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The integrity of information systems is predicated on the integrity of processes that manipulate

data. Processes are conventionally executed using the conventional von Neumann (VN) architec-

ture. The VN computation model is plagued by a large trusted computing base (TCB), due to

the need to include memory and input/output devices inside the TCB. This situation is becoming

increasingly unjustifiable due to the steady addition of complex features such as platform virtu-

alization, hyper-threading, etc. In this research work, we propose a new model of computation -

TCB minimizing model of computation (TMMC) - which explicitly seeks to minimize the TCB,

viz., hardware and software that need to be trusted to guarantee the integrity of execution of a

process. More specifically, in one realization of the model, the TCB can be shrunk to include only

a low complexity module; in a second realization, the TCB can be shrunk to include nothing, by

executing processes in a blockchain network.

The practical utilization of TMMC using a low complexity trusted module, as well as a blockchain

network, is detailed in this research work. The utility of the TMMC model in guaranteeing the



integrity of execution of a wide range of useful algorithms (graph algorithms, computational ge-

ometric algorithms, NP algorithms, etc.), and complex large-scale processes composed of such

algorithms, are investigated.

Key words: Trusted Computing Base (TCB), minimal TCB, trusted execution, blockchain, two-
party prover-verifier protocol, Authenticated Data Structure (ADS), Ordered Merkle Tree (OMT)



DEDICATION

I dedicate my dissertation work to four of the most important people in my life, my parents Md.

Mazibur Rahman and Maksuda Rahman, my elder sister Nazla Bushra and my husband Mehedi

Hasan.

ii



ACKNOWLEDGEMENTS

I want to take this opportunity to thank my Ph.D. advisor Mahalingam Ramkumar. I am for-

tunate to have such a positive-minded and confident person as my mentor. He has taught me how

my research work needs to have a real-life impact to make a difference and helped me to always

see the big picture. I enjoyed working with him for the last four years.

I am greatly thankful to my committee members Dr. Eric Hansen, Dr. Maxwell Young, and

Dr. Tanmay Bhowmik for their helpful insights. They have helped me to evaluate my work from

various point of views. They have provided me valuable suggestions that made the focus of my

work more explicit.

I thank all the faculty members and staff of the Computer Science and Engineering Department

who contributed towards creating a collaborative environment in our department. I thank my fellow

graduate students especially my colleague Naresh Adhikari for keeping me informed where I was

not.

I am grateful to my sister Nazla Bushra who has always been a role model for me. She is a true

inspiration for me to become an active researcher. Last but not least, I am forever thankful to my

husband Mehedi Hasan for being there to support me in every decision I have ever made.

iii



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE . . . . . . . . . . . . xv

CHAPTER

I. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Proposal Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1 Generic Platform for Trustworthy Execution of Processes . . . . . . 7
1.2.2 Unambiguous Process State Description . . . . . . . . . . . . . . . 7
1.2.3 Reducing Dependency on Conventional Memory . . . . . . . . . . 8
1.2.4 Eliminating the Need for Trusted Third Party . . . . . . . . . . . . 8
1.2.5 Lowering Verification Complexity . . . . . . . . . . . . . . . . . . 8
1.2.6 Minimizing TCB . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2.7 Scalable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

II. LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Model of Computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Trusted Computing Base (TCB) . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Minimal TCB . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Two-party Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 Authenticated Data Structure (ADS) . . . . . . . . . . . . . . . . . . . . . 14
2.5 Blockchain Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

III. COMPONENTS OF TMMC MODEL . . . . . . . . . . . . . . . . . . . . . . . . 20

iv



3.1 Processes in TMMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.2 Two-party Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.2.1 TMMC Trusted Hardware Module . . . . . . . . . . . . . . . . . . 24
3.2.2 Blockchain-TMMC Network . . . . . . . . . . . . . . . . . . . . . 25

3.3 Authenticated Data Structure . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.1 Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.3.2 Ordered Merkle Tree (OMT) . . . . . . . . . . . . . . . . . . . . . 30

3.4 State-transition Functions . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.4.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4.2 Building Blocks of State-transition Functions . . . . . . . . . . . . 38
3.4.3 Utility Functions of TMMC . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Verification of Correctness . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.6 Useful TMMC Data Structures . . . . . . . . . . . . . . . . . . . . . . . . 43

IV. TMMC WORKFLOW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

4.1 Algorithm to Atomic State-transition Functions . . . . . . . . . . . . . . . 48
4.2 Identification of Data Items . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.3 Configuration of Data Structure . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Process Representation as State-transition Function . . . . . . . . . . . . . 51
4.5 Python Implementation of Atomic State-transition Functions . . . . . . . . 52

V. GRAPH ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 Graph as Inputs to TMMC . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Dijkstra’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.2.1 Predicates and State-transition Functions . . . . . . . . . . . . . . . 56
5.2.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.3 Bellman Ford’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.1 Predicates and State-transition Functions . . . . . . . . . . . . . . . 65
5.3.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4 Kruskal’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.4.1 Predicates and State-transition Functions . . . . . . . . . . . . . . . 71
5.4.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Prim’s Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
5.5.1 Predicates and State-transition Functions . . . . . . . . . . . . . . . 78
5.5.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 80

VI. COMPUTATIONAL GEOMETRY ALGORITHMS . . . . . . . . . . . . . . . . . 83

6.1 Convex Hull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.1.1 Graham’s Scan Algorithm . . . . . . . . . . . . . . . . . . . . . . . 84

v



6.1.2 Predicates and State-transition Functions . . . . . . . . . . . . . . . 85
6.1.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Line Segments Intersection Detection . . . . . . . . . . . . . . . . . . . . 93
6.2.1 Shomos-Hoey Algorithm . . . . . . . . . . . . . . . . . . . . . . . 94
6.2.2 Predicates and State-transition Functions . . . . . . . . . . . . . . . 94
6.2.3 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.3 Polygon Triangulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.1 Delaunay Triangulation . . . . . . . . . . . . . . . . . . . . . . . . 101
6.3.2 Verification of Delaunay Triangulation Solution . . . . . . . . . . . 103
6.3.3 Predicates and State-transition Functions . . . . . . . . . . . . . . . 106
6.3.4 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 111

VII. NP PROBLEMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.1 Maximal Independent Set (MIS) . . . . . . . . . . . . . . . . . . . . . . . 115
7.1.1 Predicates and State-transition Functions . . . . . . . . . . . . . . . 116
7.1.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.2 Vertex Cover (VC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.2.1 Predicates and State-transition Functions . . . . . . . . . . . . . . . 122
7.2.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 125

7.3 Traveling Salesman Problem (TSP) . . . . . . . . . . . . . . . . . . . . . 125
7.3.1 Predicates and State-transition Functions . . . . . . . . . . . . . . . 126
7.3.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.4 Graph coloring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.1 Predicates and State-transition Functions of Graph Coloring Verifi-

cation Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.4.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.5 Clique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
7.5.1 Predicates and State-transition Functions . . . . . . . . . . . . . . . 134
7.5.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.6 Dominating Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
7.6.1 Predicates and State-transition Functions . . . . . . . . . . . . . . . 138
7.6.2 Complexity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 139

VIII. CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

8.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.2 Application of TMMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.2.1 Graph algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2.2 Computational geometry algorithms . . . . . . . . . . . . . . . . . 144
8.2.3 Financial systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
8.2.4 Dynamic algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . 145
8.2.5 NP problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

vi



8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

vii



LIST OF TABLES

3.1 Minimum heap representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Adjacency list representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.3 Disjoint set representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.4 Cartesian points representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.5 Polygon representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 Two ways to input sample graph in Figure 5.1 to TMMC . . . . . . . . . . . . . . . 56

5.2 Predicates of Dijkstra’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.3 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.4 Assign start node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.5 Update node cost, case (a) (Discard, node exists in output R5) . . . . . . . . . . . . 60

5.6 Update node cost, case (b) (Insert, no entry exist in R2) . . . . . . . . . . . . . . . . 60

5.7 Update node cost, case (c) (Discard, lower cost exists in R2) . . . . . . . . . . . . . 60

5.8 Update node cost, case (d) (Insert, new cost is lower and does not exist in R3) . . . . 61

5.9 Update node cost, case (e) (Update, new cost is lower and exists in R3) . . . . . . . 61

5.10 Extract minimum weighted edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.11 Predicates of Bellman-Ford’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . 66

5.12 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.13 Update node cost, case (a) (Insert, no entry exist in R2) . . . . . . . . . . . . . . . . 67

viii



5.14 Update node cost, case (b) (Discard, lower cost exists in R2) . . . . . . . . . . . . . 67

5.15 Update node cost, case (c) (Insert, new cost is lower and does not exist in R3) . . . . 68

5.16 Update node cost, case (d) (Update, new cost is lower and exists in R3) . . . . . . . 68

5.17 Choose next node, case (a) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.18 Choose next node, case (b) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.19 Predicates of Kruskal’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.20 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.21 Disjoint set initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.22 Access edge list, case (a) first node . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.23 Access edge list, case (b) other nodes . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.24 Create sorted edge list, case (a), Weight does not exist in R3 . . . . . . . . . . . . . 74

5.25 Create sorted edge list, case (b), Weight already exists in R3 . . . . . . . . . . . . . 74

5.26 Extract minimum weighted edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.27 Union find of edge endpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.28 Predicates of Prim’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.29 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.30 Assigning start node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.31 Update node cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.32 Extract minimum weighted edge, case (a), node not visited . . . . . . . . . . . . . . 81

5.33 Extract minimum weighted edge, case (b), node already visited . . . . . . . . . . . 81

6.1 Predicates of Grahams scan’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

ix



6.3 Detect turns for Upper CH: case (a) (right turn) . . . . . . . . . . . . . . . . . . . . 89

6.4 Detect turns for Upper CH: case (b) (left-left turn) . . . . . . . . . . . . . . . . . . 89

6.5 Detect turns for Upper CH: case (c) (left-right turn) . . . . . . . . . . . . . . . . . . 90

6.6 Lower CH initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

6.7 Detect turns for Lower CH: case (a) (left turn) . . . . . . . . . . . . . . . . . . . . . 91

6.8 Detect turns for Lower CH: case (b) (right-right turn) . . . . . . . . . . . . . . . . . 92

6.9 Detect turns for Lower CH: case (c) (right-left turn) . . . . . . . . . . . . . . . . . . 92

6.10 Merge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.11 Predicates of Shamos-Hoeys algorithm . . . . . . . . . . . . . . . . . . . . . . . . 97

6.12 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.13 Remove y coordinate in case of a right endpoint . . . . . . . . . . . . . . . . . . . . 99

6.14 Detecting intersection (right endpoint) . . . . . . . . . . . . . . . . . . . . . . . . . 100

6.15 Predicates of Delaunay triangulation verification algorithm . . . . . . . . . . . . . . 108

6.16 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.17 Disjoint set initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.18 Check circumcircle property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.19 Union find of triangles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.20 Assign new triangle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1 Predicates of MIS verification algorithm . . . . . . . . . . . . . . . . . . . . . . . . 117

7.2 Initialize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

7.3 Verifying neighboring property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4 Update current node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

x



7.5 Predicates of vertex cover verification algorithm . . . . . . . . . . . . . . . . . . . 122

7.6 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.7 Remove edge with start node in solution . . . . . . . . . . . . . . . . . . . . . . . . 124

7.8 Remove edge with end node in solution . . . . . . . . . . . . . . . . . . . . . . . . 124

7.9 Predicates of TSP solution verification algorithm . . . . . . . . . . . . . . . . . . . 128

7.10 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.11 Delete edge if starts with current node . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.12 Check cycle completion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.13 Predicates and State-transition Functions . . . . . . . . . . . . . . . . . . . . . . . 132

7.14 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.15 Check colors of neighbor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7.16 Assign next current node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.17 Predicates and State-transition Functions . . . . . . . . . . . . . . . . . . . . . . . 135

7.18 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

7.19 Check clique edge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.20 Choose next clique node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

7.21 Predicates and State-transition Functions . . . . . . . . . . . . . . . . . . . . . . . 139

7.22 Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.23 Check dominating set property of the current node . . . . . . . . . . . . . . . . . . 140

xi



LIST OF FIGURES

2.1 von Neumann architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Harvard architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Two-party protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Merkle hash tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.5 Sample blockchain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Blockchain broadcast network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Utilization of TMMC using trusted hardware and blockchain network . . . . . . . . 23

3.2 Prover-verifier communication in trusted hardware setting . . . . . . . . . . . . . . 24

3.3 Process state change in blockchain-TMMC . . . . . . . . . . . . . . . . . . . . . . 26

3.4 Blockchain Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.5 TMMC blockchain broadcast network . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.6 Transactions in a blockchain-TMMC network . . . . . . . . . . . . . . . . . . . . . 29

3.7 An ordered Merkle hash tree with leaves L1, . . . , L4 . . . . . . . . . . . . . . . . . 32

3.8 OMT hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Graham’s scan algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Convex hull computation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.3 TMMC workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.1 A sample weighted graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xii



5.2 Dijkstra’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 A sample directed graph with negative edges . . . . . . . . . . . . . . . . . . . . . 63

5.4 Bellman-Ford’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.5 Kruskal’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 Prim’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

6.1 (a) Convex (b) Not convex . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Graham’s scan algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Upper and lower convex hull computation . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Intersections of a set of segments . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.5 Shomos-Hoey Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.6 Three sets of triangulation for a given set of five points . . . . . . . . . . . . . . . . 101

6.7 Delaunay triangulation (black) and Voronoi diagram (blue) . . . . . . . . . . . . . . 102

6.8 (a) Improper Delaunay triangulation, (b) Proper Delaunay triangulation . . . . . . . 104

6.9 Non-planar triangulation. Edge AF and BC cross each other . . . . . . . . . . . . . 105

6.10 Circumcircle property (a) is a proper Delaunay triangulation, (b) and (c) are not . . . 105

6.11 Isolated triangulation of the set of points {A,B,C,D,E, F,G,H, I} . . . . . . . . 106

6.12 Verification algorithm of Delaunay triangulation solution . . . . . . . . . . . . . . . 107

7.1 Maximal independent set {v2, v4, v5} . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.2 Verification algorithm for MIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Vertex cover {v3} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Verification algorithm for vertex cover . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 TSP solution (Hamiltonian cycle {v1, v2, v4, v5, v3, v1} with start node v1) . . . . . . 126

xiii



7.6 TSP verification algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

7.7 Graph colored with two colors, {v1, v3, v6}=green, {v2, v4, v5}=red . . . . . . . . . 131

7.8 Graph with four cliques {v1, v2, v3, v4} . . . . . . . . . . . . . . . . . . . . . . . . 135

7.9 Dominating set {v1, v5, v6} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

xiv



LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE

TCB: Trusted Computing Base

Minimal TCB: TCB with minimal configuration

ADS: Authenticated Data Structure

OMT: Ordered Merkle Tree

OC: Open Consensus

TH: Trusted Hardware

VO: Verification Object

UDI: Unconstrained Data Item

CDI: Constrained Data Item

VN: von Neumann

IS: Information System

RAM Random Access Memory

CPU: Central Processing Unitf

I/O: Input Output
xv



r: Root of an OMT

(k, v)kn: Logical representation of OMT leaf

(k, kn, v): Actual representation of OMT leaf

(P1, . . . , Pn): Processes in a system/algorithm

(T1, . . . , Tn): Transactions in a blockchain

(F1, . . . , Fn): State-transition functions

(R1, . . . , Rn): Registers that store OMT roots r0, . . . , rn

x ‖ y: x concatenated with y

k ∈ R: Key k exists in OMT with root R, /∈ is non-existence

(k, v) ∈ R: Key k with value v exists in OMT with root R, /∈ is non-existence

(k, v)kn ∈ R: The next key of k in R is kn

xvi



CHAPTER I

INTRODUCTION

The utility of any algorithm is ultimately limited by our confidence in the integrity of the plat-

form on which the algorithm is executed. The trusted computing base (TCB) for a computing

platform is a minimal set of hardware/software that needs to be trusted, in order to guarantee the

correctness of algorithms/processes executed on the platform. Von Neumann (VN) architecture

is a model of computation described by John von Neumann in 1945 [23]. In conventional com-

puting platforms based on VN architecture, components like CPU, memory, and I/O devices are

included in the TCB. VN architecture is also memory-centric; every step in the execution of pro-

cesses involves memory access, as the program instruction sets and data are all loaded in the main

memory.

The von Neumann model is a simple iterative execution of the following steps:

• Fetching instruction pointed to by a special CPU register (instruction pointer or program

counter)

• Decoding the instruction

• Fetching operands from the memory (if necessary)

• Executing the instruction
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• Writing the result back to the memory (if necessary)

Memory is vulnerable to attacks and can easily be subjected to unauthorized access. Moreover,

process execution may involve a complicated sequence of steps (instructions) that may not be

readily understandable by all. In other words, VN platforms expose a substantial attack surface

that can be exploited by attackers to compromise the integrity of processes, either for selfish gains

or more sinister purposes.

A significant number of memory-based attacks such as RAM scraping [56], buffer overflow

[33], fileless malware [48], cache-based side-channel attacks [67], DMA malware attacks [62],

invasive or semi-invasive attacks [57] etc. prove that security features of existing architectures can

be exploited in order to illegitimately read, write and/or update information stored in the system’s

memory. Therefore, memory cannot be completely trusted in practice. Special classes of malware

are designed to infect memory and access all the protected information stored in it. Such malware

can be identified only by vigorous scanning and analyzing of the main memory [49].

Few of the recent data breaches involve a RAM scrapping malware that captures data from

volatile memory. One of the data breach events that happened in 2013 involve two major compa-

nies (Target and Home Depot) affected by this malware. In December 2013, over 40 million credit

cards were stolen from nearly 2000 Target stores by accessing data on point of sale (POS) systems

memory [51]. Home Depot’s point of sale system was also compromised [27] in the same way,

by the same type of malware. The use of stolen third-party vendor credentials and RAM scraping

malware were the main reasons behind both of these data breaches. Data breaches and compromise

of system security are not uncommon even in the most recent years as indicated by the fact that
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already over 4 billion data has already been exposed in 2019 so far. This indicates how easy it for

the attackers to gain unauthorized access to the system and steal private information.

Another major flaw discovered recently by researchers might lead to redesigning the kernel

software of the operating system. Vulnerabilities like Meltdown [35] and Spectre [30] are found in

modern CPU hardware, and can possibly result in leaking passwords and sensitive data from our

systems. Meltdown is a hardware vulnerability affecting Intel x86 microprocessors, IBM POWER

processors, and some ARM-based microprocessors. This scenario allows a process to read all

memory illegitimately. Spectre combines legit programs with malicious applications and collects

secret information from user’s computer memory. Both of these vulnerabilities are massive and

comparatively harder to mitigate.

Modern CPUs contain advanced features for faster processing of data and instructions. These

performance-enhancing optimization features such as out-of-order execution, virtualization, hyper-

threading, use of multiple cores, etc. involve complicated sequences of steps. Modern software is

also packed with features to cater for various user needs. This makes it harder to identify unde-

sired and obscure functionality in complex software that can easily be exploited. Also, procedural

descriptions of system processes are difficult to scrutinize and understand.

Consequently, including modern complex CPUs in the TCB is dangerous. Including memory

in the TCB is even more so. Moreover, conventional information security approaches that attempt

to mitigate such vulnerabilities tend to possess multiple security layers, that tend to obscure the

internal structure of the system itself, making it hard to even understand how the system works. The

complexity also makes it difficult to pinpoint the actual root cause of a problem (in case something

goes wrong). Therefore, simplifying of TCB is a necessary step.
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Minimal TCB, by definition, is comprised of minimal storage and computational requirements

and provides a setting to execute processes inside a trustworthy boundary. The minimization of

TCB in most of the cases involves getting rid of the main memory to replace it with a smaller one

(a few KB of capacity). Several efforts have sought the minimize the TCB using a memory-less

architecture [32] [19] [22]. Hendricks et al. [28] mentions that even though the main memory and

peripherals are made part of the TCB in many cases, there is no reason to trust them blindly. The

typical size of the main memory does not allow examining its contents. A small memory does not

allow any standard sized malicious program to make copies of itself in it. It is also not possible

for these kinds of malware to be executed within this small memory as the few KB size will not

suffice. The proposed TCB minimizing model of computation (TMMC) model is fundamentally a

minimal TCB that can execute fixed sequences of logical and cryptographic hash operations with

its limited configuration.

1.1 Proposal Overview

We propose TMMC (TCB minimizing model of computation) as an alternative to the conven-

tional model of computation. In the TMMC model, memory and I/O devices are not considered

parts of the trusted computing base (TCB). In TMMC, an information system (IS) is seen as a set

of processes or algorithms. Process execution is represented as a set of well-defined atomic state-

transition functions (ASF). Execution of these functions causes changes to the state of the process.

The goal of the TMMC model is to preserve the integrity of the execution of these processes [53]

by guaranteeing the integrity of each state-change function.
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Each ASF modifies process states like inputs, outputs, and temporary data needed to keep track

of the progress of execution of the process. They cause the process to change its state (say, from

S1 to S2) as a result of some data transformation (say, x = 0 to x = 5). TMMC maps processes

of a system to a set of permitted state-transition functions (f : Sn → Sn+1). The state-transition

functions are atomic in nature which makes them suitable for independent execution and verifica-

tion. At the end of correct execution of all the atomic state-transition functions (T1, T2, . . . , Tn) the

process reaches to its most recent state (Sn+1).

The TMMC model is essentially a two-party prover-verifier model, where provers have to prove

the correctness of algorithm execution to verifiers. Provers act as the executors of the processes

and possess high computational power and memory. They store all the data items of the process

and execute atomic state-transition functions. As a result of their complex structure, provers can

not be considered trustworthy. Verifiers, on the other hand, are only responsible for verifying the

correctness of the atomic state-transitions executed by the provers. They do not store any data item

of the process, and may not need to verify every state change. The simple configuration of verifiers

implies that it is possible to ensure the trustworthiness of verifiers.

