
Mississippi State University Mississippi State University

Scholars Junction Scholars Junction

Theses and Dissertations Theses and Dissertations

4-30-2011

Trustworthy Computing Approach for Securing Ad Hoc Routing Trustworthy Computing Approach for Securing Ad Hoc Routing

Protocols Protocols

Vinay Thotakura

Follow this and additional works at: https://scholarsjunction.msstate.edu/td

Recommended Citation Recommended Citation
Thotakura, Vinay, "Trustworthy Computing Approach for Securing Ad Hoc Routing Protocols" (2011).
Theses and Dissertations. 4794.
https://scholarsjunction.msstate.edu/td/4794

This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at
Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of
Scholars Junction. For more information, please contact scholcomm@msstate.libanswers.com.

https://scholarsjunction.msstate.edu/
https://scholarsjunction.msstate.edu/td
https://scholarsjunction.msstate.edu/theses-dissertations
https://scholarsjunction.msstate.edu/td?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4794&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsjunction.msstate.edu/td/4794?utm_source=scholarsjunction.msstate.edu%2Ftd%2F4794&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholcomm@msstate.libanswers.com

TRUSTWORTHY COMPUTING APPROACH FOR SECURING AD HOC ROUTING

PROTOCOLS

By

Vinay Thotakura

A Dissertation
Submitted to the Faculty of
Mississippi State University

in Partial Fulfillment of the Requirements
for the Degree of Doctor of Philosophy

in Computer Science
in the Department of Computer Science and Engineering

Mississippi State, Mississippi

April 2011

Copyright by

Vinay Thotakura

2011

TRUSTWORTHY COMPUTING APPROACH FOR SECURING AD HOC ROUTING

PROTOCOLS

By

Vinay Thotakura

Approved:

Mahalingam Ramkumar
Associate Professor of Computer Science
and Engineering
(Major Professor)

Rayford B. Vaughn
Bill and Carolyn Cobb Professor of Com-
puter Science and Engineering
Associate Vice President for Research
(Committee Member)

David A. Dampier
Associate Professor of Computer Science
and Engineering
(Committee Member)

Yoginder S. Dandass
Associate Professor of Computer Science
and Engineering
(Committee Member)

Edward B. Allen
Associate Professor
and Graduate Coordinator
Computer Science and Engineering

Dr. Sarah A. Rajala
Dean
James Worth Bagley
College of Engineering

Name: Vinay Thotakura

Date of Degree: April 29, 2011

Institution: Mississippi State University

Major Field: Computer Science

Major Professor: Dr. Mahalingam Ramkumar

Title of Study: TRUSTWORTHY COMPUTING APPROACH FOR SECURING AD
HOC ROUTING PROTOCOLS

Pages in Study: 154

Candidate for Degree of Doctor of Philosophy

Nodes taking part in mobile ad hoc networks (MANET) are expected to adhere to the

rules dictated by the routing protocol employed in the subnet. Secure routing protocols

attempt to reduce the ill-effect of nodes under the control of malicious entities who de-

liberately violate the protocol. Most secure routing protocols are reactive strategies which

include elements like redundancies and cryptographic authentication to detect inconsisten-

cies in routing data advertised by nodes, and perhaps explicit measures to react to detected

inconsistencies.

The approach presented in this dissertation is a proactive approach motivated by the

question “what is a minimal trusted computing base for a MANET node?” Specifically, the

goal of the research was to identify a small set of well-defined low-complexity functions,

simple enough to be executed inside highly resource limited trusted boundaries, which can

ensure that nodes will not be able to violate the protocol.

In the proposed approach every node is assumed to possess a low complexity trusted

MANET module (TMM). Only the TMM in a node is trusted - all other hardware and

software are assumed to be untrusted or even hostile. TMMs offer a set of interfaces to

the untrusted node housing the TMM, using which the node can submit data to the TMM

for cryptographic verification and authentication. As other nodes will not accept packets

that are not authenticated by TMMs, the untrusted node is forced to submit any data that it

desires to advertise, to its TMM. TMMs will authenticate data only if the untrusted node

can convince the TMM of the validity of the data.

The operations performed by TMMs are to accept, verify, validate data submitted by

the untrusted node, and authenticate such data to TMMs housed in other nodes. We enu-

merate various TMM interfaces and provide a concrete description of the functionality

behind the interfaces for popular ad hoc routing protocols.

DEDICATION

To my parents T. Suresh Babu, Ch. Vani, and my sister T. Sravanthi, who have given

me immense love, care and encouragement that has guided me this far.

ii

ACKNOWLEDGMENTS

When I first arrived in America, I was extremely excited, and to be frank was even

nervous on how I would pursue my higher studies in a completely different country. I was

also equally anxious to find out what future had in store for me in this new place. Today,

when I look back, I can confidently say that five years back I had taken the best decision

ever - “to get a higher degree in USA”. Now that I am recollecting my journey in USA, I

would like to thank few people who played a commendable role in shaping me the way I

am today.

Firstly, I would like to extend my earnest and humble gratitude to my mentor and PhD

advisor Dr. Mahalingam Ramkumar. He has taught me the very basics of conducting re-

search. I really could not have asked for a better advisor. I was heavily influenced by his

way of approaching complex research problems, and the manner in which he analyses a

given solution. He always created a friendly work environment, and was very patient in

clarifying my questions. I am very thankful for the financial support and research oppor-

tunities that he has provided me during my tenure at MSU.

I would like to extend my thanks to Dr. Rayford A. Vaughn, Dr. David A. Dampier,

and Dr. Yoginder Dandass for serving as members in my PhD Dissertation Committee,

and for their insightful suggestions and feedback.

iii

I would also like to thank the Department of Computer Science and Engineering at

Mississippi State University for assisting me with the much required financial support. I

would like to thank the departmental staff Ms. Shonda Cumberland, Ms. Jo Coleson, Ms.

Courtney Blaylock, and Ms. Keri Chisolm for their support.

I also would like to extend my appreciations to my seniors K.A. Sivakumar and K.

Anil who helped me to settle down during my initial days. In this regard I also would like

to thank my friends Nandeesh, Sam, and Srinath for their support and encouragement.

Finally, I once again thank my parents and my sister for their continuous love and

affection.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGMENTS . iii

LIST OF TABLES . ix

LIST OF FIGURES . x

LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE xii

CHAPTER

1. INTRODUCTION . 1

1.1 Secure MANET Protocols . 1
1.2 Goals and Hypothesis . 2
1.3 Specific Contributions of this Dissertation 4
1.4 Organization of this Report . 6

2. LITERATURE SURVEY . 8

2.1 Ad Hoc Routing Protocols . 8
2.2 Secure Ad Hoc Routing Protocols . 10

2.2.1 Attacks . 10
2.2.2 Countermeasures . 11

2.3 AODV and DSR . 16
2.3.1 Secure Extensions of AODV 17

2.3.1.1 Secure Extensions of DSR 19
2.4 TORA . 19

2.4.1 Route Discovery, Maintenance and Erasure 21
2.4.2 IMEP . 24
2.4.3 Secure Extensions of TORA 25

2.5 Trustworthy Computing . 26
2.5.1 Trusted Computing Base . 26
2.5.2 Trustworthy Computing Modules 27

v

2.5.3 Existing Trustworthy Computing Schemes for MANETs 28
2.5.3.1 Dual Agent Approach 30

3. SECURING MANET ROUTING USING TRUSTWORTHY MANET MOD-
ULES . 33

3.1 Shortcomings of Current Secure Protocols 33
3.1.1 Collusion . 34
3.1.2 Carrying Over Authentication 35
3.1.3 Unregulated RERR Creation 35
3.1.4 Limited Optimizations . 36

3.2 Shortcomings of Current Schemes Based on Trustworthy Computing . 36
3.2.1 Questionable Trusted Boundaries 37
3.2.2 Computational Overhead . 37
3.2.3 Lack of Proper Interface Definitions 38

3.3 Trustworthy MANET Modules . 38
3.4 Specifications of TMMs . 38

3.4.1 High Level Architecture of TMMs 40
3.4.2 Pairwise Secrets Between TMMs 41
3.4.3 Neighbor Table . 42
3.4.4 Authentication Record and Message Authentication Codes . . . 43
3.4.5 Protocol Parameters . 43
3.4.6 MACs . 44

3.5 TMM Functions . 45
3.5.1 SendTS() . 47
3.5.2 UpdateNeighborTable(A) . 47

3.5.2.1 Usage of UpdateNeighborTable() 50
3.5.3 Supplementary Functions . 51

4. BASIC TCB FOR ON-DEMAND PROTOCOLS 53

4.1 AtomicRelay(D, idp, µs, INV, ω) . 55
4.2 Realizing AODV and DSR . 57
4.3 Security Offered by Proposed TCB 59

4.3.1 Assertion Statements . 59
4.3.2 Assurances Offered by TMMs 61
4.3.3 Limitations . 63

5. INDEX ORDERED MERKLE TREE . 66

5.1 Index Ordered Merkle Tree . 67
5.2 IOMT Functions . 70

5.2.1 Merkle Tree Functions . 71

vi

5.2.2 AddDeleteLeaf(Ll,Lr, id,vlr, tree) 72

6. SECURING ON-DEMAND PROTOCOLS USING IOMT 76

6.1 IOMT Design for TMM . 76
6.1.1 Main IOMT . 77
6.1.2 Auxiliary IOMT . 77

6.2 Usage of Source Paths . 78
6.3 TMM Data Structures . 80

6.3.1 Self-MAC µaux . 81
6.4 TMM Functions . 82

6.4.1 Update(D, µs, idpw,Li,vi,Do, idpo,Lj,vj, ω) 83
6.4.2 Maintenance(D, idp,Li,vi, hi) 84
6.4.3 CreateDR(Li,vi, ω) . 86
6.4.4 SendDR(Li,vi,D, idp, ω) . 86
6.4.5 CheckPath(Li,vi, hi, n, (id1 · · · idn)) 89
6.4.6 SendInvDR(Li,vi,Do, idpo,Dw, INV, idpw, µs,X, µaux) 92

6.5 Realizing AODV and DSR . 93
6.5.1 Creation of RERR . 96
6.5.2 RREQ Unicast for DSR . 97

6.6 Analysis of IOMT design . 99
6.6.1 Assertion Statements . 99
6.6.2 Assurances Offered by the TMMs 101

7. COLLISION RESISTANT TORA . 103

7.1 Shortcomings of TORA . 103
7.2 Collision Resistant TORA . 106

7.2.1 CR-TORA: Principle of Operation 107
7.2.2 The CR-TORA Protocol . 109

7.2.2.1 CLR Event Identifiers (CEI): 110
7.2.2.2 CLR-List and UPD-List: 111
7.2.2.3 Other CLR Creation Scenarios: 112

7.2.3 The CR-TORA Algorithm . 113
7.3 Formal Proof for Loop-Free Property of CR-TORA 115
7.4 Simulations . 117

7.4.1 Simulation Environment . 117
7.4.2 Results . 120
7.4.3 Effect of Network Density . 123

8. SECURING CR-TORA . 126

8.1 IOMT Design . 126

vii

8.1.1 Main IOMT . 127
8.1.2 Auxiliary IOMT . 128

8.2 TMM Data Structures . 129
8.3 TMM Functions . 130

8.3.1 SetOps(n, {x1 · · ·xn},m, {y1 · · · ym}, Opt) 130
8.3.2 LossOfLink(d,Lj,vj,Dc,Li,vi) 131
8.3.3 SendCRT(Dc,Li,vi) . 132
8.3.4 Macro INPUT-VALIDATE . 134
8.3.5 UpdateUPD(Dw, idpw, µs,d,Lj,vj,Dc,Li,vi,S) 135
8.3.6 UpdateCLR(Dw, idpw, µs,d,Lj,vj,Dc,Li,vi,S) 138

