (the next

hop). Specifcally,

1. ANS TMs require the ability to establish a pairwise secret with i) the zone authority
for receiving hashes of RRSets, and ii) all PNS TMs for securely conveying hashes
of RRSets.

2. PNS TMs require the ability to establish a pairwise secret with i) all ANS TMs for
receiving hashes, and with ii) all clients who employ the PNS for conveying the
hashes.

For reducing TM complexity it is essential to identify a low complexity mechanism for

computing pairwise secrets. While many effcient strategies exist, the modifed Leighton-

Micali scheme (MLS) proposed in [49] is particularly well suited for establishing pairwise

secrets between TMs in DNS servers (between a large number of ANS TMs and a large

number of PNS TMs). We also extend MLS to facilitate link-secrets between i) zone

authorities and ANS TMs and ii) between PNS TMs and clients.

51

4.3.1 MLS

Let KX represent a secret privy only to an entity with identity X and a key distribution

center (KDC). Similarly, let KY represent a secret known only to an entity Y and the

KDC. In MLS, the secret shared between two entities X and Y is KXY = h(KX , Y) or

KY X = h(KY , X).

If the pairwise secret is KXY = h(KX , Y), then entity X computes the pairwise secret

by directly hashing its secret KX ; entity Y employs a public (non-secret) value PY X =

h(KX , Y) ⊕ h(KY , X) to compute KXY = h(KXY) as

KXY = h(KY , X) ⊕ PY X

= h(KY , X) ⊕ h(KX , Y) ⊕ h(KY , X)

= h(KX , Y). (4.2)

On the other hand, if the pairwise secret is KY X = h(KY , X), entity Y computes the pair-

wise secret directly, and entity X employs the public value PY X = h(KX , Y)⊕h(KY , X).

MLS is an identity-based scheme, where the identity assigned to an entity can be chosen

to refect the credentials of the entity. For example, the identity of a zone authority can

simply be the hash of the name of the zone. In MLS some bits of the identities (say of two

entities X and Y) are also used to determine which of the two entities should employ the

pair-wise public value.

52

4.3.2 Key Distribution for TCB-DNS

In TCB-DNS the KDC can be entity under the control of a regulatory authority (for

example, ICANN). The core TCB-DNS entities are TMs associated with DNS servers.

The fringe TCB-DNS entities include zone authorities (who need to securely convey RRs

to ANSs) and clients (stub-resolvers) who query DNSs. Pair-wise secrets for TCB-DNS

can be i) between two core entities (between two TMs), or ii) between a core entity and a

fringe entity.

For the former case, a sequence number included in the TM identity specifes which of

the two core entities should use the public value to compute the pairwise secret. For the

latter (pairwise secret between a core entity and a fringe entity) the fringe entity employs

the public value - the core entity does not.

The identity X of a TM (associated with an ANS or a PNS) is of the form X = Xt k qx

where Xt is a succinct code describing the nature of X and duration of validity; the value

qx is a unique number assigned sequentially to every DNS server TM. To establish a secret

between TMs X = Xt k qx and Y = Yt k qy where (say) qx < qy, Y is required to use

the value PXY to compute the pairwise secret KXY ; X can compute KXY directly using

its secret KX .

The TCB-DNS identity Z of a zone authority is of the form Z = Zt k Zname where

Zname is a one-way function of the domain name of the zone. To enable Z to compute a

pairwise secret KZA with an ANS TM A the zone authority is issued

1. a secret KAZ = h(KA, Z) by the KDC, or

2. a secret KZ , along with a public value PZA; or

53

3. a TM with identity Z (with secret KZ stored inside the TM), along with a public
value PZA.

In the TCB-DNS identity of a client C = Ct k C 0 , C 0 can be a unique random value. If

P is the identity of a TM in a PNS used by the client C the client C is issued i) a secret

KPC = h(KP , C) or ii) a secret KC and a public value PCP .

Thus, once keys have been distributed to TCB-DNS entities, computing any link-secret

will require the TM to only perform a single hash computation (or a hash computation and

an XOR operation). Periodically, the KDC disseminates signed revocation lists indicating

identities of entities revoked.

Note that unlike the “basic” key distribution scheme for a static network of size N

(where each node is issued N − 1 secrets) MLS can cater for a dynamic network - as new

core entities (DNS server TMs) can be added at any time. In the basic scheme, to add a

new node every old node should be provided a new secret, which is impractical. In MLS

the new node is provided with one public value corresponding to every “old” node - old

nodes do not need a public value to establish a secret with newly added nodes.

4.3.3 Multiple KDCs

At the top of the hierarchy of DNSSEC is a single root CA - which is the authority

for the root zone. Though the root zone is expected to sign only public keys for gTLD

and ccTLD zones, the all powerful root zone authority has the ability to misrepresent

public keys for any zone. While ideally we would desire that this power be distributed

amongst multiple independent entities, such an approach can further increase the overhead

for DNSSEC.
54

However, MLS can be easily extended to support multiple KDCs with minimal over-

head. If we use m (for example, m = 4) independent KDCs, an entity X receives m

secrets (one from each KDC), KXi , 1 ≤ i ≤ m. Two entities X and Y can com-

pute m independent pairwise secrets of the form K i
XY , 1 ≤ i ≤ m (one in each of the

m parallel systems). All these secrets are simply XORed together to compute KXY as

= K1 ⊕ K2 · · · ⊕ KmKXY XY XY XY .

The secret Ki can be computed only by X , Y , and the ithKDC. The secret KXY = XY

K1 ⊕ K2 · · · ⊕ Km can be computed only by TMs X and Y (and together, by all mXY XY XY

KDCs). While there are m public values associated with each secret, the m values can be

XORed together and stored as one value; for example, PXY = P 1 ⊕ · · · ⊕ P m
XY XY , where

P i k Y) ⊕ h(KYi k X).XY = h(KXi

Thus, a TM with identity X stores m secrets KXi , 1 ≤ i ≤ m inside its protected

boundary. To enable the TM to compute KXY , the entity (DNS server) using the TM

X provides two inputs: (Y, PXY). The TM performs m hash operations and m XOR

operations to compute

KXY = h(KX1 , Y) ⊕ · · · ⊕ h(KXm , Y) ⊕ PXY

= K1 ⊕ · · · ⊕ Km (4.3)XY XY

In the rest of chapter we shall use the notation KXY = F (Y, PXY) to represent the process

of computing the pairwise secret KXY by entity (or TM) X .

55

4.3.4 Renewal

For renewal of secrets of a TM X = Xt k qx the regulatory authority simply issues

a new TM with TCB-DNS identity X 0 = Xt
0 k qx

0 , with secrets KX0
1
· · · KX0 .

m If at the

time of renewal, the last issued sequence number was q, the new TM is issued a sequence

number qx
0 = q + 1. The owner of the TM is issued q public values (where each public

value is the XOR of m public values). If the secrets of an ANS TM A is renewed, only the

zone authorities using the ANS need to be issued new public values for A. If the TM P

of a PNS is renewed, only the clients who use the PNS are issued with new public values

corresponding to P .

More specifcally, a node with sequence number q is the qthnode to join the network,

and is issued one secret and q − 1 public values (or m secrets and q − 1 public values if

we use multiple KDCs). For renewal we simply add a new node. The public values are

the same size as the pair-wise keys (say 160-bits). A DNS server with a TM sequence

number 10 million will need access to at most 200 MB of storage for public values (which

can easily be stored in the hard-disk of the DNS server). There is no practical limit on the

number of fringe entities (zone authorities and clients). Each fringe entity requires access

only to a small number of public values (as they need to establish a pairwise secret only

with a small number of core entities - zone authorities with TMs of all ANSs for the zone,

and clients with all its PNSs).

56

4.4 The TCB-DNS Protocol

In this section we begin with a detailed specifcation of the atomic relay algorithm.

We then we outline the operation of TCB-DNS by outlining the steps for creating TCB-

DNS master fles (in Section 4.4.2) and illustrating the sequence of events in typical a

query-response process (in Section 4.4.3).

4.4.1 The Atomic Relay Algorithm

A TM with identity X stores a secret KX inside its protected boundary - which is

known only to TM X and the KDC. To relay a value from S to D the TM requires to

compute secrets KXS and KXD. For this purpose the TM needs two additional inputs -

public values PXS and PXD. Thus, the atomic relay function of a TM X takes the form

MXD = ARX ((S, PXS), (D, PXD), V, Vl, Vh,MSX)

In a scenario where X does not require to use a public value to compute KXS , the input

PXS = 0 is provided to the TM (as XOR-ing by 0 leaves a value unchanged). It is the

responsibility of the (untrusted) DNS server to store and provide appropriate public-values

to its TM; if a DNS server provides incorrect public values to its TM the MAC will be

rejected by the next-hop1 which verifes the MAC.

The TM X accepts a formatted stream of bits bi = (S k PXS) k (D k PXD) k V k

Vl k Vh k MSX as input from the DNS server which houses the TM; the TM performs a

simple sequence of logical and cryptographic hash operations, and outputs a MAC MXD

1If the next-hop is a PNS, when an invalid response is received, the PNS will send the query again or
query another ANS. Similarly if the next-hop is a stub-resolver C, then C will resend the query or query
another PNS.

57

or a fxed constant ERROR.. An algorithmic description of the sequence of operations is

depicted in Figure 4.1.

ARX(S, PXS , D, PXD, V, Vl, Vh,MSX) {
KXD = F (PXD, D);
IF (S == X);

RETURN h(V ‖ KXD);
KXS = F (PXS , S);
IF (Vl == 0)

Vi = V ;
ELSE IF (((Vl < V) ∧ (V < Vh)) ∨ ((V > Vl) ∧ (Vl > Vh)))

Vi = h(Vl ‖ Vh);
ELSE RETURN ERROR;
IF (MSX ! = h(Vi ‖ KSX));

RETURN ERROR;
RETURN MXD = h(h(S ‖ V) ‖ KXD);
}

Figure 4.1

Atomic Relay Function

As shown in the algorithm in Figure 4.1, the TM computes the pairwise secret KXD

for authenticating TM output to destination D. If S = X (source is indicated as the TM

itself), the TM construes this as a request to output a MAC h(V k KXD) verifable by D.

This feature, as we shall see soon, permits zone authorities to use DNS TMs for protecting

zone secrets.

58

In general (for S 6= X) the TM proceeds to compute the pairwise secret KXS required

for validating the inputs (V , Vl and Vh authenticated by source S using a MAC MSX :

1. if Vl is zero the TM verifes that the MAC MSX is consistent with V and KXS ;

2. if the value Vl is non-zero, the TM verifes that i) the input MAC MSX is consistent
with the two values (Vl k Vh), and ii) that V is enclosed by (Vl, Vh). A value V is
enclosed by (Vl, Vh) if Vl < V < Vh. If Vl > Vh then V is enclosed by the “wrapped
around” pair if V > Vl > Vh or V < Vh < Vl.

On successful verifcation the TM outputs a MAC for the value (S k V) computed using

the pairwise secret KXD between X and D.

For ease of following the discussion in the rest of this section, note that

MZA,V = ARZ (Z, 0, A, PZA, V, 0, 0, 0)

= h(V k KZA) (4.4)

is a MAC for a value V computed by a TM Z (for verifcation by a TM A). We shall see

soon that zone authorities can employ TMs in this fashion to authenticate hashes of RRSets

for verifcation by ANS TMs. Also note that

MAP,VZ = ARA(Z, 0, P, PAP , V, 0, 0,MZA,V)

= h(h(Z k V) k KAP) (4.5)

is a MAC computed by TM A which can be verifed by an entity P . The MAC represents

A’s claim that “a value V was received from Z.” If the MAC is verifable, to the extent P

trusts A, P can accept the claim that the value V was provided by Z.

Finally,

MAP,V 0 = ARA(Z, 0, P, PAP , V 0, Vl, Vh,MZA,V 0)Z

= h(h(Z k V) k KAP) (4.6)
59

is also a MAC verifable by an entity P ; on successful verifcation, P concludes that “a

value V was received from Z.” P does not need to differentiate between the two cases. In

the former case, V was explicitly conveyed to A by Z through a MAC MV,A. In the latter

case, V is any value, not explicitly conveyed by Z, but happens to fall within an enclosure

(Vl, Vh) (and the enclosure is authenticated by Z using MAC MV 0,A).

4.4.2 Preparation of TCB-DNS Master File

Consider a zone example.com, which employs ANSs with TMs A and B for the

zone. The sequence of steps performed by the zone authority to prepare a master fle are as

follows. Let the TCB-DNS identity of the zone be Z where Z = Zt k Zname, where Zname

is the hash of the name of the zone (example.com). Recall that Zt includes a succinct

representation of the time of expiry of the secrets assigned to Z.

1 Prepare a regular plain DNS master fle. Some of the required additions to plain

DNS RRs are as follows:

1. Each RR will indicate an absolute value of time as the time of expiry. This value can
be a 32-bit value like UNIX time, and can be different for each RR. In general the
time of expiry of any RR should not be later than Zt.

2. NS-type RRs (which indicate the name of an ANS) includes two additional values

(a) the TCB-DNS identity of the ANS-TM, and

(b) the value Zt (note that from the name of the zone in the NS RR, one can com-
pute the value Zname; along with the value Zt the TCB-DNS identity of the
zone can be computed as Z = Zt k Zname).

In general, a RRSet R has multiple RRs with the same name and type, and each RR

indicates its own a time of expiry.

60

https://example.com
https://example.com

⎪
⎪

2 Let r be the total number of RRSets. For an RRset R with name nj and type tj

compute i) the hash of the RRSet vj = h(RRSet); and ii) u0
j = h(nj k tj k τ), where τ is

the time at which the authentication for all enclosures expire. Repeat for all r RRSets.

3 Sort the hashes u1
0 · · · ur

0 in an ascending order; Let the sorted hashes be u1 · · · ur.

Now, compute values d1 · · · dr as⎧ ⎪⎨ h(uj k uj+1) j < r
dj = (4.7)⎪⎩ h(ur k u1) j = r

Note that for the last “wrapped around” enclosure (ur, u1) the frst value ur is greater than

the second (u1).

4 For each of the 2r + 1 values in {v1 · · · vr, d1 · · · dr, τ} compute MACs MZA,i =

h(vi k KZA), 1 ≤ i ≤ r, M 0 = h(dj k KZA), 1 ≤ j ≤ r, and MZA,τ = h(τ k KZA). IfZA,j

the zone authority Z employs a TM Z then a MAC like MZA,i = h(vi k KZA) is computed

by using the atomic relay function of the TM as

MZA,V = ARZ (Z, 0, A, PZA, vi, 0, 0, 0)

= h(vi k KZA). (4.8)

Prepare a supplementary master fle with

1. the values (τ, MZA,τ);

2. r rows of the form (i, MZA,i), 1 ≤ i ≤ r, and

3. r rows of the form ((uj , uj+1),M
0), 1 ≤ j ≤ r,ZA,j

5 Provide the supplementary master fle to ANS with TM A along with the regular

master fle. The zone authority repeats step 4 for ANS B to create a supplementary master

fle with values (τ, MZB,τ); r rows (i, MZB,i), and r rows ((uj , uj+1),M
0).ZB,j

61

4.4.3 Verifcation of RRSets

We shall consider a scenario where an ANS with TM A is queried for an RRSet

cad.example.com,A by a PNS with TM P . Let us further assume that the query was

initiated by a stub-resolver C.

4.4.3.1 Events at ANS with TM A

Let the identities A and P of the TMs be A = At k qa and P = Pt k qp. If qp < qa

(sequence number of P is less than that of A) the ANS fetches PAP from storage (else

PAP = 0). If the queried name and type (ni, ti) exists, or if a suitable delegation exists, the

ANS

1. extracts the RRSet from the plain DNS master fle, and computes the hash of the
RRSet, vi;

2. extracts the MAC MZA,i for vi from the supplementary master fle;

3. requests TM A to compute

MAP,i1 = ARA((Z, 0), (P, PAP), vi, 0, 0,MZA,i)
= h(h(Z k vi), KAP). (4.9)

In the response sent to the PNS, the ANS includes the RRSet in the ANSWER section along

with the value MAP,i1 . If the response is a delegation, the NS RRSet can be included in the

AUTHORITY section along with the value MAP,i1 . The TM A does not know, or care, if the

response is an answer or a delegation.

To deny a name-and-type (ni, ti),

1. ANS extracts the values (τ, Mτ,ZA) from the supplementary master fle for zone Z.

2. ANS computes vi = h(ni k ti k τ);

62

3. ANS fnds encloser for vi (say (uj , uj+1)), and corresponding MAC MZA,j from the
supplementary master fle;

4. ANS requests TM A to compute MAP,τ1 and MAP,i1 as

MAP,τ1 = ARA((Z, 0), (P, PAP), τ, 0, 0,MZA,τ)
= h(h(Z k τ),KAP)

MAP,i1 = ARA((Z, 0), (P, PAP), vi, uj , uj+1,MZA,j)
= h(h(Z k vi),KAP).

For reasons that will be explained later in Section 4.6.1, typically the ANS will need to deny

multiple name-and-type values in a response. Let us assume that q name-and-type values

need to be denied. For each such name-and-type (nl, tl) the ANS computes vl = h(nl k

tl k τ), fnds an encloser for vl and the corresponding MAC in the supplementary master

fle, and requests the TM to compute MACs of the form MAP,l1 (each of the q requests are

made independently - each request results in the use of the atomic relay function ARA()

by the TM A).

In the response sent to the PNS the ANS includes (in the ANSWER section)

1. values τ and MAP,τ1 ,

2. q denied name-and-type values ni k ti,

3. q MACs of the form MAP,i1 .

4.4.3.2 Events at the PNS with TM P

Before the PNS had sent a query to the ANS for a name and type belonging to zone

Z, the PNS would have queried an ANS for the parent zone of Z - say W = Wt k Wname,

and obtained an NS-type RRSet for the name Zname (where Z = Zt k Zname).

63

Let us further assume that the NS-type RRSet was authenticated by a TM G = Gt k qg

(housed in an ANS for the zone W). In other words, the PNS would have received a value

MGP,j1 to authenticate the NS-type RRSet, where

MGP,j1 = h(h(W k vj), KGP), (4.10)

and, vj is the hash of the NS-type RRSet.

In TCB-DNS, the PNS is expected to verify the NS RRSet before sending a query to

the delegated server. In this case, where the PNS had chosen to approach the ANS A for

the zone Z (based on the information included in the NS-type RRSet authenticated by G)

the PNS computes vj1 = h(W k vj), and requests its TM P to compute

x = ARP ((G, PGP), (A, PPA), vj1 , 0, 0,MGP,j1) (4.11)

As long as x 6= ERROR, the PNS considers the NS records to be valid.

Similarly, prior to querying G (ANS for W , the parent of Z) the TM would have

received a response from an ANS for the parent of W (unless W is the root zone which has

no parent - in our case W is the gTLD zone .com). Such a response from an ANS of W ’s

parent zone would have also been verifed as above before a query was sent to G. Thus,

after the response from the parent zone W was verifed, the PNS P had sent a request to A

for a name and type under zone Z.

TCB-DNS does not require queries to be authenticated. Queries merely indicate the

TCB-DNS identity of the querier.

Now, after the response is received from A, the PNS P has all the necessary information

to send the answer to the stub-resolver C which initiated the query.
64

Typically, the PNS will need to include an RRSet in the ANSWER section (along with a

MAC computed by its TM P). For responses containing authenticated denial for q name-

and-types the response will include q + 1 values authenticated individually using q + 1

MACs. For both cases, an NS-type RRSet will be included in the AUTHORITY section

indicating ANS for the zone, along with a MAC computed by the TM P .

More specifcally, the hash of the RRSet in the ANSWER section is relayed atomically

from A to C, by P . Similarly, for authenticated denial, the q hashes corresponding to

multiple non-existing names, and the value τ , are relayed atomically from A to C by P .

The hash of the NS-type RRSet is however relayed atomically by P from G to C.

For example, to relay the RRSet with hash vi received from A the PNS frst hashes the

RRSet to obtain vi and requests its TM to compute

MP C,i2 = ARP ((A, PPA), (C, 0), vi1 , 0, 0,MAP,i1)

= h(h(A k vi1) k KPC)

= h(h(A k h(Z k vi)) k KPC) (4.12)

If the hash of RRSet vi computed by the PNS is not the same as the one authenticated by

the zone authority Z, the MAC MAP,i1 will be found inconsistent by the TM P , which will

return ERROR.

Similarly, to relay the NS-type RRSet received from G along with a value MGP,j1 , the

PNS hashes the RRSet to obtain vj , and uses its TM P to compute2

MP C,j2 = ARP ((G, PPG), (C, 0), vj1 , 0, 0,MGP,j1)
2The value W is obtained from the NS type RRSet for the parent zone W , which was obtained by

querying W ’s parent - the root.

65

= h(h(G k vj1) k KPC)

= h(h(G k h(W k vj)) k KPC) (4.13)

The response from the PNS to C thus includes

1. the NS-type RRSet (with hash vj) for Z along with the values W , G and MP C,j2 in
the AUTHORITY section, AND

2. the queried RRSet with hash vi, along with a MAC MP C,i2 , and the identity A of the
ANS, OR

3. authenticated denial of q name-and-type values (by including q + 1 values and q + 1
MACs), and the identity A of the ANS.

If the parent zone W does not support TCB-DNS (the ANS for W is not equipped with a

TM) then the NS RRSet is relayed without any TCB-DNS authentication.

4.4.3.3 At the Stub-Resolver C

The stub resolver performs the following steps:

1 Extracts name of zone from the AUTHORITY section; hashes name to compute Zname

and hence Z = Zt k Zname;

2 If the NS RRSet in the AUTHORITY section has TCB-DNS authentication

1. Client C computes the hash vj of the NS-type RRSet in the AUTHORITY section and
verifes that MP C,j2 = h(h(G k h(W k vj)) k KPC).

2. Parses W as W = Wt k Wname and verifes that Wname is a legitimate parent of
Zname.

3 C verifes that Zname is a legitimate parent of the queried name.

66

4 C verifes that name of the zone is a parent of the queried name3 in the ANSWER

section;

5 If the ANSWER is the desired response, hash the RRSet to compute vi; compute

vi1 = h(Z k vi), vi2 = h(A k vi1), and using key KCP verify that MP C,i2 = h(vi2 k KPC).

6 If the ANSWER is an authenticated denial indicating q values of the form ni k ti, for

each of the q values compute vi = h(ni k ti k τ), vi1 = h(Z k vi), vi2 = h(A k vi1), and

verify that MP C,i2 = h(vi2 k KPC).

RRs which have expired (as indicated by time-of-expiry feld added to each RR in an

RRSet) will be ignored. If the ANSWER section indicate authenticated denial and the value

τ smaller than the current time, the response is ignored. If any of the TMs A and P and G

involved in relaying the RRSets has been revoked by the KDC, the RRSet is ignored.

4.4.4 Proof of Correctness

Consider a scenario where the verifer C determines that the set of values {Z, A, vi,MP C,i2 }

satisfy

MP C,i2 = h(h(A k h(Z k vi)) k KPC). (4.14)

In concluding that the RRSet (with hash vi) in the ANSWER section was indeed created by

the zone authority Z (as indicated in the AUTHORITY section), TCB-DNS assumes

1. the integrity of TMs A and P : more specifcally, i) secrets assigned to TMs are not
privy to other entities, and ii) the atomic relay function cannot be modifed;

3Just as there is nothing that stops an authority of example.com from signing an RRSet for
www.yahoo.com in DNSSEC, in TCB-DNS a zone authority can authenticate any value. How-
ever, resolvers will not accept RRSet as valid as Zname = h(example.com) is not a parent of
www.yahoo.com.

67

www.yahoo.com
https://h(example.com
www.yahoo.com
https://example.com

2. the keys of the zone authority Z (possibly protected by a TM Z) are not privy to
anyone else; and

3. the hash function h() is pre-image resistant.

With these assumptions, it is easy to see that:

1. as the hash function h() is pre-image resistant, the value MP C,i2 was computed by
an entity with access to the secret KPC (thus the verifer can conclude that the value
MP C,i2 was computed by TM P);

2. the TM P can compute MP C,i2 only if it was provided values vi1 = h(Z k vi) and
MAP,i1 , satisfying MAP,i1 = h(vi1 k KAP);

3. only TM A could have computed the value MAP,i1 provided to P ;

4. TM A can compute MAP,i1 only if it was provided values {vi,MZA,vi } satisfying
MZA,vi = h(vi k KZA).

5. as only Z has access to secret KZA, the value vi was created by Z.

Note that to conclude that “value vi was indeed created by Z,” it is not necessary that the

parent zone W supports TCB-DNS. However, it is indeed desirable that all zones adopt

TCB-DNS. If the parent zone also supports TCB-DNS, then the client can also verify the

integrity of the NS RRSet for zone Z, and thereby confrm that A is indeed a TM associated

with an ANS for the delegated zone Z.