More specifically, TMMC can employ a blockchain network for executing algorithms/ pro-

cesses, where provers are incentivized users who have a stake in ensuring the integrity of the

process execution. They can offer proof of the integrity of any state-change to other users (i.e.

regular users) at any time. Execution of any algorithm in TMMC can be seen as a sequence of

blockchain transactions, each associated with a well-defined atomic state-change function (ASF).

The blockchain consensus mechanism enables a universal consensus on the state of the algorithm

after each transaction.
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The dynamic states of a process (i.e. existence or non-existence of data items, the content of

the data items, etc.) are seen as leaves of an Ordered Merkle Tree (OMT) [44]. The OMT is

an Authenticated Data Structure (ADS), which is also an extension of the Merkle hash tree [41].

ADS allows the provers to prove the authenticity of its response to specific queries. The OMT is

associated with a cryptographic commitment (the root r of a binary hash tree). In TMMC, this

root hash r is used as a commitment to the state of the algorithm. The provers store the entire

OMT. Verifiers keep track of only the cryptographic commitment r, to keep track of the process’s

current state. Provers must prove the correctness of process execution to verifiers. Consider a

scenario where the prover was queried for the value v of a particular data item x. The provers are

required to send the value v along with a “proof of validity”. This proof of validity can be used by

the verifiers to confirm the correctness of the response against the root r of the OMT. In the same

way, untrusted provers can also provide proof of validity of the correct execution of state-transition

functions.

The minimal TCB for TMMC can be implemented using “low-complexity-high-integrity”

Trusted Hardware (TH). Alternatively, the TMMC model can utilize a blockchain network where

consensus is reached on OMT root r following each state-change.

In the traditional von Neumann (VN) architecture, memory can be accessed in constant time

(O(1)). However, in TMMC, where data items are OMT leaves, operations like read, write, update,

delete, require O(log2N) time, where N is the total number of data items (OMT leaves). Thus

algorithms, when executed on the TMMC platform, may not run as efficiently (compared to the

conventional VN model). This is the trade-off for guaranteed integrity of process execution.
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The TMMC model for process execution an alternative to the conventional procedural model

for executing processes. This research work hypothesizes that the TMMC model can be used for

executing a wide variety of algorithms used in real-world applications. In the proposed research

work, we convert processes/algorithms into a sequence of TMMC state-transition functions and

evaluate the associated computational overhead. We also analyze the state-transition rules for a

wide variety of application scenarios, to formalize their notations.

1.2 Research Goals

The broad goals of this research work are described as follows:

1.2.1 Generic Platform for Trustworthy Execution of Processes

The proposed research seeks a trusted model of computation that can be used for a trustworthy

execution of any algorithm processes from any domain of interest. This approach emphasizes

preserving the integrity of process execution as opposed to conventional approaches that lay more

emphasis on detecting and thwarting attacks that may affect the integrity of process execution. A

major component of this research involves the representation of different useful algorithms as a

sequence of TMMC state-transition rules, for efficient execution.

1.2.2 Unambiguous Process State Description

In the conventional model of computing, the description of the process state is implicit due to

the procedural description of processes. In TMMC, processes are described as a series of atomic

state-transition functions (ASF). Execution of an ASF changes the state of the process. Thus,

changes in the process state are explicit in TMMC due to the ASF representation of processes.
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1.2.3 Reducing Dependency on Conventional Memory

The TMMC model does not rely on the integrity of memory contents of the process executor,

as memory is inherently insecure and can be illegitimately modified. Instead, data read and write

are performed using ADS [63], viz., the Ordered Merkle Tree (OMT) [9].

1.2.4 Eliminating the Need for Trusted Third Party

In scenarios where there is a need to trust third parties for the execution of processes, we can

not ignore the possibility that third parties can themselves be corrupted or exposed to malicious at-

tacks. TMMC model eliminates the need for trusted third parties, by replacing them with untrusted

provers. Instead of blindly trusting third parties, TMMC verifiers demand the proof of correctness

of process execution.

1.2.5 Lowering Verification Complexity

Performing verification of process execution is not always practical when the computing plat-

form follows the traditional von Neumann model. TMMC seeks to reduce computational overhead

and memory requirements for verification. The process description in TMMC allows the verifiers

to verify the correctness of process execution without actually executing all the system processes.

1.2.6 Minimizing TCB

In von Neumann architecture, the TCB includes all the major components such as memory, I/O

devices, etc. This makes the size of the TCB large with inherently vulnerable components such as

memory. TMMC actively seeks to minimize the TCB for process execution (by excluding memory,
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I/O devices, etc.). More specifically, the TCB for process execution can be shrunk to nothing, by

executing processes in a Blockchain network, where no software/hardware is trusted.

1.2.7 Scalable

The data items of a process are stored as leaves of an OMT. An unlimited number of data

items N can be stored in an OMT. To verify a particular ASF execution (process state change), the

verifier only needs to perform O(log2N) hash operations. This makes TMMC highly scalable for

large-scale processes that involve a large number of data items.

1.3 Summary

In this chapter, we have provided a brief overview of the significance and motivation behind

the proposed TMMC model, followed by a brief overview of the model itself. Chapter 2 provides

a more in-depth overview of several key areas that were explored to undertake this research. Chap-

ter 3 describes the major components of TMMC in detail and their roles. Chapter 4 provides a

generic TMMC workflow that can be used to transform any process and represent them as TMMC

ASFs. We then describe several popular algorithms from different domains (Graph algorithms,

computational geometry algorithms, NP problems, etc.) using the TMMC model in the following

chapters. In the concluding chapter, we highlight the contributions of our research and scope for

future work.
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CHAPTER II

LITERATURE REVIEW

2.1 Model of Computation

Traditionally, computable processes are executed primarily using the von Neumann (VN) [23]

architecture (Figure 2.1), where main memory is assumed to be trusted. In practice, programs and

data are subjected to unauthorized modification, as it is possible for other processes and peripherals

to access/modify the memory of a process.

Figure 2.1

von Neumann architecture

The Harvard architecture for computation [60] (Figure 2.2) stores the program code into a

separate unit that is read-only. However, data remain in the main memory which is vulnerable to

10



outside attacks. Other similar architectures have also been considered in the literature to render

conventional computational models more trustworthy.

Figure 2.2

Harvard architecture

2.2 Trusted Computing Base (TCB)

The earliest mention of the concept of a trusted computing base was by Rushby [55] where

he referred TCB as the combination of kernel and trusted processes. According to Lampson et al.

[31], the Trusted Computing Base (TCB) of a system is defined as “a small amount of software

and hardware we rely on, and that we distinguish from a much larger amount that can misbehave

without affecting security.” The Orange Book [34] defines TCB formally as “the totality of protec-
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tion mechanisms within it, including hardware, firmware, and software, the combination of which

is responsible for enforcing a computer security policy.”

The integration of the notion of TCB for any system makes it easy to extend the system func-

tionality, as everything outside the TCB can be modified without restrictions. For example, em-

bedded systems are inherently vulnerable to security threats due to network connectivity and third-

party extensibility. TCB allows the separation of domains in embedded systems which results in

single and well-defined activity for individual components [54]. The notion of a TCB is also used

in air traffic control software [17] towards building a larger automated airspace computing system.

Research [28] suggests that it is difficult to limit only the processor to be inside the TCB, as to pro-

vide a secure boot of the system, other components (e.g. disks, network adapters, etc.) should also

be made a part of the TCB. As all components inside the TCB are trusted, any security loophole

inside the TCB can cause the insecure behavior of the system. For example, if the TCB that is a

part of the Java Compiler (JVM) has some unreliable components, the bugs of the program written

by using it can lead to creating security holes in this arrangement [11].

2.2.1 Minimal TCB

Minimizing the TCB [11] [52] [64] is a major field of research. In practice “minimizing the

TCB for process execution” implies reducing the computational and memory requirement for the

TCB in such a way that it would still be able to handle large-scale data items [68].

There are several broad design principles for minimizing the TCB [26] [40]. For example,

minimal TCB can consist of only a part of the application code [40] [39] that is critical to prevent

security breaches. The minimization of TCB can be useful for model-driven verification of system
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states [52] for a variety of systems [51]. One of the major goals of minimizing the TCB is to reduce

the verification overhead for a system with dynamic information flow [11], [36]. Minimal TCB is

also an integral part of ensuring security in cloud infrastructure [9].

2.3 Two-party Protocol

At the core of all two-party protocols are two entities – provers and verifiers. The communica-

tion between the two parties can be interactive (through message passing) [37] or non-interactive

(zero-knowledge proof) [50]. The central idea is that the provers should be able to demonstrate

that the information they are providing is valid. Let us suppose, a query q is made to the provers by

an entity. The provers should provide a “proof of validity” along with the response r to the entity.

The response r together with proof of validity can be used by the verifier to ensure the correctness

of response r (Figure 2.3).

Figure 2.3

Two-party protocol
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In [47], Parno and Gentry introduce Pinocchio, a two-party protocol with clients and workers.

The clients are verifiers and the workers are provers. The clients usually have low computational

resources, and outsource their computation to the untrusted workers. In Pinocchio, the authors

have described a model where the clients will be able to verify the correctness of the computation

performed by the workers. Pinocchio supports zero-knowledge verifiable computation where the

untrusted worker can convince the client of something without revealing it to the client. Pinoc-

chio’s proof size is constant and the proof can be generated in linear time. Pinocchio seeks to

reduce verification time.

Ben-Sasson et al. [7] propose a system that provides succinct non-interactive zero-knowledge

proofs (zk-SNARKs). In this two-party protocol, clients act as verifiers and servers act as provers.

The client wants to be sure about the response that was given by the server. This response can be

an output of a certain program that is known to both of the clients and the server. Interestingly,

this model addresses the assurance from both sides. The server also maintains confidentially of the

database and only shares information necessary to answer the query, without revealing the entire

database to the client.

2.4 Authenticated Data Structure (ADS)

The Authenticated Data Structure (ADS) [63] is a good fit for any two-party prover-verifier

protocol. In a client-server paradigm, the server is referred to as the prover and the client is referred

to the verifier. The untrusted prover is responsible for storing and maintaining the ADS. The

prover stores the data items of the system as a set of records within the ADS. Upon a query from

the verifier, the prover is responsible for sending responses to these queries along with a proof of
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validity. ADSs are structured in such a way that it is possible to obtain a cryptographic commitment

for the set of records stored by it. The verifier only stores this cryptographic commitment and

checks the correctness of the response of the prover against it.

Figure 2.4

Merkle hash tree

Merkle hash tree [41] (Figure 2.4) is a very well recognized example of ADS. Specifically,

the Merkle hash tree is a type of ADS that is built using standard cryptographic one-way hash

functions h(). In Merkle tree leaf nodes are hashes of data blocks (Li) and non-leaf nodes are

hashes of child nodes (hi). Checking the existence of a leaf node in a Merkle tree with N leaves

requires O(log2N) hash operations.
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The potential of ADSes have been well recognized in the literature. ADSes are also widely

used in distributed ledger systems like blockchain networks. Many different types of ADSes have

been constructed for diverse applications such as skip-lists [61], red-black trees [2], B-trees [18],

Merkle Patricia Tree [69] (used in Ethereum cryptocurrency), network management systems, and

geographic information systems (GIS) [24], database outsourcing [46], search DAGs [38], etc. An

interesting work by Miller et al. [43] involves developing a programming language that can be

used to transform any existing data structure to authenticated ones such as authenticated binary

search trees, authenticated red-black trees, authenticated skip lists, etc.

2.5 Blockchain Network

Blockchain network also utilizes the prover and verifier model and can provide assurance on

the integrity of a system through consensus. This approach of open consensus is applied in many

popular cryptocurrencies (e.g. Bitcoin [45], Ethereum [69], Moero [65], Leo [3], Zerocoin [42],

libra [6] etc.)

A blockchain network is a broadcast network where peer-to-peer communication is used as a

mechanism for broadcasting. Every participant in the blockchain maintains a copy of the blockchain

ledger. A blockchain ledger is “not” a distributed ledger; every participant maintains the whole

ledger. The goal of a blockchain network is to achieve a universal consensus on the correctness

of all entries in the ledger. Specifically, explicit consensus on the hash of the ledger is an implicit

consent on the entire ledger.

A blockchain is a sequence of blocks that are chained together. Typically ledger updates happen

a block at a time The number of blocks grows with time. The blockchain network (Figure 2.5) is
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Figure 2.5

Sample blockchain

a decentralized network where every participant of the network has a copy of the ledger i.e. the

list of transactions. Pn denotes a sequence of transactions. Rm is a cryptographic hash denoting

the system state. Ri is the current system state which is acquired by executing Pi on the previous

system state Ri−1

The contents of a block in a blockchain are primarily the cryptographic hash of that block,

the previous block, and a set of transactions. Each block contains a public list of transactions

or records. Each record in the ledger is a well-formed transaction (broadcast over the network).

Multiple consecutive transactions are grouped into a block.

Adding a block is only possible when there is agreement on the correctness of all records/trans-

actions in the block, through a consensus mechanism. Miners are blockchain network participants

that typically compete amongst themselves to decide “who is going to make changes (add a block)”

to the blockchain. Typically, miners solve puzzles to provide “proof-of-work” to be eligible to

make changes to the blockchain. Once the change is made, all participants update their ledger.
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Any participant of the network can execute all the transactions in the ledger at any time to verify

the correctness of every ledger entry.

Figure 2.6

Blockchain broadcast network

Blockchain networks are used in many application domains. Most approaches based on blockchain

networks [45] [13] [69] attempt to guarantee the integrity of process execution through open con-

sensus. Even while the assumption at the core of open consensus is that “anyone can audit the

blockchain ledger at any time” there has been very little focus on several practical issues. For ex-

ample, some blockchain-based approaches require going through the entire transaction history in

the ledger to perform effective audits. For instance, to audit the bitcoin blockchain ledger, one has

to download all the transaction records (all the ledger entries) that ever took place from the first

block (also known as genesis block) to track or verify the current state of the system represented

by the latest block. This makes it very difficult for participants with limited resources to verify

the system state. In practice, only a special class of entities (miners) perform this comprehensive
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audit as this mechanism is computationally expensive. In Ethereum [69] the system states are

represented using the leaves of a hash tree whose root is explicitly included in transactions that

are sealed to the blocks. Consequently, the current state of the system is more readily accessi-

ble. Ethereum also aims to minimize the overhead of the process executor (prover). It stores its

system states in an ADS – the Merkle Patricia Tree [69]. This makes it possible for users to selec-

tively verify the correctness of any Ethereum transaction. Specifically, verifying the correctness of

any Ethereum transaction involves executing a “smart-contract” on an Ethereum virtual machine

(EVM). However, there are no strict limitations of the size of the smart-contract or the scale of

data to be handled by each contract, or even the work-bench memory used by the EVM (which is

an infinitely expandable byte-array).
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CHAPTER III

COMPONENTS OF TMMC MODEL

With the combination of well-defined cryptographic protocols and a well defined TCB, TMMC

provides a trusted platform to execute any process. This chapter describes the components of the

TMMC model.

3.1 Processes in TMMC

In the increasingly digital world, the integrity of dynamic bits that describe states of a wide

variety of information systems is crucial. Processes within these systems are responsible for reli-

ably and correctly changing data items representing the system, which can be seen as a set of finite

states. The integrity of these data items is critical to ensure the correctness of the system state.

It is important to note that our focus is to ensure the correct execution of a given algorithm. We

do not care how or where an algorithm was executed, as long as one can verify the correctness of

the solution. In general for any algorithm o = f(i) that produces an output o (possibly a vector

of states) for an input i (a vector of input states), there exists a verification algorithm V (f(), i, o)

that outputs a binary decision (TRUE/FALSE). At worst, the verification algorithm V () is only as

complex as f() (as we can simply execute o = f(i) to verify correctness. Generally, the verification

algorithm is simpler. For algorithms in class NP, verification can be substantially simpler. TMMC

processes merely need to execute verification algorithms. More specifically, provers merely need
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to prove the correctness of a sequence of ASFs corresponding to verification algorithms; verifiers

merely need the ability to selectively verify the correctness of any ASF.

3.2 Two-party Protocol

Consider a scenario where an algorithm of complexityO(N r) needs to be executed to produce

an output O, and that everyone needs to be convinced of the correctness of O. For large N , it is

obviously impractical for everyone to execute the algorithm themselves. In such scenarios all users

may have no choice but to rely on “trusted third parties” to perform O(N r) work to execute the

algorithm on their behalf. The obvious disadvantage of such an approach is the lack of a rationale

for the trust in the third party.

The TMMC model of computation seeks to eliminate the need for third parties. Instead of a

trusted third party, TMMC utilizes untrusted provers. Instead of blindly accepting the validity of

the information provided by the third party, TMMC verifiers demand proof of correctness. Under

the TMMC model of computation, the work done by the prover for executing aO(N r) complexity

algorithm, and generating a proof of correctness, will range from O(N r) to O(N r logN). The

work done by verifiers is typically O(logN). Provers execute the system processes as atomic

state-transition functions and need to prove the correctness of execution to the verifiers.

The prover in the two-party protocol followed by TMMC is responsible for storing data items

as leaves of an Ordered Merkle Tree (OMT) [44]. It is important to note that the prover is not a

trusted entity as its memory can be illegitimately accessed, or the prover itself can be malicious.

The verifier is an entity in the two-party protocol who is responsible for verifying the correctness of

the process execution performed by the prover. In the TMMC scenario where the verifier is a low
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complexity trustworthy module, the module is assumed to be universally trusted. In the TMMC

scenario where a verifier is a participant in a blockchain network, the verifiers are merely assumed

to trust themselves (and any device they use to verify the simple “proof of correctness” submitted

by provers).

Data items subjected to change as a result of process execution are stored as leaves of the

OMT. The location where prover digitally stores the OMT structure is irrelevant. In general, prover

possesses high computational power, resources, and unlimited memory as they need to execute the

system. The verifier stores the single cryptographic commitment to the OMT. The root hash of the

OMT is considered as a cryptographic commitment in our setting. The root hash is computed by

successively hashing the nodes of the OMT at each level starting from the leaves until we reach

the root node.

For verification, the verifiers are given a “proof of validity” along with some verification objects

(VO) that greatly reduces the overhead of verification for the verifiers. An algorithm that may

perform efficiently under the von Neumann model may not be efficient under the TMMC model.

This is because while memory read/write in the von Neumann architecture takesO(1) time, it takes

O(logN) in the TMMC model.

There are two practical platforms where TMMC model can be utilized:

1. Using trusted hardware module, or

2. Using a blockchain network.
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Figure 3.1

Utilization of TMMC using trusted hardware and blockchain network
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3.2.1 TMMC Trusted Hardware Module

In this approach, TCB has only one component - a high-integrity-low-complexity trusted hard-

ware module (or trusted chip), which acts as the verifier. Ideally, such a hardware module should

possess very low computational power and be read-write proof. It should not include any complex

units (e.g MMU, cache, functional OS, network hardware, advanced I/O, etc.). The module should

be kept isolated physically and digitally to prevent unauthorized access. Its memory should also

be small (a few kilobytes), and should not depend on the scale of the process data items.

Figure 3.2

Prover-verifier communication in trusted hardware setting
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Provers can be any untrusted entity outside the module. These untrusted provers execute the

atomic state-transition functions (Figure 3.2). They provide the next process state along with the

“proof of correctness” (to the verifier). A trusted verifier virtually store data items meaning it only

stores a single hash (commitment to current process state). The trust in verifiers is validated by their

minimal configuration. Verifiers merely need to store a dynamic cryptographic hash (the root of a

binary Merkle tree). They execute O(log2N) cryptographic hash operations to validate proof of

correctness (given by the prover). On successful verification, verifier updates hash (commitment to

process state) as suggested by the prover. TMMC model using trusted verifiers is especially useful

in scenarios where some information may need to be kept private.

3.2.2 Blockchain-TMMC Network

A blockchain network is a second practical way of utilizing the proposed TMMC model. In

blockchain-TMMC, no software or hardware is trusted. A blockchain broadcast network is a mech-

anism for achieving universal consensus on the correctness of all entries in a blockchain ledger.

Specifically, an explicit consensus is reached on the cryptographic hash of the entire ledger, which

is an implicit consensus on every ledger entry. Each ledger entry corresponds to a blockchain trans-

action, broadcast over the network. In blockchain-TMMC, only assumptions are that the ledger is

unalterable and every ledger entry is correct (due to trust in the consensus mechanism).

TMMC processes are represented as a sequence of ASFs. In blockchain-TMMC, a process is

a sequence of transactions. Each transaction is a trigger for a well-defined ASF that modifies the

state of the process executed on the blockchain network.
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Figure 3.3

Process state change in blockchain-TMMC

A blockchain ledger is a record of the progression of process state S1 (Figure 3.3), that can be

interpreted as a finite state machine (FSM)

• δ1: T1 × S1 → S2

• Transaction T1 triggers the change of the state S1

• δ1 is the well-formed function that changes the system state S1 to S2

Each of the blocks in a ledger is linked together. The number of blocks grows with time. The

most recent block represents the current state of the system. The contents of a block include a

cryptographic hash (Ri) for sequence of transactions for a process (Pi), and the previous block

hash Ri−1 (Figure 3.4). Ri is the current state of the system after executing process Pi on Ri−1.

Participants (Figure 3.5) in a blockchain network can be categorized into i) incentivized users

(provers) who participate at all times, and ii) regular users (verifiers) who may participate spo-

radically. In blockchain-TMMC, incentivized users do not need to perform unnecessary “proof of

work” in order to be selected to make a motion. Following each transaction, an incentivized user

is either i) randomly selected, or ii) compete to be selected and makes a non-repudiable motion

to include the “well-formed” transaction in the ledger, or ignore a transaction as ill-formed. Only

well-formed transactions are added to the ledger. More often, such motions are made for a set
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Figure 3.4

Blockchain Network

Figure 3.5

TMMC blockchain broadcast network
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of transactions to be included in the next block of the ledger. The goal of the incentive mecha-

nism is to reward (incentivized) users for correct motions and punish them for incorrect motions.