8.4 Realizing CR-TORA . 138
8.5 Security Offered by the TMMs . 141

8.5.1 Assertion Statements . 142
8.5.2 Assurances Offered by the TMMs 142

9. CONCLUSIONS AND FUTURE RESEARCH 143

9.1 Contributions . 144
9.2 Scope for Future Work . 146
9.3 Publications . 147

viii

LIST OF TABLES

7.1 TORA (T) vs CR-TORA (CR-T) for two mobility models M-I and M-II. . . . 121

ix

LIST OF FIGURES

2.1 Route Maintenance of TORA . 24

3.1 Function SendTS() . 47

3.2 Function UpdateNeighborTable(A) . 49

3.3 Function checkbd(id) . 52

3.4 Function computemacs(hr, idp, j) . 52

4.1 Function AtomicRelay(D, idp, µs, INV, ω) 56

5.1 A Binary Merkle tree with 16 leaves. 66

5.2 Merkle Tree Algorithms . 73

5.3 Functions for Adding and Deleting Leaves 75

6.1 Function Update() . 85

6.2 Function Maintenance() . 87

6.3 Function CreateDR() . 88

6.4 Function SendDR() . 89

6.5 Function CheckPath() . 91

6.6 Function SendInvDR() . 94

7.1 A Subnet running TORA . 104

7.2 Subnet Running CR-TORA . 108

7.3 Sample Network Running CR-TORA . 110

x

7.4 CR-TORA Algorithm . 114

7.5 Comparison of TORA and CR-TORA for different network densities 124

8.1 Function SetOps() . 131

8.2 Function LossOfLink() . 133

8.3 Function SendCRT() . 134

8.4 Macro INPUT-VALIDATE . 136

8.5 Function UpdateUPD() . 137

8.6 Function UpdateCLR() . 139

xi

LIST OF SYMBOLS, ABBREVIATIONS, AND NOMENCLATURE

MANET Mobile Ad hoc Networks

DSR Dynamic Source Routing

AODV Ad hoc On Demand Routing

DSDV Dynamic Sequenced Distance Vector

TORA Temporally Ordered Routing Algorithm

CR-TORA Collision Resistant TORA

RREQ Route Request

RREP Route Response

RERR Route Error

CLR Clear Packet

UPD Update Packet

OPT Optimization Packet

DR Destination Record

MAC Message Authentication Code

KDC Key Distribution Center

TMM Trusted MANET Module

IOMT Index Ordered Merkle Tree

xii

h() Hash function

KX Secret shared between TMM X and KDC

SX Secret known only to TMM X

tx Current time as seen by node X

Kpw Shared secret between two TMMs

KAB Shared secret between TMM A and TMM B

PAB Public value shared between TMM A and TMM B

N Neighbor Table which is stored inside TMM

N A Neighbor record in neighbor table N

idn Identity of a neighbor node

idp Identity of the provider

t′ Time when the latest authenticated MAC was received

l Status of the neighbor

A An authentication Record

ACK Flag for acknowledgment

µr MAC used to authenticate a DR

µt MAC used to authenticate a time-stamp

µa MAC for an acknowledgment

µs self-MAC used to authenticate a received DR

µaux self-MAC used to denote information on stored source path

µset self-MAC to denote set operations

xiii

D A destination record

q Sequence Number sent in a DR

m Hop Count sent in a DR

a Auxiliary value sent in a DR

τ Validity time included in DR

δn Maximum age of neighbor time-stamp

∆ Validity period for destination records

Qx Current sequence number of TMM X

MAX Maximum size of neighbor table

INF Hop count considered as unreachable

∆W Waiting period

ω specifies the protocol in use

r Root of main IOMT

ra Root of auxiliary IOMT

L Leaf of IOMT

v Instructions used to map a leaf to the root

θ Information about the identity represented by a leaf

am Cumulative hash of a source path

Opt Flag that denotes a set operation

d Number of downstream links

u cumulative hash of UPD-List

xiv

CHAPTER 1

INTRODUCTION

Wireless nodes forming mobile ad hoc networks (MANET) adhere to MANET routing

protocols to route packets amongst each other. Design of MANET protocols is substan-

tially more challenging compared to routing protocols for wired networks due to a variety

of reasons like i) mobility of nodes leading to more frequent topological changes; ii) re-

source limitations inherent to mobile battery operated devices; and iii) several issues aris-

ing from using wireless instead of wired links between nodes. Perhaps one of the biggest

challenge in the design of MANET protocols stems from the fact that mobile devices (act-

ing as routers and relaying packets on behalf of other nodes) may be under the control

untrusted or even malicious entities.

1.1 Secure MANET Protocols

Early MANET routing protocols simply assume that all nodes will follow the rules

dictated by the protocol. Rules governing secure MANET routing protocols include addi-

tional elements aimed at improving the resilience of MANET subnets to non cooperative

nodes. The additional elements in secure MANET protocols can be broadly classified into

four categories:

1. redundancy in routing information;

2. cryptographic authentication;
1

3. monitoring neighbors for possible violations; and

4. using trustworthy component(s) in MANET nodes.

Several secure extensions of MANET routing protocols like dynamic source routing (DSR)

[1], ad hoc on-demand distance vector (AODV) [2], and destination sequenced distance

vector (DSDV) protocol [4] have been proposed in the literature. However, most secure

MANET protocols address only a subset of the four elements. Such independent efforts

cannot be combined to build a comprehensive secure routing protocol due to the interde-

pendencies between the different elements. For example,

1. the nature of cryptographic authentication can affect the ability to monitor;

2. the use of trustworthy components can reduce the redundancy required to provide
the same assurances; and

3. the redundancies employed can affect the choice of cryptographic authentication
schemes.

1.2 Goals and Hypothesis

Securing MANET routing protocols involves providing some tangible assurances that

nodes will abide by rules. Realizing assurances towards securing any system is achieved

by amplifying the trust in a trusted computing base (TCB) [7]. Most strategies to se-

cure MANETs employ cryptographic authentication of routing data to limit an attackers

ability to disseminate inconsistent routing information. The TCB for facilitating crypto-

graphic authentication includes a set of cryptographic algorithms (which are assumed to

be unbreakable), and a trusted authority (TA) who distributes cryptographic material to all

nodes of a MANET network. Secure MANET protocols that leverage this limited TCB i)

2

fail to provide some important assurances, and ii) typically impose substantial overhead

for resource limited battery operated mobile devices.

The primary goal of the research carried out for this dissertation is the identification of

a TCB for MANET nodes to improve the performance of MANETs by

1. providing assurances that reduce the scope of attacks while preserving the optimiza-
tions offered by the routing protocol, and

2. by reducing the overhead required for leveraging the TCB.

It is assumed that the TCB functions are executed inside trustworthy MANET modules

(TMM) housed in every MANET node; only the TMMs are trusted; the rest of the node -

all other hardware and software - are untrusted.

An important prerequisite for a trustworthy module to warrant trust is that the TCB

functions executed inside the module are simple, and consequently, easily verifiable. Sim-

ple TCB functions can also be implemented as hardwired logic (software-free), thus ren-

dering moot a wide range of attacks that attempt to modify software. It is also desirable

that the modules consume as little power as possible, and consequently disseminate negli-

gible heat, as such modules can be physically well shielded from deliberate and accidental

intrusions. With these self-imposed limitations on TCB functions aimed at improving the

reliability of TMMs while simultaneously lowering their cost, we seek a set of simple

MANET TCB functions.

The research hypothesis is that it is possible to design MANET TCB functions us-

ing only logical and cryptographic hash operations, and that the TCB functions can be

leveraged

3

1. to ensure that nodes cannot advertise routing information that is inconsistent with
information assimilated from other nodes, and

2. to provide several useful assurances, including several assurances that are not pro-
vided by current secure MANET protocols.

1.3 Specific Contributions of this Dissertation

As several MANET routing strategies exist, the choice of the MANET routing protocol

for an ad hoc subnet scenario should consider several factors like subnet size, density,

mobility etc. For example, on-demand protocols like dynamic source routing (DSR), ad

hoc on-demand distance vector (AODV) are widely regarded as well suited for scenarios

involving larger subnet sizes; the proactive dynamic sequence distance vector (DSDV)

protocol may be better suited for smaller subnet sizes. While most MANET protocols

assume that any pair of nodes in a subnet is equally likely to communicate, temporally

ordered routing algorithm (TORA) was designed explicitly for scenarios where most or all

nodes in the subnet communicate with one or a few “base-stations.”

While no one-size-fits-all MANET protocol exists, three protocols - DSR, AODV and

TORA - can together cater for the needs of most MANET subnets - especially since DSDV

can be seen as a special case of TORA. For this reason our research was restricted to

identifying a TCB for DSR, AODV and TORA.

The first contribution of this dissertation is a new protocol - collision resistant TORA -

designed to offset many of the limitations of TORA. Specifically, CR-TORA addresses two

fundamental limitations of TORA - TORA’s susceptibility to collisions, and that TORA is

4

difficult to secure due to complex rules that govern the “height of a node.” The results of

this research has been published in a Journal article [8].

The second contribution is the specific functionality of TMMs necessary to secure

on-demand protocols like DSR and AODV to provide significantly enhanced assurances

compared to existing protocols. Specifically, current secure on-demand protocols which

simply strive to ensure the integrity of hop-count (in AODV) or path vector (in DSR) infor-

mation by carrying over authentication, are susceptible to colluding nodes. Furthermore,

such protocols do not include explicit measures to i) inhibit supercilious route error pack-

ets; and ii) ensure that routing data will be accepted from (and relayed to) only nodes with

tested bidirectional links. The research results have been published in a recent conference

article [9].

The third contribution of this dissertation is a useful data structure, an index-ordered

merkle tree (IOMT) as an extension of the popular merkle hash tree. A merkle hash tree

permits a resource starved trusted entity “virtually store” a large database of records by

storing a single value - the root of the tree - inside the trusted boundary. The dynamic

records of the database are the leaves of a binary tree.

For true virtual storage of a large number of data records it is not sufficient for the

trusted entity to be capable of determining if a record (leaf) is indeed a part of the tree. An

important requirement is also the ability to determine that a record for some index is not

a part of the tree (does not exist in the database). An IOMT is an extension of the merkle

tree which is capable of verifying such negative queries efficiently.

5

The fourth contribution of this dissertation is an extension of the TMM based approach

for securing AODV and DSR to realize some additional useful assurances (beyond the

assurances provided in [9]), by employing an IOMT for storing routing records. The novel

IOMT, and a strategy to leverage the IOMT to secure AODV was presented in a recent

conference [10]. In addition to the TCB functions required for maintaining a routing

record for each destination, for securing DSR it is necessary to maintain a database of paths

which can be used to propagate route requests. An expanded TCB capable of securing both

AODV and DSR has been submitted to a journal [11].

The fifth contribution of this dissertation is the identification of an efficient TCB for

securing CR-TORA. One of the main difference between securing AODV vs securing CR-

TORA stems from the fact that in the former (AODV) a node needs to maintain only one

routing record for every possible destination. However, in CR-TORA a node needs to

maintain a record corresponding to some or all neighbors for every destination. For this

purpose a separate IOMT is used to store the heights of every neighbor for each available

destination. These research results have been submitted to a journal [12].

1.4 Organization of this Report

The rest of this dissertation report is organized as follows. In Chapter 2 we provide a

survey of relevant work in the literature.

Chapter 3 outlines the shortcomings of existing secure routing protocols, and the draw-

backs of currently proposed trustworthy computing schemes to secure MANETs. Chap-

ter 3 also provides an introduction to the proposed trusted MANET modules (TMMs) by

6

presenting their broad specifications, and some generic functionality that could be used by

all MANET routing protocols.

Chapter 4 presents a simple TCB to secure AODV and DSR. While trivial, this TCB

can nevertheless realize many of the assurances that are not possible using strategies that

rely on carrying over cryptographic authentication. While this is a substantial improve-

ment over current solutions Chapter 4 also presents various limitations of this approach -

all of which result from the fact that the the TMM cannot “remember” routing data.

In Chapter 5 we present the most important of the contributions of this dissertation - an

efficient index ordered merkle tree (IOMT), which can enable a resource limited module

to virtually store large amounts of data by storing a single value inside the module.