4.5 Practical Considerations

TCB-DNS can be implemented with minimal modifcations to current DNS servers.

The specifc modifcations required to support TCB-DNS are as follows:

1. Every RRSet will indicate an absolute time of expiry (say, 32-bit UNIX time) speci-
fed by the zone authority; this value is unrelated to the TTL value4 specifed in each
RR.

4The TTL value specifes how long an RR can be cached by resolvers.

68

2. Each NS record will indicate the TCB-DNS identity of the ANS TM (this is similar
to the requirement in DNSCurve where the elliptic-curve public key of the ANS is
indicated in the NS record).

3. DNS queries will indicate an additional feld - the TCB-DNS identity of the querier.

If an NS record for a zone W provided by a parent zone does not indicate the identity

of a TM, the implication is that the indicated ANS for the zone W does not support TCB-

DNS. It is also possible for a zone to employ as its ANSs, some TCB-DNS aware servers

and some plain DNS servers. The NS records corresponding to TCB-DNS compliant ANSs

will indicate the TCB-DNS identity of the ANS. NS records corresponding to plain DNS

servers will not. Thus, a PNS which supports TCB-DNS may prefer to query a TCB-DNS

compliant ANS for the zone W . Similarly, a plain DNS PNS may choose to direct its query

to a plain DNS ANS for zone Z.

If a TCB-DNS server receives a query which does not indicate the TCB-DNS identity

of the querier, the querier is assumed to be unaware of TCB-DNS. In this case a plain DNS

record is sent as a response. If a TCB-DNS unaware server is queried by a TCB-DNS

compliant resolver the DNS server will simply ignore the additional feld.

DNS Server BITW To Router

DNS Server To Router

Figure 4.2

Original Confguration

69

TCB-DNS can easily support bump-in-the-wire implementations. Converting a plain

DNS server to TCB-DNS server can be as simple as adding an additional BITW unit

equipped with a DNS-TM. Only the BITW unit will need to have access to the TCB-DNS

supplemental master fle. The BITW unit will

1. verify TCB-DNS authentication appended to incoming DNS packets, strip authenti-
cation, and relay plain DNS packets to the DNS server; and

2. append TCB-DNS authentication to outgoing DNS packets.

4.5.1 Ideal TMs

Deployment of TCB-DNS requires an infrastructure in place for some regulatory au-

thority (for example, ICANN or IANA) to oversee the production and verifcation of trust-

worthy DNS TMs. Mandating rigid and simple functionality can go a long way in reducing

the cost for deploying such an infrastructure, reducing the cost of the TMs, and rendering

them more worthy of trust.

Just as guaranteed TCB functionality can leveraged to provide some assurances regard-

ing the security of the system, for realizing guaranteed TCB functionality two fundamental

assurances provided by trustworthy computing modules are leveraged - read-proofng and

write-proofng.

Read-proofng of secrets protected by the TMs is necessary to ensure that the modules

cannot be impersonated. Write-proofng of software executed by the TMs is necessary to

ensure that the TCB functions (usually dictated by the software) cannot be modifed. The

two requirements are however not independent. With the ability to modify software at

will, an attacker can force the TM to reveal its secrets (for example, by inserting a set of

70

commands to write the secret bytes out to the serial port). On the other hand, secrets that

are protected can be used to authenticate software. Without the knowledge of the secret the

attacker cannot modify the software (more specifcally, such modifcations will be detected

due to failure of authentication).

Readproofing Writeproofing

TCB Functionality

System Security

Figure 4.3

Bump-in-the-Wire (BITW) Implementation

In practice read-proofng is easier to realize [50], and is often a stepping stone to the

more elusive goal of write-proofng [24]. Attacks aimed at modifying software to reveal

secrets can be prevented by ensuring that software does not have access to at least some

of the secrets that are protected. Some secrets may be generated, stored and used by

dedicated hardware [54]. However, authenticating software with the secrets provides a

boot-strapping problem [67]. After all, some software should be loaded which includes

instructions to load a secret and carry out the steps required to perform authentication.

Realizing TMs that truly deserve trust calls for some simple common-sense restric-

tions to be imposed on the TMs. If the entire functionality of the TM is trivial enough

71

to be hard-wired (and thus eliminate the need for mutable code), we can side-step issues

associated with guaranteeing the functionality of the TM. If the TM functionality is simple

and immutable, it is less expensive to verify such functionality as the testing infrastructure

can be easily automated. If the TMs do not draw signifcant electrical power to perform

its tasks (and consequently disseminate very little heat) we can then afford to physically

shield the TMs extremely well from external intrusions aimed at exposing secrets.

It is for these reasons, that in identifying good TCB functionality for TCB-DNS we

enforce these restrictions. The low-complexity, low-power, hard-wired TMs employed by

TCB-DNS will merely require i) protected registers for storing a few secrets, ii) a hash

function (for example SHA-1), and iii) hard-wired logic which drives a fxed sequence of

logical and hash computations.

4.5.2 Leveraging TPMs

While creating a dedicated infrastructure for DNS-TMs is the preferred approach to

realize highly trustworthy TMs, a practical alternative to lower the cost of the infrastruc-

tural requirements is to take advantage of an existing infrastructure for trusted platform

modules (TPM).

The trusted computing group (TCG) approach to realize a trusted platform includes a

thorough specifcation of trusted platform modules (TPM) [4], and recommendations on

how such modules can be leveraged to provide some assurances regarding the integrity of

the software stack running on a platform (a general purpose computer) equipped with a

TPM chip. Several manufacturers of TPM chips exist today. Many desktop/laptop com-

72

puters already posses a TPM chip, or have the capability (a slot in the motherboard) to

accept a TPM chip.

The TPM exposes several interfaces which can be used by the platform to submit values

for secure storage inside the TPM, and conveying such values to other parties, attested

using secrets protected inside the TPM. Specifcally, about 120 TPM interfaces have been

specifed in the current version of the TPM [29]. These interfaces are intended for a wide

variety of purposes like i) taking ownership of the TPM; ii) generation/regeneration of

keys; iii) submitting “measurements” of loaded software (in the form of hashes of loaded

software) and extending such hashes into platform confguration registers (PCR) inside the

TPM; iv) attestation of PCR values by the TPM for reporting the state of the platform; v)

binding secrets to specifc platform states (PCR values), etc.

The TCG model relies on three roots of trust: the root of trust for measurement (RTM);

root of trust for storage (RTS); and root of trust for reporting (RTR). RTS and RTR are

housed inside the TPM chip. The RTM is however constituted by components outside the

TPM. More specifcally, trusting the RTR and RTS amounts to trusting the integrity of the

TPM chip. However, trusting the RTM implies trusting numerous components of a gen-

eral purpose computer like the BIOS, CPU, RAM, CPU-RAM bridge, and possibly even

some peripherals which have direct access to the RAM. In addition, to an infrastructure

for verifying code is trusted to verify software and disseminate measurements (hashes) of

authentic verifed software.

Almost every attack on the integrity of a TCG trusted platform [57] - [15] is a result

of the fact that the RTM is constituted by components outside the TPM, which obviously

73

do not merit the same extent of trust as components inside the TPM chip. Furthermore,

the problem of verifying functionality of software is becoming increasingly intangible due

to the ever increasing size of software and frequency of updates. For these reasons, some

researchers have focused on strategies for securing applications running on untrustworthy

platforms by relying only on the TPM [52]. The recent TPM 1.2 version added some

additional TPM interfaces which expands the scope of applications that can be secured by

relying only on the TPM as the TCB. Some desirable additions to TPM interfaces have

been suggested in [66].

The atomic relay interface can be simply be an additional interface offered by the next

version of TPMs. More specifcally, TPMs will require two additional interfaces to serve as

the TCB for a DNS server: i) an interface for securely receiving MLS keys (which can then

be stored in some TPM PCRs reserved for this purpose), and ii) the atomic relay interface.

4.6 TCB-DNS vs. DNSSEC

The main reasons for the poor adoption of DNSSEC are i) the signifcant increase in the

size of zone fles (over that of plain-old DNS) due to the addition of RRSIG, DS, DNSKEY,

and NSEC/NSEC3 records; ii) increased bandwidth overhead for DNSSEC responses; and

iii) the susceptibility of DNSSEC to DNS-walk. Due to the substantial overhead, it is

especially expensive for large zones (for example, .com) to adopt DNSSEC.

DNSSEC and TCB-DNSSEC have many signifcant similarities:

1) Both do not require DNS servers and their operators to be trusted. Both protocols

achieve this requirement by their ability to securely convey a pre-image resistant one-way

74

function of RRSets created by zone authorities to end-points (clients), without the need to

trust the intermediary servers.

2) In both protocols lifetimes are imposed on the validity of zone keys. Both specify

validity periods for the authentication appended for RRs (which can at most be till the

expiry of the keys used for validation).

3) Both use a strategy for ordering names (or a one-way function of names) to provide

authenticated denial of enclosed names (or hashes of names).

4) Both protocols do not possess a mechanism for revoking authentication. Conse-

quently both protocols are susceptible to replay attacks - under some conditions. If the

authentication appended for an RRSet is indicated as valid till some time t, and if for some

reason, there arises a requirement to modify the RRSet before time t, then an attacker may

be able to replay the old RRSet (with a signature valid till time t) until time t.

The primary differences between DNSSEC and TCB-DNS include

1) the cryptographic mechanisms employed - DNSSEC relies on digital signatures,

while TCB-DNS relies on TMs to atomically relay MACs;

2) unlike TCB-DNS, DNSSEC does not provide assurance A3. Some of specifc dif-

ferences in the mechanism for authenticated denial, and the rationale for the choices made

in TCB-DNS are outlined in Section 4.6.1.

3) DNSSEC demands substantially higher overhead compared to TCB-DNS;

Section 4.6.2 provides a comparison of the storage bandwidth overheads of DNSSEC and

TCB-DNS.

75

4) DNSSEC is more susceptible to replay attacks compared to TCB-DNS; Section 4.6.3

outlines the reasons for this phenomenon.

Since the discovery of the Kaminsky attack [33] the need to secure DNS has attracted

renewed attention. Some modifcations have been proposed to DNSSEC to address the

main reasons for its poor adoption. However, while such efforts reduce some of the over-

head for DNSSEC (and thereby reduce the resistance to adoption of DNSSEC), they are at

the expense of watering-down some of the originally intended assurances of DNSSEC.

In Section 4.6.4 and we discuss such a mechanism, TSIG [73], which can reduce over-

head for clients, but has the unfortunate side-effect of requiring to trust the PNSs. In Sec-

tion 4.6.5 we discuss another modifcation (NSEC3 opt-out) [19] which is intended to facil-

itate easier adoption of DNSSEC by large zones like .com. This feature has an unfortunate

side effect of interfering with the ability to provide authenticated denial. More recently,

some attacks that exploit the NSEC3 opt-out feature have also been demonstrated [10].

4.6.1 Authenticated Denial

Consider a scenario where the ANS for the zone example.com is queried for a non-

existent record “a.b.example.com, A.” A negative response indicates that i) the queried

name does not exist; and ii) no wild-card name like *.b.example.com exists; iii) no

delegation exists for a zone b.example.com; and iv) no alias (type CNAME) record

exists for the name a.b.example.com.

In NSEC the enclosures are textual strings indicating names. A single NSEC record

[example.com [A,MX,NS], NSEC, cat.example.com] is adequate for the resolver to

76

https://cat.example.com
https://example.com
https://a.b.example.com
https://b.example.com
https://b.example.com
https://a.b.example.com
https://example.com

verify that all three conditions are true (all three names that have to be denied fall within

the single NSEC enclosure). In NSEC3 the enclosures are hashes of names. Each NSEC3

enclosure can only be used to deny a specifc name (which hashes to a value inside the

encloser). Thus, proof of enclosure of three different name-hashes have to be provided to

the resolver.

If a record of a type different from NS does exist for b.example.com or if a record

with name a.b.example.com does exist (but not the solicited type A), then the NSEC3

record has to indicate the list of types that do exist5.

Though intended as an improvement over NSEC, in some ways NSEC3 is actually in-

ferior to NSEC. In response to a query for a non existent record, NSEC revealed two unso-

licited names; NSEC3 typically reveals six hashes corresponding to six unsolicited name-

hashes (which are subject to brute-force attacks). Furthermore, three RRSIG(NSEC3) sig-

natures have to be verifed (instead of one RRSIG(NSEC)).

The mechanism in TCB-DNS for authenticated denial is closer to NSEC3 than NSEC.

The difference is that in TCB-DNS the name and type are hashed together (in NSEC3 only

the name is hashed). As with DNSSEC-NSEC3, multiple name-and-type hashes will have

to be denied by the ANS by using different enclosures. At frst sight, it may seem that an

NSEC-like approach may be preferable for TCB-DNS. After all, if only the TM is privy to

the enclosures - viz., textual strings (names) in NSEC and hashes (of names) in NSEC3,

there is no need for hashing names. However, checking NSEC enclosures will require TMs

to compare variable length text-strings, possibly of different formats (for example, ASCII,

5Thus, there are two ways in which NSEC3 fails to realize assurance A3: i) by being susceptible to simple
dictionary attacks; and ii) by disclosing unsolicited types for a name.

77

https://a.b.example.com
https://b.example.com

Unicode), which can substantially increase the complexity of TMs. With the NSEC3-like

approach only fxed-length hashes need to be compared. Thus,

1. in DNSSEC with NSEC3 the purpose of hashing is to “hide” names (albeit ineffec-
tively);

2. in TCB-DNS the purpose of hashing the names is not to hide the names - it is to
lower the TM complexity.

In TCB-DNS, the reason for hashing name-and-type together is to ensure that (unlike

NSEC3) names do not have to be disclosed if queried for a non-existent type. In TCB-DNS

the number of encloser pairs equals the number of unique name-and-type values (which is

the same as the number of RRSets). In NSEC3 the number of hashes correspond to the

number of unique names.

The disadvantage of TCB-DNS is a small increase the number of encloser pairs. How-

ever, this is not a problem in practice. The increase in the number of encloser pairs would

only be an issue for zones which have a very large number of names, and many types cor-

responding to each name. However, such large zones (like gTLD .com) which have large

number of names, have only a single type (type NS) corresponding to most names!

Another difference between NSEC3 and TCB-DNS is the mechanism used for hashing

names. In TCB-DNS the hash is computed as a function of name, type and a value τ . The

value τ is the time of expiry of the authentication. In DNSSEC-NSEC3 the time of expiry

is indicated in the RRSIG record; the name-hash is computed after including a salt to the

name. Furthermore repeated hashing is employed to derive the name-hash. The reason

for using the salt is to prevent precomputed dictionary attacks. The purpose of repeated

hashing is to increase the computational complexity for dictionary attacks. As dictionary

78

attacks are not possible in TCB-DNS (as the enclosers are never sent), TCB-DNS does not

need to deliberately increase the computational overhead for generating name-hashes.

4.6.2 Overhead

Table 4.1

Comparison of TCB-DNS and DNSSEC

Overhead in Bytes
Bandwidth Cache per RRSet Cache per Name Assurances

DNSSEC 2000 200 300 A1, A2
TCB-DNS 100 24 + 60 A1, A2, A3

Table 4.1 provides a quick comparison of TCB-DNS and DNSSEC. The large size

of DNSSEC records is due to the fact that public keys and signatures are large (1000 to

2000 bits). This increases the cache memory requirements for name servers. The longer

RR sizes, and that multiple RRSIGs, DS and DNSKEY records need to be fetched and

verifed, results in substantial bandwidth overhead for responses.

For a typical query, the DNSSEC specifc bits that accompany the response (over and

above the plain DNS records) can easily be of the order of 2000 bytes. As described in

Section 2.1.4, the additional DNSSEC specifc records required to verify a RRSet include

(typically) one RRSIG(RR), 3 DNSKEY records, 3 DS records, and 3 RRSIG(DS) records.

Additionally, verifcation of an RRset requires the computational overhead for verifcation

of 4 signatures.

79

For TCB-DNS the additional TCB-DNS specifc bits that accompany the response (to

a typical query) include i) the identity of the ANS and ii) one MAC in the ANSWER section,

and two identities (TCB-DNS identity of the parent zone, and identity of an ANS TM of

the parent zone) and one MAC in the AUTHORITY section. If the identities of TMs are 10

bytes long and identities of zones are 20 bytes long, and all MACs are 20 bytes long, the

additional bandwidth overhead is of the order of 70 bytes. If we consider the additional

values inserted in NS records the overhead may be close to 100 bytes (compared to 2000

bytes for DNSSEC).

For DNSSEC the increase in cache memory size for any RRSet is due to the addition

of one RRSIG for every RRSet (about 200 bytes for every RRSet if 1600-bit RSA modulus

is used). Additionally (for authenticated denial), corresponding to every unique name in

the master fle, one NSEC/NSEC3 record along with an RRSIG(NSEC/NSEC3) record are

required: amounting to an overhead of roughly 300 bytes for every unique name in the

master fle.

In TCB-DNS, corresponding to every RRSet two additional values are required for

regular responses - an index (of the RRSet within the master fle) and a MAC. For authen-

ticated denial, corresponding to every unique name and type (the total number of which is

the same as the number of RRSets) three values are required: two hashes (enclosers), and

a MAC for the enclosure. Assuming 20 byte hashes and MACs, the overhead is about 60

bytes for every unique name and type.

80

4.6.3 Replay Attacks

The fact that anybody can obtain verify a digital signature is a powerful feature of

digital signatures. This power can also be abused more easily when no mechanism exists

for revocation. A signed packet with prematurely invalidated contents can be more easily

abused, compared to a packet authenticated using a MAC.

A DNS RRSet signed by the zone authority can be sent by anyone, from any place, to

any place. However, in TCB-DNS, a MAC appended by a zone authority is intended only

for the TM of a specifc ANS. This implies that only the entity with control of the specifc

ANS (who has access to the TM) can replay such packets. This substantially reduces the

scope of possible replay attacks.

For both protocols, reducing the scope of replay attacks requires choice of short life-

times for signatures (MACs for TCB-DNS). Unfortunately shorter life-times imply more

frequent re-computation of authentication. Due to the substantially lower computational

overhead required for TCB-DNS we can can actually afford to recompute MACs more

frequently.

4.6.4 DNSSEC with TSIG

As originally intended, DNSSEC provides the end-points with the ability to verify the

integrity of RRs. For most clients this is a substantial computational burden. This is espe-

cially true for an ever increasing number of battery operated mobile devices. Furthermore,

to receive the large number of DNSSEC specifc records from the PNS the clients may

have to employ more expensive TCP instead of UDP as the transport layer. Note that for

81

PNSs this is less of an issue as it receives the multiple records required for verifcation as

multiple packets from different ANSs.

It is for this reason that in most standard installations of DNSSEC the verifcation

of RRs is performed only by the PNS. Stub-resolvers are expected to establish a secure

channel with PNSs using some light-weight mechanism like TSIG [73], and obtain verifed

RRSets over the secure channel. TSIG is a protocol which leverages shared symmetric keys

(established by other means - outside the scope of TSIG) for establishing secure channels.

In DNS, TSIG is used by zone authorities to securely send master fles to ANSs. This same

strategy can also be used for establishing a secure channel between clients and PNSs.

The implication of using such an approach to lower overhead for clients is that DNSSEC

can no longer claim that end-points do not have to trust the middle-men. With this ap-

proach, clients are required to trust the PNSs (and consequently their operators).

More specifcally,

1. If a DNSSEC enabled PNS X is compromised, or if the TSIG secret of X is privy to
an attacker, then X (or the attacker) can disseminate fake RRSets for any zone; such
RRSets will be blindly accepted by all stub-resolvers which query PNS X .

2. Similarly, if a DNSCurve enabled PNS X is compromised, or if the DNSCurve secret
of X is privy to an attacker, then X (or the attacker) can disseminate fake RRSets to
all stub-resolvers that query PNS X .

3. On the other hand, in the case of TCB-DNS, if a PNS X (with DNS-TM P) is
compromised, the attacker cannot disseminate fake RRSets. It is only if the secrets
of the TM P become privy to the attacker (and if the TM P has not been revoked)
can the attacker disseminate fake RRSets to the stub-resolvers that query PNS X .

82

4.6.5 NSEC3 Opt-out

For consummate realization of DNSSEC assurances even top level domains should

adopt DNSSEC. While authenticated denial is an especially important feature for gTLDs,

the overhead for this purpose can be substantial for large zones, and especially for zones

where new names are frequently added. More specifcally, zones with frequent addition /

deletion of names become more susceptible to replay attacks.

Consider a scenario where an RRSet corresponding to a new name (or name-hash) x

needs to be added. Before the name is added, a signed encloser (xl, xh) will exist for x.

However, after inserting x the encloser (xl, xh) needs to be revoked. Two new enclosers

should be added instead - (xl, x) and (x, xh). Similarly, consider a scenario when an ex-

isting name y needs to be removed, and two signed enclosers (yl, y) and (y, yh) currently

exist. In this case, both enclosers (yl, y) and (y, yh) need to be revoked and replaced with

a new encloser (yl, yh).

Due to the fact that it is not possible to foresee which of the currently valid records

will need to be revoked due to the addition of an (as yet unknown) name in the future, it is

necessary to choose small enough life-times for all NSEC/NSEC3 enclosers. Obviously,

for gTLDs like .com with several tens of millions of names, this is far from practical.

In TCB-DNS, due to the low overhead for computing MACs even gTLDs can afford

to recompute enclosers more frequently. However, frequent re-authentication of NSEC3

records in DNSSEC is expensive for two reasons. The obvious reason is that the compu-

tational overhead for digital signatures is high. The other reason is that NSEC3 deliber-

ately increases the complexity of hashing names to render dictionary attacks more time-

83

consuming. Due to the substantial overhead involved in re-generation of signed NSEC3

records, DNSSEC is forced to employ larger life-times for NSEC3 signatures and conse-

quently become more susceptible to replay attacks.

Recently, NSEC3 with an opt-out specifcation [19] has been proposed to make it more

practical for gTLDs to adopt DNSSEC. Using opt-out NSEC3 can reduce the instances

leading to revocation of RRSIG(NSEC3) RRs, thereby permitting longer lifetimes for

NSEC3 RRSIGs. An NSEC3 record indicating an encloser (xl, xh) with an unset opt-out

bit is proof that no enclosing records exist. However, if the opt-out bit is set, the implica-

tion is that zero or more unsigned delegations may exist - thereby diluting assurance A2.

Furthermore, some serious security exploits resulting from using the opt-out approach have

been identifed recently [10].

Adoption of DNSSEC has been marred by the substantial overhead required, and the

issue of DNS-walk. The large increase in the zone fle size is especially severe for gTLD

DNS servers and DNS servers employed by specialized DNS service providers who run

DNS services for a large number of zones. This is further exacerbated by supercilious

queries from “DNS-walkers.” While the need to address DNS-walk is especially crucial for

large DNS operators, ironically, using NSEC/NSEC3 feature of DNSSEC for this purpose

is risky for such DNS servers due to the possibility of DNS-walk. Recent attempts to reduce

resistance to adoption of DNSSEC have unfortunately come at the expense of security.

The primary insight for TCB-DNS approach stems from the fact that cryptographic

techniques for independently securing each link in a query response process (like the ap-

proaches in symmetric key DNSSEC and DNSCurve) demand substantially lower over-

84

head. As the light-weight link-security approaches require the intermediaries (DNS servers)

to be trusted, a natural question then is “what is the minimal TCB for a DNS server?” As

long as this TCB is trustworthy we will not be required to trust other components of the

intermediary servers.

A TCB which simply relays hashes can provide assurances A1 and A2. By adding some

intelligence to the simple relay function (to verify that “one input lies between two other

inputs”) we can realize assurance A3, and thus eliminate the problem of DNS-walk. Due

to the negligible overhead (a few tens of bytes of bandwidth overhead, and computation

overhead amounting to a few hashes) even gTLDs can easily switch to TCB-DNS.

To summarize, the main advantages of TCB-DNS over DNSSEC are

1. TCB-DNS demands substantially lower overhead;

2. TCB-DNS eliminates the issue of DNS-walk;

3. TCB-DNS is less susceptible to replay attacks;

4. due to the low overhead for verifcation, TCB-DNS will not require clients to trust
PNSs (as in DNSSEC with TSIG);

5. due to the low overhead for re-authentication of enclosers, TCB-DNS does not need
to employ potentially dangerous practices like “NSEC3 opt-out.”

Deployment of TCB-DNS ideally requires a dedicated infrastructure in place for some

regulatory authority to oversee the production and verifcation of trustworthy DNS TMs.

Alternately, two additional interfaces (one for for accepting MLS keys, and the second for

performing the atomic relay) can be added to the next version of the trusted computing

group (TCG) specifcation for trusted platform modules (TPM).