The participation of regular users becomes mandatory only if a motion by an incentivized user is

challenged.

The blockchain platform is the preferred implementation of the TMMC model. Here, TMMC

algorithms are executed in a blockchain network and the incentivized users instead of wasting their

resources on solving useless puzzles, they perform useful work in order to minimize the work that

needs to be done by verifiers (other users).

More generally, the consensus need not be merely on the ledger hash. It can be reached on any

computable value. In the blockchain-TMMC, incentivized users are the provers. The consensus is

reached on the state of the process after every transaction.

Consider a scenario (Figure 3.6) where universal consensus exists on the state Sn of the process

before a transaction Tn+1, and that a motion was made by an incentivized user is to update process

state to Sn+1. Assume that another incentivized user challenges the motion and claims that the new

state should be S ′n+1 instead. Under such scenarios incentivized users are expected to broadcast

proof of correctness of state-change f(Sn, Tn+1) = Sn+1 or f(Sn, Tn+1) = S ′n+1. The participation

of regular users is necessary only under such scenarios. It is up to each user to verify the two

“proofs”: one for f(Sn, Tn+1) = Sn+1, and the other for f(Sn, Tn+1) = S ′n+1. As long as state-

change functions are simple and unambiguous, there can be one correct next state - at least one

of the proofs should be wrong. In TMMC, only O(log2N) effort is required for users to verify a

proof.
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Figure 3.6

Transactions in a blockchain-TMMC network

Blockchain-TMMC platform is open to the public, it is possible to integrate TMMC using

blockchain network along with trusted hardware module to execute private processes. This can be

achieved by handling the private information of the database in trusted hardware and the rest using

the blockchain network. A suitable mapping should exist between the two-parts, which is only

known to the trusted hardware module.

3.3 Authenticated Data Structure
3.3.1 Data Items

Any information system can be seen as data-items, and rules for modifying data-items. Modi-

fication of data changes the state of the system. In the TMMC model, we recognize data items of

two types:

1. Unconstrained Data Items (UDI)

2. Constrained Data Items (CDI)
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UDIs are the input to the state-transition functions (they act as triggers). There is no restriction

on how this type of data item as it is not feasible to restrict the type of trigger sent by anyone.

CDIs, on the other hand, are data items internal to the system. Alternation of CDIs causes changes

to the system states. There is a specific and predefined rule (Transformation Procedure, TP) about

how CDIs should be modified within the system. These CDIs are stored as leaves of the Ordered

Merkle Tree (OMT). These leaves are actually key-value pair i.e. (k, v) where k is the unique

identifier and v is the value of that CDI.

3.3.2 Ordered Merkle Tree (OMT)

The Merkle Hash Tree [41] is an Authenticated Data Structure (ADS) [63] which is built using

standard cryptographic one-way hash functions h() (e.g SHA-1). Merkle tree can answer existence

queries of data items. Ordered Merkle Tree (OMT) [44] is a flexible extension of the Merkle Hash

Tree that can also answer nonexistence queries.

Authentic Data Structures (ADS) is used to obtain a cryptographic commitment for a set of

records. The TMMC model uses the OMT to store the data items of a system. In the TMMC

model, the cryptographic commitment is the hash value of the “root” of the OMT. Provers store

the data items of the algorithm in this OMT. The verifiers only store the cryptographic commitment

i.e. root hash in its memory. Thus, the overhead of verification for the verifier is reduced.

The data items of the algorithm are stored as leaves of the OMT and are logically represented

as a set of key-value pairs i.e. (k, v); the entire OMT is a collection of key-value pairs. The actual

organization of the key-value pair can be represented as (k, kn, v) where kn is the next key (for key

k). OMT collections can be dynamic as new key-value pairs can be added, and existing key-value
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pairs can be deleted. These collections can be nested as well i.e the value in a key-value pair can

be an OMT root that logically represents another OMT collection. The root hash of the top-most

collection is the main cryptographic commitment stored by the verifier.

In the conventional memory-centric model reading and writing from the memory take O(1)

time. However, in the TMMC model where the memory operations are performed in OMT, all the

basic operations i.e read / insertion/ update/ deletion takeO(log2N) time whereN is the number of

leaves. The structure of the OMT allows the keys of data items to be in the sorted order inherently.

For example: k1 > k2 > k3 or k1 < k2 < k3. This means k2 is the next key of k1, k3 is the next key

of k2 and k1 is the next key for k3. As a result of this inherent structure operation such as getting

of extracting the minimum or maximum value from the OMT is also O(log2N). Accessing data

items within OMT can be compared to searching the item as we need to traverse through the OMT

to access a data item.

In Figure 3.7 we see a tree with a height of H = log2N (no of leaves, N = 4). The lower

level (level 2) of this binary hash tree has the corresponding hashes (h4, h5, h6, h7) of the 4 leaves

(L1, L2, L3, L4). The hashes of level 1 are computed by hashing together a pair of sibling nodes of

level 2. This means nodes at level 2 e.g. h4 = H(L1). This means two sibling nodes at the same

level are hashed together using h() to compute their common parent’s hash. This is continued until

the top level of the tree is reached. Given the value of leaf L2, we can calculate its hash h5. h5’s

complementary hashes (h4, h3) can be used to recompute the root hash h1. This is useful to learn

about the existence or non-existence of the data item (L2) in an OMT with root h1.

A particular data item can only be changed if it exists in the OMT. These complementary nodes

or Verification Objects (VO) of these data items are given to the verifier by the prover to check that.
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Figure 3.7

An ordered Merkle hash tree with leaves L1, . . . , L4

Example: h1, . . . , hk are the complementary hashes for the account key x. The verifier calculates

the root r0 where x ∈ r0 and compares it with its stored root r. If they are the same then x ∈ r,

else x /∈ r. Non-existence in an OMT has a special representation. Non-existence of item x in

OMT R is shown as either x /∈ R or (x, 0) ∈ R. This means if we want to delete the item x from

OMT R, all we have to do is set its value to 0 i.e. x← 0.

The numbers of OMTs to be used to store the data items of the algorithm at hand are fixed.

The structures of the OMT are also pre-defined to suit the need of the type of data items. For

example, while dealing with graph algorithms, we represent input graphs (nodes and edges) using

a key-value pair. Keys can be the graph nodes and the connected edges can be the values. For

computational geometry problems, many geometrical shapes such as points, lines, triangles are

represented as key-value pairs (with coordinates) in the OMT. The root hashes of these OMTs are
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stored by the verifiers in their fixed number of registers. This memory constraint for a particular

process execution allows TMMC to eliminate illicit memory access threats.

Several memory-constrained and constant-work-space algorithms are proposed for various

problems that need to be executed in a confined execution environment. Asano et al. proposed

several constant-work-space algorithms for geometrical problems in [5] [4] where they are ex-

ecuted in a resource-limited setting where memory cannot be accessed in constant time. They

showed their proposed way of structuring their data items allows them to access them in linear

time in a constant-work-space environment. TMMC, however, is a resource-limited environment

that takes logarithmic (O(log2N)) to access its data items from OMT.

For large-scale applications, OMT can store unlimited data items as its leaves. The size of

the data items does not have any effect on the verification complexity of TMMC as most of the

verification boils down to performing a few logarithmic operations. The OMT is also a flexible

data structure, as values and keys can have process-specific structures. Leaves (Li) of an OMT

form a complete collection. Any query can be answered by providing a leaf that exists in the tree.

Furthermore, OMTs can be hierarchical. The value (vi) (Figure 3.8) of a leaf in a collection can

be the root of a nested OMT. Any number of such nested levels can be used. TMMC can have

both dynamic and static OMTs. Dynamic OMT stores data items of the process and static OMT

storesfixed state-transition rules.

Using OMT, the prover can store an unlimited number of data items (as leaves) in an OMT.

They can offer succinct proofs of existence or non-existence of key value of any key and high-

est/lowest keys in any (possibly nested) collection. Some of the notations used by TMMC are as

follows:
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Figure 3.8

OMT hierarchy
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• (k, v)kn ∈ r or (k, v) ∈ r: key-value pair (k, v) exists in an OMT collection with root r

• k /∈ r: Key k does not exist in an OMT collection with root r

The overhead for memory read/write/update/delete in TMMC is O(log2N) (N = number of

leaves in the OMT) as opposed to the constant time in the von Neumann model. Both the existence

and non-existence of a leaf in OMT can be checked in logarithmic time. Finding the highest/low-

est/next keys of the OMT also takes logarithmic time because of the inherent structure of OMT.

Storing OMT takes up the same amount of space as any data structure. Therefore, the main differ-

ences lie in accessing items of the OMTas it involves checking the correctness of each read/write.

3.4 State-transition Functions

In the proposed model, state-transition functions are considered atomic. The atomic nature of

these state-transition rules allow the verifiers to consider one state-transition rule at a time to ensure

its integrity. This nature also allows verifiers who only have limited memory and processing unit

to execute and verify any specific state change at any time. Individual verification of each atomic

state-transition function (ASF) yields the overall correctness of the system.

Each ASF results in an update to a small number of leaves in OMT, and consequently, the root

of the tree. In TMMC, the state-change functions are deliberately constrained to be simple, to

enable provers to offer concise proofs of correctness of any state-change, to verifiers.

Any atomic state-change function (ASF) can be characterized by

1. Input or the trigger for execution of the state-change;

2. Preconditions to be satisfied (before the state-change); and
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3. Post-conditions following the state-change.

In TMMC, the state of a process is captured by an OMT with root s. For TMMC state-change

functions (that modify the root s), the trigger is a transaction of a specific type. Preconditions are a

set of readily verifiable existence/ non-existence /highest / lowest rules regarding specific items in

the OMT collection with root s. Post-conditions dictate how some of the pre-conditions will have

to be modified to update the OMT root to s′ (to satisfy post-conditions).

As an example, consider a state-change function defined as follows:

1. Transaction T : m ‖ A ‖ B ‖ 5

2. Preconditions: (A, va > 5) ∈ s, (B, vb) ∈ s

3. Post-conditions: va− = 5, vb+ = 5

Such a state-change function could represent a transaction of type m that requests a transfer of

5 units from an account A to an account B. The preconditions are that key-value pairs (A, va > 5)

and (B, vb) should exist in the OMT with root s. The post-conditions demand that the root be

updated to reflect the updates to the values of 2 key-value pairs.

3.4.1 Notations

We represent an atomic state-transition function as a set of pre-conditions and post-conditions.

We use standard notations to represent the pre-conditions and post-conditions. These notations

can be used as formal specification language to write pre-conditions and post-conditions for state-

transition rules of any process. In this section, we outline the standard notation used for writing

pre-conditions and post-conditions.
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• Existence ∈: To denote a certain key k exists in an OMT tree with root r, we write k ∈ r

which reads k exists in an OMT tree with root r. We can also take the corresponding value

into account while checking for the existence i.e. (k, v) ∈ r which reads key k with value v

exists in an OMT tree with root r.

• Non-existence /∈: To denote a certain key k does not exist in an OMT tree with root r, we

write k /∈ r which reads k does not exist in an OMT tree with root r.

• Inserting data item: To insert a new data item k with value v to the OMT, first it needs to

be made sure that the data item does not exist in the OMT with root r i.e. k /∈ r. Then we

add a placeholder with value 0 for the newly added item in the OMT i.e. (k, 0) ∈ r. After

that, we update the value from 0 to v.

• Deleting data item: To delete a data item k having value v from the OMT, first it needs to

be made sure that the data item exists in the OMT with root r i.e. k ∈ r. Then we update its

value to 0 i.e. (k, 0) ∈ r.

• Updating data item: To update the value v of a data item k to value v′ from the OMT, first

it needs to be made sure that the data item exists in the OMT with root r i.e. (k, v) ∈ r.

Then we update its value to v′ i.e. (k, v′) ∈ r.

• Increasing data item by 1: To increase the value v of a data item k to v + 1 in the OMT,

first it needs to be made sure that the data item exists in the OMT with root r i.e. (k, v) ∈ r.

Then we update its value to v + 1 i.e. (k, v + 1) ∈ r.
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• Decreasing data item by 1: To decrease the value v of a data item k to v − 1 in the OMT,

first it needs to be made sure that the data item exists in the OMT with root r i.e. (k, v) ∈ r.

Then we update its value to v − 1 i.e. (k, v − 1) ∈ r.

• Use of registers: In general, the small constant memory size of verifiers can be seen as a

small fixed number of registers. Registers are denoted using capital letters, e.g. R0, R1, R2

etc. Some registers may be OMT roots.

3.4.2 Building Blocks of State-transition Functions

1. Inputs: Inputs are unconstrained data items (UDI) which trigger the state-transition func-

tion. Example: x wants to send m dollars to y. The input of the state-transition function

should be as follows:

[update;x; y;m]w;update = operation code;w = signature of the authorized entity

2. Pre-conditions: Pre-condition is the state system that needs to be in before the state-transition.

Example: Let, r is the root-hash of an OMT tree representing its current state. Data item x

and y should both exist in OMT with root r i.e (x ∈ r, y ∈ r) and the account balance bx of

x should be greater or equal to m. Therefore the pre-conditions can be written as follows:

(x, bx)xn ∈ r, bx > m;xn = next account key of x

(y, by)yn ∈ r; yn = next account key of y

3. Post-conditions: Post-conditions are the state of the system after the successful execution

of the state-transition function. The root of the OMT changes after these post-conditions is
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executed. Example: Updated balance (bx0 and by0) in x and y’s account after the balance

transfer.

(x, bx0)xn ∈ r

(y, by0)yn ∈ r

3.4.3 Utility Functions of TMMC

The state-transition rules make well-defined changes to the state of the system. However, to

make the state-transition function more readable and compact we express most state transition

functions using a small set of simple utility functions. These functions, when considered sepa-

rately, are also atomic. A brief list of some of these utility functions is given in this section.

• get min(R): This utility function returns the minimum key from the OMT with root hash

R. The inherent structure of OMT allows finding the minimum key in O(log2N) time

(N =number of keys). Below is a notion of getting the minimum key in an OMT and

storing it in register MIN.

Input: MIN

Pre: MIN = get min(R),MIN ∈ R

Post: MIN ∈ R

• extract min(R): This utility function extracts the minimum key from the OMT with root

hash R. After the extraction, the key will no longer exist in OMT R. Non-existence is

denoted by setting the corresponding value to zero. The inherent structure of OMT allows

extracting the minimum key in O(log2N) time (N =number of keys).
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Input: MIN

Pre: MIN = extract min(R),MIN ∈ R

Post: MIN /∈ R or (MIN, 0) ∈ R

• get max(R): Similar to the get min function, this utility function gets the maximum key

from the OMT with root hashR. The inherent structure of OMT allows finding the maximum

key in O(log2N) time (N =number of keys). Below is a notion of getting the maximum

key in an OMT and storing it in register MAX.

Input: MAX

Pre: MAX = get max(R),MAX ∈ R

Post: MAX ∈ R

• extract max(R): Similar to the extract min function, this utility function extracts the max-

imum key from the OMT with root hash R. After the extraction, the key will no longer exist

in OMT R. Non-existence is denoted by setting the corresponding value to zero. The inher-

ent structure of OMT allows extracting the maximum key in O(log2N) time (N =number

of keys).

Input: MAX

Pre: MAX = extract max(R),MAX ∈ R

Post: MAX /∈ R or (MAX, 0) ∈ R

• split(s): This function splits a key or a value of a leaf s into multiple items.
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Input: s, s1, s2

Pre: s 6= 0, s1 = split(s)[0], s2 = split(s)[1]

Post: < Do something with the split sub-strings >

• next key((k,R)): This function returns the next key of k in OMT R

Input: k1, k2

Pre: k1 ∈ R, k2 = next key(k1, R)

Post: k1 ∈ R

• determinant(x1, y1, x2, y2, x3, y3): This function returns the determinant of the three given

points (x1, y1), (x2, y2) and (x3, y3)

Input: x1, y1, x2, y2, x3, y3, D

Pre: D = determinant(x1, y1, x2, y2, x3, y3)

Post: < Do something with D >

• prev key(k1, R): This function returns the previous key of k1 in OMT R

Input: k1, k0

Pre: k0 ∈ R, k0 = prev key(k1, R)

Post: k0 ∈ R

• does not intersect(a, b): This function returns false if line segment a and b intersect with

each other and true if they do not. There should be an OMT (e.g R) which stores the end-

points of the segments with identifiers a and b
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Input: a, xa, ya, b, xb, xb, INTRSCT

Pre: INTRSCT = 0, (a, (xa, ya)) ∈ R, (b, (xb, yb)) ∈ R)

Post: INTRSCT ← does not intersect(a, b)

• x.contains(y): This function returns true if string x contains sub-string y, false otherwise.

Input: x, y, CONTAINS

Pre: CONTAINS = 0

Post: CONTAINS ← x.contains(y)

• dist(x1, y1, x2, y2): This function returns the euclidean distance between the given points.

Input: x1, y1, x2, y2, D

Pre: D = 0

Post: D ← dist(x1, y1, x2, y2)

3.5 Verification of Correctness

It is important to note that the purpose of TMMC is ultimately to verify the correctness of

algorithm execution. In general, the goal of executing an algorithm O = f(I) for a given input I ,

is to generate the corresponding output O. Under the TMMC model, the goal is to merely verify

that O = f(I).

In general, verification of the correctness of any algorithm is at most only as complex as the

execution of the algorithm. Therefore, the algorithm for verification of correctness of a solution O

can be substantially easier than the algorithm for obtaining O.
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Thus, a solution O can be determined using the traditional VN model of computing. For such

problems, there is often a metric mo associated with the solution O. Given a solution O with

metric mo (for an algorithm f() operating on input I) the TMMC algorithm is merely intended to

establish that the solution is correct and that the metric is indeed mo. When such algorithms are

executed in the blockchain-TMMC, incentivized users may compete to provide the solution with

the best metric, and execute the verification algorithm to prove the correctness of the solution.

3.6 Useful TMMC Data Structures

Executing different algorithms require storing the input or output data items into various data

structures. The type of these data structures varies depending on the algorithm we are considering.

OMT can be used to simulate these different data structures. In this section, we describe some data

structure we have used while describing a range of algorithms using TMMC in the next chapters.

• Heap: In TMMC, a heap is represented with two OMTs. For example, we want to represent

the edge weights of a graph using a heap. The first OMT will contain the edge names as keys

and weight as values and the second OMT will store the weights as keys and the number of

edges with that weight as values (Table 3.1)

• Adjacency list: We use the adjacency list to represent graphs in TMMC where keys are the

nodes and the values are nested OMT. This nested OMT has nodes as keys and edge weight

as values (Table 3.2)

• Disjoint set or Union find: To represent disjoint sets using OMT we need two OMTs. The

first one to keep track of the edges where edge identifiers are used as keys and edge weights
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Table 3.1

Minimum heap representation

Input Graph OMT
representation

OMT1

(v1v2, 5)
(v2v3, 3)
(v3v4, 8)
(v1v4, 3)

(v4v6, 10)
(v5v6, 1)
(v1v5, 7)

OMT2

(5, 1)
(3, 2)
(8, 1)
(10, 1)
(1, 1)
(7, 1)

Table 3.2

Adjacency list representation

Input Graph OMT representation

(v1, ((v2, 5), (v4, 3), (v5, 7)))
(v2, ((v1, 5), (v3, 3)))
(v3, ((v2, 3), (v4, 8)))
(v4, ((v1, 3), (v3, 8), (v6, 10)))
(v5, ((v1, 7), (v6, 1)))
(v6, ((v4, 5), (v5, 3)))
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are used as values. In the second OMT, we keep track of which node belongs to which set.

This means nodes are stored as keys and their parent nodes are stored as values. To assign

a parent node to a particular node, we first check whether it belongs to an edge where the

other endpoint already has a parent. Then we assign that same parent node to this current

node. Else, if none of them have an entry in the second OMT, they become the parent of

themselves (Table 3.3)

Table 3.3

Disjoint set representation

Input Graph OMT
representation

OMT1

(v1v2, 5)
(v2v3, 3)

(v4v6, 10)
(v5v6, 1)

OMT2

(v1, v1)
(v2, v1)
(v3, v1)
(v4, v4)
(v5, v4)
(v6, v4)

• Cartesian points: To represent cartesian points in OMT, we simply store the point identifier

as keys and the coordinates as a value e.g. x ‖ y (Table 3.4)
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Table 3.4

Cartesian points representation

Input Graph OMT representation

(P1, 3 ‖ 2)
(P2, 7 ‖ 4)
(P3, 9 ‖ 2)
(P4, 5 ‖ 2)
(P5, 8 ‖ 0)

• Polygon: Polygons are represented by storing their participating points in the OMT, similar

to storing cartesian points. However, in the case of points, the points are stored sequentially

in a clockwise direction (Table 3.5)
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Table 3.5

Polygon representation

Input Graph OMT representation

(P1, 2 ‖ 2)P2

(P2, 3 ‖ 4)P3

(P3, 5 ‖ 4)P4

(P4, 6 ‖ 2)P5

(P5, 5 ‖ 0)P6

(P6, 3 ‖ 0)P1
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CHAPTER IV

TMMC WORKFLOW

TMMC model provides a reliable platform to execute information system processes. Complex

information systems can be seen as a collection of processes that changes the state of the system,

causing the information to change within the system. To illustrate the transformation of conven-

tional process execution to atomic state-transitions functions (ASF) using the TMMC model, we

take into account known and widely used algorithms. In this section, we describe in detail, how a

conventional algorithm can be converted to a sequence of atomic state-transition functions.

4.1 Algorithm to Atomic State-transition Functions

The first step is to identifying the algorithm to convert it to state-transition functions. Algo-

rithms from any domain of interest can be chosen. In traditional architecture, algorithms are exe-

cuted by calling the associated procedures. These procedures can have underlying sub-procedures

that may not be evident from observing the procedure call stack.