Chapter 6 presents the design of the TMMs that employ IOMTs to store routing data.

It also includes various functions that can be used to securely realize AODV and DSR.

This chapter also includes an analysis of the security offered by the TMMs that employ

IOMTs.

Chapter 7 begins with a description of the shortcomings of TORA, and proposes a

new routing protocol CR-TORA which addresses the main limitations of TORA. We also

present simulation results that compare the performance of both TORA and CR-TORA.

Chapter 8 presents the TMM design to secure CR-TORA.

Conclusions are offered in Chapter 9. Chapter 9 also points out some possible future

extensions to this dissertation research, and the publications that resulted from this work.

7

CHAPTER 2

LITERATURE SURVEY

Resource limited nodes forming wireless mobile ad hoc networks (MANET) rely on

each other for routing packets amongst themselves, and thereby eliminate the need for an

infrastructure for this purpose. Due to their reduced dependence on infrastructure, they

have useful applications in scenarios where it is impractical to deploy such infrastructure.

Small scale applications include dynamic MANETs created for specific purposes like

search and rescue operations. Larger scale medium-area and wide-area networks can con-

sist of many ad hoc subnets interconnected through mesh networks or the wired Internet.

Existing practical rural applications of MANETs include the popular one-laptop-per-child

(OLPC) project [13]; which utilizes multi-hop networks to provide interconnectivity be-

tween laptops in under-developed countries. In urban areas, due to the high cost of acquir-

ing real estate for erecting communication infrastructure, it will be more economical for a

network operator to enlist the support of distributed wireless hot-spot operators, and home

users with Internet access, to provide wide-area voice and data services to mobile users.

2.1 Ad Hoc Routing Protocols

MANET routing protocols are rules imposed on nodes to route packets amongst them-

selves. The primary goal of all efficient routing protocols is to maximize information

8

transmission while minimizing the usage of resources. Apart from many issues like cor-

rectness, stability, and fairness to be addressed by all routing protocols, MANET protocols

have to address some additional constraints like 1) the resource constrained nature of mo-

bile devices, 2) rapid changes in topology due to mobility, and 3) issues specific to wireless

links.

MANET routing protocols can be classified into proactive and reactive protocols.

Proactive approaches like DSDV [4] and link state routing [5], [14] strive to maintain

a consistent view of the entire network at all times. In reactive protocols like dynamic

source routing (DSR) [1], and ad hoc on-demand distance vector (AODV) [2] routes are

determined on-demand. Typically the discovery of routes starts with a Route Request

(RREQ) query which is flooded in a controlled fashion, and trigger a Route Response

(RREP) from nodes which have knowledge of a route to the destination. Combinations of

proactive and reactive approaches [6],[15] have also been proposed. Furthermore, some

protocols like Temporally Ordered Routing Algorithm (TORA) [6] can operate in both

proactive and reactive modes.

In general, proactive routing protocols, where each node pro actively maintains for-

warding paths to reach every node in the subnet, can demand substantial overhead if the

subnet size is large. On-demand protocols tend to be more efficient for large subnets. Many

practical applications of MANET will involve extending the reach of base stations by pro-

viding multi-hop connectivity to the base-stations. For scenarios where a large number

of nodes have to maintain connectivity to a small number of destinations (base-stations),

TORA [6] may be preferable.

9

2.2 Secure Ad Hoc Routing Protocols

Apart from numerous considerations listed earlier which render design of MANET

routing protocols more challenging, another important consideration stems from the lack

of trust in routers. Unlike networks that have established infrastructure, where routers are

operated by large organizations, and thus implicitly trusted, some MANET nodes may be

under the control of malicious attackers. Secure MANET routing protocols also have to

cater for the possibility of malicious nodes in the subnet which may deliberately attempt

to sabotage the efficacy of the subnet routing mechanism.

2.2.1 Attacks

Attacks on ad hoc routing protocols that can be inflicted by non co-operating nodes can

be classified into passive, active and semi-active attacks.

In passive attacks, the attacker does not transmit any data. The aim of such attacks

could be to merely observe traffic patterns, or snoop on data exchanged between nodes.

Passive attacks can also result from selective participation of nodes. Some nodes may

participate in the routing process only if they have selfish reasons to do so, for example, if

they desire to be an end-point in an exchange.

Active attacks are performed by taking an active part in relaying messages and routing

information. Such attacks would attempt to modify relayed data with the intention of

disrupting routing protocols, or more generally, to prevent nodes from communicating

with each other. Some specific instances of active attacks include modification of hop

10

counts in routing tables, reporting of fictitious neighbors, or randomly corrupting routing

information / data packets that are relayed.

Nodes performing semi-active attacks transmit and receive data, and do not change

data that is forwarded. One example of such an attack is for a node to just re-broadcast

packets that it receives without any modification, and thereby acting as an “invisible” re-

lay. Such relays can cause many nodes which are not actually within the range of each

other to conclude that they are. After taking part in such an activity for some duration, the

semi-active attacker may then suddenly decide to remain silent. This can result in serious

disruptions of the routing tables in the vicinity, and consequently result in substantial band-

width overhead. Two physically well separated invisible relays can also form worm-holes

[16]. By periodically turning on and off the worm-hole they can cause severe disruptions

in the perceived subnet topology.

2.2.2 Countermeasures

Secure routing protocols can be broadly classified into three categories. In the first

category are protocols which rely on cryptographic authentication techniques for verifying

the integrity of routing information. In the DSR-based secure routing protocol (SRP) [17]

only the source and destination share a secret; which is used to authenticate RREQ and

RREP packets. Any modification in these packets by a malicious intermediate node can

be identified at the end point, and hence will be discarded.

For a broadcast communication, appended authentication data needs to be validated by

multiple verifiers. Digital signatures can be used for this purpose, but their high resource

11

requirements make their usage impractical. A broadcast authentication scheme TESLA

[32] can be used to address this issue. It makes use of symmetric cryptography, and yet

retains the required asymmetric property by clock synchronization, and delayed key dis-

closure. In TESLA each node picks an initial key KN , and computes a one-way chain of

secrets using KN−1 = H(KN). Initially, a node releases K0, and later periodically release

the remaining keys. In order to authenticate a message, a node selects a secret (say Ki),

which is scheduled to be released only after the message is delivered to all the intended

receivers. On receiving the message a node verifies the freshness of Ki, and buffers it (the

received message) if key Ki is not yet disclosed. After receiving Ki, a node first verifies

Ki using Kj (a key which is previously released by the sender, and j < i) by checking

Kj = H i−j(Ki), and later authenticates the previously buffered message with Ki.

Ariadne [18], a popular secure extension of DSR [1], employs TESLA for authentica-

tion of intermediate nodes in the path, and a per-hop hashing technique to prevent deletion

of nodes from the path. Ariadne assumes a pair of shared secrets between source and des-

tination nodes, which are used for mutual authentication. Along with the RREQ packet,

source node appends a MAC (using the shared secret), which can be verified by the desti-

nation node. Every intermediate node appends a MAC while forwarding a RREQ packet,

and the appropriate TESLA key is released in the corresponding RREP packet. On receiv-

ing a RREQ, destination node verifies the source MAC, and also the hash-chain to detect

any deletion of intermediate nodes. On successful verification, a destination responds with

a RREP packet along with an appended MAC, which can be checked by the source node.

12

After receiving a RREP packet, the source node authenticates the destination, and also

validates every intermediate node (using their appended TESLA keys).

SRP and Ariadne do not cater for the optimizations provided in DSR (for example,

using cached routes, route response by intermediate nodes, etc). In [39] Sivakumar et al.

provide a more comprehensive extension of Ariadne which supports some of the optimiza-

tions offered by DSR, due to the use of pairwise secrets instead of TESLA. Rather than

encrypting packets with a network wide group secret (to prevent covert attacks) one-hop

secrets (a key shared by each node with it’s neighbors) are used. In [53] digital signatures

are used to provide non repudiable proof of active attacks. Appended signatures are veri-

fied only by immediate neighbors. Each node strips the received signature and appends its

own, before forwarding the received RREQ packet.

Most of the proposed secure extensions of ad hoc routing protocols assume bi-directional

links. Unfortunately this is not a valid assumption. Sivakumar et al. [33] analyzes the ef-

fect of one-way links on DSR protocol. They explain how efficiency of the network is

effected by the presence of one-way links, and also propose secure strategies to deal with

one-way links.

In the secure AODV (SAODV) protocol [20] intermediate nodes are not required to

append any form of authentication. A per-hop hashing strategy is used to prevent at-

tacks involving shortening of paths (reducing the hop count value), but does not prevent

the attacker from increasing the path length. Digital signatures are used to authenticate

non-mutable fields in the RREQ and RREP packets. SAODV proposes the concept of

dual-signatures, which can allow an intermediate node (that has a valid route to the speci-

13

fied destination) to respond to a received RREQ packet. In Du et al [21] secure extension

of AODV, one-hop and two-hop group secrets are employed for authentication of interme-

diate nodes; where the group secrets are conveyed individually using certificates based on

asymmetric schemes. Two hash values (H1 and H2) are appended to each routing packet,

where H1 (verified by the node’s one-hop neighbors) is used to authenticate the received

packet, and H2 (verified by the node’s two-hop neighbors) prevents the current node from

tampering routing data.

Wan et al [22] and Hu et al [23] have proposed secure extensions of DSDV where

each node shares a secret with every other node in the network, which is used for node

authentication. The former (S-DSDV) [22] classifies advertised routes into: authoritative

(routes that have either 0 or∞ hop count) and non-authoritative Routes (routes with finite

hop count other than 0). S-DSDV performs node authentication for validating all the au-

thoritative routes. For non-authoritative routes, along with node authentication, a receiver

cross-checks obtained information with the node mentioned in the next-hop field. The

latter approach (SEAD) [23] employs hash chains, where the depth of the pre-image is

controlled both by the distance of a node from the source and the current sequence num-

ber of the source. These hash chains are applied to authenticate the minimal hop counts

included in a routing update. Like SAODV, an attacker can not decrease the hop count

value, but can increase it.

While a majority of secure routing protocols focus on the need for cryptographic veri-

fication of the integrity of the established paths, the problem of identifying the perpetrators

responsible and strategies for “routing around” malicious nodes have received little atten-

14

tion. Awerbach et al [24] and Burmerster et al [31] propose tracing algorithms to detect

Byzantine faults. First approach [24] is applied on AODV, where each intermediate node

initializes a timer Ti during route creation (which is based on its distance from the desti-

nation). After forwarding a data packet, an intermediate node expects an acknowledgment

from the destination within Ti cycles. An intermediate node, whose Ti expires before

receiving the acknowledgment forwards an error report to the source, by which it (the

source) can locate the faulty link. The second mechanism [31] aims at identifying the ma-

licious node, by repeatedly probing intermediate nodes to send an acknowledgment. This

issue is also investigated in [39], in the context of DSR.

In the second category are schemes which rely on assigning trust metrics to nodes

based on first-hand and second-hand observations. In [40] Bucheggar et al. proposed a

monitoring scheme where each node comprises of the following components: The mon-

itor (which oversees the traffic generated by neighbors), Trust Manager (responsible of

generating alarms when malicious behavior is identified), The reputation system (where

the gathered information is analyzed to identify malign nodes), and the Path Manager (han-

dling routes and traffic related to malicious nodes). Liu et al. [48] presents a reputation

mechanism which is used to rank nodes based on their observed behavior, and received

recommendations. Some researchers have proposed operation in the promiscuous mode

[40] - [42] as a strategy to identify misbehaving nodes. Pirzada et al [43] propose a mech-

anism for securing TORA, by employing trust metrics obtained through analysis of local

traffic.