85

CHAPTER 5

MINIMAL TCB FOR DATA DISSEMINATION SYSTEM

A common characteristic of any data dissemination system (DDS) is that the providers

and consumers of data may not be able to (or desire to) interact directly with each other,

and consequently, rely on middle-men.

A mechanism for securing the end-to-end link between the client and a server platform

can eliminate the need to trust numerous other infrastructural components in the path be-

tween the client and the server. However, users are still required to trust the server. Trust

in a server implies confdence in the integrity of the server software, the platform on which

the server software is executed, personnel who may have control over the platform, and

that secrets employed by the platform (for authenticating served data to consumers and

acknowledging receipt of data to providers) are well protected.

This chapter proposes a comprehensive security solution for a generic DDS consisting

of a dynamic set of providers disseminating dynamic data through an untrusted middle-

man, to a dynamic set of consumers. The paper identifes a simple TCB for a generic

DDS that can be leveraged to realize all desired assurances regarding the operation of the

DDS. Specifcally, the TCB is a set of simple functions F1() · · · Fn() executed inside the

boundary of a trusted module T. Our desire to simplify the TCB translates to a desire

86

to limit the computational and storage burden required for module T to execute functions

F1() · · · Fn().

Central to the proposed solution is the capability of even severely resource limited

modules to maintain an index ordered merkle tree (IOMT). An IOMT is a simple extension

of the well known merkle hash tree [42] to provide the ability to verify non-existence.

Our specifc contribution is a precise characterization of the TCB functionality as four

functions: i) Fuk(), used to issue symmetric secrets to the users of the DDS (viz., providers

and consumers of data); ii) Fidl(), used to insert or delete leaves of an IOMT; iii) Fupd(),

used to update a record from a provider; and iv) Fqry() to respond to a query by any user.

5.1 Organization

In Section 5.2 we discuss the model for a generic DDS and enumerate the desired

assurances A. In Section 5.2.1 we discuss some of the current efforts to provide some

assurances regarding the operation of an untrusted middle-man, which rely on the use of

authenticated data structures (ADS), and some of the limitations of such approaches. In

Section 5.2.2 we provide a broad overview of the proposed approach where a trusted mod-

ule T serves as the TCB for the DDS. In Section 2.3.2 we provide an algorithmic overview

of the index ordered merkle tree. Section 5.2.3 provides an algorithmic description of the

TCB functions executed by the trusted module T.

5.2 A Generic Data Dissemination System

We model a data dissemination system as being composed of a dynamic set of users

U and a look-up server L. Users could be providers or consumers, or both. Any user may
87

provide a succinct record R = [o, l, v, τ] regarding an object to a look-up server. The

object is uniquely identifed by the owner o and a label l assigned by the owner, and is

associated with a value v and a duration of validity τ of the record.

The owner o of a record is permitted to remove or modify the record at any time. Specif-

ically, the owner may modify the record even while the current record has not expired. Any

record may be queried by any user by specifying the owner and label. The querier expects

the response to contain the most recent version of the queried record. More specifcally,

the querier expects the same response as she would if she had directly queried the owner

o.

If the object itself is succinct (for example, an email address, a public key, etc.), the ob-

ject may also be stored by the look-up server, and may be returned along with the response

(in this case the value v may be a cryptographic hash of the email address or public key).

More generally, the value v provides some information regarding the object, and could

take several forms like the location of the object (a URL U), the cryptographic hash of the

object (which can permit the client to verify the integrity of the object after it is obtained

from location U), information necessary to establish a private channel with a data server at

location U , etc.

The look-up servers simply do not care about the specifc nature of the object or the

purpose of a specifc query. One query may be for the location v = U of a fle l = F

provided by a provider o = P . To establish a secret with the server U another query may

be made for a record provided by o = U . The object F fetched from U may include

components authenticated by another entity X . To verify the integrity of such components

88

the client may desire the public key of X . This data may be disseminated through the same

DDS by another entity - for example, a certifcate authority o = C. If the CA C desires to

revoke the public key of entity X , the CA may simply instruct the look-up server to remove

the record indexed by o = C and l = X .

Some of the basic desired assurances regarding the operation of any DDS are as fol-

lows:

1) Records can be modifed only by owners; specifcally, modifcations to records by

any entity other than the owner will be detectable by consumers;

2) Servers should only respond with records corresponding to the most recent update,

and should not be able to replay prematurely invalidated records;

3) Servers will not be able to hide the presence of records that exist;

4) Servers will only provide a record if explicitly queried; more specifcally, servers

should not need to reveal the existence of records that were not explicitly queried.

5.2.1 Related Work

Several researchers have addressed issues in reliably querying an untrusted server

using authenticated data structures (ADS) [8, 16, 20, 21, 25, 26, 39]. In such scenarios,

clients who query a server trust only the originator/provider of the data (and not the server).

Specifcally, even while the originator of the data is not online, from a security perspective,

ADS based schemes strive to provide the same assurances possible in scenarios where the

queriers directly query the originator.

89

Broadly, an ADS can be defned by a construction algorithm fc() and a verifcation

algorithm fv(). The provider A of a set of records DA computes a static summary d =

fc(DA). The records DA are hosted by an untrusted repository/server. Along with a re-

sponse R to a query by a client, the server is expected to send a verifcation object (VO) ν

satisfying d = fv(ν, R), and the signature of the provider for the summary d. The client is

now convinced that the response R would be the same if the client had directly queried A.

In ADS based approaches the owner A of the set of records DA constructs a hash tree

like data-structure with the records as leaves and the succinct summary d as the root of

the tree. From this perspective, the ADS construction algorithm fc() can be seen as the

algorithm to insert a leaf into the tree, and the VO can be seen as a set of hashes required to

verify the integrity of any leaf against the root d using the verifcation algorithm fv(). Most

commonly used hash tree data structures for ADS applications include skip-lists, red-black

trees and B-trees, all of which provide the capability to order records in a set (based on

some index).

The purpose of ordering records is to permit succinct responses to i) queries for non

existing indexes, ii) maximum/minimum value queries and iii) range queries. For example,

if a querier seeks a record for an index X that does not exist, a two adjacent records in the

tree can be sent (along with VOs to verify the two records against the root d signed by

the originator) - one for an index x and one for the next index y such that x < X < y.

As the tree is constructed by the originator, to the extent the querier trusts the originator

of the data, the querier is assured that the queried index does not exist. When queried for

all records in a range X to Y the server provides all records that fall in the range (each

90

accompanied by an independent VO), and in addition, to prove completeness (to assure

the querier that the server has not omitted any existing record) the server provides two

additional records - a record for index x < X indicating X as the next record and a record

indicating that y > Y is the index that follows Y .

5.2.1.1 Limitations of Existing Approaches

Some limitations of the ADS based approach render it unsuitable for several practical

services with any of the following characteristics:

a) Multiple Independent Providers: In scenarios with multiple independent providers

a record for an index X may be provided by and entity A and the record with the next

higher index Y may be provided by an independent entity B. Clearly, neither A nor B can

construct the hash tree.

b) Truly dynamic data: In most ADS based applications it is assumed that whenever

any record is modifed, the new root is signed by the originator and issued to the server. In

scenarios where future modifcations are unforeseen, the originator needs to sign the roots

with short enough validity durations to ensure that the old root cannot be replayed by the

server. Thus, the originator needs to send fresh signatures for the current root periodically,

even if no updates were performed. In scenarios where the originator desires to be involved

only for purposes of providing updates, existing ADS schemes are unsuitable.

c) Revealing unsolicited information: In many application scenarios it is desirable that

servers should not be required to provide unsolicited information to queriers. As an exam-

ple, in the case of the domain name system (DNS) [43], [9], to prove that no record with

91

the queried DNS name exists, a DNS server is required to provide two name names that

cover the queried name, thus revealing unsolicited information. This is the cause of the

well known “DNS walk” or “zone enumeration” issue associated DNSSEC [76], [36].

d) Low bandwidth overhead is desired: In some scenarios, the overhead for the veri-

fcation object (usually a sequence of hashes) required by clients for verifying any record

may be unacceptable.

e) Entrusting secrets to servers: In some application scenarios the data to be conveyed

to the client may be a secret. While ADSs can ensure integrity of data stored at untrusted

servers, they do not address issues related to privacy of the data. Thus, in scenarios where

middle-men need to be entrusted with secrets, conventional ADS schemes cannot be used.

5.2.2 Salient Features of the Proposed Approach

All the above inadequacies can be overcome if ADSs are constructed and verifed by a

trusted third party (TTP). Specifcally, as typical ADS construction and verifcation algo-

rithms involve only simple sequences of cryptographic hashing and logical operations, the

TTP can be a low complexity trustworthy module T. As the intent of the TTP is to ensure

that middle-man cannot violate rules, module T functionality for constructing/verifying

ADSs is the TCB for a middle-man.

In the proposed security model, the look-up servers are untrusted. However, a look up

server has access to a trusted module T which performs some trivial functions f1() · · · fn()

that constitute the TCB for the system. While a look-up server may be required to maintain

and serve a dynamic number (say n) of records where n could be millions or even billions,

92

the module T is assumed to possess only modest computational ability and small constant

O(1) storage capability.

Records submitted by providers are stored as leaves of an index ordered merkle tree

(IOMT), uniquely indexed as a function of the owner o and a label l (more specifcally,

h(o, l), where h() is a standard cryptographic hash function like SHA-1). The module

stores only the root of the IOMT (a single hash). By performing simple sequences of hash

operations, the module can verify the integrity of any record against the root of the tree.

In the proposed approach, a query from any user (a consumer) specifes the owner o and

label l. The querier expects a response that is cryptographically authenticated by module

T. Similarly, requests for updates by users (providers) are authenticated by providers for

verifcation by the module. On submitting an update request the providers expected an

authenticated acknowledgement from the module. On receipt of a response authenticated

by the module, to the extent that the users trust the module, they are assured that all four

assurances are met.

5.2.2.1 Query-Response Authentication

Modules have to verify authentication appended by providers for every update, and

sign every response for verifcation by the querier. Obviously, for servers that may have to

handle large volumes of queries and updates, the cost of authentication will be a signifcant

bottle-neck - especially if asymmetric primitives are employed.

To amortize the overhead for authentication, asymmetric primitives are used only for

setting up symmetric keys between the module and the users (providers and consumers).

93

Message authentication codes (MAC) based on such symmetric keys are then used for

authentication of exchanges between users and the module.

5.2.2.2 Opportunistic Shared Secrets Between Users

Often, a query is to locate some service/entity S with whom the querier Q expects to

interacts soon after the query, and would thus desire a mechanism to secure the interac-

tion. It is benefcial to use the trusted module to also opportunistically provide additional

information required for the Q and S and to establish a secret KQS . To cater for resource

limited portable devices, it is desirable that mechanisms for establishing the shared secret

be limited to symmetric primitives.

In the proposed approach, the shared secret established between the module and the

users are also leveraged to opportunistically establish shared secrets between users. Any

user (say provider S) can submit a record to the look-up server to request the trusted module

to serve as a mediator. In response to a query from some user Q for such a record from S,

the querier will receive a non secret value pQS that can be used to compute a symmetric

secret KQS . Both Q and S will need to perform only a single hash operation to compute

the common secret KQS .

5.2.2.3 Potential Applications

While almost any Internet/Intranet based service can be seen as falling under the cate-

gory of a DDS, some specifc examples are as follows:

1) Dissemination of dynamic DNS records by zone authorities. Response to negative

queries will not reveal records that exist, and thus overcomes the DNS-walk issue that
94

plagues the current DNSSEC [9] approach to secure DNS. In addition, unlike DNSSEC,

the proposed approach can also be used to provide assurances for dynamic DNS (where

DNS records may expire prematurely). Furthermore, server platforms may also convey

records to facilitate any client (who performs a DNS look-up for the server) to opportunis-

tically establish a shared secret with the server, which could be used as an IPSec security

association.

2) Mobile servers with highly dynamic addresses could disseminate their reach-ability

information (and enable clients to establish a secure channel with such servers);

3) Dissemination of dynamic revocation lists by certifcate authorities, without the

bandwidth overhead associated with certifcate revocation lists (CRL).

4) Publication of dynamic quotes by any “exchange”;

5) Dissemination of encryption secrets for Email messages; a user desiring to send an

encrypted Email to some address will merely make a query to a look-up server to obtain a

symmetric secret for encrypting the message.

5.2.3 TCB Functions

The module T exposes four functions Fuk(), Fidl(), Fupd(), and Fqry to the look-up

server housing the module. In general inputs to the functions include values sent by a

user to the look up server, and values stored by the server that are demonstrably consistent

with the IOMT root stored inside the module. The outputs of the module include values

like current time (according to the module), a message authentication code (MAC) for

verifcation by a user encrypted secrets that can be decrypted by the user.

95

5.2.3.1 Conveying User Secret

Interface Fuk() is employed to securely convey a secret Ko to a user with public key

Uo (who is assigned an identity o = h(Uo)). The secret Ko may be used by the user to send

authenticated update requests regarding objects owned by the user or send authenticated

queries for objects provided by any user.

User : Generate Key pair (Ro, Uo)

User : Choose random challenge c, Compute C = Fenc(U, c)

User → LU : Uo, C, (τ),

LU → T : Fuk(Uo, C, τ)

T : o := h(Uo); tek = t + τ ; Ko = h(S, o, tek);

T : Kc := fdec(C) ⊕ Ko;o

T → LU : t, C 0 = fenc(Uo,K
c), µ = h(t, C 0, τ, Ko)o

LU → User : t, C 0, µ, (τ)

User : Ko = fdec(Ro, C
0) ⊕ c; Verify µ = h(t, C 0, τ, Ko)

User : tek = t + τ

Any user can generate a key pair (Ro, Uo) (using the specifc asymmetric scheme sup-

ported by the module) and send a challenge to the module T, encrypted using the module’s

public key, along with the user’s public key Uo. The user or the server can specify the

validity duration τ for the MAC key Ko issued to the user. The key Ko can be used by the

user for computing MACs to authenticate update requests or queries sent by user till time

tek = t + τ (time according to the module).

96

5.2.3.2 Inserting and Deleting IOMT leaves

The module maintains the root of an IOMT with any number of leaves of the form

(a, va, a0). It is the responsibility of the server to store the leaves and intermediate hashes.

The module considers a leaf as valid only if provided a set of hashes va satisfying f(la, va) =

ξ where the leaf hash is computed as la = HL(a, va, a0).

If va 6= 0, the leaf is interpreted as a record provided by owner o with label l such that

a = h(o, l), and va = h(v, te, to), where v is a value associated with the record, te is the

expiry time of the record, and to ∈ {0, tek} (to can be zero, or the expiry time tek of the

key Ko of the owner o). If to =6 0 the module interprets this as a request to enable a private

channel between any querier of the record and the owner o.

If va = 0 (if the middle value in the leaf is zero) the leaf is a “place-holder” and implies

that no information is available regarding index a. The server can request insertion of any

place holder (if no leaf or place holder currently exists for the index to be inserted) or

delete any place holder. TMM function Fidl() verifes the simple conditions that need to be

satisfed for a place-holder to be deleted, and can be used to delete or insert a place-holder

can be described algorithmically as shown below.

97

LU → T : (l, vl, l0), (r, vr, r0), i, vl, vr, vp

T → LU : ξ = Fidl((l, vl, l0), (r, vr, r0), i, vl, vr, vp){

IF (l = 0) ∧ (r = 0) RETURN; //At least one leaf should be non zero

IF (l = 0) ∨ (r = 0)//If one leaf is zero it is the only leaf

ξ1 := HL(i, 0, i); ξ2 := 0; //i is the sole index

ELSE

IF (l = i)//(l, vl = 0, l0) → (0, 0, 0)

0IF (vl =6 0) ∨ (r =6 i) RETURN; //Prereqs not satisfed

l0 := 0; l0 = HL(r, vr, l0);l r

ELSE IF (r = i)//(r, vr = 0, r0) → (0, 0, 0)

IF (vr =6 0) ∨ (l0 =6 i) RETURN; //Prereqs not satisfed

l0 = 0; l0 := HL(l, vl, r0);r l

ELSE RETURN;

ll := HL(l, vl, l0); lr := HL(r, vr, v0);

ξ1 = f(HV (f(ll, vl), f(lr, vr)), vp); //Root before deletion

ξ2 = f(HV (f(ll
0 , vl), f(lr

0 , vr)), vp); ; //Root after deletion

IF (ξ = ξ1) ξ := ξ2; // delete index i

IF (ξ = ξ2) ξ := ξ1; //insert index i

RETURN ξ;

}

To delete a place holder the LU server provides two current leaves - a place-holder

(i, 0, i) corresponding to the index i to be deleted, and a leaf (j, vj , j0 = i) which points to

the place-holder to be deleted. An exception is for deletion of a sole leaf (i, 0, i0 = i)) in

the tree (in which case the root ξ = HL(i, 0, i) should be set to 0).
98

To compute the root from two leaves three sets of complementary hashes are provided

to the module. The module computes the roots ξ1 and ξ2 - the roots before and after deletion

respectively. If the current root ξ is either ξ1 or ξ2 it is reset to ξ2 or ξ1 respectively.

Specifcally, if the current root is ξ1, and if the leaves provided satisfy the condition for

deleting index i, by setting the root to ξ2 a leaf with index i is deleted. On the other

hand, for the same inputs, if the current root is ξ2 then by setting the root to ξ1 a leaf

corresponding to index i is inserted.

5.2.3.3 Updating Records

Typically, to provide a record or update a record the owner needs to send the values

corresponding to the new record authenticated using a MAC µ. An exception for updating

a stored record is when the stored record has expired, in which case the server can request

the module to convert the record to a place holder (which can then be deleted if required

using Fidl()).

A request for update from user o for a record with label l, includes a value v0 , a period

of validity τ , and a fag f , a nonce n, and a MAC computed over values o, l, v, τ, f, n and

secret Ko. After completion of the update the user expects an acknowledgement authenti-

cated by the module.

To enable the module to compute Ko = h(S, o, tek) the inputs include the time of

expiry tek of the key Ko. If no leaf exists for index a = h(o, l) a place holder is inserted

by the server using Fidl(). If the current leaf is a place holder (as will be the case when the

record is provided for the frst time) this fact is indicated to the module by setting te = 0.

99

In the updated record the value v is set as requested to v0 . The expiry time te of the record

is set as te = t + τ . If the fag f is set in the request the value to is set to be the same as the

time of expiry tek of the key Ko of the owner. If f = 0 the value to is set to 0 instead.

User → LU : o, l, v0, n, τ, f, tek, µ = h(v0, l, τ, f, n, Ko)

LU : If no leaf with index a = h(o, l) insert index a using Fidl()

LU : If leaf for index a is a place holder, set te = 0;

LU : If no request from user µ = 0; t > te

0LU → T : (o, l, v, te, to, a , v, µ, tek, n, v0, τ, f)

0T → LU : Fupd(o, l, v, te, to, a , v, µ, tek, n, v0, τ, f){

a := h(o, l); va := (te = 0) ? 0 : h(v, te, to);

IF (ξ 6= f(Hl(a, va, a0), v)) RETURN;

IF (µ = 0) ∧ (t > te)//Expired record

RETURN ξ := f(Hl(a, 0, a0), v);

IF (t > tek) RETURN; //Expired user key

Ko := h(S, o, tek); t0 = t + τ ;e

IF (µ =6 h(v0, l, τ, f 0, n, Ko)) RETURN;

t0 := (f = 1)? tek : 0;o

0 0 0v := h(v , t0 , t0); ξ := f(Hl(a, v , a0), v);a e o a

0RETURN ξ, t, µ0 := h(a, v , t0 , f, n, Ko);e

}

0LU → User (only on successful execution of Fupd()): µ , t

0User : t0 = t + τ ; a = h(o, l); Check µ = h(a, v , t0 , f, n, Ko);e e

Only if Fupd() executes successfully will the server receive a MAC µ0 that can be con-

veyed to the user.
100

5.2.3.4 Querying Records

A user q may send a query for an object by specifying the owner o and label l and a

nonce. No information may exist regarding the queried index a due to one of the following

reasons

1. no leaf with index a exists; or

2. the leaf with index a is a mere place holder; or

3. the record has expired;

As any such reason can be verifed by the module, the module can send an acknowledge-

ment to the effect that no data is available. On the other hand, if the queried index exists,

the module prepares an authenticated response which conveys the value v, and the remain-

ing duration of validity (which is te − t). In addition, if the value to is not zero the module

includes an additional value pqo in the response which will enable q to compute a shared

secret with the owner o of the queried record.

Specifcally, if tek > t and to > t (both are current) the module computes Kq =

h(S, q, tek), Ko = h(S, o, to), and

pqo = h(Kq, o, to) ⊕ h(Ko, q, tek). (5.1)

Using secret Kq the user q can compute Kqo = h(Kq, o, to) ⊕ pqo = h(Ko, q, tek) which

can be readily computed by o using its secret Ko. Thus, both q and o can compute a secret

by performing a single hash. The query response process can be algorithmically described

as follows:

101

User q → LU : aq , n, µ = h(aq , n, Kq);

LU : either a = aq or a covers aq

LU : If leaf for index a is a place holder, set te = 0;

0LU → T : (a, o, l, v, te, to, a , v, q, µ, tek, n)

0T → LU : Fqry(a, o, l, v, te, to, a , v, q, µ, tek, n){

IF (t > tek)RETURN ; //Expired user key

Kq := h(S, oq , tek); aq := h(o, l); pqo := 0;

IF (µ =6 h(aq, n, Kq) RETURN;

va := (v = 0) ? 0 : h(v, te, to);

IF (ξ 6= f(Hl(a, va, a0), v)) RETURN;

IF (te < t) RETURN;

IF (a = aq) ∧ (va 6= 0) ∧ (t < te)//Unexpired Queried Record

IF (to > t)//Compute pairwise public value

Ko := h(S, o, to); pqo = h(Ko, h(q, tek)) ⊕ h(Kq, h(o, to));

0µ = h(a, v, te − t, pqo, to, n, Kq);

0 0ELSE IF (a = aq) ∨ ((a < aq < a0) ∨ (aq < a < a) ∨ (a < a < aq))

0µ = h(aq, 0, 0, 0, 0, n, c); //Expired Record or Record NA

ELSE RETURN; //incorrect proof of non existence by server

RETURN ξ, t, µ0, pqo;

}

LU → User (only on successful execution of Fqry()): t, µ0, pqo, v, te, to;

0User : if v = 0 Verify µ = h(aq, 0, 0, 0, 0, n, Kq)

0User : if v =6 0 Verify µ = h(aq, v, te − t, pqo, to,Kq)

User : if to > 0 compute Kqo = h(Kq, h(o, to)) ⊕ pqo

102

A simple trusted module with fxed functionality defned by functions Fuk(), Fidl(),

Fupd() and Fqry() can be utilized to assure the operation of any look-up server, and thereby

secure a wide range of applications under the DDS model. Specifcally, the server main-

tains all records and internal nodes of the IOMT, and is forced to ensure that the values

stored by the server remains consistent at all times with the root stored inside the module.

Any record that cannot be demonstrated to be consistent cannot be updated, or conveyed

to users. Specifcally, only if the updates are applied in a consistent manner can the server

send an authenticated acknowledgement to the user requesting the update; only if a record

is consistent with the root can the server send the record to the querier (along with a MAC

generated by the module).

In the proposed approach asymmetric cryptographic primitives are used sparingly -

only for establishing shared secrets between users and the module. Unlike conventional

ADS systems where for verifcation of any record the client requires a verifcation object

in the form of a set of log2 n hashes (where n is the total number of records stored by the

server), in the proposed approach the VO is provided by the middle-men to the module,

and only a single MAC is sent to the user to attest the accompanying record.

No component of the server, the user in control of the server, or the numerous com-

ponents necessary for the functioning of any wide area network, need to be relied upon to

realize the desired assurances. As long as the cryptographic hash function h() is pre-image

resistant, and the functions executed by the module cannot be modifed, and the secrets

protected by module cannot be exposed, all desired assurances are guaranteed.

103

Our motivation to reduce the complexity of operation performed by the module T is to

improve the trustworthiness of the module. The simpler the functionality of the module, the

better is the ability to verify the integrity of such functionality. Furthermore, due to generic

nature (fxed functionality irrespective of the type of the look-up service) such modules

can be easily mass produced; the process for verifying and certifying fxed functionality

modules can also be easily automated.

104

CHAPTER 6

MINIMAL TCB FOR SCADA SYSTEM MONITOR

An essential prerequisite for the ability to monitor a SCADA system is an accurate

picture of the current states of all sensors and actuators of the system. Misrepresentations

of the state can be perpetrated either by sending misleading information (for example, by

impersonating a sensor) or by preventing sensor measurements from reaching the moni-

tor (for example, jamming). We identify a minimal trusted computing base (TCB) for a

SCADA monitor, and a strategy to leverage the TCB effciently to realize the assurance

that “any misrepresentation of the SCADA system state will be identifed.” In the pro-

posed approach the TCB is a severely resource limited trusted module. Periodic reports

from sensors/actuators are stored by the untrusted SCADA monitor as leaves of an ordered

Merkle hash tree; only the root of the tree is stored inside the module. The untrusted mon-

itor is required to periodically offer proof to the trusted module regarding the integrity and

freshness of reports from all sensors.