In TMMC, we choose a process that solves a problem or changes a set of data items to compute

something through the execution of the process. For example lets take into account a popular

algorithm (A) that solves for a convex hull H given a set of N points (p1, p2, . . . , pN ). Given N

points, the convex hull represents the subset of N points that forms the smallest convex polygon

containing all the N points. The algorithm is given in Figure 6.2.
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Figure 4.1

Graham’s scan algorithm

Figure 4.2

Convex hull computation
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4.2 Identification of Data Items

The next step is to determine the data items involved in the algorithm. First, there are uncon-

strained data items (UDI) that are basically the inputs to the algorithm given from outside. These

UDIs will work as triggers to invoke the state-transition functions. Correct UDIs will ensure cor-

rect execution of the state-transition functions. For example: at the beginning of executing the

state-transition functions of the convex hull algorithm, the OMT root r of the input set of points

(p1, p2, . . . , pN ) is provided to invoke the first initialization function.

Then there are constrained data items (CDI), which are the critical data items that are changed

by the successful execution of the permitted state-transition functions. These CDIs are stored as

leaves of the ordered Merkle tree and stored by the untrusted prover. For example, computing

convex hull requires building a sorted list of x coordinates that are stored as OMT leaves (CDIs).

These leaves are modified through the execution of state-transition functions.

4.3 Configuration of Data Structure

In this step, the first thing to decide is the number of OMT required to execute the convex hull

algorithms. A fixed number of OMTs is used for a particular algorithm and specific registers are

set aside for storing the root of these OMTs. These registers can store a very small amount of data

and for storing the OMT roots this small space is enough. Moreover, constant registers can also be

defined to store temporary values to keep track of the algorithm execution e.g. states, constants,

etc.
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For convex hull algorithm, three OMTs are needed which are stored in register R0, R1 and R2.

In addition, four registers are used namely Pc−1, Pc, Pc+1 and Pc+2 to store four points that are

consecutive in terms of x coordinates.

4.4 Process Representation as State-transition Function

The procedural algorithmic are then converted into atomic state-transition functions. There

can only be a fixed number of state-transition functions for executing a particular process. Each of

these state-transition function contains rules that are strictly pre-defined and also stored in a static

OMT. These state-transitions are atomic which means

• They are independently executable

• They either successfully executed or not executed at all

• They do not contain any rules that are repeated for more than one data items (no looping)

• They can be independently executed as many times as required

These state-transition functions are lightweight and can be readily executed by anyone who

does not possess high computational resources. Single state-transition functions have three parts.

1. Inputs: UDIs for the state-transition function

2. Pre-condition: State the system should be before the execution of the state-transition func-

tion

3. Post-condition: State the system changes to after the successful execution of the state-

transition function
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Each state-transition function is associated with a particular complexity that can be computed at

this point. Point to note that each of the state-transition function will have a logarithmic component

attached to it as read/write in TMMC takes logarithmic time. The algorithm i.e. Graham’s scan,

that solves the convex hull problem can be represented with four state-transition functions.

• Initialization of input points

• Right/Left Turn detection of 3 adjacent points (when ordered by X-coordinate)for upper

convex hull (UCH) computation

• Right/Left Turn detection of 3 adjacent points(when ordered by X-coordinate)for lower con-

vexhull (LCH) computation

• Merging two points (one from UCH and one from LCH)

4.5 Python Implementation of Atomic State-transition Functions

The state-transition functions for a particular process can be readily executed by a trusted hard-

ware or as transactions in a blockchain network to ensure the correct execution of algorithm that

computes the convex hull. However, for testing purpose, we can map the state-transition functions

to python functions. These python functions have the inputs as function parameters, pre-conditions

as if condition and post-conditions as statement that are executed once the if conditions are satis-

fied.
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Figure 4.3

TMMC workflow
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CHAPTER V

GRAPH ALGORITHMS

Graph theory is a significant area of computer science. Many problems in the field of computer

science require some sort of graph formulation in order to solve the problem. In many large-scale

problems such as representing network connections, social networks, road networks, graphs are

extensively used. Graphs are the starting point to compute many distance measures as well. One

of the most popular usages of graph algorithms is to calculate the shortest path between nodes

and computing minimum spanning tree of a given graph. We have focused on these two types of

algorithms in this chapter.

Figure 5.1

A sample weighted graph
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Two of the most famous algorithms for solving single-source shortest path problems are Di-

jkstra’s and Bellman-Ford algorithm [14]. Prim’s and Kruskal’s algorithm [14] are well-known

for computing the minimum spanning tree (MST) of an input graph. Computing the solution of

these algorithms and verifying the given solution require a similar effort. Hence we convert the

original graph algorithms to state-transition functions using the TMMC model. In this section we

consider Dijkstra’s algorithm [14] a widely used algorithm for computing the minimum spanning

tree of a given graph. We convert the processes mentioned in the original Dijkstra’s algorithm into

state-transition functions using the TMMC model. We also describe the state-transition functions

of another popular algorithm i.e. Prim’s Algorithm [14] for computing the minimum spanning tree

of an input graph.

5.1 Graph as Inputs to TMMC

The way we give the graph as input depends large on the algorithm itself. For example for

Dijkstra we expect our input to be a set of nodes (as keys of OMT leaves) along with their weighted

neighbor lists (as values of the OMT leaves). On the other hand for Kruskal’s, we are mostly

interested in the edges over nodes, therefore the OMT leaves contain edge names (two endpoints)

as keys and edge weights as values [Table 5.1]. In some cases, the graph edges can be one-

directional or bi-directional. In the latter case, we consider edges two times with different weights.

5.2 Dijkstra’s Algorithm

Dijkstra’s algorithm [14] is used to find the shortest path from a given start node to the desti-

nation. This algorithm does not consider any negative edge thus cannot be applied in such cases.

Dijkstra’s algorithm solves the single-source shortest path as opposed to all-pair shortest path. The
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Table 5.1

Two ways to input sample graph in Figure 5.1 to TMMC

Dijkstra Kruskal
(v1, ((v2, 5), (v4, 3), (v5, 7))) (v1v2, 5)
(v2, ((v1, 5), (v3, 3))) (v2v3, 3)
(v3, ((v2, 3), (v4, 8))) (v1v4, 3)
(v4, ((v1, 3), (v3, 8), (v6, 10))) (v3v4, 8)
(v5, ((v1, 7), (v6, 1))) (v1v5, 7)
(v5, ((v4, 10), (v5, 1))) (v4v6, 10)

(v5v6, 1)

input for Dijkstra’s algorithm is a graph G = (V,E) with a given start node s. Cost to reach every

node from the start node is calculated by constantly updating the path cost as we explore all the

edges. The algorithm is given in Figure 5.2.

5.2.1 Predicates and State-transition Functions

Execution of Dijkstra’s algorithm to compute single-source shortest path require four OMTs.

The roots of these OMTs are stored in five registers (R0, R1, R2, R3, R4) along with some addi-

tional registers to store constant (C,D).

• R0 stores the root of the OMT containing the input graph with the node as key and the nested

OMT representing the connected edges as value.

• R1 stores the root of nested OMT from R0 containing the neighboring node as key and the

edge weight as value.

• R2 stores the root of OMT containing the node identifiers as key and the path cost from the

start node as value.
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Figure 5.2

Dijkstra’s algorithm

• R3 stores the root of OMT containing the edge weights as key and the count of edge weights

as value. R2 and R3 together form the minimum heap data structure.

• R4 stores the final costs to reach every node from the start node

• C stores the current node being explored

• D stores the cost to reach the current node

We need four state-transition functions to execute Dijkstra using TMMC.

1. Initialization (F0): This function initializes the root r of input graph OMT to R0. After the

execution of F0, R0 = 0 will no longer satisfy.

2. Assign start node (F1): F1 removes the given start node n from R0 and assigns it as a

current node. The distance of start node n to itself is set to D = 1 (as value 0 has a special
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Table 5.2

Predicates of Dijkstra’s algorithm

Registers Python Variables
R0 : (n, v), n=node, v=nested OMT root
R1 : (n′, v′), n′=node, v=weight of edge (n, n′),
where n′ = neighbor(n)
R2 : (n,w), n=node, w=path cost to reach n
R3 : (w, ctw), w=edge weight, ctw=weight count
R4 : (n,w), n=node, w=final path cost to reach n
C : Stores the current processing node (n) from R0

D : Stores the cost to reach current node in C from
the starting node

R0 = {}
R1 = {}
R2 = {}
R3 = {}
R4 = {}
C = D = 0

Table 5.3

Initialization

F0: Initialization F0: Python Equivalent

Input: r0
Pre: R0 = R1 = R2 = R3 = R4 = C = 0
Post: R0 ← r0

def init(r0):
if not R0 and not R1 and not R2
and not R3 and not R4:

R0=r0
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interpretation). R1 stores the value v of n in R0 representing edges emanating from the

current node n.

Table 5.4

Assign start node

F1: Assign start node F1: Python Equivalent

Input: n, v, C,D
Pre: R0 6= 0, R1 = 0, (n, v) ∈ R0, C = D = 0
Post: n /∈ R0, R1 ← v, (n, 1) ∈ R2, (1, 1) ∈ R3,
(n, 1) ∈ R4, C = n, D = 1

def assign_start_node(n, v, C, D):
if R0!=0 and R1!=0 and R0[n]==v
and C==0 and D==0:

R0[n]=0
R1=v
R4[n]=1
C=n
D=1

3. Update node cost (F2): F2 is the function to update the path cost of nodes in R2. There

can be several cases therefore this function is divided case-wise into five functions i.e. F2a

to F2e. These functions are invoked multiple times based on the number of nodes and their

connected edges.

4. Extract minimum weighted edge (F3): This function extracts the minimum edge connected

to the current node C from R2 and assigns the adjacent node as the new current node.

5.2.2 Complexity Analysis

Dijkstra’s algorithm finds the shortest path from the start node to every other node in a graph G

with V nodes and E edges. Using conventional architecture, the complexity of solving Dijkstra’s
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Table 5.5

Update node cost, case (a) (Discard, node exists in output R5)

F2a: Update node cost, case (a) F2a: Python Equivalent
Input: n, v
Pre: (n, v) ∈ R1, n ∈ R4

Post: n /∈ R1

def update_node_cost_a(n, v):
if R1[n]==v and n in R4:

R1[n]=0

Table 5.6

Update node cost, case (b) (Insert, no entry exist in R2)

F2b: Update node cost, case (b) F2b: Python Equivalent

Input: n, v
Pre: (n, v) ∈ R1, n /∈ R2

Post: n /∈ R1, (n, v +D) ∈ R2, (v +D, 1) ∈ R3

def update_node_b(n, v):
if R1[n]=v and R2[n]==0:

R[n]=0
R2[n]=v+D
R3[v+D]=1

Table 5.7

Update node cost, case (c) (Discard, lower cost exists in R2)

F2c: Update node cost, case (c) F2c: Python Equivalent

Input: n, v, w,wold

Pre: (n, v) ∈ R1, (n,wold) ∈ R2, v + D = w ≥
wold

Post: n /∈ R1

def update_node_c(n, v, w_old):
if R1[n]==v and R2[n]==w_old
and v+D>=w_old:

R1[n]=0
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Table 5.8

Update node cost, case (d) (Insert, new cost is lower and does not exist in R3)

F2d: Update node cost, case (d) F2d: Python Equivalent

Input: n, v, w,wold, ctold
Pre: (n, v) ∈ R1, (n,wold) ∈ R2, (wold, ctold) ∈
R3, v +D = w < wold, w /∈ R3

Post: n /∈ R1, (n,w) ∈ R2, (wold, ctold − 1) ∈ R3,
(w, 1) ∈ R3

def update_node_cost_d(n, v, w_old,
ct_old, D):
if R1[n]==v and R2[n]==w_old
and R3[w_old]==ct_old and v+D<
w_old and w not in R3:

R1[n]=0
R2[n]=w
R3[w_old]=ct_old-1
R3[w]=1

Table 5.9

Update node cost, case (e) (Update, new cost is lower and exists in R3)

F2e: Update node cost, case (e) F2e: Python Equivalent

Input: n, v, wold, ctold, ctnew
Pre: (n, v) ∈ R10, (n,wold) ∈ R2, (wold, ctold) ∈
R3, v +D = w < wold, (w, ctnew) ∈ R3

Post: n /∈ R1, (n,w) ∈ R2, (wold, ctold − 1) ∈ R3,
(w, ctnew + 1) ∈ R3

def update_node_cost_e(n, v, w_old,
ct_old, ct_new, D):
if R1[n]=v and R2[n]=w_old and
R3[w_old]=ct_old and v+D<w_old
and R3[w]=ct_new:

R1[n]=0
R2[n]=w
R3[w_old]=ct_old-1
R3[w]=ct_new+1
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Table 5.10

Extract minimum weighted edge

F3: Extract minimum weighted edge F3: Python Equivalent

Input: n, v, w, ct, C,D
Pre: R0 6= 0, (n, v) ∈ R0, R1 = 0, C 6= 0, C ∈ R0,
(n,w) ∈ R2, (w, ct) ∈ R3, w = get min(R3),
n /∈ R4

Post: n /∈ R0, C = n, R1 ← v, D ← w, n /∈ R2,
(w, ct− 1) ∈ R3, (n,w) ∈ R4

def extract_min_edge(n, v, w, ct, C
, D):
if not is_reg_empty(R0) and R0[
n]=v and is_reg_empty(R1) and C
!=0 and C in R0 and R2[n]=w and
R3[w]=ct and w=get_min(R3) and n
not in R4:

R0[n]=0
C=n
R1=v
D=w
R2[n]=0
R3[w]=ct-1
R4[n]=w

algorithm is O(V 2); O(E log2 V ) if we use adjacency list representation of the graph. In our

representation, each atomic function is associated with different complexity.

The initialization function F0 is invoked only on time in O(1) time. F1 removes the given start

node n from R0 and assigns it as a current node. The distance of start node n to itself is set to D

= 1 (as value 0 has a special interpretation). R1 stores the value v of n in R0 representing edges

emanating from the current node n. It is also invoked one time (O(1)).

F2 is the function to update the path cost of nodes in R2. There can be several cases there-

fore this function is divided case-wise into five functions i.e. F2a to F2e. These functions are

invoked multiple times based on the number of nodes and their connected edges. The complexity

of this function isO(V E log2E) as we read through all the edges that are connected to each node.

Moreover, in TMMC, every edge read operation takes O(log2E) as opposed to the conventional

constant time reading.
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F3 extracts the minimum edge connected to the current node C from R2 and assigns the adja-

cent node as the new current node. In TMMC, extracting maximum and minimum from the OMT

takes logarithmic time. So here this function extract minimum edge for every node (O(V log2E).

5.3 Bellman Ford’s Algorithm

Bellman-Ford algorithm [14] solves single-source shortest path problems in a weighted di-

rected graph. The end results of the Bellman-Ford is the same as that of Dijkstra meaning they

both give the shortest path to all vertices from the start vertex. However, Bellman-Ford algorithm

is able to handle graphs with negative edges and returns no solution when there is a negative cy-

cle as negative cycle can continue to reduce the path cost forever. Bellman-Ford is not a greedy

algorithm unlike Dijkstra.

Figure 5.3

A sample directed graph with negative edges
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Lets take G = (V,E) as an input graph. G has n vertices. The goal is to calculate the shortest

distance dsd where dsd = dist(Vs, Vd);Vs, Vd ∈ V . The algorithm iterates |V |−1 time as there can

be at most |V | − 1 edges in the path from the Vs to Vd. Any number of edges more than that would

mean there is a cycle (repeated vertex). There is no solution to the algorithm if it is a negative

cycle. In the case of a positive cycle, it can be removed to reduce the total cost from Vs to Vd.

Bellman-Ford’s algorithm takes a graph G as input and results in the shortest paths to reach every

node from the starting node. Figure 5.3 gives a graph G with nodes (v1, . . . , v6) where v1 is the

starting node. The number on the edges between two nodes denotes the cost to reach to node vj

from vi where (i 6= j). G is a simple directed graph with no cycles.

Figure 5.4

Bellman-Ford’s algorithm
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5.3.1 Predicates and State-transition Functions

Execution of Bellman-Ford’s algorithm to compute single-source shortest path require four

OMTs. The roots of these OMTs are stored in five registers (R0, R1, R2, R3, R4) along with some

additional registers to store constant (C,D).

• R0 stores the root of the OMT containing the input graph with the node as key and the nested

OMT representing the connected edges as value.

• R1 stores the root of nested OMT from R0 containing the neighboring node as key and the

edge weight as value.

• R2 stores the root of OMT containing the node identifiers as key and the path cost from the

start node as value.

• R3 stores the root of OMT containing the edge weights as key and the count of edge weights

as value. R2 and R3 together form the minimum heap data structure.

• C stores the current node being explored

• D stores the cost to reach the current node

• COUNT keeps track of the |V − 1| times iteration

We need four state-transition functions to execute Bellman-Ford’s using TMMC.

1. Initialization (F0): This function initializes the root r0 of input graph OMT to R0. After

the execution of F0, R0 = 0 will no longer satisfy. It assign the current/start node C to the

lowest key of R0. The distance of start node C to itself is set to D = 1 (as value 0 has a
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Table 5.11

Predicates of Bellman-Ford’s algorithm

Registers Python Variables
R0 : (n, v), n=node, v=nested OMT root
R1 : (n′, v′), n′=node, v=weight of edge(n, n′),
where n′ = neighbor(n)
R2 : (n,w), n=node, w=path cost to reach n
R3 : (w, ctw), w=edge weight, ctw=weight count
C : Stores the current processing node (n) from R0

D : Stores the cost to reach current node in C from
the starting node
COUNT : Keeps track of the |V −1| times iteration

R0 = {}
R1 = {}
R2 = {}
R3 = {}
C = D = COUNT = 0

special interpretation). R1 stores the value v of C in R0 representing edges emanating from

the current node C.

2. Update node cost (F1): F1 is the function to update the path cost of nodes in R2. There

can be several cases therefore this function is divided case-wise into four functions i.e. F1a

to F1d. These functions are invoked multiple times based on the number of nodes and their

connected edges.

3. Choose next node (F2): This function chooses the next node to explore edge in R0 and

assigns its edge list to R1. It only chooses the next node when all the edges of the previous

C have been considered to update the edge cost inR2. This function can also have two cases.

Once we finish considering all the edges of all the nodes inR0, we again reiterate the process

|V − 1| time to get the final path cost in R2.

66



Table 5.12

Initialization

F0: Initialization F0: Python Equivalent

Input: r0, v, C,D
Pre: R0 = R1 = R2 = R3 = 0
Post: R0 ← r0, C = get min(R0), (C, v) ∈ R0,
D = 1, R1 ← v, (C,D) ∈ R2, (D, 1) ∈ R3

def init(r0, v, C, D):
if not R0 and not R1 and not R2
and not R3:

R0=r0
C=get_min(R0)
D=1
if v==R0[C]:

R1=v
R2[C]=D
R3[D]=1

Table 5.13

Update node cost, case (a) (Insert, no entry exist in R2)

F1a: Update node cost, case (a) F1a: Python Equivalent

Input: n, v
Pre: (n, v) ∈ R1, n /∈ R2

Post: n /∈ R1, (n, v +D) ∈ R2, (v +D, 1) ∈ R3

def update_node_cost_a(n, v):
if R1[n]=v and R2[n]==0:

R[n]=0
R2[n]=v+D
R3[v+D]=1

Table 5.14

Update node cost, case (b) (Discard, lower cost exists in R2)

F1b: Update node cost, case (b) F1b: Python Equivalent

Input: n, v, w,wold

Pre: (n, v) ∈ R1, (n,wold) ∈ R2, v + D = w ≥
wold

Post: n /∈ R1

def update_node_cost_b(n, v, w_old)
:
if R1[n]==v and R2[n]==w_old
and v+D>=w_old:

R1[n]=0
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Table 5.15

Update node cost, case (c) (Insert, new cost is lower and does not exist in R3)

F1c: Update node cost, case (c) F1c: Python Equivalent

Input: n, v, w,wold, ctold
Pre: (n, v) ∈ R1, (n,wold) ∈ R2, (wold, ctold) ∈
R3, v +D = w < wold, w /∈ R3

Post: n /∈ R1, (n,w) ∈ R2, (wold, ctold − 1) ∈ R3,
(w, 1) ∈ R3

def update_node_cost_c(n, v, w_old,
ct_old, D):
if R1[n]==v and R2[n]==w_old
and R3[w_old]==ct_old and v+D<
w_old and w not in R3:

R1[n]=0
R2[n]=w
R3[w_old]=ct_old-1
R3[w]=1

Table 5.16

Update node cost, case (d) (Update, new cost is lower and exists in R3)

F1d: Update node cost, case (d) F1d: Python Equivalent

Input: n, v, w,wold, ctold, ctnew
Pre: (n, v) ∈ R1, (n,wold) ∈ R2, (wold, ctold) ∈
R3, v +D = w < wold, (w, ctnew) ∈ R3

Post: n /∈ R1, (n,w) ∈ R2, (wold, ctold − 1) ∈ R3,
(w, ctnew + 1) ∈ R3

def update_node_cost_d(n, v, w_old,
ct_old, ct_new, D):
if R1[n]=v and R2[n]=w_old and
R3[w_old]=ct_old and v+D<w_old
and R3[w]=ct_new:

R1[n]=0
R2[n]=w
R3[w_old]=ct_old-1
R3[w]=ct_new+1

Table 5.17

Choose next node, case (a)

F2a: Choose next node, case (a) F2a: Python Equivalent

Input: v, w,C,D
Pre: next key(C,R0) > C,R1 = 0, (C,w) ∈ R2

Post: C = next key(C,R0), (C, v) ∈ R0, R1 ←
v, D ← w

def choose_next_node_a(v, w, C, D):
if next_key(C, R0) > C and not
R1 and R2[C]==w:

C=next_key(C, R0)
R0[C]=v
R1=v
D=w
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Table 5.18

Choose next node, case (b)

F2b: Choose next node, case (b) F2b: Python Equivalent

Input: v, w, ct, C,D
Pre: next key(C,R0) < C, R1 = 0, (C,w) ∈ R2,
COUNT ! = length(R0)
Post: C = get min(R0), (C, v) ∈ R0, R1 ← v,
D ← w, COUNT ++

def choose_next_node_b(v, w, C, D):
if next_key(C, R0) < C and not
R1 and R2[C]==w and COUNT!=
length(R0):

C=get_min(R0)
R0[C]=v
R1=v
D=w
COUNT=COUNT+1

5.3.2 Complexity Analysis

Bellman-Ford computes a single-source shortest path for an input graph G with V nodes and

E edges. It takesO(V E) time to execute Bellman-Ford using a conventional model of computing.