15

In the third category are schemes which rely on trusted computing modules to enforce

compliance to routing protocols [49] - [52]. Song et al [50] include the wireless transceiver

inside the trust boundary, by implementing it using tamper resistant hardware. In [49] by

Jarrett et al, the trusted computing module has complex features built into the wireless

driver (executed within the confines of the trusted module) to verify the integrity of wire-

less transceiver. In [52] Buttyan et al “nuglets of currency” are protected by smart-cards

to promote faithful forwarding of packets. The authors provide explicit consideration to

the need for lowering the complexity of tasks to be performed inside the trusted boundary.

2.3 AODV and DSR

AODV is an ad hoc on-demand routing protocol where the distance to a destination is

stored in a node’s routing table as a destination record (DR), indexed using the destination

identity. Other fields in the DR include a sequence number, hop-count, next-hop to reach

the destination, and validity time.

When a node desires to communicate with a destination, and finds that it does not have

a fresh route to the destination, a RREQ is flooded, indicating a fresh sequence number

of the initiator, the last known sequence number of the destination, and a hop-count field

which is initially set to zero. Every node that receives the RREQ

1. updates the sequence number of the source, and adds a DR (for the source) to a table
of DRs.

2. if the node does not have a path to the requested destination it forwards the RREQ
after incrementing the hop count field by one;

3. if the node has a fresh enough path to the destination (or if the node is the destination
itself), it responds by unicasting a RREP towards the source by sending the RREP
to the neighbor from which it received the RREQ.

16

In the case of RREP by an intermediate node the hop count in RREP is set to the stored

value, and in the case of RREP by the destination, it is initialized to zero. Every node

receiving the RREP adds a DR for the destination, increments the hop count, and unicasts

the packet towards the source node.

Every entry in the routing table has a validity time after which it cannot be used. How-

ever, due to the mobility the information in the DRs can become invalid even before the

expiry period. AODV handles such premature expiry using route error (RERR) messages.

DSR also employs a similar RREQ, RREP and RERR packets. The difference is that

while in AODV intermediate nodes (that forward the RREQ) increment the hop-count, in

DSR every intermediate node inserts its identity. Thus, compared to AODV, DSR provides

some additional topology information. The primary disadvantage of DSR is the additional

bandwidth overhead for RREQ and RREP packets (which indicate the entire path instead

of a single field - hop count). The advantage accrued from the knowledge of the entire

path is that multiple paths between the source and destination can be established.

2.3.1 Secure Extensions of AODV

In the Secure AODV (SAODV) protocol [29] every node has a public-private key pair

with a certified public key. Digital signatures are used to authenticate immutable fields in

RREQ, RREP and RERR messages, which are specified by the source of the packet (an

end-point). The immutable field includes a commitment to a hash chain of length x0 · · ·xn,

(where xi = h(xi−1), and h() is a cryptographic hash function like SHA-1) where n is the

maximum length of the path. The RREQ from the source (indicating hop-count 0) is

17

accompanied by a value x0. Nodes at the first hop are required to increment the hop-count

by 1, and propagate the RREQ along with the value x1 = h(x0), and so on.

In order to secure route responses by intermediate nodes SAODV employs double sig-

nature extensions for RREQ and RREP packets. The RREPs generated by an intermediate

node includes the signature of the destination to validate the immutable fields, and also a

signature of the intermediate node to authenticate the new validity time.

In the SAODV-2 protocol [38] only symmetric cryptography is used. SAODV-2 ar-

gues that schemes for establishment of pairwise secrets between two nodes demand sub-

stantially lower computational and bandwidth overhead. Further, SAODV-2 uses two hop

authentication to thwart illegal hop changes. In two-hop authentication a node (say A)

appends a MAC which is verifiable by its two-hop neighbors (say C). When C receives

this packet via B (neighbor of A) it can compare the hop count announced by B to the one

included by A, and thereby identify illegal modifications.

Asad Amir Pirzada and Chris McDonald proposed a secure variant of AODV [61]

where authorized neighboring nodes share a common secret, which is used to encrypt

all the forwarded control packets. They use asymmetric cryptography to arrive at shared

secrets. Their scheme does not address the issue of an authorized node behaving mali-

ciously. Leiyuan Li and Chunxiao Chigan proposed Token Routing Protocol(TPR) [62]

with a motivation of reducing the computation costs involved in SAODV (as the later uses

asymmetric cryptography). Unlike SAODV they suggest the usage of pairwise secrets

between ad hoc nodes. TPR uses two hash chains, one to protect hop count (which is

identical to the one used in SAODV) and another to provide node authentication. Node

18

authentication is provided using tokens, which in turn are hash chains computed using the

shared secret between source and destination.

2.3.1.1 Secure Extensions of DSR

A well known secure extension of DSR is Ariadne [18] which uses the TESLA broad-

cast authentication protocol [32] for authenticating network packets. Every intermediate

node forwarding an RREQ appends a TESLA MAC which can be verified at the end of the

reverse path. As the authentication appended by every node will be verified by the RREQ

source, nodes cannot be inserted into the path. To prevent nodes from deleting other nodes

in the path a per-hop hashing strategy is used which leverages a shared secret between

end-points (the RREQ source and the destination).

In [39] an improved Ariadne (iAriadne) was proposed which mandates every node to

maintain a “private logical neighborhood” (PLN) and introduces an additional value to be

inserted by every node forwarding the RREQ - an “encrypted up-stream per-hop hash.”

Unlike Ariadne with TESLA, iAriadne relies on pairwise secrets between nodes.

2.4 TORA

TORA is a hybrid ad hoc routing protocol which can operate in both reactive and proac-

tive modes to determine multiple paths to some destinations. Unlike AODV and DSR,

where the route discovery process is to enable a specific node to find a path / forwarding

information to a specific destination, in TORA, all nodes in the subnet learn forwarding

information to the destination. Additionally, unlike proactive protocols like DSDV where

19

forwarding information is sought for all nodes in the subnet, in TORA forwarding infor-

mation is sought only for a few specific destinations. TORA can also operate in proactive

mode, where destinations periodically advertise their presence.

In TORA [6] the route to a destination from any node is based on the “height” of a node

with respect to the destination. Every node maintains a set of parameters which specifies

its height (for a specific destination). The set of parameters which reflect the height of

a node is a 5 tuple (τ, oid, r, δ, id). The first three values (τ, oid, r) form the “reference

level” where:

1. τ is the logical time of creation of the reference level (which is usually a result of
the failure of a link);

2. oid is the identity of the node that created the reference level; and

3. r is a reflection bit (more on this later);

The value δ is incremented at every hop from the node which created the reference level.

The field id is the identity of the node. Together, the five fields reflect the “height” of a

node from the destination.

In a subnet with d destinations the TORA protocol can be seen as d independent in-

stances of the protocol - one for each destination. For each destination every node stores

heights of each of its neighbors. Based on the heights of its neighbors, a node determines

its own height. If a node A has greater height than a neighbor B, then A is regarded as

the upstream neighbor of B (and B is the downstream neighbor of A). Data can flow only

downwards; i.e from upstream to downstream.

If the height of a node A for a destination is NULL (or height (−,−,−,−, A)), this

implies that no forwarding path is available for A. If the height is any value other than
20

NULL, the node can forward a packet to the destination by sending it to any downstream

neighbor. The height of the destination (for itself) is ZERO (or (0, 0, 0, 0, id), where id is

the destination identity).

From a broad perspective the goal of TORA is to ensure that as long as a physical path

exists from a node to a destination, the height of the node (for that destination) should be

non NULL, and moving downstream at every hop should ultimately lead to the destination

(though not necessarily over a minimal number of hops).

2.4.1 Route Discovery, Maintenance and Erasure

TORA consists of three phases in its routing:

1) Route Discovery (Query, Update and OPT): A node which has a NULL height to

a destination can broadcast a query (QRY) packet for the destination. Each node receiving

the QRY packet checks whether it has a non NULL height for the destination. If the node

also has a NULL height it rebroadcasts (forwards) the QRY packet. In a scenario where

the QRY packet reaches the destination, it broadcasts its ZERO height in an update packet

(UPD). On receiving an UPD packet from its neighbor, every node updates the neighbor’s

height. A node sets its own height to the received value, and increments the δ value by

1, and broadcasts its own height. For instance, node A receiving (0, 0, 0, 2, B) from a

neighbor B, stores the received tuple as B’s height; sets its own height to (0, 0, 0, 3, A)

and forwards it in an UPD packet. Now A is the upstream neighbor of B (for the specific

destination).

21

In proactive mode where destinations pro actively advertise their presence, every des-

tination periodically broadcasts its existence in an special update packet termed as OPT

(which includes the height of the destination D- (0, 0, 0, 0, D)). Each OPT packet from

the destination indicates a sequence number (referred to as mode sequence number). Thus,

in TORA the heights of nodes are established during QRY-UPD process, and in proactive

versions of TORA, periodically refreshed through OPT packets originating from destina-

tions. Changes in topology that occur between two OPT packets (with different mode

sequence numbers) are handled by the route maintenance process.

2) Route Maintenance : Route maintenance is triggered only when a node no longer

has a path to the destination (has no downstream neighbors). To understand the rules

governing TORA’s route maintenance, consider a node i, and let Ni be the set of neighbors

of the node i.

Generating a new reference level: Let us assume that the current height of node i is

(τ0, oid, r, δi, i). If node i looses a downstream link with a node j ∈ Ni, and if j is not

the last downstream node, i does nothing - except remove the height entry for the node

j. On the other hand, if i looses its last downstream link, i creates a new reference level

(τ, i, 0) where τ > τ0 (where τ0 is the first field in the current reference level). Node

i sets its height to (τ, i, 0, 0, i). The second field i indicates that node i generated this

new reference level. By generating a new reference level, node i reverses its links to its

upstream neighbors. In other words, i requests the nodes which were previously upstream

of i to become i’s downstream nodes.

22

Propagating a new reference level: If node i loses its last downstream link due to a

link reversal (by its previously downstream node), node i determines the neighbor with the

highest reference level. A reference level (τ1, oid1, r1) > (τ2, oid2, r2) if τ1 > τ2. If τ1 =

τ2, then oid1 > oid2. If both these fields are equal then the level with a larger r is higher.

If multiple neighbors have the same highest reference level, say (τj, oidj, rj), i chooses

the one with the least δ value. Let the height of that neighbor j ∈ Ni be (τj, oidj, rj, δj, j).

Now i sets its height to (τj, oidj, rj, δj − 1, i), and sends its height in a UPD packet. By

setting its δ lower than j, i becomes a downstream node of j.

Reflecting a reference level: If node i loses its last downstream link due to a link

reversal, and all it’s neighbors have the same reference level (τj, oidj, rj), and if rj = 0,

node i reflects the reference level by setting rj = 1 in its height. In this case the height of i

becomes (τj, oidj, 1, 0, i). Note that (τj, oidj, 1) > (τj, oidj, 0). This height is announced

to its neighbors in an UPD packet.

Detecting a partition: Now let us consider the scenario where node i looses its last

downstream link due to link reversal, and all its neighbors have the same reference level

(τj, oidj, 1) with the reflector bit set.

If i did not originate the reference level (or i 6= oidj) then i generates a new reference

level and sets its height to (τ ′, i, 0, 0, i) where τ ′ > τj . On the other hand, if the reference

level oidj was created by i (or i = oidj), then i detects a partition in the network rendering

the destination unreachable. In this case i sets its height to NULL - or (−,−,−,−, i). In

the former case the height of i is announced in an UPD packet. In the later case the height

is announced in a clear (CLR) packet.

23

The basic algorithm of TORA’s route maintenance phase is detailed in Figure 2.1.

IF (link-failure)
GENERATE-RL

ELSE //(link reversal)
IF (all-neighbors-not-at-same-RL)
PROPAGATE-RL

ELSE
IF (r == 0)
REFLECT-RL

ELSE
IF (RL-created-by-me)
CLEAR-RL

ELSE
GENERATE-RL

Figure 2.1

Route Maintenance of TORA

Route erasure: The CLR packet contains the destination and the reference level of the

node in addition to the five-tuple height. Every node that receives the CLR packet and has

a matching reference level erases its height (sets it to NULL) for the destination indicated,

and re-broadcasts the CLR packet.