At any instant of time, the state of a SCADA system is defned by the values sensed

by various sensors, and the states of different actuators (for example, on/off, open/closed)

in the system. An important prerequisite for the ability to monitor a SCADA system is

105

a mechanism ensure that the monitor is provided a complete and accurate picture of the

SCADA system state.

Attacks on SCADA systems [60] aimed at misrepresenting the state of the SCADA

system can take two broad forms:

1. impersonation of sensors/actuators to provide incorrect state information, and

2. preventing a sensor/actuator report from reaching the monitor.

The former category of attacks can be addressed by mandating cryptographic authentica-

tion of sensor data. The emerging standard for SCADA cryptographic modules [63] can be

used for this purpose. The second category of attacks could be carried out by an attacker

in a variety of ways like i) jamming the channel, ii) cutting a wire, iii) destroying a sensor,

etc.

6.1 Problem Statement

An obvious strategy to detect such attacks would be to mandate periodic reports from

every sensor (which is a common requirement in any case in most SCADA systems). In

practice, every (authenticated) sensor report sent to the monitor can indicate the time te

before which the next update from the sensor is due (or te is the time of expiry of the

current report). For a system with N sensors, at any instant of time the monitor should

possess N fresh reports. More specifcally, at a time t, no record should indicate an expiry

time te < t (if any such stale record exists, the monitor will trigger an alarm).

To meet the required goals - ensuring that sensor records cannot be impersonated, or

illegally modifed, or even hidden1 from the monitor - we trust the monitor to
1The existence of a stale record - or the absence of a fresh record - should not be hidden from the monitor.

106

1. verify the cryptographic integrity of sensor records and store the records,

2. periodically verify the expiry time of all records to ensure that no record is stale, and

3. raise an alarm if a stale record is found.

In practice the monitor is often a general purpose computer. Consequently, it is ill-advised

to simply trust the monitor.

6.2 Minimal TCB

In this chapter we investigate a minimal TCB for a SCADA system monitor. In our

approach we assume that the monitor is an untrusted computer U. The monitor U is

required to periodically offer proof to a trusted module T that “no sensor record is stale.”

The trusted module T may be housed inside U, or plugged into U, or may merely be

accessible by U over an open network.

The module exposes some interfaces to U through which U submits authenticated

records from sensors, and few other values as proof that “no record is stale.” The functions

performed by the module to verify the proof are the TCB functions. As long as i) the

functionality of T cannot be modifed, and ii) secrets protected by T cannot be revealed,

this TCB can be leveraged to realize the desired assurance regarding the SCADA system

monitor - that the presence of any stale record cannot be hidden from the module T.

Our specifc contribution is the enumeration of the TCB as a set of (three) low com-

plexity functions performed inside the module T: i) Update() for updating received sensor

records, ii) FProof() to submit proof of freshness of all N records; and iii) Init() for initial-

izing the module.

107

6.2.1 Principle of Operation

Every sensor shares a secret with the module; reports from sensors are authenticated

using message authentication codes (MAC), and indicate the time of expiry of the record.

When a report from any sensor is submitted to the module T, the module performs a fxed

sequence of simple logical and cryptographic hash operations.

The dynamic set of N current records form the leaves of a Merkle tree, and are stored

by the untrusted monitor U. Only the root of the tree is stored inside the module T.

Employing a Merkle tree permits the module to verify the integrity of any leaf (sensor

record) by performing log2 N hash operations (and comparing the result with the root

stored inside).

In general, different sensors may indicate different validity durations, depending on the

dynamics and the criticality of the process sensed. Sensors that are required to send fre-

quent updates can indicate smaller validity times (seconds or even tenths of seconds) while

less critical sensors, or sensors sampling slowly varying processes, may indicate larger

intervals (several seconds or even minutes). The update interval for a particular sensor

may also change dynamically as some processes may need to be sensed more frequently at

certain times.

The untrusted monitor U is required to periodically prove to the module that no record

is stale (till some time te > t, where t is the current time), and thereby convince the module

to not trigger the alarm till time te. More specifcally, the time te is the earliest expiry time

among all N sensors. Thereafter, before time te the monitor should be able to convince

the module to not trigger the alarm till some time t0 e > te, and so on. It is easy to see that

108

time difference τ between submission of two such proofs is at most equal to the validity

duration of the sensor with most frequent updates (or least validity duration).

For a system with a large number (say N) of sensors, it is obviously impractical for

the resource limited module to verify each of the N records individually in every interval

of duration τ to satisfy itself that no record is stale. A signifcant novelty in the proposed

approach lies in a strategy for indexing records added to the Merkle hash tree to ensure

that the module requires to verify only one record to conclude that no record is stale. This

indexing strategy is motivated by NSEC [76] - a strategy used in the domain name system

(DNS) security protocol, DNSSEC [9], to provide authenticated denial of existence of DNS

records.

In Section 6.4 we outline the proposed strategy for securing a SCADA monitor using a

minimal TCB.

6.3 Background

The ability to reliably monitor SCADA systems controlling critical infrastructure is

an important requirement for the security of any nation. As general purpose computers

cannot be trusted to perform this task it is necessary to identify a minimal amount of trusted

hardware to enforce this requirement.

Several approaches mentioned in Section 2.2.5 have been proposed to improve the

trustworthiness of software running on untrustworthy general purpose computers.

109

The primary utility of a Merkle tree stems from a single cumulative verifcation point

for all its data records, which makes it easier to store that one value in a secure location

(instead of storing all the data records). This useful feature has been taken advantage of in

various application scenarios. The secure co-processor AEGIS [62] utilizes this feature to

expand trust in the root hash of the tree which is stored inside its secure memory to provide

a trusted boundary for the values stored outside. In [52] a Merkle tree is used to leverage

one trusted monotonic counter to realize a large number of virtual monotonic counters.

We assume that a resource limited trustworthy module T is the verifer which stores

the root of a Merkle tree. The prover is an untrusted monitor U which stores all N leaves

and the 2N − 1 internal nodes. The N leaves are records specifying the states of N sensors

- each record indicating the latest sensor measurement and the time of expiry of the record.

The untrusted U is expected to maintain the current state of all sensors. However, only the

trustworthy module T is trusted to enforce this requirement.

6.4 Trustworthy SCADA Monitor

We consider a SCADA system with i) N sensors/actuators (which send authenticated

sensor reports at dynamically varying frequencies (in the rest of this chapter we refer to

both sensors and actuators as sensors); ii) an untrusted monitor U, iii) a trusted mod-

ule T; and an iv) alarm module A. Each sensor has a unique identity, represented as

S1, S2, . . . SN . The monitor is a software running on an untrusted general purpose com-

puter U, and has access to a trustworthy module T.

110

6.4.1 Overview of Proposed Approach

The module T has the following limited abilities:

1. T stores i) the dynamic root r of a Merkle tree; and iv) a secret K provided by a
trusted authority; it is assumed that no entity can illegally modify the values r, or
expose the secret K;

2. T can perform a fxed sequence of operations involving cryptographic hashing and
logical operations; and

3. T possesses a clock.

It is assumed that the clocks of all sensors (or cryptographic modules associated with sen-

sors) and the alarm module are synchronized “reasonably well” with the clock2 of the

module T. A sensor Si (or a module associated with the sensor Si) is assumed to have

access to a secret

Ki = h(K k Si). (6.1)

(which can be readily computed by T using its secret K). The alarm module A possesses

a secret KA = h(K k A) which can also be readily computed by T. If the alarm module

is provided values

V = [te k µ] where µ = h(te k KA), (6.2)

the alarm will be suppressed till time te. To ensure that alarm is not triggered the untrusted

monitor U is required to periodically obtain such values from the module T, and provide

them to the alarm unit. In order to obtain the value µ = h(te k KA) from T, the monitor

U is required to prove to T that “no sensor record expires before time te.”
2The clock drift δ should be substantially smaller than τ where τ is the smallest duration of validity of

sensor records.

111

The sensors send sensed data in the form of authenticated sensor records. A sensor

record sent by a sensor Si is of the form

Ri = [Si k ξi k ti k µi] where

µi = h(Si k ξi k ti k Ki), (6.3)

where ξi is the measured value, ti is the time of expiry (or time before which the next report

from the sensor Si is due), and µi is a MAC for verifcation by module T.

Sensor records are stored by U. Upon arrival they are submitted to the module T

(along with some other values, as we shall see soon). In response, T performs a sequence

of hash and logical operations and updates its root r. At any time t, U is required to store

N records - one for each sensor. Each record is a leaf of a Merkle tree, and only the root

of the tree is stored inside T.

6.4.2 Example of the Utility of the Proposed Approach

Consider a system with (say) N = 10000 sensors where different sensors have differ-

ent periods of updates (and the period of updates themselves are dynamic). Assume that

on an average, 100 sensors update values once every second or so, 500 sensors update val-

ues once every ten seconds, 2000 sensors update values once every 100 seconds, and the

rest (7400) update values once every 400 seconds. Thus (on an average), during every 400

second interval the monitor receives about 75400 reports (or about 190 reports per second).

For this example, the minimum duration of validity τ is one second. Thus, at least once

every second the monitor U should prove to the module T that no sensor record is stale,

and obtain a MAC verifable by A.
112

At a time t, to ensure that no record is stale the module will need to check every record

- to determine the record with the earliest expiry time te, and that te > t. Obviously,

all 10000 values cannot be stored inside storage limited T. As the records are stored

outside (as leaves of a merkle hash tree), in order to accept the record as authentic, module

T expects instructions vi to map any record (say leaf li) to the root r as f(h(li), vi).

Unfortunately, it is far from practical for the module to verify each of the N = 10000

records every second. In other words, such an approach does not scale well (for large N).

Central to the proposed approach is a strategy for maintaining an ordered list of sensor

records - ordered by expiry time - to ensure that only one record need to be verifed by the

module T to determine the earliest expiry time. More specifcally, for the example above

with 10, 000 sensors the module will not need to process 190 + 10000 sensor records every

second (190 record updates and 10000 records to be checked to identify the sensor with the

least expiry time). Instead, the module needs to process only 190 updates and 1 (instead of

100000) stored sensor record every second.

6.4.3 Auxiliary Sensor Data

At any time t, the set of N records stored by U is of the form

S1 ξi t1 a1

S2 ξ2 t2 a2
(6.4)

...

SN ξN tN aN

113

where ξi is the reported value for sensor Si, and ti is the time till which the sensor record

is valid. The last feld - the “auxiliary” value - ai in a record for sensor Si is obtained by

sorting the values t1, t2, . . . , tN of all N records in an ascending order. More specifcally,

the value that follows ti is ai. If ti happens to be the highest value (last value in the sorted

order) then the value that follows is the frst value - or ai is the frst (smallest) value in the

sorted list.

Shown below is an example depicting ti and ai values for a set of N = 8 sensor records.

ξ te a

S1 5 1002 1008

S2 6.78 845 848

S3 0 850 1002

S4 5 840 842 (6.5)

S5 4.44 848 850

S6 0 1008 835

S7 0.76 835 840

S8 0 842 845

The least ti value (835 for S7) is accompanied by a7 = 840 = t4 - the next higher value.

Similarly, a4 = 842 = t8, and so on. Corresponding to the record S6 with the highest

t6 = 1008 is a6 = 835 = t7, the least t value.

The reason that the sensor data is stored with an auxiliary feld is to be able to easily

offer proof to the module T that “no record is stale.” Now, with the auxiliary value ai,

U has to provide only one sensor record - the record which includes a wrapped-around

114

value (tl, al) with al < tl (in the specifc example above, the record for S6 with values

(1008, 835)). This record indicates that al = 835 is the earliest time of expiry. Thus, as

long as al = 835 is greater than the current time t, the module is convinced that all records

are fresh.

That a leaf li indicates a value (ti, ai) is proof that “no leaf exists in the tree with

a expiry time t covered by (ti, ai). Such an approach is used in NSEC [76] records in

DNSSEC (DNS security) [9] for providing authenticated denial of queried records. An

NSEC record of the form (abc.example.com, add.example.com) proves that no record

pertaining to a name ac.example.com exists.

6.4.3.1 Initializing Sensor Data

A trusted authority constructs initial sensor records of the form [Si k ξi k di k ai]

where di is the initial expiry time of Si, and the value ai is obtained by sorting all di values

in an ascending order, and choosing the value following di from the sorted list as ai.

Let r0 be the root of the tree with the initial N records as root. The monitor U is

initialized by providing all leaves to U; the module T is initialized by providing the root

r0, and setting its clock to 0. Simultaneously, the clocks of all sensors and the alarm unit

are set to zero.

The interface Init() to initialize T can be called only by the trusted authority to provide

the value r0 (the initial root). In response, the module T i) sets its clock counter to zero;

ii) stores r0 in an internal register. From this point onwards, every received sensor record

is submitted by U to T to update the root.

115

https://ac.example.com
https://add.example.com
https://abc.example.com

6.4.4 Updating a Sensor Record

As stored sensor records are updated (with every received sensor record), it is neces-

sary to ensure the consistency of the ti, ai values in all N records at all times. To achieve

this, updating a sensor typically requires three records to be modifed. More specifcally,

apart from the record for which an update is received, the ai values in two other records

may need to be modifed. In some (non-typical) cases, the ai value in one other record will

need to be modifed.

For example, consider an an update for S5 with a new validity time 851 (to replace the

old validity time 848). As a result, the auxiliary value in records S2 and S3 need to be

modifed. Specifcally,

1. the value a3 needs to be changed from 1002 to 851

2. the value a2 needs to be changed from 848 to 850

As another example (of a non typical case), if an update for S5 causes the validity time to

be modifed from 848 to 849, then a2 should be modifed from 848 to 849.

More generally, to update a record for an index u with current values (tu, au) to a new

expiry time t0 u, the algorithm is as follows:

1. determine the record index p such that ap = tu (this record index p “points” to the
record indexed u to be updated).

2. determine the record index c such that (tc, ac) covers t0 u. More specifcally,

(a) if tc < ac then (tc, ac) covers t0 u if tc ≤ t0 u ≤ ac;
(b) if tc > ac, then (tc, ac) covers t0 if t0 > tc, or if t0 < ac;u u u

(c) if tc = ac, then (tc, ac) covers t0 u if t
0
u = tc = ac.

3. If u == c, or in other words, if (tu, au) itself covers the new value t0 u, then set
ap = tu

0 ; the value au remains unchanged in the updated record;
116

4. If u =6 c, then set i) ap = au; ii) au = ac; and iii) ac = t0 u;

For the example where S5 was updated to a new validity time 851, the indices u, p and c

are respectively u = 5, p = 2 and c = 3. For the second example where S5 was updated to

a new validity time 849, the indices are u = c == 5, and p = 2.

6.4.5 Interface Update()

An interface Update() is used by the untrusted monitor U to submit new authenticated

reports from sensors to the module T to cause the module to update the root of the tree.

To update the record for a sensor Su the monitor U provides the following inputs:

1. the current leaf lu for Su (which indicates values ξu, tu and au);

2. a new record for sensor Su (authenticated by Su through MAC µu), indicating time
of expiry t0 u. This record will be verifed by the module before it replaces the old leaf
lu.

3. a current leaf lp (for sensor Sp) with ap = tu,

4. a current leaf lc, with the pair (tc, ac) which covers t0 u.

5. a set of “complementary” hashes vu,p,c to permit T verify the validity of the three
current records against the root.

The module T processes the inputs as follows:

1. Verify MAC µu;

2. Verify f3(vu, vp, vc, vu,p,c) = r;

3. If vu == vc, modify lp and lu (to lp
0 and lu

0) as follows

(a) replace value ap in leaf lp with τu
0 ; and

(b) replace values ξu and τu in lu with ξu
0 and τu

0 .

4. If vu 6= vc, modify lp, lu and lc (to lp
0 , lu

0 and lc
0) as follows

(a) replace (in lu) ξu with ξu
0 , tu with t0 u, and au with ac;

117

(b) replace (in lp) ap with t0 u; and

(c) replace (in lc) ac with t0 u.

0 0 05. Compute v = h(l0), v = h(l0), v = h(l0);u u p p c c

6. Compute the new root as r0 = f3(vu
0 , vp

0 , vc
0 , vu,p,c).

6.4.6 Interface FProof()

The interface FProof() is employed periodically by the monitor U to obtain a MAC to

convince the alarm module to not trigger the alarm.

The monitor U uses this interface to submit proof that no record is stale, Specifcally,

the values provided as input are i) a leaf li with (ti, ai) where ai < ti, and ii) a set of

complementary values vi such that f(vi, vi) = r where vi = h(li).

The module T frst verifes the integrity of the leaf li against r using f(); verifes that

t < ai < ti where t is the current time, and outputs a MAC µ = h(ti k KA) where KA is

computed as h(K k A).

As illustrated in the example in Section 6.4.2, without the proposed strategy the module

will have to perform 190 + 10000 merkle tree operations every second - 190 leaf updates

and 10000 leaf verifcations per second. With the proposed strategy updating a sensor

record using interface Update() may call for updating 2 or 3 leaves simultaneously. Even if

we assume3 that updating three leaves simultaneously is equivalent to updating 3 leaves in-

dependently the complexity for the proposed approach is 3×190+1 merkle tree operations

per second.

3In general the number of hash operations required for updating three leaves simultaneously is lower than
updating three leaves independently - especially if the common parent of the three leaves is well below the
root.

118

Ensuring detection of misrepresentations of sensor states is however just one more step

towards securing SCADA systems. Once it is ensured that the untrusted monitor cannot

misrepresent (modify or hide) states {ξ1 · · · ξN } of any sensor/actuator, mechanisms are

required to verify that the state {ξ1 · · · ξN } is a “valid” one.

119

CHAPTER 7

EVAULATING SCADA SYSTEM STATE

The module approach provided in Chapter 6 assures that all the sensor records are

fresh. Only the presence of fresh records is not suffcient to determine the state of the

system. A mechanism to build an evaluation function that denotes the entire state of a

system from the available records and existing rules is addressed in this chapter.

For a SCADA system with N sensors/actuators, let v1 · · · vN represent the states of the

sensors/actuators at a time t. The system is deemed to be in an acceptable state at time t if

some function f(v1 . . . vn) evaluates to TRUE, where the function f() is specifed by the

designer of the system. Else, an alarm should be triggered.

7.1 Principle of Operation

If sensor reports cannot be impersonated, and the module T can compute the func-

tion f(v1, v2, . . . , vn) specifed by the designer, the module T can then be convinced that

the system is in an acceptable state if f() evaluates to TRUE. However, that the non pro-

grammable module functionality should be usable for any SCADA system implies that

we cannot make any assumptions regarding the type of function f() or the number N of

sensors/actuators in the system. Thus, for example, the module T may not be capable of

storing all N current sensor reports.

120

In the proposed approach, the modules employ a Merkle hash tree [42] to virtually

store the N current records as leaves of the Merkle tree. Only the root of the tree (a single

hash) is stored inside the module T. By performing simple sequences of hash operations

the module T can verify the integrity of any leaf against the root stored inside. In addition,

a novel concept of using “synthetic” records to specify relationships between leaves is used

to evaluate the function f().

For our purposes the leaves are sensor records, which can be inserted/updated only

under certain conditions. A resource limited module T capable of i) storing the root, ii)

performing simple sequences of hash functions to evaluate h0(), and iii) verifying simple

pre-conditions necessary for updating a leaf, can provide integrity assurance to a large

database of sensor records stored in an insecure location.

7.2 Sensor leaves and Synthetic Leaves

The leaves (sensor records) are stored by an untrusted computer U. The module T

stores only the root of the tree. More specifcally, the Merkle tree employs two types of

leaves, sensor leaves and synthetic leaves. Sensor leaves are of the form li = i k vi k ti

where i is a unique label for a sensor/actuator, vi is a value reported by the sensor/actuator

(the state of the sensor), and ti is the time of expiry of the record. For a system with N

sensors/actuators the tree possesses N sensor leaves.

Synthetic leaves do not correspond to sensor records. Instead, they are some function

of two sensor records. A synthetic leaf is of the form ls = k OP k i k j,m m k vm k tm

where i and j refer to two leaf indexes, and OP refers to one of a small number of binary

121

operations. The felds OP k i k j is interpreted to imply that vm is a function of leaves

i and j. More specifcally, vm = OP (vi, vj). For example, if OP is a code for + then

vm is computed as vi + vj ; if OP is AND, then vm = vi ∧ vj , etc. While the time of

expiry of sensor records are indicated in received sensor records, the time of expiry of

synthetic records are set as the minimum of the time of expiry of its constituents. Or

tm = min(ti, tj).

A synthetic record may be a function of any two leaves (even leaves that contain syn-

thetic records). It is reasonable to expect that a system with N sensors will require roughly

N synthetic records to effectively specify the function f(). As a synthetic record includes a

value which is a function of two other leaves, for a SCADA system with N real sensors we

can expect (as a rough estimate) N/2 synthetic sensors (say S1) each specifying functions

of two real sensors, N/4 synthetic sensors S2 each specifying functions of N/2 synthetic

sensors S1, and so on till one synthetic record in a leaf ln
s is a function of all sensors. The

value vn in ln
s determines if the SCADA system is in an acceptable state. For example, only

if vn = 1, and tn > t (where t is the current time) will the alarm be suppressed. Note that

the expiry time of tn of ls
n will be the minimum of expiry times of all sensor records.

When any sensor is updated, about log2(N) synthetic sensor records will also need

to be updated to ensure that ln
s refects the overall state. It is important to note that the

“hook” which ensures that the untrusted U will have to submit all sensor records and

update affected synthetic sensor records, is the expiry time. Unless all sensors are updated

the expiry time will not be current (as ls
n will have the least expiry time of all records) and

hence the alarm cannot be suppressed.

122

7.3 Operation of module

The designer of a SCADA system initializes the Merkle tree which includes all leaves

corresponding to every real and virtual sensor. In all real-sensor leaves the expiry time

is set as a period in number of clock-tick counts for which the sensor can remain silent

(without providing an update). For example, if the clock-tick frequency is 1 MHz, and

sensor corresponding to l5 is expected send a fresh measurement at least once in every 10

second interval, the expiry time t5 will be set to 10 million.

The rules that govern acceptable states are specifed as synthetic leaves. The leaf ln
s

which ultimately indicates if an alarm is necessary is given a special label 0. The specifc

choice of initial values v1 · vn is not important, except that they should be chosen to ensure

that they do not refect an alarm condition. The designer supplies the entire tree to the

untrusted computer U.

Before a module T can be used in a deployment, the module T requires to establish

shared secrets with the designer of the system, the SCM associated with the MTU (which

supplies all sensor records), and the alarm module. It is also assumed that some mechanism

exists for the module T to indicate its current clock-tick value to the alarm module and

SCM.

The module T expose a function INITIALIZE() which accepts the root r0, duly au-

thenticated by the designer. When this interface is called the module T sets the root to

r0, and its clock-tick counter to zero, and instructs the alarm module and SCM to set their

counters to zero. From this point onwards, the SCM will modify sensor records to indicate

time of expiry in terms of the clock tick count of the module T, and outputs such sensor

123

records authenticated for verifcation by module T. The sensor records are made available

to U.

7.3.1 Module Interfaces

To update a real sensor record the module T exposes an interface UPDATE() which

expects as inputs i) a record li
0 authenticated by the SCM along with ii) the current record

li, and iii) a set of hashes vi such that r = h0(li, vi). The module T incorporates the new

record by modifying the root to refect the new record as r = h0(li
0 , vi).

To update a synthetic record the module T exposes an interface UPDATESYN() which

expects the following inputs: i) a current current synthetic leaf lm
s along with ii) hashes

to prove lm
s against the root; iii) leaves li and lj corresponding to indexes specifed in the

synthetic leaf lm
s along with ii) hashes to prove the integrity of leaves lj and li against the

root of the tree. In response the module T a) computes vm = OP (vi, vj); b) sets the expiry

time tm to t + m = min(ti, tj); and c) updates the root to refect the modifed lm
s .

At a time t (when the clock-tick counter value of the module T is t), to convince the

module T that the system is in an acceptable state;

T exposes an interface SILENCEALARM() which expects as inputs i) the special synthetic

sleaf ln
s , and ii) hashes to map the leaf to the root. If vn = 1 and tn > t, the module

T outputs a MAC for the value tn verifable by the alarm unit to indicate that the alarm

should be suppressed till time tn.

It is the responsibility of U to submit duly authenticated sensor records using the in-

terface UPDATE() and update synthetic sensor records by using interface UPDATESYN().