When using TMMC, every read and write takes O(log2N) time where N can be either a number

of edges or nodes in the graph.

The initialization function F0 is invoked only on time in O(1) time. It also performs the

get min() function in O(log2 V ) time.

F1 is the function to update the path cost of nodes in R2. There can be four cases i.e. F1a to

F1d. These functions are invoked multiple times based on the number of nodes and their connected

edges. The function runs V E times and each edge read takes O(log2E) time (O(V E log2E) in

total).

F2 choose the next node to explore in R0 and assigns it to C. This function is repeated V times

therefore takes O(V log2 V ) time.
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5.4 Kruskal’s Algorithm

Kruskal’s is a greedy algorithm [14] that finds the Minimum Spanning Tree (MST) of a given

graph G = (V,E). In Kruskal’s algorithm nodes can be considered trees belonging to a forest.

The algorithm chooses the edge with the lowest weight repeatedly and connects two different trees

of the forest. Thus forests are unified having a particular tree to represent it. The forests are

represented as a disjoint-set data structure and they grow by the means of union-find. Let (u, v)

be the lowest weighted edge of graph G. u and v belong to forest f1 and f2 respectively. As

there is an edge exists between them, forest f1 and f2 are unified where u is there representative.

The complexity is O(E log2E) (using merge sort to sort the edges). The algorithm is given in

Figure 5.5.

Figure 5.5

Kruskal’s algorithm
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5.4.1 Predicates and State-transition Functions

Execution of Kruskal’s algorithm to compute the Minimum Spanning Tree (MST) requires five

OMTs by the prover. The roots of these OMTs are stored in five registers (R0, R1, R2, R3, R4) by

the verifier along with some additional registers to store constant (C, STATE).

• R0 stores the root of the OMT containing the input graph with the node as key and the nested

OMT representing the connected edges as value.

• R1 stores the root of nested OMT from R0 containing the neighboring node as key and the

edge weight as value.

• R2 stores the root of OMT containing the concatenated node identifiers (that form an edge)

as key and the edge weight as value.

• R3 stores the root of OMT containing the edge weights as key and the count of edge weights

as value. R2 and R3 together form the minimum heap data structure.

• R4 stores the root of OMT containing the node(tree) as key and the forest it belongs to as

value.

• R5 stores the root of OMT containing the node(tree) as key and the count of other nodes(trees)

that belong to the forest this node represents as value. R4 and R5 together form the disjoint

set data structure.

• R6 is the output register storing the edges of the resulting minimum spanning tree

We need six state-transition functions to execute Kruskal’s algorithm using TMMC.
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Table 5.19

Predicates of Kruskal’s algorithm

Registers Python Variables
R0 : (n, v), n=node, v=nested OMT root
R1 : (n′, v′), n′=node, v=weight of edge(n, n′),
where n′ = neighbor(n)
R2 : (n ‖ n′, w), n ‖ n′=edge, w=edge weight
R3 : (w, ctw), w=edge weight, ctw=weight count
R4 : (n, n′), n=node, n′=node representing a forest
n belongs to
R5 : (n, ctn), n=node representing a forest,
ctn=nodes (trees) belonging to that forest
R6 : (n ‖ n′, f), here n ‖ n′ forms an edge that
contributes to the resulting minimum spanning tree
and f is the node identifier for the forest n ‖ n′

belongs to
C : Stores the current processing node (n) from R0

STATE : Stores the processing state (integer)

R0={}
R1={}
R2={}
R3={}
R4={}
R5={}
R6={}
C=0
STATE=0

1. Initialization (F0): F0 initializes the root r of input graph OMT to R0. After the execution

of F0, R0 = 0 will no longer satisfy. F0 is invoked only one time.

2. Disjoint set initialization (F1): F1 initializes each node to a tree (representing a forest)

which is initially itself i.e. (n, n) in R4 and updates R5 accordingly.

3. Access edge list (F2): F2a removes the given start node n from R0 and assigns it as a current

node. R1 stores the value v of n in R0 representing edges emanating from the current node

n. F2b does the same steps as F2a but for every other node except the first one.

4. Create sorted edge list (F3): F3 builds up the minimum heap in R2 and R3 using R0 and

R1. It is called until R0 and R1 become empty.
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Table 5.20

Initialization

F0: Initialization F0: Python Equivalent

Input: r0
Pre: R0 = R1 = R2 = R3 = R4 = R5 = R6 =
C = STATE = 0
Post: R0 ← r0,

def init(r0):
if not R0 and not R1 and not R2
and not R3 and not R4 and not
R5 and not R6 and not C and not
STATE:

R0=r0

Table 5.21

Disjoint set initialization

F1: Disjoint set initialization F1: Python Equivalent

Input: n
Pre: n ∈ R0, n /∈ R3, n /∈ R4, STATE 6=
length(R0)
Post: (n, n) ∈ R3, (n, 1) ∈ R4, STATE ++

def disjoint_set_init(n):
if R0[n]!=0 and R3[n]==0 and R4
[n]==0 and STATE != length(R0):

R3[n]=n
R4[n]=1
STATE=STATE+1

Table 5.22

Access edge list, case (a) first node

F2a: Access edge list, case (a) F2a: Python Equivalent

Input: n, v, C
Pre: (n, v) ∈ R0, R1 = 0, C = 0, STATE =
length(R0) + 1
Post: n /∈ R0, R1 ← v, C = n,

def access_edge_list_a(n, v, C):
if R0[n]==v and is_reg_empty(R1
) and C==0 and STATE=length(R0)
+1:

R0[n]=0
R1=v
C=n
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Table 5.23

Access edge list, case (b) other nodes

F2b: Access edge list, case (b) F2b: Python Equivalent

Input: n, v, C
Pre: (n, v) ∈ R0, R1 = 0, C 6= 0
Post: n /∈ R0, R1 ← v, C = n,

def access_edge_list_b(n, v, C):
if R0[n]==v and is_reg_empty(R1
) and C!=0:

R0[n]=0
R1=v
C=n

Table 5.24

Create sorted edge list, case (a), Weight does not exist in R3

F3a: Create sorted edge list, case (a) F3a: Python Equivalent

Input: n, n′, wt
Pre: R1 6= 0, (n′, wt) ∈ R1, n ‖ n′ /∈ R2, wt /∈ R3,
C = n
Post: n′ /∈ R1, (n ‖ n′, wt) ∈ R2, (wt, 1) ∈ R3

def create_sorted_edge_list_a(n0,
n1, wt):
if not is_reg_empty(R1) and R1[
n1]==wt and n0_n1 not in R2, wt
not in R3 and C==n0:

R1[n1]=0
R2[n0_n1]=wt
R3[wt]=1

Table 5.25

Create sorted edge list, case (b), Weight already exists in R3

F3b: Create sorted edge list, case (b) F3b: Python Equivalent

Input: n, n′, wt, ct
Pre: R1 6= 0, (n′, wt) ∈ R1, n ‖ n′ /∈ R2,
(wt, ct) ∈ R3, C = n
Post: n′ /∈ R1, (n ‖ n′, wt) ∈ R2, (wt, ct + +) ∈
R3

def create_sorted_edge_list_b(n0,
n1, wt, ct):
if not is_reg_empty(R1) and R1[
n1]==wt and n0_n1 not in R2 and
R3[wt]==ct and C==n0:

R1[n1]=0
R2[n0_n1]=wt
R3[wt]=ct+1
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5. Extract minimum weighted edge (F4): F4 extracts the minimum edge connected to current

node C from R2.

Table 5.26

Extract minimum weighted edge

F4: Extract minimum weighted edge F4: Python Equivalent

Input: n, n′, wt, ct, C
Pre: R0 = 0, R2 6= 0, (n ‖ n′, wt) ∈ R2, (wt, ct) ∈
R3, wt = get min(R3), C 6= 0
Post: n ‖ n′ /∈ R2, (wt, ct−−) ∈ R3, C = n ‖ n′

def extract_min(n0, n1, wt, ct, C):
if is_reg_empty(R0) and not
is_reg_empty(R2) and R2[n0_n1]=
wt and R3[wt]=ct and wt==get_min
(R3) and C!=0:

R2[n0_n1]=0
R3[wt]-ct-1
C=n0_n1

6. Union find of edge endpoints (F5): F5 performs union finding on every extracted edge by

F4.

5.4.2 Complexity Analysis

Kruskal finds the minimum spanning tree in graphGwith V nodes andE edges. Using conven-

tional architecture, the complexity of solving Kruskal’s algorithm is O(E log2E) or O(E log2 V ).

In our representation, each atomic function is associated with different complexity. In the TMMC

model, every read and write from memory takes logarithmic time.

The initialization function (F0) is invoked only one time with constant complexity. The func-

tion disjoint set initialization function F1 makes entry to R4 and R5 for every node inO(V log2 V )

time. F2a is invoked only for the current node in O(log2 V E) time. F2b is called multiple times to

access the rest of the nodes and its connected edge list in O(V E log2E) time.
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Table 5.27

Union find of edge endpoints

F5: Union find of edge endpoints F5: Python Equivalent

Input: n, n′, f, f ′, ct, ct′

Pre: n ‖ n′ /∈ R2, R2 6= 0, C = n ‖ n′,
n = split(C)[0], n′ = split(C)[1], (n, f) ∈ R4,
(n′, f ′) ∈ R4, f 6= f ′, n /∈ R6

Post: (n ‖ n′, f) ∈ R6, (n′, f) ∈ R4, (f, ct++) ∈
R5, (f ′, ct′ −−) ∈ R5

def union_find(n0, n1, f0, f1, ct0,
ct1):
s=split(C,’_’)
if R2[n0_n1]==0 and
is_reg_empty(R2) and C==n0_n1
and n==s[0] and n1==s[1] and R4[
n0]==f0 and R4[n1]=f1 and f0!=f1
and R6[n0_n1]==0:

R6[n0]=n1
R4[n1]=f0
R5[f0]=ct0+1
R5[f1]=ct1-1

F3 is called untilR0 andR1 become empty. Reading every edge of every node takeO(V E log2E)

time and writing all E edges into R2 and R3 takes O(E log2E) separately. F4 extracts the min-

imum edge connected to current node C from R2 in O(E log2E) time in total (logarithmic read

for the minimum edge until all edges are processed). F5 function performs union finding in

O(V log2 V ) time.

5.5 Prim’s Algorithm

Prim’s algorithm [14] resolves a minimum spanning tree of a graph. It is a greedy algorithm.

Using only a adjacency matrix the time complexity of Prim’s algorithm gives O(V 2). Using both

a binary heap and an adjacency matrix changes the complexity to O(V log2 V + E log2 V ).
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Figure 5.6

Prim’s algorithm
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5.5.1 Predicates and State-transition Functions

Execution of Prim’s algorithm to compute single-source shortest path require four OMTs. The

roots of these OMTs are stored in five registers (R0, R1, R2, R3, R4) along with some additional

registers to store constant (C).

• R0 stores the root of the OMT containing the input graph with the node as key and the nested

OMT representing the connected edges as value.

• R1 stores the root of nested OMT from R0 containing the neighboring node as key and the

edge weight as value.

• R2 stores the root of OMT containing the node identifiers as key and the path cost from the

start node as value.

• R3 stores the root of OMT containing the edge weights as key and the count of edge weights

as value. R2 and R3 together form the minimum heap data structure.

• R4 stores the nodes already visited

• C stores the current node being explored

We need four state-transition functions to execute Prim’s algorithm using TMMC.

1. Initialization (F0): This function initializes the root r of input graph OMT to R0. After the

execution of F0, R0 = 0 will no longer satisfy.

2. Assigning start node (F1): F1 removes the given start node n from R0 and assigns it as a

current node. The distance of start node n to itself is set to D = 1 (as value 0 has a special
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Table 5.28

Predicates of Prim’s algorithm

Registers Python Variables
R0 : (n, v), n=node, v=nested OMT root
R1 : (n′, v′), n′=node, v=weight of edge(n, n′),
where n′ = neighbor(n)
R2 : (n,w), n=node, w=path cost to reach n
R3 : (w, ctw), w=edge weight, ctw=weight count
R4 : (n,w), n=node visited, w=cost to reach n
C : Stores the current processing node (n) from R0

R0 = {}
R1 = {}
R2 = {}
R3 = {}
R4 = {}
C = 0

Table 5.29

Initialization

F0: Initialization F0: Python Equivalent

Input: r0
Pre: R0 = R1 = R2 = R3 = R4 = C = 0
Post: R0 ← r0

def init(r0):
if not R0 and not R1 and not R2
and not R3 and not R4:

R0=r0
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interpretation). R1 stores the value v of n in R0 representing edges emanating from the

current node n.

Table 5.30

Assigning start node

F1: Assigning start node F1: Python Equivalent

Input: n, v, C
Pre: R0 6= 0, R1 = 0, (n, v) ∈ R0, C = 0
Post: n /∈ R0, R1 ← v, (n, 1) ∈ R2, (1, 1) ∈ R3,
C = n

def assign_start_node(n, v, C):
if R0!=0 and R1!=0 and R0[n]==v
and C==0 and D==0:

R0[n]=0
R1=v
C=n

3. Update node cost (F2): F2 is the function to update the edge cost of nodes in R2.

4. Extract minimum weighted edge (F3): This function extracts the minimum edge connected

to the current node C from R2 and assigns the adjacent node as the new current node if not

already visited.

5.5.2 Complexity Analysis

Prim’s algorithm finds the minimum spanning tree of graph G with V nodes and E edges. Us-

ing conventional architecture, the complexity of solving Prim’s algorithm is O(V 2); O(E log2 V )

if we use adjacency list representation of the graph. In our representation, each atomic function is

associated with different complexity.

The initialization function F0 is invoked only on time in O(1) time. F1 removes the given start

node n from R0 and assigns it as a current node. The distance of start node n to itself is set to D
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Table 5.31

Update node cost

F2: Update node cost F2: Python Equivalent

Input: n, n′, v, ct
Pre: n ∈ R0, (n′, v) ∈ R1, n ‖ n′ /∈ R2, (v, ct) ∈
R3

Post: n′ /∈ R1, (n ‖ n′, v) ∈ R2, (v, ct+ 1) ∈ R3

def update_node_cost(n1, n2, v, ct)
:
if Ro[n1]!=0 and R1[n2]==v and
R2[n1+n2]==0 and R3[v]==ct:

R1[n2]=0
R2[n1+n2]=v
R3[v]=ct

Table 5.32

Extract minimum weighted edge, case (a), node not visited

F3a: Extract minimum weighted edge, case (a) F3a: Python Equivalent

Input: n′, v, w, ct, C
Pre: R0 6= 0, C ∈ R0, (n′, v) ∈ R0, R1 = 0, (n ‖
n′, w) ∈ R2, (w, ct) ∈ R3, w = get min(R3),
n′ /∈ R4

Post: C /∈ R0, C ← n′, R1 ← v, n ‖ n′ /∈ R2,
(w, ct− 1) ∈ R3, (n′, w) ∈ R4

def extract_min_edge_a(n1, n2, v, w
, ct, C):
if not R0 and R0[C]!=0 and R0[
n2]=v and not R1 and R2[n1+n2]==
w and R3[w]==ct and w==get_min(
R3) and R4[n2]==0:

R0[C]=0
C=n2
R1=v
R2[n1+n2]=0
R3[w]=ct-1
R4[n2]=w

Table 5.33

Extract minimum weighted edge, case (b), node already visited

F3b: Extract minimum weighted edge, case (b) F3b: Python Equivalent

Input: n′, v, w, ct
Pre: R0 6= 0, C ∈ R0, (n′, v) ∈ R0, R1 = 0, (n ‖
n′, w) ∈ R2, (w, ct) ∈ R3, w = get min(R3),
n′ ∈ R4

Post: n ‖ n′ /∈ R2, (w, ct− 1) ∈ R3

def extract_min_edge_b(n1,n2,v,w,ct
):
if not R0 and R0[C]!=0 and R0[
n2]=v and not R1 and R2[n1+n2]==
w and R3[w]==ct and w==get_min(
R3) and R4[n2]!=0:

R2[n1+n2]=0
R3[w]=ct-1
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= 1 (as value 0 has a special interpretation). R1 stores the value v of n in R0 representing edges

emanating from the current node n. It is also invoked one time (O(1)).

F2 is the function to update the path cost of nodes in R2. This function is invoked V E times in

total and in each invocation the edge read takesO(log2E) as opposed to the conventional constant

time reading.

F3 extracts the minimum edge connected to the current node C from R2 and assigns the adja-

cent node as the new current node if not already exists in R4 (if not already visited). In TMMC,

extracting maximum and minimum from the OMT takes logarithmic time. So here this function

extracts minimum edge for all the nodes is (O(V log2E).
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CHAPTER VI

COMPUTATIONAL GEOMETRY ALGORITHMS

Computational geometry is one of the oldest areas of scientific research. It contains the field

of algorithms that involves geometry. Several computational geometry algorithms exist for solving

different computational geometry problems. A large portion of these algorithms involves proving

several geometrical properties. Computational geometry algorithms such as convex hull, partition-

ing a polygon into monotone pieces, half-plane intersection, point location, n-closest points, etc.,

have compelling real-world applications in computer graphics, robotics, computer-aided design,

graphs, geographic information systems, pattern recognition, molecular modeling, etc.

We look at three such algorithms in this section. Our objective is to ensure the correctness of

the execution of these algorithms using the proposed TMMC (TCB Minimizing Model of Compu-

tation).

6.1 Convex Hull

Convex Hull is one of the most commonly used computational geometry problems. It is widely

used in the field of computer visualization (Example: video games, robotics), Geographical Infor-

mation Systems (GIS) (Example: Maps), image processing, pattern recognition (example: bound-

ing boxes detection), etc. Some of the practical applications of finding the convex hull involve
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collision detection of vehicles, finding the area of the disease epidemic, motion planning of robots,

selection of a particular area in images for processing, bounding boxes detection, etc.

A subset S of the plane is called convex if and only if for any pair of points p, q ∈ S (Figure 6.1)

the line segment (pq) is completely contained in S. The convex hull CH of a set S is the smallest

number convex set that contains S. To be more precise, it is the intersection of all convex sets that

contains S.

Figure 6.1

(a) Convex (b) Not convex

6.1.1 Graham’s Scan Algorithm

Convex Hull for a set of points can be calculated using various algorithms. One of the popular

ones is Graham’s scan algorithm (Figure 6.2) [15]. The problem of finding the convex hull for a
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set of points is divided into finding the upper convex hull and the lower convex hull (Figure 6.3)

and further merging them to give the final convex hull for all the points. The complexity of this

algorithm is O(N log2N) (N = the number of points in the set) using the conventional model of

computation.

6.1.2 Predicates and State-transition Functions

We will use three registers to track the roots of the four OMTs needed to solve the Convex Hull

problem and four registers to store constant (Pc−1, Pc, Pc+1 and Pc+2).

• R0 stores the input points. Key of R0 is the point identifier p and value is the x, y coordinate

concatenated together i.e. (p, x||y)

• R1 stores x||y as key and point identifier p as value. The key here is in ascending order i.e.

(x||y, p)

• R2 Hold the copy of R1

• Pc−1, Pc, Pc+1 and Pc+2 hold points in R1 and R2 to detect left or right turns.

To solve the convex hull problem using the proposed TMMC model, we describe the Grahams

scan’s Algorithm by four state-change functions (F1, F2, F3, F4).

1. Initialization (F0): Invocation of this state-change function assigns the OMT root of the

input points and sorted x coordinates. It adds all the input points to R0 with a unique iden-

tifier p and coordinates x and y i.e. (p, x||y). It also populates R1 with the x-coordinator

concatenated with its corresponding y coordinate as keys and point identifier as value (this

ensures that every point has a unique identifier) i.e. (x||y, p)
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Figure 6.2

Graham’s scan algorithm

Figure 6.3

Upper and lower convex hull computation
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Table 6.1

Predicates of Grahams scan’s algorithm

Registers Python Variables
R0: (p, x ‖ y), p=point id, x ‖ y=coordinates
R1: (x ‖ y, p), x ‖ y=coordinates, p=point id (upper)
R2: (x ‖ y, p), x ‖ y=coordinates, p=point id (lower)
Pc−1: Stores previous key of the current point
Pc: Stores current point
Pc+1: Stores next key of Pc

Pc+2: Stores next key of Pc+1

R0={}
R1={}
R2={}
Pc0=Pc1=Pc2=Pc3=0

After all inputs have been provided, this state-change function

(a) creates a third OMT (R2) which is identical to R1. R1 will be altered when the upper

convex hull points are determined. R2 will be altered when lower convex hull points

are determined.

(b) sets a state current-point to the least index in R1 and this current point is stored in Pc.

The value of Pc is copied to Pc−1 and Pc+1 and Pc+2 are assigned the next two lowest

keys of Pc in R1

2. Detect turns for upper convex hull (F1): This state-change function begins with the current-

point in Pc and depending on the next two points, either advance the current point to the next

point or drops the next point.