2.4.2 IMEP

Internet MANET Encapsulation Protocol (IMEP) [70] was primarily meant for aggre-

gation of upper layer protocol (routing protocols) packets to encapsulate smaller control

packets into fewer IMEP packets, and thereby reduce channel access delays. IMEP also

provides other useful services like broadcast reliability, link status sensing, and authentica-

tion. Connection status of neighboring nodes is determined by exchanging BEACON and

24

ECHO packets. When reliable delivery is requested, IMEP mandates acknowledgments

to verify accurate reception of packets. IMEP uses a selective repeat algorithm to deliver

lost packets. It employs digital signatures to provide authentication, and also describes a

message format for exchanging certificates. TORA was intended to be layered over IMEP.

2.4.3 Secure Extensions of TORA

While multiple secure protocols have been proposed for cryptographic authentication

of routing fields for other ad hoc routing protocols like AODV, DSR and DSDV, none have

been proposed for TORA.

Vee Liem Chee et al. [60] analyzed security flaws in TORA, and identified three attacks

- route disruption, route invasion and resource consumption, that a malicious participant

can launch. These attacks are carried out by faulty processing of control messages in the

network. Asad Amir et. al [43] propose a mechanism to secure TORA based on trust

development. They ignore the need for cryptographic authentication to monitor neigh-

bors. In their scheme, a node passively monitors the packets and data it receives from its

neighbors. It then assigns trust values (-1 to 1) to the collected information, which is later

classified into various groups. Finally weights are assigned to each identified group, and

a weighted total of trust for a particular node is computed. They propose an extension to

their trust model in [35] where nodes can exchange the calculated trust metrics.

The key security requirement in any network is authentication; a receiver should be

able to verify the identity of the sender. Without authentication any node can send incorrect

25

packets with spoofed identity, which will result in assigning low trust values to the node

whose identity is spoofed.

While IMEP, which is the underlying layer for TORA, can provide cryptographic au-

thentication of transmissions by neighbors, this feature is optional. Furthermore, that a

node A receives a cryptographically authenticated height value from a neighbor B only

implies that the source of the broadcast is B - not that the height provided by B is correct.

Verifying integrity of routing messages also mandates some redundancies. Such require-

ments are also ignored in [35].

2.5 Trustworthy Computing

2.5.1 Trusted Computing Base

The trusted computing base (TCB) of a system is “a small amount of software and hard-

ware we rely on, and that we distinguish from a much larger amount that can misbehave

without affecting security” [7].

As an example, consider a generic communication system where an important assur-

ance sought is the ability to verify that a message sent from one entity to an another cannot

be modified in transit by intermediaries. To realize such an assurance we typically rely on

a TCB which includes a certificate authority (CA), who (we assume) does due diligence

before signing public key certificates, and ensures that it’s private key is well protected. We

also rely on the assumption that cryptographic algorithms like RSA, DSA, AES, SHA-1

etc., are unbreakable. When one receives a message authenticated using the secrets be-

26

longing to an entity A, it is assumed that the message is from A, as it is implicitly assumed

that the secrets of A are privy only to A.

As a more concrete example, the widely used web-security protocol, SSL, leverages

such a TCB to provide an assurance that data sent by clients will be privy only to SSL

servers. However, when a client sends some sensitive information (like a credit-card num-

ber) to a server over an SSL connection, it only ensures that the information remains

private till it reaches the server. There is no assurance that such information cannot be

abused after it reaches the server, say by entities who have unfettered access to the server.

Thus, in many practical scenarios, the limited TCB which caters only for cryptographic

authentication, is not sufficient as a basis for realizing important assurances.

2.5.2 Trustworthy Computing Modules

The most common approach to expand the Trusted Computing Base (TCB) is by em-

ploying trustworthy computing modules which provide some “specialized” TCB func-

tions, performed inside trustworthy boundaries.

In the trustworthy computing group (TCG) model [25] for realizing trusted platforms

a trustworthy platform module (TPM) performs several specialized fixed functions to pro-

vide i) the ability for remote parties to verify that the platform equipped with the TPM is in

an “acceptable state” - that only authorized software has been loaded and executed by the

CPU (even though the TPM does not have direct control over the CPU); and ii) the ability

to provide secrets to the TPM, bound to some platform states, which will be released by

the TPM only when the platform is in that specific state.

27

Unlike TPMs, the IBM 4758 [26] trustworthy computing module (TCM) sports a gen-

eral purpose processor inside a protected boundary, running a specialized operating sys-

tem, and can execute application code unmolested inside the trusted boundary. The rich

set of programmable functions that can be executed inside the boundary can provide a rich

TCB that can be leveraged to realize assurances that may not be possible otherwise.

Unlike inexpensive TPM chips (a few dollars) with fixed functionality, the programmable

TCB offered by IBM module comes at a substantially higher cost (a few thousand dollars).

It is for this reason, that in this paper we seek a set of fixed functionality suitable for se-

curing MANETs. We deliberately impose some restrictions on such fixed functionality

to ensure that TMMs which offer such functionality can be easily verified, will consume

negligible power, and thus can be simultaneously trustworthy and inexpensive to realize.

TMMs that offer the TCB for securing MANETs will demand substantially lower com-

plexity compared to even inexpensive TPM chips. Unlike TPMs which offer a set of about

120 fixed functions, TMMs will offer substantially fewer number of such functions. Fur-

thermore, unlike TPM chips, TMMs will not require to perform asymmetric cryptographic

computations. TMMs will merely perform fixed sequences of logical and cryptographic

hash operations.

2.5.3 Existing Trustworthy Computing Schemes for MANETs

Many schemes have been proposed in the literature that propose the usage of trustwor-

thy computing to protect ad hoc networks. Trusted modules can be used to verify the state

of the currently loaded routing protocol, and can also attest this information to a remote

28

verifier. In [55] Mingsheng et al have proposed to use this remote attestation feature of

a trusted module to secure ad hoc networks. The initial state of the routing protocol is

calculated, and is stored securely in a platform configuration register (PCR). When ever

the operating system loads the routing protocol, the TPM compares its state with the value

stored in its PCR. A TPM can also attest this information to a remote verifier using public

key cryptography.

Remote attestation can expose the identity of a user, and hence has some privacy con-

cerns. The approach proposed in [56] employs direct anonymous attestation (DAA), a

cryptographic protocol that provides remote attestation while preserving user identity.

The scheme presented in [57] proposes a Tamper Resistant Module (TRM), which can

be used to protect both the routing module and the MAC layer of the ad hoc node. They

also assume a secure channel between the routing module and MAC layer, that can be used

to exchange data securely.

Michael et al in [58] employs trustworthy computing to address issues related to both

selfish nodes, and secure routing. They assume that the routing agent, which includes all

the software and operating system components that are responsible for managing routing,

and wireless driver are executed within trusted boundaries. The routing agent is respon-

sible for implementing all the routing rules, and securely communicates with the wireless

driver to obtain reports about the packets forwarded by the node. The routing agent re-

fuses to take part in future routing when the metrics obtained in the reports drop below a

predefined threshold value.

29

2.5.3.1 Dual Agent Approach

In [54] Gaines et al argued the need for a dual agent approach to secure ad hoc routing

protocols. In this approach any MANET device is seen as consisting of two independent

agents: 1) an untrusted, selfish user agent satisfying the needs of the owner of the device,

and 2) a trusted, selfless network agent working towards the overall good of the network.

The network agent (for example, a tamper-sensitive chip in the mobile device) is entrusted

with the responsibility of ensuring that the mobile device does not violate the protocol.

In the dual agent model with a trusted network agent (NA) and an un-trusted user

agent (UA), the Network Agent is a tamper-proof secure co-processor, which is physically

in the possession of the User Agent. Every packet sent or action taken by the User Agent

is verified and signed by the Network Agent. Packets not authenticated by a network

agent are dropped at the receiving end. Unlike other secure protocols which attempt to

overcome the effects of malicious nodes, the intention in dual agent approach is to prevent

nodes from misbehaving. However, elements from other secure routing protocols can still

be used to cater for the failure of network agents.

While many researchers have proposed similar models, they did not take into con-

sideration some of the constraints that need to be imposed on the network agents. Jar-

rett and Ward proposed Trusted Computing Ad hoc On-demand Distance Vector proto-

col (TCAODV) [49], which is a secure variant of AODV that employs a trusted module.

Asymmetric cryptography is used to provide authentication between nodes (trusted mod-

ules), and each control packet is signed by the sender’s trusted module (routing agent). In

30

their approach a node’s routing agent is aware of the protocol functionalities, and ensures

a node’s adherence to the employed routing protocol.

The dual agent approach by Gaines et al was motivated by the following reasons:

1. It is not possible for the network interface to be under the control of the trusted
agent. The user agent can simply drop signed packets.

2. It is impractical for the network agent to perform all tasks - network agents have to
rely on the user agent to observe neighbors.

3. It is essential to reduce the complexity of the network agent to the extent feasible in
order to improve its reliability.

Motivated by the need to reduce complexity of network agents Gaines et al divided the

tasks to be performed by a MANET node into two categories: selfish tasks and selfless

tasks [54]. Sending its own data, generating routing traffic in search of a route, can be

considered as selfish tasks. Routing network traffic, relaying information generated by

other nodes, constitute selfless tasks. Security mechanisms employed should acknowledge

this difference, and provide means to secure each type of task separately. Such a distinction

is lacking in existing approaches to secure routing protocols. The role of the network agent

should be limited to securing self-less tasks.

Gaines et al [54] apply dual agent approach to secure DSDV [4]. More specifically, the

intent of [54] was investigation of efficient strategies to protect the integrity of the distance

vector routing tables stored by the user agent. A combination of NSEC [64] (a mechanism

used for authenticated denial of existence of DNS resource records) and Bloom filters

[65] are used for this purpose. More specifically, NSEC employs a hash which links one

element to the next element in an ordered list. Thus the ability to prove that (for example)

10 follows 5, is a proof that 6, 7, 8, and 9 do not exist. A HMAC (computed using a key
31

stored with the network agent) is appended to each NSEC record by the network agent.

This would make it tamper-proof from the user agent.

Routing information rendered stale prematurely, due to the availability of new infor-

mation, are stored in a Bloom filter (which are stored in network agent) to ensure that the

user agent cannot replay such stale data. Their simulations show that for a network of 400

nodes, about 2.5kb of storage is required by each network agent (to hold information that

is required to counter the attacks mentioned); and the efficiency of the network is about

90% (at any time instant in the network, on an average 90% of the routes that physically

exist are reflected consistently in the routing tables of all nodes).

32

CHAPTER 3

SECURING MANET ROUTING USING TRUSTWORTHY MANET MODULES

As seen in the previous chapter, several secure extensions of various MANET rout-

ing protocols have been proposed in the literature. From a broad perspective the main

shortcomings of current secure routing protocols are

1. High overhead for the additional security measures; and

2. inability to provide several important assurances.

3.1 Shortcomings of Current Secure Protocols

Even while demanding substantial overhead, SAODV still leaves an AODV MANET

susceptible to a wide range of attacks. Some of the main shortcomings of SAODV (which

are addressed in SAODV-2) are

1. lack of mechanisms to authenticate intermediate nodes (intermediate nodes are not
required to append any authentication)

2. inability to prevent some misrepresentations of the hop-count: it can only ensure
that a node receiving an RREQ/RREP with hop count r cannot relay a hop count
less than r. A malicious node can incorrectly (or maliciously) relay the same hop
count r or a hop count greater than r, and

3. lack of mechanisms to address one-way links.

While SAODV-2 addresses many of the pitfalls of SAODV, SAODV-2 is still susceptible

to many attacks. SAODV-2 assumes that nodes will not collude together. Colluding nodes

33

can easily thwart two hop authentication. Secondly, there is no mechanism for regulating

creation of RERR packets.

Unlike SAODV (where intermediate nodes are not required to append authentication),

in Ariadne authentication of intermediate nodes is mandatory. Unfortunately, in most

secure extensions of DSR the verification of the authentication occurs very late in the

RREQ-RREP process. For this reason, malicious nodes in the path can simply send ran-

dom RREQ packets which even though will not be accepted by end-points, can preempt

propagation of genuine RREQs.