124

Unless U manges to keep the synthetic records updated, it cannot use the interface SI-

LENCEALARM() to silence the alarm. It is also the responsibility of U to maintain the

leaves of the Merkle tree and the intermediate nodes, and modify the intermediate nodes

whenever any leaf is updated. However, at the risk of sounding repetitious, we still do not

need to trust U as failure to do its job will result in an alarm. Similarly, jamming attacks

which could result in preventing sensor records from reaching the MTU will not be able

to suppress the alarm. Furthermore, as the rules specifed by the designer (as synthetic

records) cannot be modifed, the fact that the system is in an unacceptable state cannot be

hidden from the module T.

The possibility of hidden malicious functionality in complex components mandates

strategies to secure critical systems that relies only on components in which we can rule out

HMF. We have outlined an approach to secure SCADA systems by relying on a trustworthy

module of trivial complexity, which can be realized in a trusted environment.

In the proposed model it is the responsibility of the untrusted computer U to ensure

that all sensor records are submitted to module T using interface UPDATE() and that all

synthetic records are updated (using interface UPDATESYN()), and that they remain up-

dated at all times. If U fails to do so, the time of expiry of the leaf ln
s cannot be updated,

and thus the alarm cannot be silenced.

Updating every sensor record will require updates to about log2 N synthetic sensor

records. As updating any record requires O(log2 N) hash operations, the complexity for

updating a sensor record is O(log22 N). For example, for a complex SCADA system with

125

million sensors (or log2N ≈ 20), updating any sensor will require of the order of 20×20 =

400 hash operations.

The module T does not care about the specifcs of how the deployment operates. The

task entrusted to module T is clear and simple - to verify that the physics of the process

is consistent with the intent of the designer. The personnel who translate the design into a

deployment (for example by writing software logic in PLCs) may choose to impose rules

that are stricter than the rules specifed by the designer - as long as they do not violate the

rules specifed by the designer. Irrespective of logic used to control the process, an alarm

will ensue if the state of the process is in an unacceptable state as deemed by the designer.

Another benefcial side effect of the proposed strategy stems from it’s loose relationship

with deployment details. Deployed systems can be easily upgraded as demanded by ever

changing technologies. As mot SCADA system components are not trusted, the security

mechanism is not affected by changes to such components. The security mechanisms also

does not interfere with, or is unaffected by, any other security strategy that may be used in

addition. cannot use the interface SILENCEALARM() to silence the alarm. It is also the

responsibility of U to maintain the leaves of the Merkle tree and the intermediate nodes,

and modify the intermediate nodes whenever any leaf is updated. However, at the risk

of sounding repetitious, we still do not need to trust U as failure to do its job will result

in an alarm. Similarly, jamming attacks which could result in preventing sensor records

from reaching the MTU will not be able to suppress the alarm. Furthermore, as the rules

specifed by the designer (as synthetic records) cannot be modifed, the fact that the system

is in an unacceptable state cannot be hidden from the module T.

126

CHAPTER 8

A SECURITY ARCHITECTURE FOR SCADA SYSTEMS

Our research led to identify the roles of untrusted middleman in distinct PMC systems.

The importance of identifying a minimal TCB for critical Infrastructure systems is dis-

cussed in Chapter 3. As mentioned, depending upon the nature of parameters like data,

identifers, application domain, two types of TCB modules 1. Stateful, 2. Stateless are

identifed.

Atomic relay functionality provided in Chapter 4 serves the purpose of a stateless TCB.

A stateful TCB solution for generic data dissemination system (which can also handle

dynamic DNS) is provided in Chapter 5.

The strategies for designing a TCB for SCADA systems discussed in Chapters 6, 7 do

not take most of the practical issue into account, and merely include some components of

the TCB functionality required to secure SCADA systems.

This chapter provides a complete specifcation of an architecture for securing SCADA

systems. This architecture, based on a trusted hardware module - which we refer to as a

SCADA TCB (STCB) module - is intended to be usable for any SCADA system - irre-

spective of the nature and size of the system. The STCB based security architecture will

include specifcations for a) the functionality of STCB modules; b) processes to be adopted

127

by the designer and the deployer of the system; and c) an STCB protocol, for updating the

state of STCB modules, and obtaining SCADA state reports.

8.1 Overview of STCB Approach

The STCB security model emerges from a broad perspective of a SCADA system,

where a stake holder desires to have an accurate picture of the state of a CI system. A

SCADA system is the agent employed by the stake holder to control and report the state of

the system.

The state reports from a SCADA system can be seen as a function of the current states

of all sensors associated with the system. For a SCADA system characterized by n sensors,

let v1 · · · vn represent the states of the n sensors, and let

[o1 · · · os] = F(v1 · · · vn) (8.1)

represent a function that captures the “physics” of the controlled system, and reports values

[o1 · · · os] to the stake-holder as the “state of the system.” In practical SCADA systems

evaluation of F() is performed jointly by numerous untrusted SCADA system components

that may include PLCs in multiple RTUs and MTUs, the HMI, and even actions by human

operators. Consequently, the integrity of the state reports are far from assured.

The goal of the STCB security model is to guarantee the integrity of state reports

provided by the agent. To achieve it’s goals, the STCB security model relies only on a) the

integrity of STCB modules, and b) the integrity of clearly defned processes to be adopted

by entities identifed as the designer and the deployer of the SCADA system.

128

The designer is an entity with good domain knowledge (regarding the CI system); the

deployer is a security professional who is not required to possess any knowledge of the CI

system. To the extent the stake-holder trusts the integrity of the STCB modules, and the

verifable processes adopted by the designer and the deployer, the stake-holder is assured

of the integrity of the state report — even if malicious functionality may exist in SCADA

system components.

Current approaches to secure SCADA systems often possess features like a) crypto-

graphic protection of links between RTUs and MTUs [31, 38, 53, 64, 74, 80] to prevent

message injection attacks by attackers and b) intrusion detection systems to facilitate early

detection of attacks [13, 47, 83]. Such efforts do not however address attacks that exploit

hidden functionality in SCADA system components or the IDS.

STCB based security will not interfere with any security mechanisms that may already

exist. It is a passive approach which merely monitors and evaluates the state of a SCADA

system. More specifcally, the STCB approach can not prevent hidden functionality from

being exploited. Good security practices are still necessary to a) reduce the possibility of

hidden functionality, and to b) make it diffcult for attacker to be able to actually exploit

such functionality. What the STCB approach guarantees is that if some malicious func-

tionality is exploited to drive a CI system into unacceptable states (the defnition of which

is specifed by the designer of the system), the fact that the system is in an unacceptable

state can not be hidden from the stake-holder.

The STCB approach does not address attacks on the physical sensors themselves. It

is reasonable to assume that it is impractical for attackers to introduce hidden malicious

129

functionality in extremely simple components like sensors that can be remotely exploited.

Thus, traditional physical security measures are assumed to be adequate for protection of

sensors.

8.1.1 STCB System Components

The additional components introduced into a STCB-secured SCADA system include

1. an untrusted “STCB system manager” U,

2. STCB modules {M1 · · · Mk}, and M0.

All STCB modules are identical, and are capable of executing a set of simple TCB func-

tions. Modules M1 · · · Mk are “closely bound” to SCADA system sensors.

In the rest of this chapter we shall use the term sensor module (SM) for STCB modules

M1 · · · Mk, and the term central module (CM), for STCB module M0. The untrusted STCB

manager U periodically receives sensor reports from SMs M1 · · · Mk and makes them

available to CM M0. CM M0 evaluates F(), and outputs state reports.

From a broad perspective, the authenticity of the inputs to F() are assured by SMs

M1 · · · Mk; the integrity of the function F() is assured by the CM.

The exact make up of the manager U is irrelevant for our purposes of guaranteeing

the integrity of F(), as U is not trusted. Unless U performs it tasks faithfully, valid state

reports can not be sent to the stake holders.

The state reports are relayed by the STCB manager U to an STCB module Mr associ-

ated with a stake-holder. Any number of stake holder modules like Mr may exist. More

generally, a stake-holder module may be the CM for another STCB deployment.

130

S1

Sn

...
...

M1

Mk

SMs

M0

CM

U

Mr

Stake-holder STCB

Figure 8.1

STCB components

SM CM (CM)
Sensor

Reports

State

Reports

Figure 8.2

Information fow in the STCB model

131

For example, the state reports from different SCADA systems may be provided as

“sensor reports” to a system at a higher level of hierarchy. In such a scenario, the stake-

holder module Mr can be seen as the CM of an STCB deployment at a higher level of

hierarchy. Module Mr considers the state reports from the CMs of systems at the lower

level as “sensor reports” from foreign STCB deployments.

Any number of hierarchical levels may exist. For example, state reports from multiple

SCADA systems in a town may be inputs to a single SCADA system that monitors the

health of all such systems in the town. The reports from such SCADA systems in different

towns may be inputs to another SCADA system at an even higher level of hierarchy, that

monitors the health of all systems in a state, and so on.

8.1.2 Evaluating F()

The main challenge lies in the choice of a strategy for evaluating any F() (which can be

substantially different for different SCADA systems) inside the trusted confnes of severely

resource challenged STCB modules. Recall that we desire to deliberately constrain STCB

modules to possess only modest memory and computational abilities. Consequently, we

constrain STCB modules to perform only logical and cryptographic hash operations. By

performing simple logical operations the STCB modules support a simple instruction set

A.

As no restrictions are placed on the nature and scale of the SCADA system, some of

the specifc challenges are that

1. the number of sensors n (also the size of inputs to F()) can be unlimited;

132

2. evaluation of F() may require evaluation of complex functions, and thus challenging
to represent using merely the instruction set A.

3. reports corresponding to different sensors may arrive asynchronously (necessitating
frequent re-computation of F(v1 · · · vn)).

All such challenges are addressed either directly or indirectly through the use of Merkle

trees [42].

8.1.2.1 Merkle Trees in the STCB Approach

In the STCB approach resource challenged STCB modules store only the root of the

tree, and have the ability to perform fv() operations. This capability is leveraged to assure

the integrity of

1. a dynamic database of n sensor measurements;

2. any number of simple static “algorithms” to evaluate F(); the algorithms are small
number of instructions (belonging to the instruction set A) supported by STCB mod-
ules; and

3. static look-up tables (of any size) for evaluating complex functions in F().

Specifcally, the STCB module M0 for an STCB deployment stores a (static) root of a static

merkle tree, and the (dynamic) root of a dynamic merkle tree. The leaves of the static tree

are the specifcations for a specifc STCB deployment — provided by the designer and

the deployer of the system. The leaves of the dynamic tree are the current states of the n

sensors of the system. The leaves and all intermediate nodes of both trees, are stored by

the untrusted STCB manager U.

133

8.1.3 STCB Designer and Deployer

One of the main motivations for clearly demarcating between the roles of a designer

and a deployer is that entities with good domain knowledge (for example, an entity with

in-depth knowledge about the domain of specifc CI system, like a nuclear plant) are often

unlikely to be security experts. Likewise, security experts are unlikely to be experts in the

domain of the specifc CI system.

In the STCB security model, the designer is a domain expert with good knowledge of

the CI system. The designer is required to be aware of the purpose of each sensor in the

system, and the interpretation of their states. For example, (say) in a water-tank control

system, “if S5 > 100 (water level greater than 100) S6 should be zero (the pump should be

off).” The responsibility of the designer is to come up with a specifcation for the function

F(v1 · · · vn) that captures the physics of the system.

The deployer is a security professional who may not possess any CI system domain

knowledge. The responsibility of the deployer is to procure and install STCB modules.

The deployer needs to be aware of steps to be taken, for example, to

1. facilitate establishment of shared secrets between modules;

2. securely connect (for example, using tamper-evident connectors) physical sensor
outputs to SMs, and record such bindings (for example, (S5,M8) indicating that
sensor S5 is connected to module M8);

3. deploy the STCB manager U — which includes installation of all hardware/software
necessary to relay SM outputs to the STCB manager U, setting up a channel to
the CM M0, and a channel to be used for conveying state reports to stake holders.
However, U, and such channels, are not trusted.

134

8.2 STCB Design

The designer is entrusted with the responsibility of describing function F() in a special

manner comprehensible by resource limited STCB modules. Specifcally, due to the asyn-

chronous nature of the sensor reports, it is ineffcient to evaluate F() entirely every time

a fresh report from any sensor is available. Consequently, for a system with n dynamic

inputs (corresponding to sensors S1 · · · Sn) evaluation of F() is realized as

U1() ◦ U2() ◦ · · · ◦ Un(), (8.2)

where Ui, 1 ≤ i ≤ n is evaluated whenever an fresh measurement from sensor Si is

available. It is the responsibility of the designer of the system to translate the function

[o1 · · · om] = F(v1 · · · vn) into an appropriate set of functions Ui, 1 ≤ i ≤ n.

8.2.1 STCB Design Tree

The designer provides a specifcation of Ui, 1 ≤ i ≤ n by constructing a static merkle

tree — the design tree — with root ξs. The tree includes n + 1 leaves

ξ0, G1 · · · Gn (8.3)

where ξ0 is itself a root of a merkle tree with n leaves that specify the initial state of n

sensors as records Si, 1 ≤ i ≤ n. The other n leaves correspond to the n design records

Gi, 1 ≤ i ≤ n. The sensor records and design records are of the form

Si = [Si, ti, oi1 · · · oiw , τi]

Gi = [Si, Si,1 · · · Si,q, αi, λi, Si
0] (8.4)

135

Each sensor is associated with a set of w + 3 dynamic values. Specifcally, the value vi

is the latest measurement of sensor Si, and ti is the time of the measurement. oi1 · · · oiw

are the w outputs of function Ui that is evaluated whenever a fresh report is available from

sensor Si. The value τi is a measure of time associated with the outputs oi1 · · · oiw .

In the design record Gi, the sensor identity Si conveys that Ui is to be evaluated when-

ever a fresh report from Si is available. The values Si,1 · · · Si,q specify up to q related

sensors. Such sensors are “related” to Si as the states of such sensors can infuence Ui.

Some or all of the q values Si,1 · · · Si,q can be set to zero if less than q related sensors

suffce.

The value αi = h(Ai) is the hash of a small number (say, m) of instructions chosen

from the set A. The value λi is a one way function of a set of (say, l) constants C. Such

constants may specify various values like set-points, permitted ranges of measurements,

minimum expected frequency of reports from sensors, etc. In addition, such constant val-

ues may also be used as look up tables. The value Si
0 is optional, and is the identity of a

“synthetic” sensor (explained later).

8.2.2 Inputs and Outputs of Ui

Due to limited memory inside STCB modules, there is a need for a strict upper bound

on the number of inputs to, and outputs of, each Ui. In other words, irrespective of the

total number of sensors n, note that Uis are restricted to specifying only a) up to q related

sensors, b) l constants, c) m instructions, and d) one synthetic sensor as inputs. Each Ui

produces w outputs.

136

As Ui is re-evaluated whenever a fresh report ṽi, t̃i is available from sensor Si, the inputs

necessary to evaluate Ui are stored in reserved volatile registers inside STCB modules, and

include

1. values in the record Si associated with sensor Si (stored in a register s0 inside the
module);

2. values ṽi, t̃i in a fresh report from sensor Si (register r);

3. values in records Si,1 · · · Si,q for related sensors Si,1 · · · Si,q (registers s1 · · · sq);

4. l constants in Ci (register c); and

5. m instructions Ai (some of which may be set to 0 to represent “no operation” if m
instructions are not required to evaluate Ui);

The m logical operations in Ai provide the instructions to recompute the outputs õi1 · · · õiw

of Ui following a fresh report from Si. On evaluation of Ui the record Si is modifed.

Specifcally,

1. ṽi, t̃i replace the previous values (vi, ti),

2. outputs õi1 · · · õiw replace outputs oi1 · · · oiw of the previous execution of Ui,

3. and τi is replaced with

τ̃i = min(τi1 · · · τiq , t̃i) (8.5)

to refect the staleness of the w outputs.

Note that dynamic values associated with any Si may be affected not just by values cor-

responding to sensors directly related to Si, but also sensors indirectly related to Si — for

example sensors related to a related sensor Sj (once removed) or sensors related to a sensor

related to Sj (twice removed) and so on. Computing the value τ as in Eq (8.5) ensures that

the value τi will be the least of the sensor-report time t corresponding to every sensor that

is directly or indirectly related sensor Si.
137

On a continuous basis, as and when new sensor reports are available, the states of the

reporting sensors are modifed. A subset of dynamic values corresponding to a subset of

sensors may be reported to the stake-holder as values o1 · · · om describing the state of the

system. For example, if value oj2 (second output of Uj) is one of the values reported as the

state of the system, the time associated with the state oj2 is reported as τj .

8.2.2.1 Synthetic Sensors

The sensors S1 · · · Sn can be of three types — real sensors, state-report sensors, and

synthetic sensors.

Real sensors are physical sensors in the SCADA deployment. Specifcally, during the

STCB deployment phase, real sensors are bound to SMs.

State reports from a foreign STCB system are seen by the receiving CM as a “sensor”

report; as such reports are authenticated by the CM of the foreign deployment, state-report

sensors are bound to foreign CMs.

Synthetic sensors are not bound to CMs or SMs. In a design record Gi, if S 0
i 6 0,=

implies that evaluation of Ui results in the “synthesis of a fresh report from a (synthetic)

sensor S 0
i = Sj .” Just as a fresh report from a sensor Si should be followed by evaluation

of Ui, a fresh report from synthetic sensor Sj = S 0
i should be followed by evaluation of Uj .

0

The primary motivation for using such synthetic sensors is to cater for complex Ui

where the fxed number of (m) instructions in Ai may be insuffcient. By specifying a

i, evaluation of Uisynthetic sensor Sj = S is continued as evaluation of Uj . Similarly,

138

evaluation of Uj , specifed by the designer as Gj = [Sj , Sj,1 · · · Sj,q, αj , λj , Sj
0] may be

continued again, if necessary, by specifying Sj
0 6= 0.

8.2.2.2 Constants and Look-Up Tables

In general, the value λi — which is a one way function of constants required to eval-

uate Ui — may be a function of multiple sets of l constants (l constants in each set). More

specifcally, λi is itself the root of a merkle tree, where each leaf specifes a set of l con-

stants. Any number of such leaves may exist, with a minimum of one.

Permitting an unlimited number of constants facilitates the use of look-up tables (LUT)

for evaluating Ui. An LUT for evaluating a complex function y = f(x) will have many

sets of l constants — say Cj,1 · · · Cj,l where there are no practical limits on j. In each

set c1 = Cj,1 · · · cl = Cj,l two of the l constants will specify the range of the independent

variable x, and one will specify the corresponding dependent variable y. For 2 dimensional

LUTs of the form y = f(x1, x2), four of the l constants will specify the ranges for the two

independent variables, and a ffth constant will specify the corresponding value of y.

Special instructions (say LUT1 and LUT2) in the instruction set A will specify the

operands – the dependent and independent variables. As one possible design of the two

instructions, instruction LUT1 interprets constants c1 and c2 as the range of the independent

variable x and constant c3 as the corresponding dependent variable y. Before the module

executes the instruction LUT1, it expects the value of the input operand to be within the

range of constants c1 and c2 — else the execution will not proceed. If the input operand

satisfes the requirement, then the value of the output operand is set to c3. Similarly, for

139

LUT2, constants c1 and c2 specify the range of the frst input operand x1; c3, c4 specify the

range of the second operand x2; c5 is the corresponding output y.

8.2.3 Instruction Set A

Each instruction in A specifes a logical operation (opcode), input operands (1, 2 or 3)

depending on the type of opcode, and an output operand. The operands are restricted to be

values in STCB registers s0 · · · sq, c, r, etc. Specifcally, as the instructions in each Ui can

modify only values in register s0 (the current state of sensor Si when Ui is computed), only

such values, and a temporary register T can be specifed as output operands.

Examples of simple logical operations include traditional operations like addition, log-

ical operations, bit-wise operations, COPY, MOV, etc., and some special instructions like

LUT1 and LUT2. Other potentially useful special instructions for SCADA systems is a

bounds checking operation CHKB which checks a specifc value is within set-points spec-

ifed as constants and tolerance checking TOL where two values are verifed to be close

enough — within a tolerance specifed by a third value.

Ultimately, a comprehensive specifcation for STCB modules will fx values like the

number of related sensors q, number of outputs w, and the number of constants l (and hence

the number of addressable values in the STCB registers). Such a specifcation will also

include a detailed listing of all permitted opcodes and their interpretation. This chapter,

however, is restricted to describing some of the salient features of STCB modules.

140

8.3 STCB Deployment

The deployer of the SCADA system is trusted to verify the integrity of the physical

bindings between various sensors and SMs. Specifcally, the deployer is required to per-

manently connect the outputs of every sensor to an SM, and apply tamper-evident seals to

such connections. The deployer specifes binding records of the form

Bi = (Si,Mj , �i, θ) (8.6)

to convey that

1. measurements corresponding to sensor Si will be reported by a module Mj ; if Si is a
real sensor, then Mj is an SM; if Si is a state-report sensor, then Mj is the identity of
the CM of a foreign system. Recall that synthetic sensors are not bound to CMs or
SMs and thus have have no binding records. The deployer may be totally oblivious
of the existence of such records.

2. �i is an achievable minimum round-trip duration between module Mj , and the CM
for the deployment, and

3. θ = 0 implies a record corresponding to a real sensor; θ 6= 0 implies report from a
foreign STCB system with STCB descriptor ξsp = θ.

To indicate that a module M0 was deployed as the CM for the STCB system, the binding

records includes a record for the CM M0 as B0 = (S = 0,M0, � = 0, θ = 0).

Depending on the requirements specifed by the stake holder, the deployer also specifes

reporting records of the form

Rj = (Sr,Mr, Sj , l), 1 ≤ l ≤ w. (8.7)

to indicate that the value ojl (corresponding to sensor Sj) should be reported to the stake-

holder module Mr, and that the report should indicate ojl as the latest (time τj) “measure-

ment” from state-report sensor Sr.
141

All such Bi and Rj are included as leaves of a static Merkle hash tree constructed by

the deployer — the STCB deployment tree. Let ξp be the root of the deployment tree with

leaves

{· · · Bi · · ·}, {· · · Rj · · ·} (8.8)

The end-result of the design and deployment processes are two hash trees with roots ξs and

ξp. The design root ξs can be seen as concise representation of the physics F(v1 · · · vn) of

the system. The deployment root ξp is a concise representation of the bindings between

real-sensors & SMs, and state-report-sensors & CMs of foreign STCB deployments. The

value

ξsp = h(ξs, ξp) (8.9)

can now be seen as the root of a merkle tree with two sub-trees — the design tree to the left,

with root ξs, and the deployment tree to the right, with root ξp. The static value ξsp is the

unique descriptor for a specifc STCB deployment (deployed to secure a specifc SCADA

system).

Note that two different deployments of identical SCADA systems may have the same

design root ξs, but will have different deployment root ξp as different STCB modules will

be used in the two deployments. If h() is collision resistant, no two STCB deployments

will have the same descriptor ξsp.

142

ξsp

ξp

Deployment Tree
{{· · ·Bi · · ·}, {, · · ·Rj · · ·}}

ξs

Design Tree
{ξ0,G1 · · ·Gn}

G1 · · ·Gn

Specification of Ui
[Si, Si1 · · ·Siq , αi, λi, S

′
i]

ξ0
Initial Sensor States

λi
Constants/LUT
{· · ·Cl · · ·}

Sensor Report Spec
{Si,Mj, εj, θ}

State Report Spec
{Sr,Mr, Sj, l}

Figure 8.3

Static Descriptor ξsp – a specifcation for an STCB system

143

8.3.1 STCB Operation

To commence operation in a SCADA deployment, the STCB module M0 associated

with the system is initialized with the STCB descriptor ξsp, and the value ξ0 corresponding

to the initial state of sensors. All leaves of the tree with root ξsp (which includes two sub-

trees — the design tree and the deployment tree) are stored by U; all n leaves of the form

Si, 1 ≤ i ≤ n corresponding to the initial states of all sensors are also stored by U.

During regular operation of the system the STCB manager U receives authenticated

sensor reports from SMs (and possibly CMs from foreign deployments), and submits them

one at a time, to the CM M0. Such reports take the form of a message authentication code

(MAC) computed as

µ = h(S, v, t, c, ξsp, K 0), (8.10)

where

1. values (S, v, t) indicates a report for sensor S to convey a fresh measurement v and
measurement time t.

2. c is the clock-tick value of the module that created the report;

3. ξsp is STCB descriptor of the creator of the report (which was the value used to
initialize the module);

4. K 0 is a shared secret between the creator (SM or foreign CM) and receiver (CM M0).

Along with the report from sensor Si (authenticated by a module Mj), U also submits a

binding record Bi constructed by the deployer, consistent with the static root ξsp.

The STCB manager U is then required to submit other values required for the CM to

evaluate Ui. Such values include a) sensor state record Si, b) the state records of the (up to)

144

q related sensors; c) a design record Gi consistent with descriptor ξsp; d) l constant values

Ci; and e) m instructions Ai.