It takes into account three points at a time (the current point Pc, its next point Pc+1 and the

next of its next point Pc+2). These three points are used to detect a left or a right turn. The

turn is detected by calculating the determinant of these three points. The three points may

lie on a straight line which is equivalent to a right turn for the upper CH. In case of a right
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Table 6.2

Initialization

F0: Initialization F0: Python Equivalent

Input: r0, r1
Pre: R0 = R1 = R2 = 0, Pc−1 = Pc = Pc+1 =
Pc+2 = 0, length(r0) = length(r1)
Post: R0 ← r0, R1 ← r1, R2 ← r1,
Pc ← get min(R1), Pc−1 ← Pc, Pc+1 ←
next key(Pc, R1), Pc+2 ← next key(Pc+1, R1)

def init(r0, r1):
if not R0 and not R1 and not R2
and Pc0==Pc1==Pc2==Pc3==0:

R0=r0
R1=r1
R2=r1
Pc1=get_min(R_1)
Pc0=Pc1
Pc2=next_key(Pc1, R1)
Pc3=next_key(Pc2, R1)

turn, all three points are advanced to the next point (their next key in R1). In case of a left

turn, Pc+1 and Pc+2 are advanced to the next points.

3. Initialize lower convex hull (F2): At any point when the next point of Pc+2 has a lower

index (which signifies that the walk-through is complete), Pc, Pc+1, Pc+2 are set again to the

smallest, next smallest and next-next smallest index of R2 to begin lower-hull computation.

4. Detect turns for lower convex hull (F3): Similar to F1 state-change function, this function

begins with the current-point Pc in R2 and depending on the next two points, either advance

the current point to the next point or drops the next point.

It takes into account three points at a time (the current point Pc, its next point Pc+1 and the

next of its next point Pc+2). These three points are used to detect a left or a right turn. The

turn is detected by calculating the determinant of these three points. The three points may lie

on a straight line which is equivalent to a left turn. In the case of a left turn, all three points
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Table 6.3

Detect turns for Upper CH: case (a) (right turn)

F1a: Detect turns for upper convex hull, case (a) F1a: Python Equivalent

Input: Pc, Pc+1, Pc+2

Pre: length(R1) ≥ 3, {Pc, Pc+1, Pc+2} ∈ R0,
determinant(Pc, Pc+1, Pc+2) ≥ 0
Post: Pc = Pc+1, Pc+1 = Pc+2, Pc+2 =
next key(Pc+2, R1)

def detect_turn_upper_a(Pc1, Pc2,
Pc3):
if length(R1)>=3 and R0[Pc1]==
R1[Pc1] and R0[Pc2]==R1[Pc2] and
R0[Pc3]==R1[Pc3] and
determinant(Pc1, Pc2, Pc3)>=0:

Pc1=Pc2
Pc2=Pc3
Pc3=next_key(Pc3, R1)

Table 6.4

Detect turns for Upper CH: case (b) (left-left turn)

F1b: Detect turns for upper convex hull, case (b) F1b: Python Equivalent

Input: Pc−1, Pc, Pc+1, Pc+2

Pre: length(R1) ≥ 3, {Pc−1, Pc, Pc+1, Pc+2} ∈
R0, determinant(Pc, Pc+1, Pc+2) < 0,
determinant(Pc−1, Pc, Pc+2) < 0
Post: Pc = Pc−1, Pc+1 = Pc, Pc+1 /∈ R1

def detect_turn_upper_b(Pc0, Pc1,
Pc2, Pc3):
if length(R1)>=3 and R0[Pc0]==
R1[Pc0] and R0[Pc1]==R1[Pc1] and
R0[Pc2]==R1[Pc2] and R0[Pc3]==
R1[Pc3] and determinant(Pc1, Pc2
, Pc3)<0 and determinant(Pc0,
Pc1, Pc2)<0:

Pc1=Pc0
Pc2=Pc1
R1[pc2]=0
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Table 6.5

Detect turns for Upper CH: case (c) (left-right turn)

F1c: Detect turns for upper convex hull, case (c) F1c: Python Equivalent

Input: Pc−1, Pc, Pc+1, Pc+2

Pre: length(R1) ≥ 3, {Pc−1, Pc, Pc+1, Pc+2} ∈
R0, determinant(Pc, Pc+1, Pc+2) < 0,
determinant(Pc−1, Pc, Pc+2) ≥ 0
Post: Pc+1 = Pc+2, Pc+2 = next key(Pc+2, R1),
Pc+1 /∈ R1

def detect_turn_upper_c(Pc0, Pc1,
Pc2, Pc3):
if length(R1)>=3 and R0[Pc0]==
R1[Pc0] and R0[Pc1]==R1[Pc1] and
R0[Pc2]==R1[Pc2] and R0[Pc3]==
R1[Pc3] and determinant(Pc1, Pc2
, Pc3)<0 and determinant(Pc0,
Pc1, Pc3)>=0:

Pc2=Pc3
Pc3=next_key(Pc3, R3)
R1[Pc2]=0

Table 6.6

Lower CH initialization

F2: Initialization for lower convex hull F2: Python Equivalent

Input: Pc−1, Pc, Pc+1, Pc+2

Pre: next key(Pc+2, R1) < Pc+2

Post: Pc ← get min(R2), Pc−1 ← Pc, Pc+1 ←
next key(Pc, R2), Pc+2 ← next key(Pc+1, R2)

def init_lower(Pc0, Pc1, Pc2, Pc3):
if next_key(Pc3, R1) < Pc3:

Pc1=get_min(R_2)
Pc0=Pc1
Pc2=next_key(Pc1, R2)
Pc3=next_key(Pc2, R2)
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are advanced to the next point (their next key in R2). In case of a right turn, Pc+1 and Pc+2

are advanced to the next points.

Table 6.7

Detect turns for Lower CH: case (a) (left turn)

F3a: Detect turns for lower convex hull, case (a) F3a: Python Equivalent

Input: Pc, Pc+1, Pc+2

Pre: length(R1) ≥ 3, {Pc, Pc+1, Pc+2} ∈ R0,
determinant(Pc, Pc+1, Pc+2) ≤ 0
Post: Pc = Pc+1, Pc+1 = Pc+2, Pc+2 =
next key(Pc+2, R1)

def detect_turn_lower_a(Pc1, Pc2,
Pc3):
if length(R1)>=3 and R0[Pc1]==
R1[Pc1] and R0[Pc2]==R1[Pc2] and
R0[Pc3]==R1[Pc3] and
determinant(Pc1, Pc2, Pc3)<=0:

Pc1=Pc2
Pc2=Pc3
Pc3=next_key(Pc3, R1)

5. Merge point from lower to upper convex hull (F4): At any point duirng F3, when the next

point of Pc+2 has a lower index (which signifies that the walk-through is complete) we move

on to F4, the merge function. F4 state-change function merges the lower convex hull R2

with the upper convex hull in R1. This is achieved by copying all the entries of R2 to R1. F4

copies each key-value pair of R2 tp R1 only if it does not already exist in R1. This results in

the final convex hull solution in R1.

6.1.3 Complexity Analysis

Graham’s scan algorithm finds the convex hull of the input point set P . Using conventional

architecture, the complexity of solving Graham’s scan algorithm is O(P log2 P ). In our represen-
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Table 6.8

Detect turns for Lower CH: case (b) (right-right turn)

F3b: Detect turns for lower convex hull, case (b) F3b: Python Equivalent

Input: Pc−1, Pc, Pc+1, Pc+2

Pre: length(R1) ≥ 3, {Pc−1, Pc, Pc+1, Pc+2} ∈
R0, determinant(Pc, Pc+1, Pc+2) > 0,
determinant(Pc−1, Pc, Pc+2) > 0
Post: Pc = Pc−1, Pc+1 = Pc, Pc+1 /∈ R1

def detect_turn_lower_b(Pc0, Pc1,
Pc2, Pc3):
if length(R1)>=3 and R0[Pc0]==
R1[Pc0] and R0[Pc1]==R1[Pc1] and
R0[Pc2]==R1[Pc2] and R0[Pc3]==
R1[Pc3] and determinant(Pc1, Pc2
, Pc3)>0 and determinant(Pc0,
Pc1, Pc2)>0:

Pc1=Pc0
Pc2=Pc1
R1[pc2]=0

Table 6.9

Detect turns for Lower CH: case (c) (right-left turn)

F3c: Detect turns for lower convex hull, case (c) F3c: Python Equivalent

Input: Pc−1, Pc, Pc+1, Pc+2

Pre: length(R1) ≥ 3, {Pc−1, Pc, Pc+1, Pc+2} ∈
R0, determinant(Pc, Pc+1, Pc+2) > 0,
determinant(Pc−1, Pc, Pc+2) ≤ 0
Post: Pc+1 = Pc+2, Pc+2 = next key(Pc+2, R1),
Pc+1 /∈ R1

def detect_turn_lower_vc(Pc0, Pc1,
Pc2, Pc3):
if length(R1)>=3 and R0[Pc0]==
R1[Pc0] and R0[Pc1]==R1[Pc1] and
R0[Pc2]==R1[Pc2] and R0[Pc3]==
R1[Pc3] and determinant(Pc1, Pc2
, Pc3)>0 and determinant(Pc0,
Pc1, Pc3)<=0:

Pc2=Pc3
Pc3=next_key(Pc3, R3)
R1[Pc2]=0

Table 6.10

Merge

F4: Merge point from lower to upper convex hull F4: Python Equivalent

Input: pid, v
Pre: (pid, v) ∈ R4, pid /∈ R3, length(R2) < 3
Post: pid /∈ R4, pid ∈ R3

def merge_upper_lower(pid, v):
if R4[pid]==v and R3[pid]==0
and length(R2)<3:

R4[pid]=0
R3[pid]=v
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tation, each atomic function is associated with different complexity. In the TMMC model, every

read and write from memory takes logarithmic time.

The initialization function F0 is invoked only once (constant time). It assign some values ot the

registers. The get min() and next key() function takesO(log2 P ) time. F2 function also function

a few assignments to the registers.

F1 and F3 functions updates R1 and R2, P times and each update takes (O(log2 P )) time.

The utility function used here (determinant()) has its separate complexity but it can be readily

executed separately. F4 merges R1 into R2 in O(P log2 P ) time.

6.2 Line Segments Intersection Detection

Line segment intersection problem is a fundamental problem in computational geometry. Bent-

ley and Ottoman [8] algorithms provide a solution to this problem where the algorithm finds all

the intersections in O(Nlog2N) (N = number of segments) time. Another algorithm introduced

before the Bentley and Ottoman one was proposed by Shamos and Hoey [59]. The Shamos and

Hoey algorithm can be considered as the simpler version of the Bentley and Ottmann algorithm

that detects if the given line segments have at least one intersecting point or not in O(N log2N)

time. This algorithm does not necessarily compute the intersecting points.

Detecting the intersection of a set of line segments is an important geometrical problem. A

polygon is considered to be simple if no edges of this polygon have a crossover with one another.

Shamos and Hoey algorithm can thus be used to detect whether a polygon is a simple polygon.

The sweep/scan line algorithm [59] technique was used by Shamos et al in their algorithm along

with an efficient self-balancing binary tree data structure.
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Edges without any crossover give a planar graph which is highly desirable in electrical circuit

design so as in computer graphics and geographical information system where objects are rendered

visible or obscure based their layered structure.

6.2.1 Shomos-Hoey Algorithm

In the Sweep line algorithm by Shamos and Hoey [59] to detect intersection in a given set

of line segment considers a conceptual vertical line from left to right (Figure 6.4). At first, the

endpoints of the line segments are sorted and the vertical sweep line is considered which scans

these endpoints from left to right. Once the left endpoint is encountered it is inserted into the self-

balancing binary tree and once the corresponding right endpoint is encountered we delete the left

endpoint. Any time if an attempt is made to insert a left endpoint when the data structure is empty

we know an overlap has occurred.

6.2.2 Predicates and State-transition Functions

We need three OMTs to execute the Shamos-Hoey algorithm. These three OMTs are stored in

three registers. One more register is used to store a constant.

• R0 stores line segments described by s, x1, y1, x2, y2 as (s, x1 ‖ y1 ‖ x2 ‖ y2) where s is a

line segment identifier (key), (x1, y1) and (x2, y2) are its two end points, where x1 < x2 (if

x1 = x2 then y1 < y2).

• R1 has two entries for each line segment in R0 of the form (x1 ‖ y1 ‖ s, s). The key

x1 ‖ y1 ‖ S represents one of the endpoints of s.
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Figure 6.4

Intersections of a set of segments
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Figure 6.5

Shomos-Hoey Algorithm
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• R2 stores the y-coordinates. It has the format (y ‖ s, s) where y ‖ s is a unique identifier for

the y coordinate of segment s. R3 only contains start point’s y coordinate therefore the key

will always be unique.

• C stores the lowest key in R1

• Y stores the y coordinate of C

• S stores the segment identifier of C

Table 6.11

Predicates of Shamos-Hoeys algorithm

Registers Python Variables
R0 : (s, x1 ‖ y1 ‖ x2 ‖ y2), s=segment id,
x1, y1, x2, y2=coordinates
R1 : (x ‖ y ‖ s, s), x, y=coordinate, s=Segment id
R2 : (y ‖ s, s), y=coordinate, s=Segment id
C : current minimum endpoint in R1

Y : y coordinate of C
S : Segment id of C

R0 = {}
R1 = {}
R2 = {}
C=0
Y=0
S=0

To detect line segment intersections using the proposed TMMC model, we describe Shamos-

Hoey’s Algorithm by three state-change functions (F1, F2, F3).

1. Initialization (F0): The state-change function assigns the root of OMT to R0 containing the

line segments described by S, x1, y1, x2, y2 where S is a line segment identifier, (x1, y1) and

(x2, y2) are its two end points, where x1 < x2 (if x1 = x2 then y1 < y2).

This function also populates R1 with coordinates (sorted inherently) as keys of the form

(x1 ‖ y1 ‖ S).
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On completion, the keys in R1 are ordered by increasing the value of x coordinates. Ap-

pending y coordinate and the line segment identifier ensures the uniqueness of keys. On

completion of all inputs, the start-point, C is set to the lowest index in R1.

Table 6.12

Initialization

F0: Initialization F0: Python Equivalent

Input: r0, r1, C, Y
Pre: R0 = R1 = R2 = C = Y = S = 0
Post: R0 ← r0, R1 ← r1, C ← extract min(R1),
Y ← C.split()[1], S ← C.split()[2], (Y ‖ S, S) ∈
R2

def init(r0, r1, C, Y):
if not R0 and not R1 and not R2
and C==Y==S==0:

R0 = r0
R1 = r1
C=extract_min(R1),
Y=C.split()[1]
S=C.split()[2]
R2[Y+","+S]=S

2. Insert y coordinate in case of a left endpoint (F1): F1 state-change function extracts the

lowest index (minimum x) of R1 and inserts its corresponding y coordinate into an OMT

(R2) if the extracted point is a left endpoint. In R2 the index is (y ‖ S) where S is the line

segment identifier appended with the y coordinate to ensure uniqueness and the value is the

line segment identifier S. F2 checks for intersection between the line segment S and the

segment above it (A) in R2 (previous index of y ‖ S). It also checks for intersection between

the line segment S and the segment below it (B) in R2 (next index of y ‖ S). Ideally there

should be no intersections.

F3 checks whether the extracted minimum x belongs to a left endpoint. This basic function-

ality just performs a few register operations in constant time and check the intersection of
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segments in case of a left endpoint. There are things to be checked, one the corresponding

segment of the y coordinate and the segment above it do not intersect and two the corre-

sponding segment of the y coordinate and the segment below it do not intersect.

Table 6.13

Remove y coordinate in case of a right endpoint

F1: Insert y coordinate in case of a left endpoint F1: Python Equivalent

Input: a, b, C, Y, S
Pre: next key(C,R0) > C, (S, v) ∈ R0,
C.split()[0] < v.split()[2], a = above(S,R2),
b = below(S,R2), does not intersect(a, S),
does not intersect(b, S)
Post: C ← extract min(R1), Y ← C.split()[1],
S ← C.split()[2], (Y ‖ S, S) ∈ R2

def insert_y_left(a, b, C, Y, S):
if next_key(C, R0) > C and R0[S
]==v and C.split(’,’)[0] < v.
split(’,’)[2] and a==above(S, R2
) and b==below(S, R2) and
does_not_intersect(a,S) and
does_not_intersect(b,S):

C = extract_min(R1)
Y = C.split(’,’)[1]
S = C.split(’,’)[2]
R2[Y+’,’+S]=S

3. Detecting intersection (right endpoint) (F2): If the extracted point is a right endpoint and

belongs to line segment S, F2 checks for the intersection between the above line segment

A and the below line segment B of S. Ideally, there should be no intersections. This state-

change function finishes completion when the content of R1 is empty. F5 checks whether

the extracted minimum x belongs to a right endpoint.checks intersection of segments in case

of a right endpoint. It checks the segment above and below the corresponding segment do

not intersect. When all the entries of R1 are considered, the algorithm concludes.
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Table 6.14

Detecting intersection (right endpoint)

F2: Remove y coordinate in case of a right endpoint F2: Python Equivalent

Input: a, b, C, Y, S
Pre: next key(C,R0) > C, (S, v) ∈ R0,
C.split()[0] > v.split()[0], a = above(S,R2),
b = below(S,R2), does not intersect(a, b)
Post: C ← extract min(R1), Y ← C.split()[1],
S ← C.split()[2], Y ‖ S /∈ R2

def remove_y_right(a, b, C, Y, S):
if next_key(C, R0) > C and R0[S
]==v and C.split(’,’)[0] > v.
split(’,’)[0] and a==above(S, R2
) and b==below(S, R2) and
does_not_intersect(a,b):

C = extract_min(R1)
Y = C.split(’,’)[1]
S = C.split(’,’)[2]
R2[Y+’,’+S]=0

6.2.3 Complexity Analysis

Shamos Hoey’s finds whether any of the two line segments in a given set of P line segments

intersect each other or not. Using conventional architecture, the complexity of solving Shamos-

Hoey’s algorithm is O(N log2E). In our representation, each atomic function is associated with

different complexity. In the TMMC model, every read and write from memory takes logarithmic

time.

The initialization function F0 is invoked only once (constant time). It assigns two OMT roots

to R0 and R1 in constant time. It also calls extract min() function which takes O(log2 P ) time.

F1 function checks for intersection only by checking the above and below segments in R2 and

it takes O(log2 P ) time. It also extracts minimum x coordinate from R0 in O(log2 P ) time. F1 is

repeated P times for all the left endpoints. F2 similar to F1 is also perform within same time com-

plexity for all the right endpoints. These two functions also use a utility function does not intersect()

and split() that have their separate complexity not exceeding O(log2 P ).
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6.3 Polygon Triangulation

Triangulation is an important technique used to determine the location of a point on a plane.

There are numerous ways to triangulate a set of points (or a polygon) (Figure 6.6). Delaunay trian-

gulation is one of the most common types of triangulation invented by a Russian mathematician,

Boris Delaunay in 1934 [16].

Figure 6.6

Three sets of triangulation for a given set of five points

6.3.1 Delaunay Triangulation

Delaunay triangulation of a point set P creates a triangular mesh where for each triangle no

other points in P reside within the circumcircle of that triangle. Delaunay triangulation considers

no three points are co-linear and avoids triangles with narrow angles. Another concept introduced

earlier than Delaunay triangulation is Voronoi diagram [66] (Figure 6.7: blue edges). Delaunay

triangulation is the dual graph of the Voronoi Diagram. Voronoi Diagram can be computed from
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Delaunay triangulation or directly using the sweepline technique (e.g. Fortune’s Algorithm [20]

O(P log2 P )).

Figure 6.7

Delaunay triangulation (black) and Voronoi diagram (blue)

It is possible to perform Delaunay triangulation of a given set of points easily with the help of

a wide range of available algorithms. Couple of the algorithms to mention here are Flip algorithm

(O(P 2) edge flips) [15], incremental algorithm (O(P 2))) (e.g. Bowyer-Watson algorithm [10]),

Divide and Conquer algorithm by Guibas and Stolfi (O(P log2 P ))[25] etc.

Delaunay triangulation has numerous applications especially in the field of computer graphics

e.g. terrain generation, reconstruction, meshing, etc. The graph representing Delaunay triangula-

tion also can be referred to as the nearest neighbor graph to compute n-nearest neighbors of a point
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of interest in a 2D plane. Delaunay triangulation is also used for path planning which is useful in

robotics.

The dual graph of Delaunay triangulation i.e. Voronoi diagram is related to a range of other

significant problems such as a k-nearest neighbor, minimum spanning tree, largest empty circle,

smallest enclosing circle, Gabriel graph and so on [58]. Delaunay triangulation is also related

to Convex Hull Problem discussed in the previous section. The exterior facing boundary of a

Delaunay triangulation of a set of points P can be also called the convex hull for the same point

set P (Figure 6.7: Blue edges). Voronoi Diagram is extensively used to understand patterns exist

in nature. The major feature of this type of triangulation is to be able to deduce the location of

points. Delaunay triangulation can also be used to find N -nearest neighbor of a certain point in the

2D plane version as the nearest neighbor graph is the subset of Delaunay triangulation.

6.3.2 Verification of Delaunay Triangulation Solution

Our major goal for the proposed TMMC model is to make the verification steps as simple

as possible. Due to the complex nature of the algorithms that solve the Delaunay triangulation

problem, We propose a verification algorithm that verifies the correctness of the given Delaunay

triangulation meaning verifying whether the set of points was correctly triangulated. To verify

that a given Delaunay triangulation’s correctness is a bit tricky. Proving the circumcircle property

won’t suffice. Suppose we are given a Delaunay triangulation T with a set of Edges E and points

P . We have to ensure the following properties:

1. Subset of the edges (E ′ ⊆ E) of the triangulation T must form a convex hull (CH) for all

the points P (Figure 6.8). In Figure 6.8(b) edges (A1, B1), (B1, F1), (F1, E1), (E1, D1) and
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(D1, A1) form a convex hull for points A1, B1, C1, D1, E1, F1 whereas in Figure 6.8(a) the

edges do not form a Convex Hull.

2. The Delaunay triangulation T must follow the maximal planar subdivision property meaning

the triangulation should be a planar graph. No edge of the triangulation can cross each other.