The main pitfalls of Ariadne that are addressed by iAriadne are addition of mechanisms

for i) link-layer (one-hop) authentication, and ii) preventing abuse of one-way links - both

of which are achieved by imposing a private logical neighborhood (PLN). iAriadne also

introduces an additional upstream per-hop hash to be introduced by every node relaying the

RREQ to facilitate the RREQ destination to narrow down intermediate nodes that engage

in active attacks.

3.1.1 Collusion

However, the security of all four protocols (SAODV, SAODV-2, Ariadne and iAriadne)

are based on the assumption that nodes will not collude. In both SAODV and SAODV-2

colluding nodes can ensue that even shorter hop counts can be relayed. In Ariadne and

iAriadne colluding nodes can trivially delete nodes from the path.

The primary reason that facilitates easy collusion is that two nodes A and B simply

need to share their secrets to do so. Through their ability to send packets impersonating A

34

or B, both A and B can create packets with misleading information - with the misleading

information provided by A consistent with the misleading information provided by B.

Obviously, three such nodes A, B, C sharing their secrets can engineer an even broader

variety of attacks.

3.1.2 Carrying Over Authentication

Security mechanisms that employ carry over authentication would increase the packet

size, as each packet needs to hold authentication information about multiple nodes. Now

Consider an example where a packet was relayed by nodeA, and later was forwarded byB

to node C. In schemes based on two hop authentication, apart from validating the received

information, node C should also verify that A is a neighbor of B, and that B indeed is

relaying the information it directly received from A. This requires C to accurately obtain

the neighborhood information of node B, which would incur a lot of overhead.

3.1.3 Unregulated RERR Creation

Another pitfall of all secure on-demand protocols is the lack of mechanisms to regulate

the creation of route-error (RERR) packets. An effective strategy for an attacker to intro-

duce unnecessary additional overhead is to participate faithfully in establishing a path and

then send a supercilious RERR packet - mandating a fresh route creation process.

For example, an attacker C in a path A → B → C → X can simply send a RERR

claiming to have lost the link to X (even while the link exists). The risk the attacker C

faces in doing so is that ifX hears the RERR packet, X may disregard future packets from

35

C (which might affect C’s ability to connect to some nodes). A selfish node desiring to

retain X as a neighbor can however still manage to send such a RERR packet by ensuring

that the RERR will not be heard by X . This can be achieved easily by exploiting the

medium access control protocol. For example, if a collision avoidance protocol is used,

C can send the packet as soon as X sends a clear to send (CTS) or a request to send

(RTS) packet, thereby ensuring that C’s RERR suffers collision at X (but will be received

collision-free by other neighbors of C).

3.1.4 Limited Optimizations

Original versions of AODV and DSR include several optimizations to improve their

efficacy. Such optimizations include route responses by intermediate nodes, local path

repairs, using cached information for relaying messages etc. Most secure extensions of

protocols do not support such optimizations as they introduce new avenues of attacks.

Thus, the overhead for using secure routing protocols have two sources - direct overhead

for cryptographic authentication, and indirect overhead resulting from the fact that several

useful optimizations cannot be used.

3.2 Shortcomings of Current Schemes Based on Trustworthy Computing

The above mentioned limitations of currently proposed secure extensions can be ad-

dressed by using a trusted module (like TPMs) that governs the routing actions taken by

a node. A trusted module is assumed to be tamper resistant, and can securely execute the

operations encoded into it.

36

The idea of using trusted modules to secure ad hoc routing protocols is widely being

investigated. However, most of the current work make unrealistic assumptions about the

trusted module, and also does not provide a clear explanation on how they can used to

realize existing MANET routing protocol.

3.2.1 Questionable Trusted Boundaries

The components included within the boundaries of a trusted module are assumed to be

tamper proof. Hence it is required to deliberately limit elements enclosed within trusted

boundaries. However, the proposed schemes violate this requirement by assuming the

trusted modules to include several system level components. The mechanisms proposed in

[55, 56] include BIOS, boot loader procedures, and operating system kernel inside trusted

boundaries. In [57, 58] the MAC layer of a MANET node is also enclosed by a trusted

module. Such unrealistic assumptions are hard to realize, and drastically increase the

trusted boundary space.

3.2.2 Computational Overhead

Trusted modules are assumed to be physically well shielded in order to prevent unautho-

rized modifications to encoded logic, and also to protect internally stored secrets. There-

fore a trusted module is required to be severely resource limited, to offer itself for proper

shielding. Contrarily, the proposed trusted computing schemes assume the trusted module

to execute complex algorithms like public key cryptography. Further they also assume to

store hugely accumulated routing data (like routing tables) within trusted boundaries.

37

3.2.3 Lack of Proper Interface Definitions

None of the currently existing schemes present a clearly defined interfaces which can

be used to realize an existing MANET routing protocol. Instead, they either conveniently

assume that the entire routing logic is implemented within trusted boundaries, or that a

trusted module verifies the correctness of the routing protocol, when it is loaded by the

operating system.

3.3 Trustworthy MANET Modules

In our research we designed a trustworthy MANET module (TMM) which can be used

to secure MANET routing protocols. These TMMs are designed to address the shortcom-

ings of existing secure extensions. Additionally, we clearly define the functionalities of a

TMM, by providing a detailed description of the interfaces exposed by them (TMMs). The

routing logic of a MANET routing protocol is distributed among these interfaces, and a

node can invoke them in a particular order to realize the routing protocol supported by the

TMM. Finally, we deliberately limit the computational and storage capabilities of these

TMMs.

3.4 Specifications of TMMs

In the generic approach outlined in the rest of this dissertation it is assumed that a

TMM is housed in every mobile node. In the interest of rendering the module trustwor-

thy, TMMs are constrained to possess low complexity. By performing simple operations

TMMs attempt to ensure that mobile nodes will not be able to violate the routing protocol.

38

It is assumed that every TMM has a unique identity (which is the same as the identity

assigned to the node). Several light-weight key distribution schemes exist to permit any

two TMMs to establish a shared secret. In the rest of this dissertation it is assumed that the

modified Leighton-Micali scheme is used for this purpose, where computing any pairwise

secret will require nodes to perform a single hash operation.

TMMs recognize a simple data structure for destination records (DR). TMMs receive

authenticated records from TMMs of other nodes, modify some fields in the destination

records subject to some simple rules (for example, incrementing a hop-count field), and

authenticate records to other nodes. Message authentication codes (MAC) based on pair-

wise secrets are used for authentication of records.

TMMs also maintain a table of neighboring nodes. A node A is recognized as a neigh-

bor by a node B only if an authenticated packet from A is received. Every packet is

acknowledged. Only if an authenticated acknowledgment is received from A (for a packet

sent by B) does B consider A as a neighbor with bidirectional link. TMMs honor destina-

tion records only from neighbors with bidirectional links, and send authenticated routing

records only to neighbors with bidirectional links.

By maintaining a table of neighbors, and by performing simple and fixed sequences of

logical and hash function operations, TMMs ensure adherence to the rules that govern a

MANET protocol. More specifically, the assurances realized using the proposed approach

is only based on the assumptions that

1. the secret stored inside the TMM cannot be exposed, and

2. the simple and fixed functionality of the TMM cannot be modified.

39

More specifically, the nodes themselves, and the users in control of the nodes are not

trusted. In the rest of this dissertation we describe the precise functionality of TMMs

required for securing various MANET routing protocols.

3.4.1 High Level Architecture of TMMs

It is assumed that every TMM possesses

1. an in-built cryptographic compression function h() (for example, SHA-1);

2. protected non-volatile memory for storing one or a few symmetric secrets, and one
or a few non-secret values which have to be remembered across reboots of the TMM;

3. limited volatile RAM for storing some dynamic values like a table of neighbors,
some protocol parameters etc.;

4. I/O registers;

5. a clock-tick counter; and

6. control logic which drives the functionality of the TMM.

A TMM assigned identity X is assumed to possess a secret KX , provided to the TMM

by a trusted key distribution center. This secret is used for computing pairwise secrets -

for example, a pairwise secret KXY privy only to TMMs X and Y . The TMM X also

possesses a secret SX known only to itself (generated by TMM X).

It is assumed that the clock of the TMM runs even when the TMM is powered off.

An offset ox, provided to the TMM by a trusted authority, is subtracted by the TMM

to compute the current time t. We represent the current time as seen by X as tx. It is

assumed that all TMMs agree on the current time “reasonably well” (for example, within

a few tenths of a second).

40

TMM functionality necessary for time synchronization and boot-strapping of TMMs

are not a concern of this dissertation. The main focus is identifying simple TMM func-

tionality to ensure adherence of nodes to the MANET routing protocol.

3.4.2 Pairwise Secrets Between TMMs

Several key distribution schemes for facilitating pairwise secrets between trustworthy

modules have been proposed in the recent past. For scenarios involving trustworthy mod-

ules there are compelling reasons to reduce the computational overhead inside the module

for the operations performed using protected secrets. For the scheme in [27] each module

will be required to store a few tens of keys and perform a few tens of block cipher opera-

tions for computing any pairwise secret. For the scheme in [28] each module will need to

store a single secret and perform a single block-cipher operation.

While both schemes support asynchronous induction of nodes, the former [27] can

support unlimited network sizes; the latter [28] imposes a soft limit on the maximum

number of nodes (for example, not much more than a few tens of millions). In this paper

we assume that the scheme in [28] is used for facilitating pairwise secrets. Specifically the

pairwise secret KAB between A and B is computed by A as

KAB = h(KA ‖ B)⊕ PAB. (3.1)

where PAB is a pairwise public value. The TMMs do not have to worry about the integrity

of the public values. The public values are maintained by nodes. Modifications to the

public values cannot result in exposure of the secrets.

41

3.4.3 Neighbor Table

The neighbor table of a TMM X consists of one or more neighbor records of the form

N = [idn ‖ Kpw ‖ t′ ‖ l] (3.2)

where idn is the identity of a neighbor, Kpw is a pairwise secret, t′ is the freshest authen-

ticated time-stamp from idn, and l ∈ {0, 1, 2, 3} is the status of the link to neighbor id.

Status 0 is unverified link. Status 1 indicates verified link, which has not been tested for

bi-directionality. Status 2 reflects a verified bidirectional link. Neighbors with status 3 are

those that are revoked by the node. These neighbors can not be used for routing until the

period t′ expires.

The neighbor table N is a set of neighbor records. As an example, the contents of the

neighbor table of a TMM X can be as follows:

A KXA t′a 2

B KXB t′b 3

C KXC t′c 1

E KXE 0 0

(3.3)

indicating a neighbor A with tested bidirectional link, one neighbor C with untested bidi-

rectional link, and an unverified entry for a node E. FurtherX explicitly revoked neighbor

B, and hence can not send packets to it until time t′b. At a time tx according to TMM

X , an entry with time-stamp t′ < tx − δn (where δn is a constant) is also considered as

an unverified entry. For such an entry in N the time stamp and link status are set to 0.

Basically it means that neighbors unheard for δn time are marked as unverified.

42

3.4.4 Authentication Record and Message Authentication Codes

TMMs recognize the structure of authentication records of the form

A = [idp ‖ hr ‖ t ‖ ACK ‖ µ], (3.4)

where t is a time-stamp and hr is a value provided by a node idp (in future references

we term it as the provider). The value ACK is a flag which is set to one to indicate an

acknowledgment. The value µ is a MAC computed by the provider idp.

Typically, the value hr is a hash of a destination record of the form

D = [id ‖ q ‖ m ‖ a ‖ τ] (3.5)

id is the identity of the destination, q is a sequence number, m is a metric (typically hop-

count), τ is an absolute value of time, and a is an auxiliary value which provides additional

information regarding the path to the destination with identity id. However, depending on

the specific nature of the protocol the interpretation of the values may differ.