As dynamic sensor states associated with the n sensors are maintained by U as leaves

of dynamic a merkle tree with root ξ, sensor state records provided by U will be accepted

as valid only if they can be verifed to be consistent with a copy of the dynamic root ξ

stored inside the CM M0. The instructions Ai will be accepted as valid only if αi = h(Ai)

where αi is specifed in the design record Gi. The set of constants Ci will be accepted

as valid only if h(Ci) can be demonstrated to be a node in the binary tree with root λi —

where λi is specifed in the design record Gi.

The values used for evaluating Ui have fxed reserved locations in the internal memory

of the STCB modules, and are specifed as the operands for the m instructions in A. An

internal module function feval(Ai) executes every instruction sequentially. The end result

is the modifcation of the values in the sensor state record Si of Si. To “remember” changes

such changes to Si the module modifes the dynamic root ξ.

If untrusted U does not modify Si in the same manner, then Si will not longer be

consistent with the root ξ stored inside the CM. Thus, if U provides a fresh sensor report

to the CM to invoke Ui, it is forced to modify the state of Si exactly in the manner specifed

by the designer.

At any time, a reporting record R = (Sr,Mr, Sj , l ∈ {1 · · · w}) consistent with ξsp can

be provided as input, along with the state record Sj consistent with ξ, to request the STCB

module M0 to report (to module Mr) values ojl and τl in a state-report “sensor” Sr.

145

If U does not invoke functions to evaluate any Ui, the time ti associated with Si can

not be updated. Thus, in any state-report that directly or indirectly depends on sensor Si

the time τ will be stuck at ti, and will thus be recognized as stale by the stake-holder (or

CM of a foreign deployment).

8.3.1.1 STCB Interfaces

To interact with the STCB modules (SMs and CM), U employs various interfaces ex-

posed by the modules. An interface Fpeer() is used to set up shared keys between modules

that send and receive sensor/state reports. A function Fhs() can be invoked to engage two

modules in a hand-shake sequence withing a duration �, to enable the modules to estimate

their respective clock offsets with an error less than �. Interface Finit() is used to initialize

a module as a CM for a deployment with identifer ξsp, or as a SM for a specifc real sensor

Sin (in an STCB deployment with identifer ξsp).

A function Fsnd() is invoked to request a module to send a report to another module, in

which Frcv() is invoked to accept the report. Function Fld() is used to load various values

necessary to evaluate some Ui. Function Fupd() is then invoked to evaluate Ui and update

the root ξ stored inside the module. Functions Frcv(), Fld and Fupd() are utilized only in

modules used as CMs.

To the extent the SMs and the deployer (who is trusted to verify and specify bind-

ings between sensors and SMs) are trusted, we can trust the authenticity of sensor reports

provided to the CM module. To the extent the CM module M0, and the designer (who is re-

146

⎪
⎪

sponsible for specifying the functions Ui()) are trusted, the stake-holder trusts the integrity

of the state reports.

In practice, the SMs will need to be located as close as possible to the sensors to im-

prove the security of the binding between sensors and SMs. The CM could be housed in

any location — for example, a secure location far removed even from the SCADA control

center. Components of U will need to be housed close to SMs, and close to the CM.

8.4 STCB Architecture

STCB modules have a unique identity, and a unique secret issued by a trusted key

distribution center (KDC). Two modules (say) Mi and Mj can use their respective secrets

(say) Qi and Qj issued by the KDC to compute a common pairwise secret Kij [49]. Specif-

ically, associated with a pair of modules Mi,Mj is a non-secret value Pij which is also

made available by the KDC (for example, in a public repository), where Pij is computed

as

Pij = h(Qi,Mj) ⊕ h(Qj ,Mi). (8.11)

Module Mi and Mj can compute a common secret Kij = h(Qi,Mj),⎧ ⎪⎨ h(Qi,Mj) ⊕ 0 Computed by Module Mi
Kij = (8.12)⎪⎩ h(Qj ,Mi) ⊕ Pij Computed by Module Mj

Every module possesses three values that are affected whenever a module is powered

on:

1. a clock tick counter c, which is set to 0;

2. a non-volatile session counter σ, which is incremented; and

3. a random secret γ, which is spontaneously generated inside the module.

147

8.4.1 Module Registers

Non-volatile storage inside the module is used to store three values — secret Q issued

by the KDC, session counter σ, and module identity M .

Every module has the following reserved volatile registers:

Self-secret γ

Static root ξsp

Dynamic root ξ

Peer module params p = {M 0, σ0, Kin, Kout}

Constants c = [C0 · · · Cl]

Sensor report register r = {S,˜ v,˜ t̃}

Sensor state register s0 = [S0, u0, t0, o01 · · · o0w , τ0]

Related sensor states s1 · · · sq

where sj = [Ŝ
j, ûj , t̂j , ôj,1 · · · ôjw , τ̂j]

Temporary register T

SM Registers Sin, vin

The self-secret γ spontaneously generated inside the module remains privy only to the

module. This secret is used for computing self-certifcates. A self-certifcate is a “mem-

orandum to self,” — memoranda issued by the module for verifcation by itself at a later

time, during the same session σ.

The register ξsp is the (160-bit) descriptor of the STCB system. The register ξ is the

dynamic root of a Merkle tree. Register p contains various parameters regarding a peer

module from which a) sensor/state report has to be received, or b) a report has to be sent.

148

The register c is reserved for storing a set of l constants to be used to evaluate some Ui

corresponding to a sensor Si. Values that refect the current state Si of Si should be stored

in register s0. The states of q related sensors are stored in registers s1 · · · sq. Register r is

reserved for a freshly received sensor report from Si.

For example, if at some instant of time,

1. the contents of the dynamic record Si corresponding to sensor Si is stored in location
s0, and

2. records corresponding to sensor Si,1 · · · Si,q are stored on location s1 · · · sq respec-
tively, and

3. values from a fresh report from sensor Si are stored in register r, then

˜Si = S

Ŝ
j = Si,j

u0 = vi (measurement of Si)

ûj = vi,j (measurements of related sensors of Si)

ôjx = o(i,j) , 1 ≤ x ≤ w
x

(8.13)

The SM register Sin indicates the sensor to which the module is bound (if the module

is used as a SM) or is set to zero (if the module is used as a CM). If the module is used as

an SM, the register vin always contains the (dynamic) sensor measurement.

STCB modules have a built in hash function h() which is reused extensively for bi-

nary tree (fv()) computations, computing shared secrets, computing message authentica-

tion codes, and self-certifcates.
149

An in-built function fexec(A) in every module can execute a set of m instructions A,

where each instruction (chosen from the set A) identifes a) an opcode (type of logical

operation), b) one or more input operands (from the values stored in registers s0, s1 · · · sq,

c, T), depending on the type of opcode; and c) the output operand (o01 · · · o0w , or temporary

register T).

8.4.2 Initializing Peer Parameters

The pairwise secret K that a module M shares with a peer module M 0 is used for

computing message authentication codes (MAC) for outgoing messages to peer M 0, and for

verifying incoming MACs from peer M 0 . Specifcally, the secret used by M for computing

outgoing MACs is Kout = h(K, σ) where σ is the session counter of M ; consequently,

the secret used for verifying MACs received from M 0 is Kin = h(K, σ0), where σ0 is the

session counter of M 0 .

STCB modules possess reserved registers to store the identity M 0 of a peer module (to

which it needs to send a message, or from which it needs to receive a message), the session

counter σ0 of the peer, and MAC secrets Kin and Kout. Function Fpeer() exposed by a

module can be invoked to populate values M 0, σ0, Kin, Kout related to a peer module M 0 .

Fpeer(I, P, s){
M 0 := I; σ0 := s; K := h(Q, M 0) ⊕ P ;
Kin := h(K, σ0); Kout := h(K, σ);

}

To facilitate secure communications between two modules Mi and Mj , Fpeer(Mj , Pij, σj)

should be invoked on Mi, and Fpeer(Mi, 0, σi) should be invoked on Mj . Mi computes the

150

pairwise secret using the public value Pij ; Mj computes the same value without using Pij

(or Pij = 0 as XORing with 0 results in no change).

8.4.3 Self Certifcates

Two types of certifcates are computed by STCB modules — binary hash tree certif-

cates, and offset certifcates.

8.4.3.1 Binary Tree Certifcates

A binary hash tree certifcate is computed as

ρbt = h(x, x 0 , y, y 0, γ). (8.14)

Such a self-memoranda states that “x is a node in a binary hash tree with root y,” and “if

x → x0 then y → y0.”

STCB modules expose a function Fmt() which evaluates a sequence of hash operations

fv(), and output a binary tree certifcate.

0Fmt(x, x , vx){
y := fv(x, vx); y0 := fv(x0 , vx);

0RETURN ρbt := h(x, x , y, y0, γ);
}
Fmtc(x, x0, y, y0, z, z0, ρ1, ρ2){

0IF (ρ1 =6 h(x, x , y, y0, γ)) RETURN ERROR;
IF (ρ2 6= h(y, y0, z, z0, γ)) RETURN ERROR;

0RETURN ρbt := h(x, x , z, z0, γ);
}

A function Fmtc() concatenates two such certifcates to create another certifcate. Specif-

ically, a certifcate binding node x (and x0) to an ancestor y (and y0) and a certifcate binding

a node y (and y0) to an ancestor z (and z0) can be combined to a certifcate binding node x

(and x0) to an ancestor z (and z0).
151

The primary need for the function Fmtc() is due to restrictions on the size of inputs to

module functions. Specifcally, we can now place a hard limit on the size of the input vx

— to (say) 8 hashes. For computing relationships between a node and the root of a tree

with a million leaves (20 levels) three calls to Fmt() (to produce certifcates binding i) a

level zero node to a level 8 node, ii) level 8 node to a level 16 node, and iii) a level 16 node

to a level 20 node) and two calls Fmtc() (to combine the frst two certifcates, and combine

the resulting certifcate with the third certifcate) can be used.

8.4.3.2 Offset Certifcates

An offset certifcate is computed as

ρos = h(M 0, σ, σ0, os, �, γ), (8.15)

and states that the module M (that issued the certifcate) had performed a handshake within

a duration � with a module M 0, and had estimated the offset between their clocks to be os.

The certifcate also states that the handshake was performed when it’s session counter was

σ and the session counter of M 0 was σ0 . The offset certifcate is issued by a function Fhs()

exposed by modules.

The function Fhs() can be invoked on pair of modules to perform a handshake, after

which the initiator of the handshake obtains an estimate of the clock offset of the responder.

Before Fhs() is invoked, Fpeer() should be invoked on both nodes to set up respective peer

identities, session counters, and secrets Kin and Kout to be used for incoming and outgoing

MACs.

152

The function Fhs() has three inputs — a received MAC µ0 (from peer M 0) with time

stamp c0 , and a time-stamp c̃ that was previously sent to peer M 0 (which had triggered the

response µ0 from M 0). The output of Fhs() is either a MAC intended for the peer or a

self-MAC intended for itself, indicating the estimated offset for peer M 0 .

Fhs() is frst invoked on the initiator with all inputs (µ0, c0 , c̃) set to zero; the output of

Fhs() is µ1 = h(ci , 0, σr
1 , h(K, σi)) where c1

i and σi are the current clock-counter and the

session counter of the initiator and σr is the session counter of the responder.

1Fhs() is then invoked in the responder module with inputs (µ1, ci , 0). If the clock tick

1count of the responder is cr, the output is µ2 = h(cr, ci , σi, h(K, σr)).

2Fhs() is then invoked on the initiator for the second time, at time ci , with inputs

(µ2, cr, c 1
i). The offset between the clock of the initiator and the responder can be esti-

mated by the initiator to within the round-trip duration � = c2
i

1− ci . The best estimate of

the initiator is that, when the clock tick count of responder was cr, the clock tick count of

2121the initiator was (ci +ci)/2, and thus, the best estimate of the offset is os = (ci +ci)/2−cr.

The output of Fhs() in this case is the offset certifcate. This certifcate can be provide

to the module at any time to convince the module that “the offset to M 0 was estimated as os

with a tolerance of �,” and that “the offset to M 0 was estimated when the session counters

of the modules were σi and σr.” If any of the two session counters had changed since the

certifcate was issued, the certifcate becomes invalid.

153

Fhs(µ
0 c, c , ̃ 0){

0IF (µ = 0) //Send challenge
RETURN h(c, 0, σ0,Kout); //Sent as challenge

0 0IF (µ 6 , ̃= h(c c, σ,Kin) RETURN ERROR;
IF (c̃ = 0) //Respond to challenge

RETURN h(c, c0, σ0,Kout);
ELSE //Process response to estimate offset

0� := c − c̃; os := (c + c̃)/2 − c ;
RETURN ρos := h(M 0, σ, σ0, os, �, γ);

}

8.4.4 Initializing STCB Modules

Initializing an STCB module M implies initializing three internal registers reserved

for values ξsp, ξ and Sin. Specifcally, a module M can be initialized to participate in a

deployment ξsp only if a binding record for module M can be demonstrated to be consistent

with ξsp.

As ξ0 is a node in a tree with root ξsp, U can use Fmt() to obtain a certifcate

ρ = h(ξ0, ξ0, ξsp, ξsp, γ). (8.16)

Similarly, as binding record Bi = [Si, M, �, θ] that exists in deployment tree is used to

initialize the register Sin Now U can use Fmt() to obtain a certifcate

ρ = h(v, v, ξsp, ξsp, γ). (8.17)

Function Finit() can be used to initialize a module M as

1. a CM for a deployment ξsp or

2. as an SM for a sensor S in deployment ξsp.

154

To initialize a module as a CM for the deployment, the inputs (ξ1, ξ2, ρ) to Finit() are such

that ρ is a binary tree certifcate relating a node ξ0 = ξ1 and root ξ2 = ξsp (inputs S 0 and �0

are set to 0).

To initialize the module as a SM the certifcate, inputs S 0 and � are non-zero. The binary

tree certifcate should relate ξ1 = h(S 0, M, �0 , 0) and ξ2 = ξsp to prove to the module that

“in an STCB system with descriptor ξsp, the module M (which is being initialized) is

authorized to report measurements corresponding to sensor S 0.” Accordingly, the register

Sin in the module M is set to S 0 .

For a module Mj initialized as a SM for a sensor Sk, the output of the sensor Sk is

physically connected to module Mj using a tamper-evident seal by the deployer. The

physical connection ensures that the sensor measurement vk is always available in the

register vin of the SM. measurement Later (during regular operation) module Mj can not

be initialized to act as a SM for any other sensor S 0 6= Sk, as no record binding S 0 to Mj

can be demonstrated to be a part of the tree with root ξsp.

Finit(ξ0, r, S, �, ρ1, ρ2){
IF (ρ1 6= h(ξ0, ξ0, r, r, γ)) RETURN ERROR;
x := h(S, M, �, 0);
IF (ρ2 6= h(x, x, r, r, γ)) RETURN ERROR;
ξsp = r; ξ := ξ0; Sin = S0; RETURN;

}

During regular operation, any dynamic sensor record can be loaded on to any register

s0 or s1 · · · sq using function Fld(). A record s provided as input is simply loaded onto

register sj where j is the index specifed. Specifcally, the record is loaded only if the

inputs ρ and h(s) are consistent with dynamic root ξ.

155

8.4.5 Sensor and State Reports

In an STCB deployment with SMs M1 · · · Mk, and STCB module M0, the state reports

are made available to a module Mr associated with the stake holder. In general, Mr can

be seen as an STCB module associated with a different STCB system at a higher lever of

hierarchy.

The handshake sequence (which involves two calls to Fhs() in the initiator module

and one Fhs() call in the responder module) the handshake sequence is orchestrated by U

between

1. k responders M1 · · · Mk, with M0 (as initiator)

2. Mr as initiator and M0 as responder.

After the k + 1 hand-shake sequences have been completed, k self-certifcates of type OS

ρos are created by M0 — one corresponding to each SM, and one self-certifcate is created

by Mr. Such certifcates indicate both the estimated offset os, and the maximum error � in

the estimate os.

Now modules are ready to exchange authenticated messages. More specifcally, SMs

send authenticated and time-stamped sensor reports to M0, and STCB module M0 can send

state reports to Mr. Such messages exchanged between modules are computed as

µ = h(S, v, t, c, ξsp, Kout). (8.18)

where for sensor reports (from SMs to M0)

1. S = Sin is the identity of a sensor that is bound to the module that created the report,
and v = vin;

2. t = c is the current clock tick count of the creator of the report.
156

3. ξsp is the value used to initialize the module.

A report from M0 to stake holders is made in accordance with a record [Sr,Mr, Si, 1 ≤

l ≤ w]. Such a report can be created for the beneft of Mr only if the state of sensor Si

is loaded in register s0 (or S0 = Si), to report the value el 0 and time τ0. In such a report

S = Sr is a label assigned to the report, v = e0
l , and t = τt is the time associated with

v = el 0 (or t =6 c).

Fsnd() outputs µ = h(Sin, vin, c, c, ξsp, Kout) when invoked in a SM (with register

Sin 6= 0). When invoked on an STCB module, this function should be able to verify the

existence of an appropriate reporting record R that authorizes the module to report one of

the w values eo
1 · · · eow stored in register s0.

Fsnd(S
0, j, ρ){

IF (S 6= 0)
RETURN c, µ = h(Sin, vin, c, c, ξsp,Kout);

y = h(S0,M 0, S0, j);
IF (ρ = h(y, y, ξsp, ξsp, γ)

RETURN c, µ = h(S0, o0j , τ0, c, ξsp,Kout);
ELSE RETURN ERROR;

}

Corresponding to a state report for a “sensor” Sr, while the STCB module M0 that

generates the report is initialized with the ξsp, the stake-holder module Mr — which in

general can be seen as the STCB module associated with a foreign STCB system may be

initialized with a different descriptor ξsp
0 . For the module Mr to accept the report from a

foreign system, the deployment tree in the foreign system with root ξ0 should include asp

binding record

B = [Sr,M0, �, θ = ξsp 6= 0]. (8.19)
157

Function Frcv() can be invoked in the STCB module to provide a fresh sensor report to

the module. Specifcally, before a sensor report from a module Mj can be provided to a

module, the function Fpeer() should be invoked on the receiving module to set M 0 = Mj .

Now,

1. inputs Si, �
0, θ to Frcv() are used to compute the leaf hash x = h(Si,M

0, �0, θ) of a
binding record Bi.

2. input ρ is used to confrm that x = h(Si,M
0, �0, θ) (the hash of the binding record)

is a node in a tree with root ξsp.

3. inputs �, os and ρos are used to verify that ρos = h(M 0, σ, σ0, os, �, γ).

0 0 0 04. and inputs vi, t
0, c0 and µ are used to verify that µ = h(Si, vi, t

0, c0, y, Kin) where
y = ξsp if θ = 0, or y = θ if θ =6 0.

The function returns error if � > �0 , or on failure of verifcation of inputs ρnv or ρos or µ0 .

Ultimately, the purpose of function Frcv() is to receive two values vi
0 and time t0 i corre-

sponding to a sensor Si where t0 i = t + os is the offset corrected time associated with vi
0 .

Values Si, vi
0 and t0 i are then stored in a reserved register R for further processing.

0 0 0Frcv(Si, θ, �0, ρbt, os, �, ρos, v , ρ, t0, c , µ ,){i
IF (� > �0) RETURN ERROR;
IF (ρos 6= h(M 0, σ, σ0, os, �, γ)) RETURN ERROR;
y = (θ = 0)?ξsp : θ;
x = h(Si,M

0, �0, y);
IF (ρbt =6 h(x, x, ξsp, ξsp, γ)) RETURN ERROR;

0 0IF (µ 6= h(Si, vi, t
0, c0, y, Kin) RETURN ERROR;

r := (S̃ = Si, ṽ = vi 0 , t̃ = t0 + os);
}

8.4.6 Sensor Updates and Incremental State Evaluations

Values r in a fresh sensor report from Si are part of the inputs used to evaluate Ui.

Evaluation of Ui results in modifcations to the state Si of sensor Si. Before Ui can be

158

evaluated it should be ensured that appropriate values are loaded on to registers r, s0,

s0 · · · sq, and c.

Recall that register r is populated by function Frcv(). Function Fld() can be used to

load the dynamic values S associated with any sensor on to any of the q + 1 registers s0,

s0 · · · sq.

Fld(s
0, j, ρ){

x := h(s0);
IF (ρ 6= h(x, x, ξ, ξ, γ)) RETURN ERROR;
//Record is a leaf in the dynamic tree
sj := S;

}
Fupd(C, λ, ρc, A, ρ, ξ0, ρupd, S0){i

IF (S0 6= S̃) RETURN ERROR;
tmp = h([S0, R1 · · · Rq, h(A), λ, S0]); // hash of a design recordi
//tmp should be a node in the static tree with root ξsp
IF (ρ =6 h(tmp, tmp, ξsp, ξsp, γ)) RETURN ERROR;
tmp = h(C); // hash of constant record
// should be a node in the constant tree with root λ
IF (ρc 6= h(tmp, tmp, λ, λ, γ)) RETURN ERROR;
tmp := h(s0); // Record before evaluation of U
τ0 := min0(˜

1 · · τ 0);t, τ 0 · q
T := ṽ; v0 := ṽ; t0 := t̃;
IF ((fA() = ERROR) ∨ (ρupd 6= h(tmp, h(s0), ξ, ξ0, γ)))

CLEAR-ALL AND RETURN;
ξ := ξ0;
IF (S0 =6 0) S̃ := Si

0;i
}

The main purpose of Fupd() is to evaluate Ui corresponding to a sensor Si. For this

purpose, Fupd() verifes that all inputs required to evaluate Ui are available. If a design

record corresponding to sensor Si is

Gi = [Si, Si1 · · · Siq , αi, λi, Si
0] (8.20)

159

it should be ensured that the current state of sensor Si is loaded onto register s0, and the

states of related sensors Si1 · · · Siq are loaded on to registers s1 · · · sq respectively. Other

values required to evaluate Ui are provided as inputs to Fupd().

Specifcally,

1. the constants C should be such that x = h(C) is node in a tree with root λi. This
can be demonstrated by providing a certifcate ρc = h(x, x, λi, λi, γ).

2. the instructions A should be such that h(A) = αi.

3. λi and αi should exist in the design record [S0, Si1 · · · Siq , αi, λi]. More specifcally,
y = h(S0, Si1 · · · Siq , αi, λi, Ni) should be a node in the tree with root ξsp. This can
be demonstrated by providing a certifcate ρ = h(y, y, ξsp, ξsp, γ).

4. the values S0 ∈ s (the identity of the sensor to be updated) and S̃ ∈ r (the sensor
from which a fresh report has been received) should be the same.

During execution of the algorithm A, in situations where many options exist for choos-

ing the set of constants C consistent with λ it is the responsibility of U to choose the

correct set of constants that satisfy the range of the independent variable(s). On successful

evaluation of the algorithm A the status of sensor S0 in register s0 will be updated. If x is

the hash of register s0 before the update, and if x0 is the hash of register s0 after the update,

then a new root ξ0 and a certifcate ρ should be provided as input satisfying

ρ = h(x, x 0, ξ, ξ0, γ). (8.21)

8.5 STCB Protocol

The STCB protocol can be seen as the actions to be performed by the untrusted STCB

manager U to submit sensor reports from SMs and CMs of foreign deployments to the

CM M0 of the STCB deployment, obtain state-reports from M0, and submit such reports

to stake holders (or CMs of foreign deployments).
160

8.5.1 Generation of Offset Certifcates

The frst step in the operation of an STCB deployment is that of performing handshakes

between various modules to obtain offset certifcates. In general one offset certifcate will

be generated for every module specifed in the binding records of the deployment.

For a STCB system with n sensors (real, state-report and synthetic) the total number

of binding records is n0 + 1, where n − n0 is the number of synthetic records: no binding

record exists for synthetic records, and one binding record is for the CM M0. The total

00 ≤ n0number of distinct modules in general will be n . Specifcally, while there will exist

one module corresponding to every real sensor, as a single CM may report multiple states,

the number of state-report sensors may be greater that the number of foreign CMs that

provide state reports.

00 00A total of n hand shake sequences will be invoked to obtain n offset certifcates.

Recall that each such sequence begins with a challenge from the CM M0 generated using

Fhs() to which a response is generated by invoking Fhs() in the responder module, and

fnally, the response is submitted to the CM to generate the certifcate. If any SM is re-

booted, the offset certifcate corresponding to the SM has to be regenerated. If the CM is

rebooted, all offset certifcates will need to be regenerated.

Before Fhs() is invoked, Fpeer() should be invoked on both modules to set up the MAC

secrets Kin and Kout.