Figure 6.9 is an improper Delaunay triangulation.

3. Circumcircle of each of the triangles must not contain any other point of any other triangles

(should be an empty circle) (Figure 6.10).

4. The given Delaunay triangulation T should not be isolated. For example Figure 6.11

Figure 6.8

(a) Improper Delaunay triangulation, (b) Proper Delaunay triangulation

Given the Delaunay triangulation and its points, we can securely execute the Convex Hull al-

gorithm using TMMC to verify the convex hull property (property 1 above). In addition to that,

property 2 can also be verified in the same way by executing the Shamos-Hoey algorithm that helps

us detect if there is any edge crossover within the given Delaunay triangulation. In this section,
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Figure 6.9

Non-planar triangulation. Edge AF and BC cross each other

Figure 6.10

Circumcircle property (a) is a proper Delaunay triangulation, (b) and (c) are not
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Figure 6.11

Isolated triangulation of the set of points {A,B,C,D,E, F,G,H, I}

we verify the correctness of the given Delaunay triangulation solution by checking the primary cir-

cumcircle property (Figure 6.10) along with the connectivity of the triangles (Figure 6.11) property

through union-find. We first provide the corresponding verification algorithm in algorithm (Fig-

ure 6.12) and then describe the atomic state-changes corresponding to the algorithm.

6.3.3 Predicates and State-transition Functions

• R0 stores the triangle id as keys and identifiers of the points forming the triangle as values.

E.g (t, (p1, p2, p3))

• R1 stores the triangle id as keys and its neighbors with whom it shares an edge as values.

E.g. (t1, (t2, t3, t4))

• R2 = Stores point identifier as keys and its x and y coordinates as values. E.g (p, x ‖ y)

106



Figure 6.12

Verification algorithm of Delaunay triangulation solution
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• R3 stores the nested value in R1 for the current triangle i.e. the OMT of neighbors of the

current triangle.

• R4 and R5 together are used to store the disjoint sets of the triangles. R4 stores the set

information e.g. (t2, t1) indicate triangle t2 belongs to the set represented by t1. R3 stores

the member counts of the disjoint sets e.g. (t1, 3) indicates there are three triangles belonging

to the set represented by triangle t1.

• C stores the identifier of the current triangle in consideration.

• N stores the identifier of the neighbor of C in consideration.

Table 6.15

Predicates of Delaunay triangulation verification algorithm

Registers Python Variables
R0 : key=triangle id, value=three end points
R1 : key=triangle id, value=neighboring triangles
R2 : key=point id, value=x, y coordinates i.e. x ‖ y
R3 : key=neighbor triangle id
R4 : key=triangle id, value=triangle id
R5 : key=triangle id, value=member count
C : current processing triangle id
N : current processing neighbor triangle id

R0={}
R1={}
R2={}
R3={}
R4={}
R5={}
C=N=0

The verification algorithm of the Delaunay triangulation solution can be represented as five

state-change functions (F0, F1, F2, F3, F4).

1. Initialization (F0): This state-transition function populatesR0 with triangles with their point

identifiers, R1 with neighbor information and R2 with coordinates of the point identifiers in
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R0. It assigns the lowest key of R1 to C. The nested neighbor OMT of C is stored in R3. N

assigned to the lowest key of R3 that is the neighbor of triangle in C.

Table 6.16

Initialization

F0: Initialization F0: Python Equivalent

Input: r0, r1, r2, v, C,N
Pre: R0 = R1 = R2 = R3 = R4 = R5 = C =
N = 0
Post: R0 ← r0, R1 ← r1, R2 ← r2, C ←
get min(R1), (C, v) ∈ R1, R3 ← v, N ←
extract min(R3)

def init(r0, r1, r2, v, C, N):
if not R0 and not R1 and not R2
and not R3 and not R4 and not
R5 and C==N==0:

R0=r0
R1=r1
R2=r2
C=get_min(R1)
v=R1[C]
R3=v
N=extract_min(R3)

2. Disjoint set initialization (F1): F1 initializes R4 and R5. Initially each triangle is set as its

own parent in R4 and their member count is stored in R5 (initially 1).

3. Check circumcircle property (F2): This state-transition function checks two properties of

neighbor N with C. First, whether it shares a side with C and second the circumcircle

property i.e. ensuring that the neighbor shares an edge with the current triangle and its third

endpoint does not fall within the circumcircle of the current triangle and vice-versa.

4. Union find of triangles(F3): Based on the member count in R5 of triangle sets, it assigns

parent triangle in R4. Triangle t1 will be assigned as parent of t2 in R4 if the member count

of t1 is greater than the member count of t2.
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Table 6.17

Disjoint set initialization

F1: Disjoint set initialization F1: Python Equivalent

Input: t
Pre: t /∈ R4, t /∈ R5, t ∈ R0, t ∈ R1

Post: (t, t) ∈ R4, (t, 1) ∈ R5,

def disjoint_set_init(t):
if R4[t]==0 and R5[t]==0 and R0
[t]!=0 and R1[t]!=0:

R4[t]=t
R5[t]=1

Table 6.18

Check circumcircle property

F2: Check circumcircle property F2: Python Equivalent

Input: p1, p2, p3, p4, xc, yc, rc, xn, yn, rn, v1, v2
Pre: next key(N,R3) ≥ N , {p1, p2, p3, p4} ∈ R2,
(C, v1) ∈ R0, {p1, p2, p3} ∈ v1, (N, v2) ∈ R0,
{p2, p3, p4} ∈ v2, dist(p1, xc, yc) =
dist(p2, xc, yc) = dist(p3, xc, yc) = rc,
dist(p2, xn, yn) = dist(p3, xn, yn) =
dist(p4, xn, yn) = rn, dist(p1, xn, yn) > rn,
dist(p4, xc, yc) > rc
Post: N /∈ R3

def check_circumcircle(p1, p2, p3,
p4, xc, yc, rc, xn, yn, rn, v1,
v2, ct):
if next_key(N, R_3) >= N, R2[p1
]!=0 and R2[p2]!=0 and R2[p3]!=0
and R2[p4]!=0 and R0[C]==v1 and
v1[p1]!=0 and v1[p2]!=0 and v1[
p3]!=0 and R0[N]==v2 and v2[p2
]!=0 and v2[p3]!=0 and v2[p4]!=0
and distance(p1, xc, yc)==
distance(p2, xc, yc)==distance(
p3, xc, yc)==rc and distance(p2,
xn, yn)==distance(p3, xn, yn)==
distance(p4, xn, yn)==rn and
distance(p1, xn, yn) > rn and
distance(p4, xc, yc) > rc:

R3[N]=0

110



Table 6.19

Union find of triangles

F3: Union find of triangles F3: Python Equivalent

Input: v1, v2, v, ct
Pre: N /∈ R3, (C, v1) ∈ R4, (N, v2) ∈ R4, v =
max(v1, v2)
Post: (C, v) ∈ R4, (N, v) ∈ R4, (v, ct + 1) ∈ R5,
N ← extract min(R3)

def union_find(v1, v2, v, ct):
if R3[N]==0 and R4[C}==v1 and
R4[N]==v2 and v==max(v1, v2):

R4[C]=v
R4[N]=v
R5[v]=ct+1
N=extract_min(R3)

5. Assign new triangle (F4): This state-transition function extracts the minimum key of R1 to

assign to C once all the neighbors of the previous C have been processed and checked for

triangulation property. No new triangle would be assigned to C once R1 is exhausted and

R3 will also be empty denoting the completion of the algorithm.

6.3.4 Complexity Analysis

The verification of Delaunay triangulation algorithm checks the correctness of the given trian-

gulation of T triangles. Using conventional model, it takes O(P log2 P ) time to triangulate a set

of P points. In TMMC, read, write, computing minimum, maximum take logarithmic time. Each

read and write in R0, R1, R4 and R5 will therefore take O(log2 T ) time.

F0 function is executed only once. It initializes few registers and performs the get min() and

extract min() function one time.

F1 function executes for all the triangles T in the input and makes entries in two OMTs, each

in O(log2 T ) time.
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Table 6.20

Assign new triangle

F4: Assign new triangle F4: Python Equivalent

Input: v,N,C
Pre: R3 = 0, next key(C,R1) ≥ C
Post: C /∈ R1, C ← extract min(R1), (C, v) ∈
R1, R3 ← v, N ← extract min(R3)

def assign_new_triangle(v, N, C):
if not R3 and next_key(C, R1)
>= C:

R1[C]=0
C=extract_min(R1)
if v==R1[C]:

R3=v
N=extract_min(R3)

F2 function checks the properties for each triangle T . As the number of neighbors if fixed it

takes O(T log2 T ) time for this check.

F3 performs union-find for all the neighbors of each triangle T also in O(T log2 T ) time. F4

assigns a new triangle T − 1 time taking O(T log2 T ) in total.
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CHAPTER VII

NP PROBLEMS

Many natural and simple problems in computer science fall in the NP class. This class contains

problems whose solution can be verified using non-deterministic polynomial (hence NP) time al-

gorithms. NP problems are hard to solve (there are no known polynomial-time algorithms to solve

them [21], but the correctness of solutions to such problems can be easily (using polynomial-time

algorithms) verified. In the TMMC model, we are only interested in the verification of the correct-

ness of solutions. Thus, towards our goal of assuring the correctness of the execution of algorithms,

as our primary concern is minimizing verifier complexity, even algorithms in the NP class can be

assured.

In a TMMC blockchain network, untrusted provers perform the heavy computation of solving

NP problems. Along with the proof of correctness of the solution, every solution is also associated

with a metric (also provided by the provers), to demonstrate how “good” the solution is. Examples

of such metrics can be:

• How quick the solution is i.e. what is the time complexity?

• Does it provide an exact solution?

• Does it provide an optimal solution?
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• Does it provide the best-performing approximate solution?

• How many constraints were relaxed?

These solutions can be determined by the untrusted provers using the conventional model of

computation. The provers can compete amongst themselves to provide a solution with the best

metric. The verifier only needs to determine the correctness of the metric computation and the

verification algorithm to choose the best one.

Thus, for algorithms in NP class, a solution O can be determined using the traditional VN

model of computing. For such problems, there is often a metric mo associated with the solution

O. Given a solution O with metric mo (for an algorithm f() operating on input I) the TMMC

algorithm is merely intended to establish that the solution is correct and that the metric is indeed

mo. When such algorithms are executed in the TMMC blockchain, the incentivized user may

compete to provide the solution with the best metric and execute the verification algorithm to prove

the correctness of the solution. Therefore, TMMC allows two major advantages while considering

NP problems:

1. Proving the correctness of an NP problem solution only involves verifying it in logarithmic

time. It is none of the verifiers’ concern on how the problem was solved.

2. In scenarios where the provers compete to provide the optimal/best solution, the verifiers

only need to find the solution with the best metric and verify its correctness.

TMMC takes advantage of distributed computing in blockchain to provide a platform that dra-

matically simplifies the work that needs to be performed by verifiers. More specifically, the ver-

ification complexity is practically constant, viz., independent of the size/scale of inputs. In this
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section, we investigate TMMC verification algorithms of several common NP problems like Max-

imal Independent Set (MIS), Vertex Cover (VC), and the Travelling Salesman Problem (TSP),

Graph Coloring problem, Clique problem, Dominating set problem, etc. [29].

7.1 Maximal Independent Set (MIS)

Given an undirected graph G = (V,E), an independent set is a subset of nodes U ⊆ V , such

that no two nodes in U are adjacent. Maximal Independent Set (MIS) is an independent set but

with a special property Figure 7.1.

Figure 7.1

Maximal independent set {v2, v4, v5}

An independent set is maximal if no node can be added without violating independence. If I is

an MIS of graph G with vertices V , then no new vertex can be added to the set I without breaking

the adjacent property.
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Finding a maximal independent set (MIS) of a graph using a sequential algorithm is difficult.

The decision version of the problem is given a graph G = (V,E), does G contain a maximal

independent set of cardinality k? Now, if we are given the solution S, all we have to do is prove

S is the maximal independent set of G. The verification algorithm we are proposing is given in

Figure 7.2:

Figure 7.2

Verification algorithm for MIS

7.1.1 Predicates and State-transition Functions

We need three OMTs to execute the MIS verification algorithm. The description of these OMTs

along with some other registers to store constants are given below:
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• R0 stores the root of the OMT containing the input graph with the node as key and the nested

OMT representing the neighboring nodes as value.

• R1 stores the root of the OMT containing the MIS solution with the node as key and a dummy

as a value as we do not need any other information such as edge weight in MIS solution.

• R2 stores the root of nested OMT from R0 containing the neighboring node as key and a

dummy as a value.

• C stores the identifier of the solution node currently being processed

• CN stores the identifier of the neighbor of C currently being processed

Table 7.1

Predicates of MIS verification algorithm

Registers Python Variables
R0 : (n, v), n=node in input, v=adjacent node OMT
R1 : (n, v), n=node in MIS, v=dummy value
R2 : (n, v), n=neighbor node, v=dummy value
C : Node in solution currently being handled
CN : Neighbor of C currently being handled

R0={}
R1={}
R2={}
C=0
Cn=0

We need two state-transition functions for the MIS verification algorithm:

1. Initialize (F0): The invocation of this state-change function populates two OMTs (R0 and

R1). Every item in R0 represents each node of the graph. Key of R0 is a unique node

identifier v and value is a nested OMT representing nodes adjacent to v (assigned to R2.

In the nested OMT, keys represent a unique identifier of the adjacent nodes. Every item in
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R1 represents each node in the MIS set i.e. the solution. The key of R1 is a unique node

identifier v′.

After the execution of this state-change function, R0 and R1 are populated with the input

graph and the solution respectively. At the end, the lowest key of R1 is assigned as the

current node C, the lowest key of R2 is assigned as the current node CN for the next state-

change function.

Table 7.2

Initialize

F0: Initialization F0: Python Equivalent

Input: r0, r1, v, C,CN

Pre: R0 = R1 = R2 = C = CN = 0
Post: R0 ← r0, R1 ← r1, C ← get min(R1),
(C, v) ∈ R0, R2 ← v, CN ← get min(R2)

def init(r0, r1, v, C, Cn):
if not R0 and not R1 and not R2
and C==0 and Cn==0:

R0=r0
R1=r1
C=get_min(R1)
if R0[C]==v:

R2=v
Cn=get_min(R2)

2. Verifying neighboring property (F1): This state-change function verifies the neighboring

property for the current node in C. This means the neighboring node of C in CN should not

be in R1. This neighboring property preserves the definition of the maximal independent set.

At the end of executing this state-change function, CN is deleted from R2 and assigned to

the min key in R2. If the next key is lower than the current key, then we can confirm the

neighboring property of all the neighbors of C is completed.
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Table 7.3

Verifying neighboring property

F1: Verifying neighboring property F1: Python Equivalent

Input: r0, r1, CN

Pre: next key(CN , R2) ≥ CN , CN /∈ R1

Post: CN /∈ R1, CN ← extract min(R2), CN /∈
R0

def verify_neighbor(Cn):
if next_key(Cn, R2) > Cn and Cn
not in R1:

R1[Cn]=0
Cn=extract_min(R2)
R0[Cn]=0

3. Update current node (F2): This state-change function updates the current nodeC to the min

key in R1. It makes sure the register R2 is empty indicating the neighbors of the previous C

were checked to satisfy the neighboring property. It also assigns R2 to the neighbors of the

new node in C.

At the end of executing this state-change function, C is deleted from R0. If the next key

is lower than the current key, then we can confirm we have considers all the nodes in the

solution in R1. The content of R0 and R2 will be empty when the given solution is correct.

7.1.2 Complexity Analysis

MIS algorithm finds the maximal independent set in graph G with V nodes and E edges. In

our representation, each atomic state-transition function is associated with different complexity.

The initialization function F0 is invoked only once for initializing R0 and R1 with the input

and the solution of the MIS problem in constant time. It takes O(log2 V ) time for the get min()

function and to check existence of an item.
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Table 7.4

Update current node

F2: Update Current Node F2: Python Equivalent

Input: v, C
Pre: next key(C,R1) ≥ C, (C, v) ∈ R0, R2 = 0
Post: C /∈ R0, C /∈ R1, C ← extract min(R1),
R2 ← v

def update_current_node(v, C):
if next_key(C, R1) > C and R0[C
]==v and R2==0:

R0[C]=0
R1[C]=0
C=extract_min(R1)
R2=v

F1 checks the neighboring property for each neighbor of the current node and is invoked for

(V − 1) neighbors of V total nodes. Each checking takes O(log2 V ) time meaning O(V 2 log2 V )

time in total.

F2 updates the current node (V − 1) times. Each update takes O(log2 V ) time meaning

O(V log2 V ) in total.

7.2 Vertex Cover (VC)

Vertex Cover of a graph G = (V,E) is a set of nodes, S such that each edge in E has at least

one endpoint in S. This means nodes in S will cover all the edges of G. If (u, v) ∈ E, then u ∈ S

and/or v ∈ S.

Finding a vertex cover of a graph is a hard problem. The decision version of this problem is

given the graph G and a positive integer k, does G have a vertex cover of size k? which is an

NP problem. As we know NP problem can be verified easily (in polynomial time) once given the

solution, we propose in Figure 7.4 a verification algorithm to verify the correctness of the given

vertex cover.
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Figure 7.3

Vertex cover {v3}

Figure 7.4

Verification algorithm for vertex cover
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7.2.1 Predicates and State-transition Functions

We need two OMTs to execute the VC verification algorithm. The description of these OMTs

along with some other registers to store constants and state-transition functions are given below:

• R0 stores the root of the OMT containing the edges of the input graph. Every item in R0

represents each edge of the graph. The key ofR0 is a unique edge identifier of the form u ‖ v

where u and v are node identifiers concatenated together.

• R1 stores the provided VC solution. The key of R1 is a unique node identifier v and the

values are dummies.

• CE holds the current edge in R0 being processed

• U holds the start node of the current edge being processed.

• V holds the end node of the current edge being processed

Table 7.5

Predicates of vertex cover verification algorithm

Registers Python Variables
R0 : (u ‖ v, d), u ‖ v=edge with node u and v,
d=dummy value
R1 : (n, d), n=node in MVC, d=dummy value
CE : Stores the current edge being processed
U : Stores the one endpoint of the current edge
V : Stores the other endpoint of the current edge

R0={}
R1={}
Ce=0
U=0
V=0

We need three state-change functions to execute the VC verification algorithm.
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1. Initialization (F0): After the execution of this state-change function, R0 and R1 are popu-

lated with the edges of the input graph and the solution respectively. At the end, the lowest

key of R0 is assigned to CE as the current edge for the next state-change functions. Another

two registers U and V are assigned to the two nodes associated with the edge in CE .

Every item in R0 represents each edge of the graph. Key of R0 is a unique node identifier

u ‖ v. Every item in R1 represents each node in the VC set i.e. the solution. The key of R1

is a unique node identifier v.

Table 7.6

Initialization

F0: Initialization F0: Python Equivalent

Input: r0, r1, CE , U, V
Pre: R0 = R1 = CE = U = V = 0
Post: R0 ← r0, R1 ← r1, CE ← get min(R0),
U ← split(CE)[0], V ← split(CE)[1]

def init(r0, r1, Ce, U, V):
if not R0 and not R1 and Ce==U
==V==0:

R0=r0
R1=r1
Ce=get_min(R0)
endpoints=split(’,’)
U=endpoints[0]
V=endpoints[1]

2. Remove edge with start node in solution (F1): This state-change function checks whether

the node in U is in R1. If it is, then the edge in CE is removed from R0.

3. Remove edge with end node in solution (F2): This state-change function checks whether

the node in V is in R1. If it is, then the edge in CE is removed from R0.
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Table 7.7

Remove edge with start node in solution

F1: Remove edge with start point F1: Python Equivalent

Input: CE

Pre: next key(CE , R0) ≥ CE , U 6= 0, U ∈ R1

Post: CE /∈ R0, CE ← extract min(R0), U ←
split(CE)[0], V ← split(CE)[1]

def remove_edge_with_start_node(Ce)
:
if next_key(Ce, R0) >= Ce and U
=!0 and R1[U]!=0:

R0[Ce]=0
Ce=extract_min(R0)
U=Ce.split(’,’)[0]
V=Ce.split(’,’)[1]

Table 7.8

Remove edge with end node in solution

F2: Remove edge with end point F2: Python Equivalent

Input: CE

Pre: next key(CE , R0) ≥ CE , V 6= 0, V ∈ R1

Post: CE /∈ R0, CE ← extract min(R0), U ←
split(CE)[0], V ← split(CE)[1]

def remove_edge_with_start_node(Ce)
:
if next_key(Ce, R0) >= Ce and V
=!0 and R1[V]!=0:

R0[Ce]=0
Ce=extract_min(R0)
U=Ce.split(’,’)[0]
V=Ce.split(’,’)[1]
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If the solution is correct all the edges will be covered by the nodes in the solution and the

content of R0 will be empty.

7.2.2 Complexity Analysis

Vertex Cover finds the vertex cover in graph G with V nodes and E edges. Using conventional

architecture. In our representation, each atomic function is associated with different complexity.

In the TMMC model, every read and write from memory takes logarithmic time.

Initialization function F0 is invoked only once and assigns roots to registers in constant time.

It calls the get min() function in O(log2E) time.

F1 removes all the edges from R0 that have their start node in the solution. Removing one edge

takes O(log2E) time meaning O((E/2) log2E) in total.

F2 removes all the edges from R0 that have their end node in the solution. Removing one edge

takes O(log2E) time meaning O((E/2) log2E) in total.

7.3 Traveling Salesman Problem (TSP)

Travelling Salesman Problem is closely related to the Hamiltonian-cycle problem. Hamiltonian

cycle in a graph G contains a path that covers all the nodes of G i.e. V and no node in V is visited

two times except the starting node (Figure 7.5). Traveling salesman is an NP-Hard Problem. The

naive and dynamic solution to this problem is infeasible. The approximate solution basically solves

it using Prim’s algorithm for calculating a minimum spanning tree if a certain condition is satisfied.