3.4.5 Protocol Parameters

TMMs recognize the following protocol specific parameters:

1. δn: maximum age of neighbor time-stamp;

2. ∆: validity period for destination records.

3. Qx: current sequence number of TMM X

4. MAX: Maximum size of neighbor table

5. INF : Hop count considered as unreachable

6. ∆W : Waiting period

7. ω: specifies the protocol in use
43

When the TMM is turned on for the first time these parameters are initialized to their

default values. To securely load this information the key distribution center can provide

the required information securely using the shared secretKX . Additionally as we shall see

in later chapters, not all parameters are used for all protocols.

3.4.6 MACs

TMMs verify/compute many types of MACs:

1. µr: MACs for time-stamped destination records;

2. µt: MACs for time-stamps;

3. µa: Acknowledgment MACs; and

4. µs: self-MAC

A MAC of the form µr is computed to securely convey the hash of destination record from

one TMM to another. To convey a DR with hash hr to a neighbor A, TMM X computes

(at time tx)

µr(X,A) = h(hr ‖ tx ‖ 0 ‖ KXA) (3.6)

A time-stamp MAC of the form µt is computed by X for verification by B

µt(X,B) = h(tx ‖ tx ‖ 0 ‖ KXB). (3.7)

An acknowledgment MAC µa to acknowledge a MAC µr is computed by A

µa(A,X) = h(hr ‖ ta ‖ 1 ‖ KAX). (3.8)

An acknowledgment MAC µa to acknowledge a time-stamp MAC µt is computed by B as

µa(B,X) = h(tx ‖ ta ‖ 1 ‖ KAX). (3.9)
44

The shared pairwise secrets used for computing MACs µr, µt and µa are typically

stored in the neighbor table of the TMM.

A self-MAC is computed by a TMMX for verification by itself at a later time. For this

purpose a secret known only to the TMM (self-generated inside the TMM) is used. Three

types of self-MACs are recognized by TMMs, represented as µs, µaux and µset.

The self-MAC µs is computed by X using a secret SX known only to X as a response

to a valid authentication record submitted to the TMM with a MAC µr, under some con-

ditions. For example, in response to an authentication record A = [A ‖ hr ‖ ta ‖ 0 ‖

µr(A,X)] submitted to TMM X , the TMM may compute

µs(X) = h(A ‖ hr ‖ r ‖ SX). (3.10)

where r is a value which depicts the internal state of the TMM. The self-MAC is a mem-

orandum issued by the TMM to itself, bound to a state r. In this particular scenario the

memorandum states that “a value hr was provided by A” when the TMM state was r. This

self-MAC is accepted by the TMM only if the TMM is in state r. For self-MACs that

should be accepted regardless of TMM state, the self-MAC is issued against a state r = 0.

This value of r is also stored within a TMM.

Further details about r, and MACs µaux and µset are provided in later chapters.

3.5 TMM Functions

In the proposed approach TMMs are housed in MANET nodes. These TMMs are ca-

pable of establishing pairwise secrets with each other using strategies which demand low

overhead for operations to be performed inside the trusted boundary of TMMs. These pair-
45

wise secrets are used for computing message authentication codes (MAC). Nodes commu-

nicate with their TMMs using fixed and well-defined interfaces - by writing into the input

registers of the TMM and reading time-stamped MACs from the output registers of the

TMM. Such MACs accompany MANET routing packets sent by nodes.

An important prerequisite for a trustworthy module to warrant trust is that the TCB

functions executed inside the module are simple, and consequently, easily verifiable. Sim-

ple TCB functions can also be implemented as hardwired logic (software-free), thus ren-

dering moot a wide range of attacks that attempt to modify software. It is also desirable

that the modules consume as little power as possible, and consequently disseminate negli-

gible heat, as such modules can be physically well shielded from deliberate and accidental

intrusions. With these self-imposed limitations on TCB functions, aimed at improving the

reliability of TMMs while simultaneously lowering their cost, we seek a set of simple TCB

functions for MANETs.

Now we present few TMM interfaces that are exposed to the node housing the TMM.

These functions perform generic actions, and hence can be used by a TMM irrespective of

the employed protocol.

1. Initialize(): employed by all protocols; This function is used to securely load the
protocol parameters to their default values.

2. SendTS() : employed by all protocols;

3. UpdateNeighborTable() : employed by all protocols;

46

3.5.1 SendTS()

This method is used to compute authenticated time-stamps (µt) for all the neighbors

listed in the neighbor table N as shown in equation 3.7. Usually this function is invoked

to authenticate periodic HELLO messages sent to all neighbors except for those whose

status l == 3. The message included in these HELLO messages is the time at which the

MACs (µt) are computed. The algorithm followed by SendTS() can be seen in Figure 3.5.1.

SendTS() { // create time-stamp MAC for every entry in N
µt(1) · · ·µt(MAX) = 0;
t = tx;
FOR i = 0toMAX // MAX is the maximum size of neighbor table
N = N (i) = [idn ‖ Kpw ‖ t′ ‖ l]; // row i of N
IF ((idn 6= 0) ∧ (l 6= 3))
µt(i) = h(t ‖ t ‖ 0 ‖ Kpw);

RETURN µt(1) · · ·µt(MAX), t;
}

Figure 3.1

Function SendTS()

3.5.2 UpdateNeighborTable(A)

UpdateNeighborTable() is used to update the neighbor table (N)that is internally stored in

the TMM. It can either update existing records based on received packets, or can add/delete

neighbor records. The function accepts an authentication record (A) as input.

When the function is invoked to either add or delete neighbor records (identified by

µ == 0) the interface first tries to find out the index of the passed neighbor identity (id)

47

by using an internal function called findindex(). A neighbor record (id ‖ Kpw ‖ 0 ‖ 0)

is added to N , if the requested neighbor is not already present in N (findindex() returns

0).

However when a record for neighbor id does exists, the TMM treats this as a request

to either revoke or remove the neighbor. The TMM would remove neighbor records that

either: i) has a status l 6= 3, and is expired (t′+ δn + ∆ < tx), or ii) has status l == 3, and

are expired (t′ < tx). Additionally, the TMM would revoke the neighbor, by setting its

status to 3, if: i) the neighbor was not heard for δn seconds; the TMM revokes the neighbor

for the next ∆ seconds, or ii) X requested to revoke the neighbor; the TMM revokes the

neighbor for the next 2∆ seconds.

Every packet received by a node X is first submitted to UpdateNeighborTable(), where

the corresponding neighbor record of the sender (id) is updated. The TMM X first au-

thenticates the submitted packet by recomputing the value of µ. If verified, it computes

an acknowledgment MAC µa for information (hr) received in the packet. Later the TMM

modifies the record for neighbor id by updating the status l and latest time-stamp t′ fields.

Finally if the packet was received from a bidirectional neighbor (l == 2), and if it is

neither an acknowledgment (ACK 6= 1) nor a time-stamp (hr 6= t) the TMM X computes

a self-MAC µs for the received value hr as shown in equation 3.10.

A more detailed description of UpdateNeighborTable() can be found in Figure 3.5.2.

48

UpdateNeighborTable(A) {
//A = id ‖ hr ‖ t ‖ ACK ‖ µ
µa = µs = 0;
i = findindex(N , id);
//N (i) = [id ‖ Kpw ‖ t′ ‖ l] //stored neighbor record
IF (µ == 0) //no MAC - add or delete neighbor

IF (i == 0) //add neighbor
Kpw = h(KX ‖ id)⊕ hr) //hr is MLS public value
N (i) = [id ‖ Kpw ‖ 0 ‖ 0] //insert record

ELSE //delete neighbor
IF ((t′ + δn + ∆ < tx) ∧ (l 6= 3))
N (i) = [0 ‖ 0 ‖ 0 ‖ 0]; //delete record

ELSE IF ((t′ + δn < tx) ∧ (l 6= 3))
N (i) = [id ‖ 0 ‖ t′ + δn + ∆ ‖ 3];

ELSE IF ((t′ < tx) ∧ (l == 3))
N (i) = [0 ‖ 0 ‖ 0 ‖ 0]; //delete record

ELSE
N (i) = [id ‖ 0 ‖ tx + 2∆ ‖ 3];

ELSE //update neighbor record
N′ = N (i) = [id′ ‖ K ′pw ‖ t′ ‖ l′]
IF (µ == h(hr ‖ t ‖ ACK ‖ K ′pw)
tc = tx;
µa = h(hr ‖ tc ‖ 1 ‖ K ′pw); //compute ACK
IF ((t > t′) ∧ (ACK == 1))
N (i) = [id ‖ K ′pw ‖ t ‖ 2];

ELSE IF (t > t′) ∧ (ACK == 0)
IF (l′ == 2) //neighbor already listed as bidirectional
N (i) = [id ‖ K ′pw ‖ t ‖ 2];

ELSE
N (i) = [id ‖ K ′pw ‖ t ‖ 1];

IF (ACK == 0) ∧ (hr 6= t) ∧ (l′ == 2)
µs = h(id ‖ hr ‖ r ‖ SX); //self-MAC

RETURN µa, µs, tc
}

Figure 3.2

Function UpdateNeighborTable(A)

49

3.5.2.1 Usage of UpdateNeighborTable()

Consider a scenario where a node X enters a subnet and recognizes the presence of nodes

A, B and C within its range. At this point, while node X recognizes its neighbors,

the TMM of X does not. The TMM of X recognizes a node A as a neighbor only if a

time-stamped and authenticated MAC (authenticated using secret KXA) is provided to the

TMM.

Node X uses the UpdateNeighborTable() function to add nodes A, B and C to its neigh-

bor table with status l = 0. As the pairwise key for A, B and C is available after this step,

now X can invoke SendTS() to obtain time-stamped MACs µt, which would authenticate

X to these neighbors. On receipt of the HELLO packet,A submits the time-stamped MAC

to its UpdateNeighborTable() resulting in the addition of X as a neighbor with status l = 1.

For every packet submitted to UpdateNeighborTable(), the function returns the correspond-

ing acknowledgment MAC µa. Hence A would acknowledge the received HELLO, and

now X could list A as a bidirectional neighbor. Finally, an acknowledgment from X to A

would list X as a bidirectional neighbor of A.

In the same way, a list of neighbors are maintained in the neighbor table of all TMMs,

characterized by the link status and the latest time-stamp. Periodically, nodes may send

supercilious HELLO packets to ensure that the TMMs of neighboring nodes recognize

their presence. The MACs necessary to authenticate HELLO packets can be obtained by

invoking SendTS().

Additionally, the function UpdateNeighborTable() allows a node X to revoke its neigh-

bor (say A). X would revoke a neighbor A when:

50

• X is experiencing a weak link with neighbor A. Usually X is supposed to hear from
each of its neighbors for every δn seconds. However whenX is experiencing a weak
link with A, it might not hear from A for more than δn seconds. In this instance X
would revoke the neighbor A for the next ∆ seconds.

• X identifies that A is misbehaving. Now X can revoke A for the next 2∆ seconds.

X would not send or receive packets from a node it revoked until the revocation timer

(stored as t′) expires.

3.5.3 Supplementary Functions

Apart from the above explained functions the TMM X has a few internal functions

which can be invoked to perform specific reusable tasks. The function checkbd(id) (as

shown in Figure 3.5.3) is used to verify whether id is currently a bidirectional neighbor.

The function verifies the status of id (whether l == 2) and also checks whether id was

last heard recently enough (tx− t′ < δn). If satisfied, the function returns 1 indicating that

id is a verified bidirectional neighbor; else, it returns 0.

Additionally the function computemacs(hr, idp, j) is used to compute verifiable MACs

µr as shown in equation 3.6. When j == 0 the function returns MACs for every listed

bidirectional neighbor inN except idp. However when j == 1 it only computes MAC for

idp. Figure 3.5.3 details the pseudo code for this function. In order to verify the bidirec-

tionality status of neighbors this function uses the above mentioned checkbd() interface.