161

8.5.2 Generating Static Binary Tree Certifcates

The second step is for U to obtain binary tree certifcates corresponding to all leaves

of the static tree with root ξsp. Specifcally, as U maintains the tree with root ξsp, U can

readily provide the complementary nodes for any leaf in the static tree to function Fbt(),

and obtain certifcates of the form

ρs = h(xs, xs, ξsp, ξsp, γ) (8.22)

where xs is the cryptographic hash of the sthleaf of the static tree. The total number of

static leaves is (n + 1) + (n0 + 1) + m where

1. n is the number of design records: one for each sensor (real, state-report, or syn-
thetic)

2. one leaf corresponds to the value ξ0 in the design tree.

3. n0 + 1 is the number of binding records (including one for the CM M0), and

4. m is the number of reporting records.

8.5.3 Initialization and Regular Operation

The third step is the initialization of STCB modules to operate in deployment ξsp —

by invoking Finit() on each STCB module. For initializing the modules the two binary

tree certifcates are required: one linking ξ0 to ξsp, and one linking a binding record for the

module with the static root ξsp.

On completion of the three steps, the STCB manager maintains a dynamic merkle tree

with leaves as sensor records. As the initial values of such records are specifed by the

designer, the root of the tree should be the same as the initial value ξ = ξ0 stored by the

STCB module.
162

Once all STCB modules have been initialized, sensor reports from SMs (or CMs of

foreign deployments) are submitted to the CM as and when they are received. In general,

not all sensors may report at the same frequency.

As all SMs send messages only to the CM, Fpeer() needs to be invoked only once on

each SM (which was already performed before invoking Fhs() to generate offset certif-

cates).

To create a sensor report from an SM, U will invoke Fsnd() on an SM. Some sensor

reports corresponding to state reports from foreign CMs may also be received by U.

Once a sensor report for some sensor Si has been received, U is expected to make

appropriate modifcations to the sensor state Si, and accordingly, modify the Merkle tree

maintained by U. Let ξ → ξ0 be the change in the root of the dynamic tree, correspond-

ing to the modifcation Si → Si
0 triggered by the received sensor report. If h(Si) = x

and h(S0
i) = x0 , U can readily determine complementary nodes required to obtain the

certifcate

ρbt = h(x, x 0, ξ, ξ0, γ) (8.23)

The STCB manager invokes Fpeer() followed by Frcv() to submit the report to the CM.

Recall that inputs to Frcv() include a MAC received from an SM/CM, a binding record

along with a certifcate linking the record to ξsp, and an offset certifcate corresponding to

the reporting module.

Corresponding to the sensor state record for sensor Si and q related sensors U invokes

Fbt() to obtain q + 1 certifcates binding the sensor state records to dynamic root ξ. Fol-

163

lowing this, the STCB manager uses Fld() up to q + 1 times to load the a) previous sensor

state Si on to register s0 and b) the states of related sensors on to registers s1 · · · sq.

Finally, the STCB manager invokes Fupd(). Recall that the inputs to Fupd() include ρbt

obtained as per Eq (8.23), a certifcate binding design record Gi to STCB descriptor ξsp,

the set of m instructions Ai, a set of l constants, and a certifcate binding the constants to

a value λ in the design record. Only if the modifcation Si → S0
i computed by the CM is

exactly the same as that performed by the STCB manager U will the update be successful

in modifying the dynamic root ξ stored inside the CM to ξ0 .

At any time the STCB manager can invoke a Fupd() to load a state record consistent

with ξ on to register s0. Now Fsnd() can be invoked to create a state-report. Note that when

Fsnd() is invoked on a CM a certifcate binding a reporting record to the static root should

be provided as input.

The ever growing complexity of systems poses a severe threat — the possibility of

hard-to-detect hidden functionality that can be exploited to take control of the system.

Current strategies for securing SCADA systems are predominantly focused on develop-

ment of suitable intrusion detection systems. Such security measures ignore the very real

possibility of hidden functionality in the intrusion detection systems themselves.

In the proposed approach to secure SCADA systems only STCB modules are trusted to

provide the assurance that “no attack will go undetected.” The proposed approach involves

three stages — a design process carried out by a designer with good domain knowledge,

a deployment process carried out by a security professional, and regular operation of the

STCB system. The designer and deployer together specify a concise description ξsp of the

164

system. During regular operation, an STCB module reports the state of a system identifed

as ξsp to stake-holders.

Some of the important features of the STCB approach that make it well suited for any

SCADA system of any size include

1. the ability to support hierarchical deployments;

2. the ability to support any type of function U - if necessary through the use of 1-D, or
2-D look up tables (which are also specifed as leaves of the design tree), and

3. the ability to specify synthetic sensors.

Such features are intended to enable the use of STCB modules for securing any SCADA

system.

The frst pre-requisite for deployment of STCB based security solutions is the actual

availability of STCB modules/chips. Towards this end, the work that has been performed is

a small frst step — identifcation of a functional specifcation of the such chips. In arriving

at an appropriate functional specifcation, some our main goals have been

1. reduce computational and memory requirement inside STCB chips,

2. reduce interface complexity (size of inputs and outputs to/from the STCB chips), and

3. simplify the STCB protocol - which is a specifcation of a sequence of interactions
with the STCB modules - to realize the desired assurances.

The proposed functional specifcation (for STCB modules) is merely a specifcation, and

not the specifcation. Just as there are numerous ways to realize a block-cipher or a hash

function, there are numerous ways to arrive at a “set of STCB functions” (which can be

leveraged to realize the same assurances). The functional specifcation in this chapter is

however the frst of its kind.

165

8.5.4 STCB Design Example

Coal

Boiler
Turbine

Coolant

Generator

Fire

Precipitator

S1

S5

S4

S2

S3

S6

Figure 8.4

Example: Simplifed version of thermal power plant

As an example of the design process for a SCADA system, let us consider a simplifed

version of a thermal power plant with six sensors S1 · · · S6, (see Figure ??).

S1 temperature sensor inside boiler

S2 coal weight sensor (coal fed into the boiler).

S3 position of fre regulator.

S4 temperature inside turbine cell.

S5 pressure inside turbine cell.

S6 speed of turbine.

166

Let v1 · · · v6 be the values reported by sensors S1 · · · S6 required to determine the state

of the system.

Let us assume that the state report expected by the stake-holder is a single bit value —

o1 = 1 if the system is in an acceptable state, and o1 = 0 otherwise. According to the

designer, the system is in an acceptable state if the following conditions are satisfed:

1 1 6 6) respectively, where (xi
l, x ih)1. v1 · · · v6 are all within thresholds (x) · · · (x, x , x l h l h

represents lower and higher thresholds for sensor Si.

2. The speed of turbine should be between upper and lower limits depending on the
temperature and pressure inside the turbine cell. v6 = f1(v4, v5) ± δ1 where δ1
is another threshold (the speed of the turbine should be a specifc function of the
pressure and temperature inside the turbine cell)

3. The position of the fre regulator should be between upper and lower limits depend-
ing on the current speed of turbine v6 and the current temperature and pressure values
inside the boiler cell. v3 = f2(y1, v6) ± δ2 where y1 = f3(v1, v2) is a function of the
temperature and pressure of the boiler.

Let the maximum number of related sensors be q = 3; the number of outputs of each U

be w = 2; and the number of constants l = 8. A possible design of functions Ui, 1 ≤ i ≤ 6

is as follows:

1 1 2 21) U1 checks if v1, v2 are within thresholds (x) respectively. The inputs), (x, x , x l h l h

are v1, v2 and constants. The output is written in o01 . For evaluation of U1, S2 is specifed

as a related sensor. As no other related sensors are used, S12 and S13 are set to 0;

2) U2 performs LUT2 operation for function f3(). The inputs are v1, v2 and an LUT

leaf. The output is written o02 . For chaining the output of U1 (now stored in register s1)

to entire system state, the current value at output register o11 of S1 is copied to S2’s output

register o01 .

167

3) U3 regards S2 and S6 as related sensors, and perform LUT2 operation f2() on o12 (an

output of of related sensor S2) and value u2 = v6 of other related sensor S6 (now stored in

register s2. The contents of output register o11 of S2 are copied to o01 of S3.

4 4 5 54) U4 checks if v4, v5 are within thresholds (xl , xh), (xl , xh) respectively. The inputs

are v4, v5 and constants. The output is provided in register o01 . S5 is specifed as a related

sensor of S4.

5) U5 regards S4 as related sensor and perform a LUT2 operation f1() on value v4 of

related sensor S4 (value u in record s1) and v5 (u in register s0), the output is stored in o02 .

The content register o11 (of S4) are copied to o01 (of S5)

6) U6 regards S3 and S5 as related sensors. This function checks if v3, v6 are within

3 3 6 6thresholds (xl , xh), (xl , xh) respectively and the output is stored at register o01 of S6. In

addition, U6 also performs the following steps

1. if v3 available at u1 satisfes f2 ± δ2 — the result of f2 is now available at o12 of
related sensor S3; the result of the check is stored at o02 of S6. The result of an AND
operation performed on outputs in o01 and o02 is stored back in o01 .

2. if v5 available at u2 satisfes f1 ± δ1 — the output of f1 is available at o22 of related
sensor S5; the 1/0 result is stored in register o02 .

A result of AND operation of output registers of S6 – 001 , 002 placed in 001 of S6 represents

the entire state of system (acceptable -1 , unacceptable - 0).

The constants required to evaluate Ui are provided as a leaf that can be proved against

corresponding root λ. The designer specifes the following constant trees:

1 1 2 2 4 4 5 51. A tree with one leaf with 8 constants [xl , xh, xl , xh, xl , xh, xl , xh] with root λa.

6 6 3 32. A tree with one leaf with 8 constants [δ1, δ2, xl , xh, xl , xh, 0, 0] with root λb.

168

3. Three trees — one for a 2D LUT for function f1() with root λc; one for a 2D LUT
for function f2() with root λd; and the third for 2D LUT for function f3() with root
λe;

With available information from U1 · · · U6 the designer specifes the following design

records:

G1 = [S1, {S2, 0, 0}, α1, λa, 0]

G2 = [S2, {S1, 0, 0}, α2, λe, 0]

G3 = [S3, {S2, S6, 0}, α3, λd, 0]

G4 = [S4, {S5, 0, 0}, α4, λa, 0]

G5 = [S5, {S4, 0, 0}, α5, λc, 0]

G6 = [S6, {S3, S5, 0}, α6, λb, 0]

(8.24)

where α1 · · · α2 are hashes of instructions outlined in Table 8.1.

169

Table 8.1

Instruction Set for Thermal Plant

Algorithm

α1

α2

α3

α4

α5

α6

OPCODE Input registers Output registers

CHKB c :C1, s0 :u0 T
CHKB c :C3, s1 :u1 s0 :o02

AND T, s0 :o02 s0 :001

LUT2 s1 :u1, s0 :u0 s0 :o02

COPY s1 :o11 s0 :o01

COPY s1 :o11 s0 :o01

LUT2 s1 :o12 , s2 :u2 s0 :o02

CHKB c :C5, s0 :u0 T
CHKB c :C7, s1 :u1 s0 :o02

AND T, s0 :o02 s0 :o01

LUT2 s1 :u1, s0 :u0 s0 :o02

COPY s1 :o11 s0 :o01

CHKB c :C3, s0 :u0 T
CHKB c :C5, s1 :u1 s0 :o02

AND T, s0 :o02 s0 :o01

MOV c :C2 T
TOL s1 :o12 , s1 :u1 s0 :o02

AND s0 :o01 , s0 :o02 s0 :001

MOV c :C1 T
TOL s2 :o22 , s2 :u2 s0 :o02

AND s0 :o01 , s0 :o02 s0 :001

170

CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH

Accompanying the growing complexity of systems is a severe security threat — that

hard-to-detect hidden functionality in system components could be exploited to take con-

trol of the system. Current strategies for securing complex systems are predominantly

focused on development of suitable intrusion detection systems, often ignoring the very

real possibility of hidden functionality in the intrusion detection systems themselves. The

threat of hidden functionality is especially severe for critical infrastructure systems due to

the increased likelihood of sophisticated state sponsored attacks.

The broad contribution of this dissertation is an alternate approach to secure systems

by clearly identifying a minimal set of components that need to be trusted, and ensuring

that such components are indeed worthy of trust.

9.1 Contributions

The specifc contributions of this dissertation are architectures for securing two major

critical infrastructure domains: data dissemination systems (DNS, dynamic look up ser-

vice) and SCADA systems. For each domain, the proposed security architecture identifed

1. a specifcation of TCB functionality, to be executed inside a trustworthy boundary

2. a security protocol, which is a specifcation of the nature of interactions between
untrusted components and the TCB modules.

171

For DNS we identifed the TCB function to be a simple atomic relay function. For dynamic

DNS the TCB functionality supported enabled establishment of a shared secret between

any user and a module associated with a look-up server. In addition, the TCB functionality

enabled the module to maintain and index ordered Merkle tree. For SCADA systems the

TCB functionality included the ability to maintain merkle hash trees, and the ability to

support a simple instruction set.

The following publications resulted from this research:

1. Trustworthy TCB for DNS Servers, International Journal of Network Security, Vol.14,
No.3, PP. 187-205, May 2012.

2. Minimizing the TCB for Securing SCADA Systems, The 7 annual CSIIR workshop
2011, ACM ICPS.

3. An Effcient Trusted Computing Base (TCB) for a SCADA System Monitor, The
10th International Information and Telecommunication Technologies Conference,
I2TS 2011, Floripa, Brazil.

4. An Effcient TCB for a Generic Data Dissemination System, International Confer-
ence on Communications in China: Communications Theory and Security (CTS),
ICCC12-CTS, China.

5. An Effcient TCB for a Generic Content Distribution System, International Confer-
ence on Cyber-Enabled Distributed Computing and Knowledge Discovery (CyberC)
2012.

6. A Security Architecture for SCADA systems, submitted to the IEEE transactions on
Cybernetics (2013 March).

9.2 Future Research

The frst pre-requisite for deployment of TCB based security solutions is the actual

availability of TCB modules/chips. Towards this end, the work that has been performed is

a small frst step — identifcation of a functional specifcation of such chips. In arriving at

an appropriate functional specifcation, some of our main goals have been to
172

1. reduce computational and memory requirement inside TCB chips,

2. reduce interface complexity (size of inputs and outputs to/from TCB module), and

3. simplify the TCB protocol — which is a specifcation of a sequence of interactions
with the TCB modules — to realize the desired assurances.

The proposed functional specifcation is merely a specifcation, and not the specifcation.

Just as there are numerous ways to realize a block-cipher or a hash function, there are

numerous ways to arrive at a “set of TCB functions” (which can be leveraged to realize

the same set of desired assurances). The functional specifcations in this dissertation —

for DNS modules and STCB modules — are however, the frst of their kind, and should

therefore be evaluated against similar competing efforts in the future.

While the basis for choosing one of several competing hash functions (that are equally

strong from a security perspective) — for example, factors like complexity of hardware

and software implementation, speed, delay, etc., are well appreciated, a quantitative basis

for evaluating two competing sets of functional specifcations needs further investigation.

As any modifcation to the DNS module / STCB functionality will affect the corresponding

security protocol (which specifes how such functionality is utilized), any new functional

specifcation should be accompanied by a corresponding protocol specifcation. Thus, eval-

uation of competing efforts should also consider trade-offs between TCB complexity and

overhead for the security protocol.

173

REFERENCES

[1] “21 Steps to improve security of SCADA systems,” 301/903-3777, The Presidents
Critical Infrastructure Protection Board, Offce of Energy Assurance, U.S. Depart-
ment of Energy.

[2] IEEE P711 Standard for a Cryptographic Protocol for Cyber Security of Substation
Serial Links, Tech. Rep., https://www.digitalbond.com/scadapedia/standards/ieee-
p711.

[3] “Overview of Cyber Vulnerabilities,” US-CERT: Control Systems Security Program.

[4] “Trusted Computing Group,” http://www.trustedcomputinggroup.org.

[5] Dns Survey, Tech. Rep.,
factory.com/surveys/200608.html.

2006, http://dns.measurement-

[6] “ICS-CERT Incident Response Summary Report,” 2012.

[7] “Exposing One of Chinas Cyber Espionage Units,” Feb. 2013,
http://intelreport.mandiant.com/Mandiant APT1 Report.pdf.

[8] A. Anagnostopoulos, M. Goodrich, and R. Tamassia, “Persistent authenticated dic-
tionaries and their applications,” Information Security, 2001, pp. 379–393.

[9] R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, DNS security introduction
and requirements, Tech. Rep., RFC 4033, March, 2005.

[10] J. Bau and J. C. Mitchell, “A security evaluation of DNSSEC with NSEC3,” Pro-
ceedings of the 17th Annual Network and Distributed System Security Symposium
(NDSS), 2010.

[11] J. Benoit, An Introduction to Cryptography as Applied to the Smart Grid, Cooper
Power Systems, 2011.

[12] D. J. Bernstein, “DNSCurve: Usable security for DNS,” Posted at: http://dnscurve.
org, 2010.

174

http://dnscurve
http://intelreport.mandiant.com/Mandiant
http://www.trustedcomputinggroup.org
https://www.digitalbond.com/scadapedia/standards/ieee

[13] R. Berthier, W. H. Sanders, and H. Khurana, “Intrusion detection for advanced meter-
ing infrastructures: Requirements and architectural directions,” Smart Grid Commu-
nications (SmartGridComm), 2010 First IEEE International Conference on. IEEE,
2010, pp. 350–355.

[14] S. A. Boyer, SCADA: supervisory control and data acquisition, International Society
of Automation, 2009.

[15] S. Bratus, N. DCunha, E. Sparks, and S. Smith, “TOCTOU, traps, and trusted com-
puting,” Trusted Computing-Challenges and Applications, 2008, pp. 14–32.

[16] A. Buldas, P. Laud, and H. Lipmaa, “Accountable certifcate management using
undeniable attestations,” Proceedings of the 7th ACM conference on Computer and
communications security. ACM, 2000, pp. 9–17.

[17] A. R. Chavez, “Position Paper: Protecting Process Control Systems against Lifecycle
Attacks Using Trust Anchors,” .

[18] G. M. Coates, K. M. Hopkinson, S. R. Graham, and S. H. Kurkowski, “A Trust
System Architecture for SCADA Network Securiy,” IEEE Transactions on Power
Delivery, January 2010.

[19] CommunityDNS, “DNSSEC A Way Forward for TLD Registries,” 2009.

[20] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, and S. G. Stubblebine,
“Flexible authentication of XML documents,” Proceedings of the 8th ACM confer-
ence on Computer and Communications Security. ACM, 2001, pp. 136–145.

[21] P. Devanbu, M. Gertz, C. Martel, and S. Stubblebine, “Authentic third-party data
publication,” Data and Application Security, 2002, pp. 101–112.

[22] C. Fetzer and T. Jim, Incentives and Disincentives for DNSSEC Deployment,
trevor/papers/dnssec-incentives.pdf, 2004.

[23] D. P. Fidler, “Was Stuxnet an act of war? Decoding a cyberattack,” Security &
Privacy, IEEE, vol. 9.4, 2011, pp. 56–59.

[24] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin, Tamper Proof
Security: Theoretical Foundations for Security Against Hardware Tampering, Theory
of Cryptography Conference, Cambridge, MA, 2004.

[25] M. Goodrich, R. Tamassia, N. Triandopoulos, and R. Cohen, “Authenticated data
structures for graph and geometric searching,” Topics in CryptologyCT-RSA 2003,
2003, pp. 295–313.

175

[26] M. T. Goodrich, R. Tamassia, and A. Schwerin, “Implementation of an authenticated
dictionary with skip lists and commutative hashing,” DARPA Information Survivabil-
ity Conference & Exposition II, 2001. DISCEX’01. Proceedings. IEEE, 2001, vol. 2,
pp. 68–82.

[27] T. Goodspeed, S. Bratus, R. Melgares, R. Speers, and S. W. Smith, “Api-do: Tools
for Exploring the Wireless Attack Surface in Smart Meters,” The 45th IEEE Hawaii
International Conference on System Sciences, 2012, pp. 2133–2140.

[28] S. Gorman, “Chinese hackers suspected in long-term Nortel breach,” The Wall Street
Journal (, February 2013.

[29] T. C. G. T. W. Group et al., “TPM Main Part 3 Commands,” Specifcation available
online at: https://www. trustedcomputinggroup. org/specs/TPM/Main Part3 Rev94.
zip, vol. 29, 2006.

[30] M. Hentea, “Improving security for SCADA control systems,” Interdisciplinary
Journal of Information, Knowledge, and Management, vol. 3, 2008, pp. 73–86.

[31] J. Hieb, J. Graham, and S. Patel, “Security enhancements for distributed control
systems,” Critical Infrastructure Protection :, 2007, pp. 133–146.

[32] D. Kaminsky, “Catching up with Kaminsky,” Network Security, vol. 9, September
2008, pp. 4–7.

[33] D. Kaminsky, “DNS 2008 and the New (old) Nature of Critical Infrastructure,” Black-
Hat DC, February, 2009.

[34] R. H. Katz and G. Borriello, “Contemporary logic design,” 2005.

[35] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in distributed
systems: Theory and practice,” ACM Transactions on Computer Systems (TOCS),
vol. 10, no. 4, 1992, pp. 265–310.

[36] B. Laurie, G. Sisson, R. Arends, and D. B. Nominet, “DNS Security (DNSSEC)
Hashed Authenticated Denial of Existence,” RFC, vol. 5155, March 2008.

[37] D. Lie, C. A. Thekkath, and M. Horowitz, “Implementing an Untrusted Operating
System on Trusted Hardware,” Proceedings of the 19th ACM Symposium on Operat-
ing Systems Principles. October 2003, pp. 178–192, ACM Press.

[38] M. Majdalawieh, F. Parisi-Presicce, and D. Wijesekera, “DNPSec: Distributed net-
work protocol version 3 (DNP3) security framework,” Advances in Computer, Infor-
mation, and Systems Sciences, and Engineering :, 2006, pp. 227–234.

[39] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. Stubblebine, “A
general model for authentic data publication,” Algorithmica (Springer), 2001.

176

https://www

[40] A. Matrosov, E. Rodionov, D. Harley, and J. Malcho, “Stuxnet under the microscope,”
eset, September, 2010.

[41] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri, “How low can you
go?: recommendations for hardware-supported minimal TCB code execution,” ACM
SIGARCH Computer Architecture News. ACM, 2008, vol. 36, pp. 14–25.

[42] R. C. Merkle, “Protocols for Public Key Cryptosystems,” Proceedings of the 1980
IEEE Symposium on Security. 1980, and Privacy.

[43] P. Mockapetris, “Domain Names - Implementation and Specifcations,” RFC, vol.
1035, December 1987.

[44] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and N. Weaver, “Inside
the Slammer Worm,” IEEE Security and Privacy, vol. 1, no. 4, July 2003, pp. 33–39.

[45] R. Needham and M. Schroeder, “Using encryption for authentication in large net-
works of computers,” Communications of the ACM, vol. 21, no. 12, December 1978.

[46] B. C. Neuman and T. Ts’o, “Kerberos: An Authentication Service for Computer
Networks,” IEEE Communications, September 1994, pp. 33–38.

[47] A. Patel, J. C. Junior, and J. M. Pedersen, An Intelligent Collaborative Intrusion
Detection and Prevention System for Smart Grid Environments, Computer Standards
& Interfaces, 2013.

[48] J. Pollet, “Developing a Solid SCADA Security Strategy,” Sensors for Industry
Conference, Houston, Texas, USA, December 2002, pp. 19–21.

[49] M. Ramkumar, “On the scalability of an effcient “Nonscalable” key distribution
scheme,” World of Wireless, Mobile and Multimedia Networks, 2008. WoWMoM
2008. 2008 International Symposium on a. IEEE, 2008, pp. 1–6.

[50] M. Ramkumar, “Trustworthy Computing Under Resource Constraints With the
DOWN Policy,” IEEE Transactions on Secure and Dependable Computing, pp, vol.
5, no. 1, 2008, pp. 49–61.

[51] B. Robert-son, “Integrating Security into SCADA Solutions,” NISCC SCADA Secu-
rity Conference, vol. 2003.

[52] L. F. Sarmenta, M. Van Dijk, C. W. O’Donnell, J. Rhodes, and S. Devadas, “Virtual
monotonic counters and count-limited objects using a TPM without a trusted OS,”
Proceedings of the frst ACM workshop on Scalable trusted computing. ACM, 2006,
pp. 27–42.

[53] A. Shahzad and S. Musa, Cryptography and Authentication Placement to Provide
Secure Channel for SCADA Communication, International Journal of Security, 2012.

177

[54] S. W. Smith and S. Weingart, “Building a High-Performance Programmable Secure
Coprocessor,” Computer Networks, 1999, pp. 831–860.

[55] A. Sood and R. Enbody, “Targeted Cyber Attacks-A Superset of Advanced Persistent
Threats,” Security & Privacy, IEEE, vol. 11.1, 2013, pp. 54–61.