On the other hand, given the solution to this problem, we can easily verify its correctness (in

polynomial time). It refers to checking whether the given solution forms a Hamiltonian path in the
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Figure 7.5

TSP solution (Hamiltonian cycle {v1, v2, v4, v5, v3, v1} with start node v1)

input graph. However, the provided solution may not be the optimal solution to solve the traveling

salesman problem. The verification algorithm for the TSP solution is given in Figure 7.6:

7.3.1 Predicates and State-transition Functions

We need five registers for executing the verification algorithm of the TSP solution. Three

registers to store OMTs (R0, R1, R2) and two registers (C, S) to store constant values.

• R0 stores the nodes of the graph. Key of R0 is a unique identifier of the node e.g. v.

• R1 stores the edges of the graph. Key of R1 is a unique identifier for the edge e.g. u ‖ v.

• R2 stores the edges of TSP solution forming a Hamiltonian cycle. Key of R2 is a unique

identifier for the edge e.g. u ‖ v.

• S stores the start node of the TSP solution.
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Figure 7.6

TSP verification algorithm

• C stores the node of the graph from R0 currently being processed.

We need two state-transition functions for executing the verification algorithm of the TSP so-

lution.

1. Initialization (F0): Invocation of this state-change function populates three OMTs (R0, R1,

and R2) with the input nodes, input edges and edges in the TSP solution respectively. It also

gets the minimum key of R0 and assigns it to C and S.

2. Delete edge if starts with current node (F1): F1 finds the edge with node C in the solution

i.e. R2 and if there is an edge with C as a start node it deletes that from the solution. it also

makes sure the edge belongs to the original input graph by checking its existence in R1. The

end node of the deleted edge should be unvisited, meaning should not be in R0.
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Table 7.9

Predicates of TSP solution verification algorithm

Registers Python Variables
R0 : (n, d), n=node identifier, d=dummy value
R1 : (u ‖ v, d), u ‖ v=edge with node u and v,
d=dummy value
R2 : (u ‖ v, d), u ‖ v=edge with node u and v in the
TSP solution, d=dummy value
C : Stores the current node being processed
S : Stores the start node

R0={}
R1={}
R2={}
C=0
S=0

Table 7.10

Initialization

F0: Initialization F0: Python Equivalent

Input: r0, r1, r2, C, S
Pre: R0 = R1 = R2 = C = S = 0
Post: R0 ← r0, R1 ← r1, R2 ← r2, C ←
get min(R0), S ← C

def init(r0, r1, r2, C, S):
if not R0 and not R1 and C==S
==0:

R0=r0
R1=r1
R2=r2
C=extract_min(R0)
S=C
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At the end of executing this function, C is also deleted from R0 and it is reassigned to the

lowest key of R0.

Table 7.11

Delete edge if starts with current node

F1: Delete edge if starts with current node F1: Python Equivalent

Input: v, C
Pre: next key(C,R0) > C, C ‖ v ∈ R2, C ‖ v ∈
R1, v /∈ R0

Post: C /∈ R0, C ← extract min(R0), C ‖ v /∈
R2

def delete_edge(v, C):
if next_key(C, R0) > C and R2[C
+v]!=0 and R1[C+v]!=0 R0 and R0[
v]==0:

R0[C]=0
C=extract_min(R0)
R2[C+v]=0

3. Check cycle completion (F2): This performs a similar task as F1 except the end node of the

edge to be deleted fromR1 andR2 should be the start node in S to complete the Hamiltonian

cycle.

At the end of executing this function, the contents of R0 should be empty denoting all the

nodes were visited by the cyclic path mentioned in the solution i.e. R2 which will also be

empty as each edge in R2 corresponds to one node in R0/

7.3.2 Complexity Analysis

F0 is invoked only one time and performs the initialization in constant time. It also performs

get min() in O(log2 V ) time.

F1 runs for each node in R0 and for each node it finds the edge in R2 in O(log2E) time. Its

running time for all the nodes is hence O(V log2E) time.
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Table 7.12

Check cycle completion

F2: Check cycle completion F2: Python Equivalent

Input: v, C
Pre: next key(C,R0) = C, C ‖ v ∈ R2, C ‖ v ∈
R1, v = S
Post: C /∈ R0, C ← extract min(R0), C ‖ v /∈
R2

def cycle_completion(v, C):
if next_key(C, R0) > C and R2[C
+v]!=0 and R1[C+v]!=0 R0 and v==
S:

R0[C]=0
C=extract_min(R0)
R2[C+v]=0

F2 is invoked one time where it extracts the last node in R0 in O(log2 V ) time

7.4 Graph coloring

In graph coloring problem, the elements of a graph G is assigned colors. These elements can

be nodes or edges. Node coloring is the most common form of graph coloring. This refers to

coloring each of the node of G in such a way that no two adjacent node of G has the same color.

The minimum number color needed to color the nodes of G is also called the chromatic number of

G. Finding the chromatic number of a graph is a NP-problem.

7.4.1 Predicates and State-transition Functions of Graph Coloring Verification Algorithm

• R0 is the OMT that stores the input graph G. Each entry in this OMT has the form (k, v),

where k is the node identifier and v is a nested OMT containing all the neighbors of k

• R1 contains the OMT representing colors that are needed to color the nodes of the input

graph. Each entry ofR1 represents a color. If there are n colors inR1, this means a minimum
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Figure 7.7

Graph colored with two colors, {v1, v3, v6}=green, {v2, v4, v5}=red

n color is needed to color the nodes of the input graph preserving the ’no-adjacent-same-

colored-node’ property.

• R2 holds the nested value of R0 i.e. the OMT of neighbors of the current node. Each entry

in R2 looks like (k, v) where k is the neighbor’s node identifier and v is a dummy value.

• C stores the current node being handled in R1.

• N stores the current neighbor node being handled in R2.

Verification of the given graph coloring of a graph requires three state-transition functions using

TMMC.

1. Initialization (F0): F0 initialize R0 with the root of OMT representing the input graph. It

also initializes R1 with the root of OMT that contains all the node identifiers as keys and

their corresponding colors as values. It sets C, the current node as the minimum key of R1

and N as the minimum key of R2 where the content of R2 is the neighbors of C in R0.
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Table 7.13

Predicates and State-transition Functions

Registers Python Variables
R0 : (n, v), n=node in input, v=nested neighbor
OMT
R1 : (n, c), n=node in solution, c=color assigned
R2 : (n, v), n=neighbor node, v=dummy value
C : Node in solution currently being handled
N : Neighbor of C currently being handled

R0={}
R1={}
R2={}
C=0
N=0

Table 7.14

Initialization

F0: Initialization F0: Python Equivalent

Input: r0, r1, C,N, v
Pre: R0 = R1 = R2 = C = N = 0
Post: R0 ← r0, R1 ← r1, C ← get min(R1),
(C, v) ∈ R0, R2 ← v, N ← extract min(R2)

def init(r0, r1, C, N, v):
if not R0 and not R1 and not R2
and C==0 and N==0 and v==0:

R0=r0
R1=r1
C=get_min(R1)
if R0[C]==v:

R2=v
N=extract_min(R2)
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2. Check colors of neighbor (F1): F1 checks the color assignment to the current node C with

the color assignment of one of its neighbors in N . Both of them should be assigned different

colors.

Table 7.15

Check colors of neighbor

F1: Check colors of neighbor F1: Python Equivalent

Input: c1, c2, N
Pre: next key(N,R2) ≥ N , (C, c1) ∈ R1,
(N, c2) ∈ R1, c1 6= c2
Post: N ← extract min(R2)

def check_neigh_color(c1, c2, N):
if next_key(N, R2) >= N and R1[
C]==c1 and R1[N]==c2 and c1 !=
c2:

N=extract_min(R2)

3. Assign next current node (F2): When we are done with checking the colors of all the

neighbors in R2, F2 assigns a new current node to C. At the end, R1, the solution OMT will

be empty indicating all the nodes in the solution were correctly colored.

7.4.2 Complexity Analysis

Lets take graph G as our input with V nodes. F0 is executed one time for initialization with

O(1) time complexity. F2 checks the colors for the given two nodes inO(log2 V ) time. This func-

tion is executed for all the neighbor (at most V ) nodes of all V nodes of the graphG (O(V 2 log2 V )

in total).
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Table 7.16

Assign next current node

F2: Assign next current node F2: Python Equivalent

Input: C, v
Pre: next key(C,R1) ≥ C,R2 = 0
Post: C ← extract min(R1), (C, v) ∈ R0, R2 ← v

def assign_next_node(C):
if next_key(C, R1) >= C and R2
==0:

C=extract_min(R1)
if R0[C]==v:

R2=v

7.5 Clique

The clique problem in computer science refers to finding cliques in graphs. A clique in a graph

G with node V and edge E refers to the subset V ′ ⊆ V , where all the nodes belonging to V ′

are adjacent to each other. The graph containing the set of V ′ is also referred to as the complete

sub-graph of G.

7.5.1 Predicates and State-transition Functions

• R0 is the OMT that stores the edges of the input graph G. Each entry in this OMT has the

form (u ‖ v, d), where u ‖ v represents an edge and d is a dummy value.

• R1 contains the OMT representing the nodes that have cliques in graphG. If there is 4 clique

in graph G, R1 will have 4 entries.

• C stores the current clique node being handled in R1.

• N stores the other clique node that must have an edge with C in R0.

Verification of the given clique solution of a graph requires three state-transition functions

using TMMC.
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Figure 7.8

Graph with four cliques {v1, v2, v3, v4}

Table 7.17

Predicates and State-transition Functions

Registers Python Variables
R0 : (u ‖ v, v), u ‖ v=edge, d=dummy value
R1 : (n, d), n=clique node, d=dummy value
C : Clique node in solution currently being handled
N : other clique node currently being checked to
have an edge with C

R0={}
R1={}
C=0
N=0
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1. Initialization (F0): F0 initializeR0 with the root of OMT representing the edges of the input

graph G. It also initializes R1 with the root of OMT that contains all the nodes belongs to

the clique solution. F0 also sets C, the current clique node as the minimum key of R1 and N

which is the next key of C in R1.

Table 7.18

Initialization

F0: Initialization F0: Python Equivalent

Input: r0, r1, CE

Pre: R0 = R1 = CE = 0
Post: R0 ← r0, R1 ← r1, C ← extract min(R1),
N ← next key(C,R1)

def init(r0, r1, Ce):
if not R0 and not R1 and C==0
and N==0:

R0=r0
R1=r1
C=extract_min(R1)
N=next_key(C, R1)

2. Check clique edge (F1): F1 checks whether there is and edge between C andN in the OMT

R0. C and N both being a clique node in the solution in R1, there must be an edge between

them.

3. Choose the next clique node (F2): When we are done with checking the clique properties

of the clique node in C, we remove it from R1 and choose another node in R1 to check the

clique properties. At the end, R1, the solution clique OMT will be empty indicating all the

nodes in the solution are adjacent to each other.
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Table 7.19

Check clique edge

F1: Check clique edge F1: Python Equivalent

Input: C,N
Pre: C ‖ N ∈ R0, next key(N,R1) ≥ N
Post: N ← next key(N,R1)

def check_clique_edge(C, N):
if R0[C+N] != 0 and next_key(N,
R1) >= N:

N=next_key(N, R1)

Table 7.20

Choose next clique node

F2: Choose next clique node F2: Python Equivalent
Input: C
Pre: next key(C,R1) ≥ C
Post: C ← extract min(R1)

def choose_next_clique_node(C):
if next_key(C, R1) >= C:

C=extract_min(R1)

7.5.2 Complexity Analysis

Lets take graphG as our input with V nodes andE edges. F0 is executed one time for initializa-

tion with O(1) time complexity. F2 checks for k edges in R0 (for k clique nodes) in O(k2 log2 V )

time. F2 choose the next clique node k − 1 times, each taking O(log2K) time.

7.6 Dominating Set

In graph theory, dominating set D of a graph G with nodes V and edge E contains a subset of

nodes (D ⊆ V ) with a special property. The property is all of the node in V is adjacent to at least

one node in D. The term dominating number refers to the smallest number of nodes consisting the

dominating set. Finding the dominating set of a graph is a NP problem.
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In Figure 7.9, the subset of nodes i.e. {v1, v5, v6} is a dominating set as every other node in V

i.e. {v2, v3, v4} is adjacent to at least one node in D.

Figure 7.9

Dominating set {v1, v5, v6}

7.6.1 Predicates and State-transition Functions

• R0 is the OMT that stores the input graph G. Each entry in this OMT has the form (k, d),

where k is the node identifier and d is a dummy value

• R1 is the OMT that stores the edges of the input graph G. Each entry in this OMT has the

form (u ‖ v, d), where u ‖ v is the edge identifier and d is a dummy value

• R2 holds the given dominating set solution that needs to be verified. Each entry in R2 looks

like (k, d) where k is a node identifier in the dominating set and d is a dummy value.

• C stores the current node being handled in R0.

Verification of the given dominating set of a graph requires two state-transition functions using

TMMC.
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Table 7.21

Predicates and State-transition Functions

Registers Python Variables
R0 : (n, d), n=node in input, d=dummy value
R1 : (u ‖ v, d), u ‖ v=edge with node u and v,
d=dummy value
R2 : (n, d), n=node in dominating set, d=dummy
value
C : Node in dominating solution currently being
handled

R0={}
R1={}
R2={}
C=0

1. Initialization (F0): F0 initializeR0 with the root of OMT representing the input graph nodes

and R1 with the root of OMT that contains the edges of the input graph. It also initializes R2

with the dominating set OMT root. It sets C, the current node as the minimum key of R0.

2. Check dominating set property of the current node (F1): F1 checks the dominating set

property of the node stored in C. This means, the current node should not belong to the

dominating set and there must be at one node in R2 with which C will have an edge in R1.

F1 checks this property for all nodes in R0.

After all checking are completed, R0 should be empty indicating the given solution to be

correct.

7.6.2 Complexity Analysis

Lets take graph G as our input with V nodes and E edges. F0 is executed one time for ini-

tialization of R0, R1, and R2 with O(1) time complexity. F2 checks the dominating property by

reading items from R1 and R2 in logarithmic time i.e. O(log2E) and O(log2 V ) for V nodes

(O(V (log2E + log2 V ))in total).
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Table 7.22

Initialization

F0: Initialization F0: Python Equivalent

Input: r0, r1, r2, C
Pre: R0 = R1 = R2 = C = 0
Post: R0 ← r0, R1 ← r1, R2 ← r2, C ←
extract min(R0)

def init(r0, r1, C):
if not R0 and not R1 and not R2
and C==0:

R0=r0
R1=r1
R2=r2
C=extract_min(R0)

Table 7.23

Check dominating set property of the current node

F1: Check dominating set property of the current node F1: Python Equivalent

Input: C, n
Pre: next key(C,R0) ≥ C, C ∈ R0, C /∈ R2,
n ∈ R2, C ‖ n ∈ R1

Post: C ← extract min(R0)

def check_domin_property(C, n):
if next_key(C, R20) >= C and R0
[C]!=0 and R2[C]==0 and R2[n]!=0
and R1[C+n] != 0:

C=extract_min(R0)
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CHAPTER VIII

CONCLUSION

Security is one of the most prime issues these days considering the amount of data-driven

systems that are used in our day to day lives. Information systems are comprised of complex

processes. The more complex a system, the more difficult it is to assure its integrity. Adding many

layers of “security solutions” often further complicates the system, and consequently, may even

increase the risk of security failures. The integrity of an information system is predicated on the

integrity of processes that manipulate data and depend on the correct execution of its processes.

TCB minimizing model of computation (TMMC) explicitly seeks to minimize the TCB of a

computing system that is susceptible to illegitimate attacks. Notwithstanding limitations imposed

on the TCB, even complex large-scale processes can be executed under the TMMC model. It can

be an alternative for the assured execution of a variety of algorithms used in practical systems.

This ongoing research work is spreading its branches to explore an increasing number of algo-

rithms used in popular application domains. Exploring different domains helps to create a generic

framework of writing state-transition functions for any algorithms. Every algorithm is different

considering how its data items are stored and its processes are executed.

The boom of the blockchain network has shown mankind a groundbreaking way of securing

existing systems along with some already existing cryptography tools. The application of the
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blockchain network is limitless and the area is very promising. This research work puts together

ideas to utilize this field of enormous potential.

8.1 Contribution

With the existing active approach to deal with security attacks, we need to be ready for any

eventuality. The type of attacks and threats are unlimited. Everyday, the attackers will invent a new

way to create disruption. This continued battle will go on forever. Taking a passive approach where

we strictly define a set of rules for executing a system will proactively make sure the integrity of

the system. Any deviation from these rules will immediately trigger anomaly and we will exactly

“what” went wrong and “when” it went wrong without extensive deep dive into the system. TMMC

plays an important role towards moving to such definition of process execution.

As the outcomes of this research work, we have published the following papers so far:

• Naila Bushra, Naresh Adhikari and Mahalingam Ramkumar (2018, September). A TCB

Minimizing Model of Computation. In International Symposium on Security in Computing

and Communication (pp. 455-470). Springer, Singapore. [12]

• Naresh Adhikari, Naila Bushra and Mahalingam Ramkumar (2017). Secure Queryable Dy-

namic Maps. In Proceedings of the International Conference on e-Learning, e-Business,

Enterprise Information Systems, and e-Government (EEE) (pp. 65-71). The Steering Com-

mittee of The World Congress in Computer Science, Computer Engineering and Applied

Computing (WorldComp). [1]

Following is a list of papers that were accepted in several conference proceeding so far.
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• Naila Bushra, Naresh Adhikari and Mahalingam Ramkumar, Secure Queryable Dynamic

Graphs Using Blockchains, in proceedings of IEEE TPS 2019, Los Angeles, CA

• Naila Bushra, Naresh Adhikari and Mahalingam Ramkumar, Scalable Verification of NP

Problems in Blockchain, in proceedings of ICCWS 2020, Norfolk, VA

• Naresh Adhikari, Naila Bushra, and Mahalingam Ramkumar, Complete Merkle Hash Trees

for Large Dynamic Spatial Data, International Conference on Computational Science and

Computational Intelligence, in proceedings of CSCI 2019, Las Vegas, NV

• Naresh Adhikari, Naila Bushra, and Mahalingam Ramkumar, Blockchain-based Redistrict-

ing Evaluation Protocol, in proceedings of IEEE TPS 2019, Los Angeles, CA

• Naresh Adhikari, Naila Bushra and Mahalingam Ramkumar, Blockchain-based Redistricting

Evaluation Protocol, in proceedings of ICCWS 2020, Norfolk, VA

We have successfully submitted two more manuscripts to the ACM CODASPY conference:

• Naila Bushra, Naresh Adhikari, and Mahalingam Ramkumar, Assured Execution of Com-

putational Geometry Algorithms, CODASPY 2020, New Orleans, LA

• Naresh Adhikari, Naila Bushra, and Mahalingam Ramkumar, Authoritative and Unbiased

Responses to Geographic Queries, CODASPY 2020, New Orleans, LA

We are in the process of submitting two journal papers from this research work:

• Design and Application of Secure Queryable Dynamic Graph

• TMMC: An Adaptable Model of Computation with Minimal TCB
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8.2 Application of TMMC
8.2.1 Graph algorithms

The graph algorithms are essential components of many large-scale information systems. Guar-

anteeing the integrity of the execution of various graph algorithms (such as computation of shortest

path, disjoint sets, minimum spanning tree, etc.) becomes especially challenging for graphs with

very large numbers of nodes and/or edges. TMMC can verify the correctness of the execution of

graph algorithms, irrespective of the scale of the graph, without the need to rely on trusted third

parties. A possible application can be secure queryable dynamic graphs.

8.2.2 Computational geometry algorithms

Assured execution of computational geometry algorithms is a crucial requirement for sev-

eral real-world applications in geographical information systems (GIS), computer graphics and

computer-aided design, robotics, etc. A variety of computational geometry algorithms can be exe-

cuted under the TMMC model.

8.2.3 Financial systems

Another area critical to secure execution is algorithms in finance. Financial institutions such as

banks, credit unions, stock-markets use a range of algorithms to determine the credibility of clients,

trading, fund re-balancing, etc. These algorithms are generally very complex to understand hence

can be vulnerable to unauthorized alteration when executed in an untrusted environment. TMMC

can provide a platform to easily break down these complex processes into simple functions that are

easier to verify.
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8.2.4 Dynamic algorithms

Many information systems run in real-time and deal with ever-changing data. Here, the in-

tegrity of constantly changing data items and the effect of this change in the systems need to be

verified correctly in real-time to make sure the integrity of the system is intact. TMMC offers to

provide strictly defined rules that drive how the system is supposed to change and provide simple

ways to verify those rules upholding the correctness of the system.

8.2.5 NP problems

The algorithm for verification of the correctness of a solution is substantially easier than the

algorithm for obtaining the solution. Blockchain networks incentive mechanism can be used for

proposing the best solution to an NP problem. A metric can be associated with the solution for an

NP problem. In blockchain-TMMC incentivized used may compete to provide the solution with the

best metric, and execute the verification algorithm to prove the correctness of the solution. Given

the correct solution and the best metric, TMMC can establish the correctness of the verification

algorithm.

8.3 Future Work

There are some challenges still to be considered in this work. The most challenging aspect of

the research would be to describe a secure model of computation that can be generalized for all

information domains. Existing state-model based approaches focus mostly on specific domains of

application. They do not provide any generic framework that suits the need for executing algo-

rithms for a variety of domains. The proposed idea intends to define a model that can be used to

represent a various range of algorithms each with domain-specific authenticated data structures.
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A major part of this research involves converting different algorithms into state-transition func-

tions to fit the description of TMMC and figure out given the description of the model what is the

best way to execute different algorithms. The rules need to be carefully defined as a form of

byte-code in order to develop a formal language to represent state-transition rules for a range of

algorithms belonging to different domains.
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