[56] A. D. Sorbo, Network Security - Sk-DNSSEC: an alternative to the Public Key
scheme, doctoral dissertation, Department of Computer Science, University of
Salerno, Baronissi, Italy.

[57] E. R. Sparks and E. R. Sparks, A Security Assessment of Trusted Platform Mod-
ules Computer Science Technical Report TR2007-597, Tech. Rep., Technical report,
Department of Computer Science Dartmouth College, 2007.

[58] T. Specifcation, “Architecture Overview,” Specifcation Revision, vol. 1, 2004.

[59] T. Specifcation, “Trusted platform module main specifcation Version 1.2,” Revision
94, vol. 1, 2006.

[60] J. Stamp, J. Dillinger, W. Young, and J. DePoy, “Common Vulnerabilities in Critical
Infrastructure Control Systems,” Sandia National Laboratories report SAND, 2003,
pp. 2003–1772.

[61] K. Stouffer, J. Falco, and K. Kent, “Guide to Supervisory Control and Data Acquisi-
tion (SCADA) and Industrial Control Systems Security,” NIST Special Publication,
2006, pp. 800–82.

[62] G. E. Suh, D. Clarke, B. Gassend, M. Van Dijk, and S. Devadas, “AEGIS: architecture
for tamper-evident and tamper-resistant processing,” Proceedings of the 17th annual
international conference on Supercomputing. ACM, 2003, pp. 160–171.

[63] I. Trial, “Use Standard for SCADA Serial Link Cryptographic Modules and Proto-
col,” P, 2008, pp. 2008–08.

[64] P. Tsang and S. Smith, “YASIR: A low-latency, high-integrity security retroft for
legacy SCADA systems,” Proceedings of The Ifp Tc 11 23 rd International Informa-
tion Security Conference, Boston, 2008, Springer.

[65] R. J. Turk, Cyber incidents involving control systems, Idaho National Engineering
and Environmental Laboratory, 2005.

[66] M. Van Dijk, L. F. Sarmenta, J. Rhodes, and S. Devadas, Securing shared untrusted
storage by using TPM 1.2 without requiring a trusted OS, Tech. Rep., Citeseer, 2007.

[67] P. C. van Oorschot, A. Somayaji, and G. Wurster, Hardware-Assisted Circumvention
of Self-Hashing Software Tamper Resistance, IEEE Transactions on Dependable and
Secure Computing, 2005.

178

[68] A. Velagapalli and M. Ramkumar, “An Effcient Trusted Computing Base (TCB) for
a SCADA System Monitor,” 10th International Information and Telecommunication
Technologies Conference. IEEE, 2011.

[69] A. Velagapalli and M. Ramkumar, “Minimizing the TCB for securing SCADA sys-
tems,” Proceedings of the Seventh Annual Workshop on Cyber Security and Informa-
tion Intelligence Research. ACM, 2011, p. 19.

[70] A. Velagapalli and M. Ramkumar, “An Effcient TCB for a Generic Data Dissemina-
tion System,” International Conference on Communications in China: Communica-
tions Theory and Security (ICCC’12–CTS). IEEE, 2012.

[71] A. Velagapalli and M. Ramkumar, “Trustworthy tcb for dns servers,” International
Journal of Network Security, vol. 14, no. 4, 2012, pp. 187–205.

[72] A. Velagapalli and M. Ramkumar, “A Security Architecture for SCADA Systems,”
submitted for IEEE transactions on Cybernetics, 2013.

[73] P. Vixie, O. Gudmundsson, and D. Eastlake, B. Wellington,” Secret Key Transaction
Authentication for DNS (TSIG), Tech. Rep., RFC 2845, May, 2000.

[74] Y. Wang and B. Chu, “sSCADA: Securing SCADA infrastructure communications,”
Cryptology ePrint Archive, Report, 2004.

[75] N. Weaver, V. Paxson, S. Staniford, and R. Cunningham, “A taxonomy of computer
worms,” Proceedings of the 2003 ACM workshop on Rapid malcode, DC, USAOcto-
ber Washington, DC, USA, 2003, pp. 27–27, October Washington.

[76] S. Weiler and J. Ihren, Minimally covering NSEC records and DNSSEC on-line sign-
ing, Tech. Rep., RFC 4470, April, 2006.

[77] R. Wightman, Cyber attacks on Texas utility, Tech. Rep., Nov.
2011, http://www.washingtontimes.com/news/2011/nov/18/hackers-apparently-
based-in-russia-attacked-a-publ.

[78] R. Wightman, “Spear Phishing Attempt,” Digital Bond, February 2013,
https://www.digitalbond.com/blog/2012/06/07/spear-phishing-attempt/.

[79] R. Wojtczuk and J. Rutkowska, “Attacking SMM memory via Intel CPU cache poi-
soning,” Invisible Things Lab, 2009.

[80] A. Wright, J. Kinast, and J. McCarty, “Low-latency cryptographic protection for
SCADA communications,” Applied Cryptography and Network Security, Springer,
Berlin, 2004.

[81] J. Wright, “KillerBee: Framework and tools for exploiting ZigBee and IEEE 802.15.4
networks,” Version, vol. 1.0, 2010.

179

https://www.digitalbond.com/blog/2012/06/07/spear-phishing-attempt
http://www.washingtontimes.com/news/2011/nov/18/hackers-apparently

[82] B. Zhu, A. Joseph, and S. Sastry, “A Taxonomy of Cyber Attacks on SCADA Sys-
tems,” Proceedings of the 2011 International Conference on Internet of Things and
4th International Conference on Cyber, Physical and Social Computing, Washington,
DC, USA, 2011, ITHINGSCPSCOM ’11, pp. 380–388, IEEE Computer Society.

[83] B. Zhu and S. Sastry, “SCADA-specifc intrusion detection/prevention systems: a
survey and taxonomy,” Proceedings of the 1st Workshop on Secure Control Systems
(SCS), 2010.

180

APPENDIX A

STCB INSTRUCTION SET

181

This appendix illustrates a possible design of an STCB instruction set by outlining

memory layout for addressable volatile registers in the STCB module and identifying use-

ful logical operations on values stored in such registers. The memory layout Y is given

in Table A.1, where index represents the position. For simplicity, we have associated each

index with a more-easy-to-remember mnemonic.

A register used for storing the intermediate results during the execution of an algorithm

A is given index 0 and mnemonic TMP. Y[1-3] are values received in an authenticated

sensor report. Y[4-10] correspond to values in a sensor state s0, Y[11-16] correspond to

sensor state s1, Y[17-22] corresponding to sensor state s2, Y[23-28] correspond to sensor

state s3. Y [29-37] correspond to the l constants. For illustration let the maximum number

of related sensors be q = 3; the number of outputs of each U be w = 3; and the number of

constants l = 8.
newspacing1

The algorithm A consists of m sets of three byte instructions (m × 3, m = 8) of the

form (o, a1, a2
0) where

1. the frst byte o specifes one of 256 possible operations including 0 (no operation);

2. the second byte a1 specifes the address of the frst operand (an address between 0
and 64);

3. the third byte a0 2 = a2 k i specifes using its MSBs a2, the address of the second
operand (between 0 and 64); the two LSBs i = {0, 1, 2, 3} specify the address of
destination of the result of the operation as follows:

i output address
0 TMP
1 E01 (o01)
2 E02 (o02)
3 E03 (o03)

182

Table A.1

Memory Layout of Y

Index Mnemonic Index Mnemonic Index Mnemonic Index Mnemonic
0 TMP
1 RID (S̃) 2 RVAL(ṽ) 3 RTS (t̃)
4 SID0 (S0) 5 V0 (u0) 6 T0 (t0) 7 TM (τ0)
8 E01 (o01) 9 E02 (o02) 10 E03 (o03)
11 SID1 (S1) 12 V1 (u1) 13 T1 (t1)
14 E11 (o11) 15 E12 (o12) 16 E13 (o13)
17 SID2 (S2) 18 V2 (u2) 19 T2 (t2)
20 E21 (o21) 21 E22 (o22) 22 E23 (o23)
23 SID3 (S3) 24 V3 (u3) 25 T3 (t3)
26 E31 (o31) 27 E32 (o32) 28 E33 (o33)
29 C0 30 C1 31 C2 32 C3
33 C4 34 C5 35 C6 36 C7
37 C8

Thus, the instructions A can only modify contents of locations TMP, E01, E02 and E03.

A.1 Opcodes

A partial listing of the interpretation of some opcodes are depicted in Table A.2.

Table A.3 illustrates the execution of some sample 3 byte instructions, depicting the

type of operation, the operands involved, and the location of the output.

In general, while two bytes in an instruction specifes two inputs and one output, oper-

ations like ENC3, ADD3, AND3, OR3, etc., have three inputs and one output. For such

operations, the third input is the same as the output (which can be TMP, E01, E02 or E03).

On execution of the operation, the output overwrites the third input.

Operations with mnemonic ending with 4 also have three inputs and one output, but the

third input is distinct from the output. This is achieved by using the frst address byte a1 to

183

Table A.2

A Partial Listing of Opcodes and their Interpretation

OPCODE Interpretation

0 No operation
CHKC Next two bytes indicate identifer for a set of constants
ULUT Use 1-D LUT
ULUT2 Use 2-D LUT
ULUT3 Use 3-D LUT
AND11 Logical AND operation
AND10 Logical AND operation after negating the frst operand
AND00 Logical AND operation after negating both operands
AND3 Logical AND of three operands
OR11 Logical OR operation
OR10 Logical OR operation after negating the frst operand
OR00 Logical OR operation after negating both operands
AND3 Logical AND of three operands
ADD11 Add frst and second operand
ADD10 Add frst operand with negative of second operand
ADD00 Add negative of both operands
ADD3 Addition of three operands
LT frst operand < than second
LTE frst operand ≤ than second operand
EQ both operands are equal
ENCS3 Strict Enclosure
ENC3 Enclosure
CENC3 Circular Enclosure
CMP Compare if frst operand is </==/> than second
LIM4 Check if operand 2 is within lower and upper limits
...

184

Table A.3

Examples Illustrating 3-byte Instructions.

Instruction Interpretation

(AND00,C4,T1 k 0)
(OR00, V2, TMP k 1)
(OR10, V3, C8 k 2)
(LT, V3, C8 k 3)
(ENCS3, V2, T1 k 1)
(ENC3, V2, T1 k 2
(CMP,V0,C5 k 1)

(CMP3, C1,C5 k 1)

(ADD3, E11,C5 k 2)
(LIM4,C1,V0 k 3)

!Y [C4]∧!Y[T1] → Y[TMP]
Y [V2] ∨ Y[TMP] → Y[E01]
Y [V3]∨!Y[C8] → Y[E02]
Y [E03] = Y[V3] < Y[C8]?1 : 0
Y [E01] = (Y[V2] < Y[E01] < Y[T1])?1 : 0
Y [E02] = (Y[V2] ≤ Y[E02] ≤ Y[T1])?1 : 0
IF Y [V0] < Y[C5] then Y [E01] = −1
IF Y [V0] > Y[C5] then Y [E01] = 1
IF (Y [V0] = Y[C5]) then Y [E01] = 0
IF Y [E01] < Y[C1] then Y [E01] = −1
IF Y [E01] > Y[C5] then Y [E01] = 1
IF Y [C1] ≤ Y[E01] ≤ Y[C5] then Y [E01] = 1
Y [E02] = Y[E02] + Y[E11] + Y[C5]
Y [E03] = (Y[C1] < Y[V0] < Y[C1 + 1])?1 : 0

185

specify two operands. Specifcally, if a1 = x, two operands are Y [x] and Y [x + 1]. The

byte a2 (as usual) specifes the third input (6 MSBs) and the output location (two LSBs).

While most operations are trivial and obvious from the mnemonic employed for the

operation, some are not. An algorithmic representation of the execution of some not so

obvious operations is provided in Figure ??.

A.1.1 Internal Functions

Internal function (see Figure A.1) fexec() execute the 24 byte instruction in STCB

memory v. Specifcally, fexec() makes 8 calls to feoc() (which executes one three byte

instruction o, a1, a2
0).

fexec() {
FOR (j= 0 TO 7)

x := feoc(v[3j], v[3j + 1], v[3j + 2]);
IF (x) RETURN x;

}

Figure A.1

Internal function fexec()

Function feoc(o, a1, a0 2) has three possible return values

1. 0 - on successful execution;

2. 1 - if o = 0, signifying that no more instructions are available.

3. ERROR - if any of the preconditions necessary for execution of the instruction is not
satisfed.

186

If feoc() returns 0 the function fexec() proceeds with the next instruction (unless it is the

last instruction). If feoc() returns 1, fexec stops the execution and returns 1; if feoc returns

ERROR, fexec() returns ERROR.

The frst byte specifes an instruction. For most operations, byte a1 specifes an input

address (between 0 and 64), and byte a2
0 simultaneously specifes an input address (between

0 and 64) and an output address (between 0 and 3).

Specifcally, a0 2 = a2 k i where the six MSBs a2 represents an input address and the

two LSBs op ∈ {0, 1, 2, 3} represents an output address out = { TMP,E01,E02,E03}.

Figure A.2 provides a partial listing of function feoc(). Note that for all operations with

a mnemonic that ends with 3, one input is the same as the output Y [out]. The operation

CENC3 (circular enclosure) returns true if input Y [out] is circularly enclosed by values

Y [a1] and Y [a2]. A value x is circularly enclosed by v1 and v2 is strictly enclosed by v1

and v2 or if v2 < v1 and x < v2; or if v2 < v1 and x > v1.

187

x := feoc(o, a1, a
′
2)

{
IF (o=0) RETURN 1;
IF (o=CCHK)
IF (Y [C0] 6= a1 + (a′2 << 8)) RETURN ERROR;
ELSE RETURN 0;

a2 := a′
2 >> 2; // six MSBs of a2 is operand 2 address;

out := a′
2 << 6;//two LSBs of a2 is output address;

IF (out = 0) out := V0;
ELSE IF (out = 1) out := E01;
ELSE IF (out = 2) out := E02;
ELSE out := E03;
ELSE IF (o = ULUT)
IF !(Y [C1] < Y[a1] < Y[C2])) RETURN ERROR ;
RETURN 0;

IF (o = ULUT2)
IF !(Y [C1] ≤ Y[a1] < Y[C2]) RETURN ERROR ;
IF !(Y [C3] ≤ Y[a2] < Y[C4]) RETURN ERROR ;
RETURN 0;

IF (o = ULUT3)
IF !(Y [C1] ≤ Y[a1] < Y[C2]) RETURN ERROR ;
IF !(Y [C3] ≤ Y[a2] < Y[C4]) RETURN ERROR ;
IF !(Y [C5] ≤ Y[out] < Y[C6]) RETURN ERROR ;
RETURN 0;

ELSE IF (o = LIM4)
Y [out] := (Y [a1] < Y [a2] < Y [a1 + 1]); RETURN 0;

ELSE IF (o = CENC3)
Y [out] := (Y [a1] < Y [out] < Y [a2]) ∨ (Y [a2] < Y [a1] < Y [out])
Y [out] := Y [out] : ∨(Y [out] < Y [a2] < Y [a1]);
RETURN 0;

ELSE IF (o = ENCS3)
Y [out] := (Y [a1] < Y [out] < Y [a2]); RETURN 0;

ELSE IF (o = ENC3)
Y [out] := (Y [a1] ≤ Y [out] ≤ Y [a2]); RETURN 0;

ELSE IF · · ·
...

}

Figure A.2

Internal function feoc()

188

A.2 Illustration of STCB System Design

In this section we illustrate the process of construction of the design tree by considering

a simple SCADA system for controlling a water-tank, with four sensors and two actuators.

The four sensors labelled HH, HI, LO and LL are level sensors placed at different heights

in the water tank (see Figure ??). An actuator PP turns on/off the pump which pumps water

into the tank, and an actuator VL turns on/off the outlet valve.

We shall represent by PP, VL, HH, HI, LO and LL, the identities of the six sen-

sors/actuators. We shall denote by p, v, hh, hi, lo, ll their respective instantaneous states.

Specifcally,

1. p = 1 if the pump is on; p = 0 if the pump is off;

2. v = 1 if valve is on; v = 0 when valve is turned off (no discharge);

3. hh = 1 implies water level at or above above the height at which the sensor HH is
placed, hh = 0 implies water level below position of sensor HH. The same logic
holds for other sensor states hi, lo and ll.

A.2.1 Design Steps

The steps in the design of the system are as follows:

1. specify unique identities for each sensor/actuator.

2. specify minimal acceptable frequency of reports from the sensor (by specifying du-
ration of validity).

3. specify up to three dependent sensors/actuators for each sensor/actuator,

4. specify up to 24 bytes of instructions for each sensor (if necessary),

5. specify constant values, if required

6. construct Merkle hash tree and compute root ξs.

189

HH

HI

LO

LL

VL

PP

Figure A.3

Water tank SCADA system

The freedom to specify the dependent sensors, instructions, and constants is used to de-

scribe the physics of the system.

The frst two steps are trivial. For the frst step we shall assume that the sensor/actuator

identities are PP, VL, HH, HI, LO and LL. For the second step we shall impose that level

sensors are expected to report their state (0 or 1) at least once every ten seconds, and that

the actuators PP and VL are required to report at least once every 5 seconds.

A.2.1.1 Valid and Invalid States

Among the sixteen possible states of four bits representing hh, hi, lo and ll all but

fve are unacceptable as they indicate failure of a sensor. For example, if hh = 1, then

190

hi = lo = ll = 1. If lo = 1 the it follows that ll = 1, and so on. The Karnaugh map [34]

in Table A.4 depicts the fve acceptable conditions for sensors HH, HI, LO and LL.

Table A.4

Karnaugh Maps for Water Tank System.

hh = 0, hi = 0 hh = 0, hi = 1 hh = 1, hi = 1 hh = 1, hi = 0
1 0 0 0 lo = 0, ll = 0
1 0 0 0 lo = 0, ll = 1
1 1 1 0 lo = 1, ll = 1
0 0 0 0 lo = 1, ll = 0

p = 0, v = 0 p = 0, v = 1 p = 1, v = 1 p = 1, v = 0
0 0 0 1 hh = 0, ll = 0
1 1 1 1 hh = 0, ll = 1
1 1 0 0 hh = 1, ll = 1
0 0 0 0 hh = 1, ll = 0

From inspection of the map it is obvious that the current sensor states are acceptable

only if the expression

e1 hh ∧ ¯ lo) ∨ (¯ hi ∧ ll) ∨ (hi ∧ lo ∧ ll) (A.1)= (¯ hi ∧ ¯ hh ∧ ¯

evaluates to TRUE.

Furthermore, it is desired that

1. if water level is above HH then pump should be off

2. if water level is below LL then pump should be on and valve should be off.

A Karnaugh map depicting acceptable states of values p, v, hh and ll is also depicted in

Table A.4.
191

From inspection of the map

e2 = (¯ hh ∧ ll) + (p ∧ v̄ ∧ ¯ p ∧ ll) ∨ (¯ hh)

evaluates to TRUE for acceptable states. Overall, the water tank system is deemed to be

in an acceptable state only if both e1 and e2 are true. In other words, evaluation of the

function F() for this SCADA system (to determine of the system is in an acceptable state)

boils down to evaluation of e1 ∧ e2.

A.2.2 Design Tree Leaves

For this particular example, no predefned constants are required to evaluate F(). Thus,

the design tree will possess only six leaves - one corresponding to each sensor/actuator.

Recall that the design records have the sensor id , identities of all the related sensors,

and an instruction set (24 byte instruction) A. Those values mentioned in design record

are specifed by the designer. All the rest of values like are set to 0 at design time.

Let us assume that e1 is evaluated every time a fresh value corresponding to sensor HH

is provided. For this purpose the current values of three other sensors HI, LO and LL are

required. Towards this end the designer specifes HI, LO and LL as dependent leaves for

leaf HH. More specifcally, in the design leaf for sensor HH, we have

S0 = HH, S01 = HI, S02 = LO, and S03 = LL

The 24 bytes A specifed in leaf HH evaluates e1.

Similarly, let us assume that e2 is evaluated every time a fresh value corresponding to

sensor PP is provided. For this purpose as current states of actuator VL, and sensors HH
192

and LL , are required, they are specifed as the dependent sensors of PP. In other words, in

the leaf for sensor PP, we have

S1 = PP, S11 = VL, S12 = HH, and S13 = LL

The 24 bytes A specifed in leaf PP evaluates e2.

The other four leaves - viz, VL, HI, LO and LL do not require dependent leaves to be

specifed. Furthermore, no A need to be specifed for such leaves. The table below depicts

the contents of values of the six leaves in the design tree:

Sid PP VL HH HI L0 LL

Sid1 VL 0 HI 0 0 0

Sid2 HH 0 LO 0 0 0

Sid3 LL 0 LL 0 0 0

A.2.3 Instructions for Leaves PP and HH

The instructions specifed in leaf HH evaluates the e1. Before the instructions are

executed Fupd() ensures the following

1. The current contents of leaf HH - values - are stored in locations are stored in loca-
tions s0

2. Contents of a fresh report from HH (indicating sensor identity, sensed values and
time stamp) are stored in locations r.

3. Y [SID0] = HH = Y[RID]

4. Value Y [V0] is updated (by setting it equal to Y [RVAL])

193

5. Value Y [T0] is updated based on time stamp Y [RTS]

6. The current contents of leaf HI are stored in locations are stored in locations s1 .

7. The current contents of leaf LO are stored in locations are stored in locations s2.

8. The current contents of leaf LL are stored in locations are stored in locations s3.

For computing e1, the required values are

hh = Y [V0], hi = Y[V1], lo = Y[V2] and ll = Y[V3]

The 24 bytes in Acompute

e1 = (¯ hi ∧ ¯ hh ∧ hi¯ ∧ ll) ∨ (hi ∧ lo ∧ ll)hh ∧ ¯ lo) ∨ (¯

using the following sequence of six operations

¯ ¯1. Y [V0] ∧ Y [V1] → Y [TMP] or (AND00, V0, V1 k 0)

¯2. Y [V2] ∨ Y [V3] → Y[E01] or (OR10, V3, V2 k 1)

3. Y [TMP] ∧ Y[E01] → Y[E01] or (AND11,24, 0 k 1)

4. Y [V1] ∧ Y[V2] → Y[TMP] or (AND11,V2,V1 k 0)

5. Y [TMP] ∧ Y[V3] → Y[TMP] or (AND11, V3, 0 k 0)

6. Y [TMP] ∨ Y[E01] → Y[E01] or (OR11, E01, 0 k 1)

As only six instructions are required, the last two instructions in A are set to (0,0,0). At

the end of the execution , location E01 - which corresponds to o01 of leaf HH, contains the

result e1 of the evaluation.

The 24 byte instruction specifed in leaf PP evaluates the e2, and e1 ∧ e2. Before the

instructions are executed, Fupd() ensures the following

1. The current contents of leaf PP - values at s0

194

2. Contents of a fresh report from PP are stored in r

3. Y [SID0] = PP = Y[RID]

4. Value Y [V0] is updated

5. Value Y [T0] is updated

6. s1 = VL

7. s2 = HH.

8. s3 = LL.

For computing e2, the required values are

p = Y [V0], v = Y[V1], hh = Y[V2], ll = Y[V3], and e1 = Y[E21]

Note that e1 is the value loaded to Y [E21] . Also every time Fupd() is performed Y [TM] is

updated to min(Y [T0], τ 1, τ2, τ3)000

The instruction set A in leaf PP is executed to compute

e2 = (¯ hh ∧ ll) + (p ∧ ¯ hh)p ∧ ll) ∨ (¯ v ∧ ¯

= (!Y [V0] ∧ Y[V3]) ∨ (!Y[V2] ∧ Y[V3]) ∨ (Y[V0]∧!Y[V1] ∧ Y[V2]),

after which e2 is made available in location Y [E01]. This value is combined with e1 in

Y [E21] to compute and e1 ∧ e2, using the following sequence of six operations

¯ ¯1. Y [V0] ∧ Y [V2] → Y [TMP] or (AND00, V0, V2 k 0)

2. Y [V3] ∨ Y[TMP] → Y[TMP] or (OR11, V3, TMP k 0)

3. Y [V0]∧!Y[V1] → Y[E01] or (AND10, V0, V1 k 1)

4. Y [E01] ∧ Y[V2] → Y[E01] or (AND11,E01, V2 k 1)

5. Y [E01] ∨ Y[TMP] → Y[E01] or (OR11, E01, TMP k 1)

6. Y [E01] ∧ Y[E12] → Y[E01] or (AND11, E01, E12 k 1), (e1 ∧ e2)

Ultimately, the state of the system is indicated by the value o11 in sensor state of PP.

195

	Minimal Trusted Computing Base for Critical Infrastructure Protection
	Recommended Citation

	tmp.1625165283.pdf.ZrV0Y