51

checkbd(id) {
i = findindex(N , id);
N = N (i) = [idn ‖ Kpw ‖ t′ ‖ l];
IF ((id == idn) ∧ (l == 2) ∧ (tx − t′ < δn))

RETURN 1;
ELSE

RETURN 0;
}

Figure 3.3

Function checkbd(id)

computemacs(hr, idp, j) {
IF (j == 0) //compute macs for all bidirectional neighbors except idp
µr(1) · · ·µr(MAX) = 0; t = tx
FOR i = 1 · · ·MAX
N = N (i) = [idn ‖ Kpw ‖ t′ ‖ l];
IF ((idn 6= 0) ∧ (idn 6= idp) ∧ checkbd(idn))
µr(i) = h(hr ‖ t ‖ 0 ‖ Kpw)

RETURN µr(1) · · ·µr(MAX), t;
ELSE //compute MAC only for idp
i = findindex(N , idp);
N = N (i) = [idn ‖ Kpw ‖ t′ ‖ l];
IF ((idn == idp) ∧ checkbd(idn))
µr = h(hr ‖ t ‖ 0 ‖ Kpw)

RETURN µr, t;
}

Figure 3.4

Function computemacs(hr, idp, j)

52

CHAPTER 4

BASIC TCB FOR ON-DEMAND PROTOCOLS

In this chapter we propose a simple and efficient TCB for on-demand Protocols which

can be leveraged to improve the performance of MANETs by i) providing assurances that

reduce the scope of attacks that can be launched by attackers, and by ii) reducing the

overhead required for leveraging the TCB. As explained earlier in the proposed approach

simple TCB functions are executed inside trustworthy MANET modules (TMM) housed

in every MANET node. We assume that only the TMMs are trusted: the rest of the node -

all other hardware and software - are untrusted.

Every routing packet received by a node X provides information about a specific des-

tination. Node X uses this accumulated information to carry out the routing process. In

order to ensure securityX should be prevented from illegally modifying or creating super-

fluous routing data. Ideally to satisfy this requirement routing data should be stored within

trusted boundaries, and thereby preventing unwanted modifications. However, the TMMs

housed in each node are severely resource constrained, and hence internally storing all the

gathered routing data is not practically feasible.

Therefore in order to maintain the integrity of routing data every received routing

packet is signed by a self-MAC µs = (hr ‖ id ‖ r ‖ SX). Whenever X decides to

use the routing information (represented by hr) it has to submit the corresponding µs that

53

authenticates it. In this fashion a TMM would prevent a node from illegally modifying

received routing data. Hence a node caches all the received routing information (hash of

which is represented as hr) along with the appropriate MAC µs.

For the discussion provided in this chapter the value of the field r is always set to 0, as

we assume that the TMM does not change its state. Further details about r are provided in

subsequent chapters.

In this chapter we present an interface AtomicRelay() which, along with the other func-

tions explained in Section 3.5, can be used to realize both AODV and DSR on-demand

routing protocols. Both the protocols start their route establishment process by broadcast-

ing a RREQ, to which a corresponding RREP is generated either by a destination, or by

an intermediate node that has fresh enough route. The main difference between the two

protocols is that in AODV a requesting node obtains the hop distance and next-hop infor-

mation by the end of a successful route establishment; while in DSR the entire path to the

destination is known.

In both the protocols prematurely expired paths are handled by RERR packets. The

function AtomicRelay() identifies a RERR packet when the value of hr is extended by the

flag INV . A routing packet includes a destination record (DR) D = [id ‖ q ‖ m ‖ a ‖ τ],

and as explain in Section 3.4.4 the value of hr = h(D). While forwarding this DR the

value of hr is extended as: hr = h(hr ‖ INV).

For the discussion provided in this chapter the packet represented by hr is a RERR

when INV = 1.

54

4.1 AtomicRelay(D, idp, µs, INV, ω)

TMM X exposes the function AtomicRelay() so that the node could submit the routing

information it wants to send, along with the corresponding MAC µs. The inputs accepted

by this function are:

1. a DR D = [id ‖ q ‖ m ‖ a ‖ τ]

2. identity of the provider idp

3. self-MAC µs

4. flag INV , ω

The flag ω indicates the underlined protocol (ω = DSR or AODV). A detailed algorithm

for AtomicRelay() is provided in Figure 4.1.

When µs == 0 the TMM X interprets this as a request to create a DR about itself.

Now the internally stored sequence number Qx is incremented by 1, and later a DR for

X is constructed. Later the TMM computes the value of hr and invokes the function

computemacs(hr, X, 0) to authenticate it to all the stored bidirectional neighbors.

If the function is invoked to relay a previously received information (µs 6= 0), the

TMM X first computes the value of hr and verify it against the submitted self-MAC µs.

When idp (the provider of hr) is still a bidirectional neighbor the TMM X builds a new

DR by updating the values of m and a. When the implied protocol is DSR (ω == DSR)

the value of a is extended to include the identity of X . Finally the corresponding hr of the

newly constructed DR is authenticated to all the bidirectional neighbors of X except idp.

However when idp is no longer a bidirectional neighbor of X , the TMM sets m =

INF, a = 0. The value of hr is computed by setting the flag INV = 1, and later is

authenticated to all the current bidirectional neighbors of X .
55

AtomicRelay(D, idp, µs, INV, ω) {
//D = id ‖ q ‖ m ‖ a ‖ τ
IF (µs == 0) //create a DR for relaying
qx = Qx + +; //Qx is maintained in persistent storage
IF (ω == DSR) a = h(a ‖ X)
hr = h(X ‖ qx ‖ 0 ‖ a ‖ tx + ∆)
hr = h(hr ‖ 0)
RETURN computesmacs(hr, X, 0); //compute MAC for all bidirectional neighbors

hr = h(h(D) ‖ INV)
IF (µs == h(hr ‖ idp ‖ 0 ‖ SX)) //relay a DR

IF (checkbd(idp))
IF (m 6= INF) m = m+ 1;
IF (ω == DSR) a = h(a ‖ X);
hr = h(h(D) ‖ INV);

ELSE //RERR creation - neighbor lost
m = INF ; a = 0;
hr = h(h(D) ‖ 1); //indicates that this is a RERR

RETURN computesmacs(hr, idp, 0); //MACs for all neighbors except idp
}

Figure 4.1

Function AtomicRelay(D, idp, µs, INV, ω)

56

4.2 Realizing AODV and DSR

When TMM enabled nodes are used in a MANET subnet employing AODV/DSR the

only difference is that along with plain routing packets, every node sends some additional

values - a clock-tick value and some MACs. RREQ and RERR packets are accompanied

by one MAC for every bidirectional neighbor. RREP and data packets are accompanied

by one MAC for the next hop.

HELLO packet exchange and neighborhood establishment are performed as explained

in Section 3.5.2.1 by using the functions UpdateNeighborTable() and SendTS().

A RREQ packet contains information about its creator (source). It would also list

details about the required destination (like its identity and last known sequence number),

which are unmodified while forwarding a RREQ. Let hi represent the hash of such constant

fields. To create a RREQ for destination D, node X invokes the function AtomicRelay()

with µs = 0, a = hi, and INV = 0. The function would construct a DR about X (with

a = hi) and compute verifiable MACs to all the listed bidirectional neighbors of X . Note

that the TMM increments the internally stored sequence number Qx while creating such a

DR. Therefore we ensure that the sequence number of a node is incremented whenever it

requests an RREQ. This would prevent a bad node from sending un-wanted RREQs that

will increase network overhead.

Now suppose A is a neighbor of X that has received the RREQ from X and does

not have a path to D. Further B is a neighbor of A (but not a neighbor of X) that has a

valid path for D (say B received this information previously from its neighbor P). Firstly

A would invoke the function AtomicRelay(), and submit the received RREQ and the cor-

57

responding self-MAC (A would obtain the self-MAC when it first submits the received

packet to its UpdateNeighborTable()). The TMM A would generate verifiable MACs that

could be used for relaying the RREQ. Now when B receives the RREQ it would create

a RREP by submitting the previously received routing information from P and the cor-

responding µs value to its AtomicRelay(). The TMM B would now increment the value

of m and returns verifiable MACs (µr) to all the neighbors of B. However, since RREP

is unicast, B would only include the MAC verifiable by A, and ignore the rest of the µr

values returned by AtomicRelay().

It has to be noted that even though B created the RREP it actually is relaying the

information it previously received from P . Node B could only do this if:

• the information has not expired yet,

• and P is still present as a bidirectional neighbor to B.

For instances where a destination (say D) needs to create a RREP, the function Atom-

icRelay() is invoked with µs = 0, and a = hi. The value hi is a one-way function on all

the constant values included in the RREP. The TMM D would create DR about itself and

would authenticate it to all the listed bidirectional neighbors. As explained earlier, since

RREP is a unicast, D would only include the MAC verifiable by the node to whom the

RREP is forwarded to.

In addition to the process followed above, for DSR (ω == DSR) the value of a

is extended to include the node’s identity while forwarding DRs. This ensures that a

represents the cumulative hash of the source path included in DSR packets. For instance

in the above example the source path included in the RREQ received by B is (X,A), and

58

the value of a = h(h(hi ‖ X) ‖ A), where hi is hash of the immutable fields included by

the node X that created this packet.

The value of hr in all the above mentioned calculations is computed with the flag

INV = 0, as the corresponding DR does not represent a RERR. Now suppose if B lost

its connectivity to P , it (node B) is required to generate a RERR for destination D. B

would do this by invoking AtomicRelay(), and resubmit the DR (it received from P), and

the corresponding µs to authenticate this DR. TMM B determines that P is no longer

a bidirectional neighbor, and will modify the DR by setting m = INF, a = 0. This

modified DR is authenticated it to all the neighbors of B. Node A would forward this

RERR by submitting the received DR to its AtomicRelay() with INV = 1.

4.3 Security Offered by Proposed TCB

In this section we investigate the security offered by the TMMs. We follow an informal

approach, by explaining these assurances using natural language. We first establish asser-

tion statements (as Lemmas), and later use these statements to prove the various security

features offered by the TMMs.

4.3.1 Assertion Statements

Lemma 1. A node X can not obtain the secrets KX and SX that are internally stored

inside the TMM X

59

Proof. The TMMs are assumed to be read-proof and write-proof. To justify the ability

to read-proof we deliberately reduce the complexity of operations performed inside the

boundary to ensure unconstrained physical shielding.

Lemma 2. A node X can not directly change the internally stored neighbor table N

Proof. The neighbor table N is stored internally in TMM X . As explained in Lemma 1,

the TMMs are well shielded, and hence any data structure that is internally stored cannot

be directly accessed by node X .

Lemma 3. A node X can not modify the received destination record (DR), before submit-

ting it to its TMM interface UpdateNeighborTable().

Proof. Each routing packet sent in the network includes a MAC µr that is used to au-

thenticate the information (DR) conveyed in the packet. As shown in equation 3.6, µr is

calculated over hr (hash of the DR) using the shared secret Kpw. Additionally node X has

to submit every received packet (hr) to the function UpdateNeighborTable(), which verifies

hr by recomputing the value of µr.

Since node X does not know the value of Kpw (the secret used in computing µr), any

changes to the received packet will be identified by the function UpdateNeighborTable(),

and hence will not be accepted. Therefore node X can not modify the received packet

before submitting it to the function UpdateNeighborTable().

Lemma 4. A node X can not modify a DR signed by its TMM before relaying it.

60

Proof. The proof for this statement is similar to the one presented for Lemma 3. A TMM

signs a DR using the shared key Kpw. Any changes to this DR, by node X , would be

identified by the TMM of the receiving node, and hence would be dropped.

4.3.2 Assurances Offered by TMMs

Theorem 4.3.1. A node X can not make illegal changes to received routing information.

Proof. The routing information (DR) received in a packet is authenticated using the MAC

µr. Lemma 3 states that X can not modify received DRs before submitting them to

its TMM. Further, the TMM has an interface that handles all the required changes that

need to be made to the received DR. In our case the function AtomicRelay() makes these

changes. Finally after making the changes, the TMM signs the modified DR, and return

the corresponding MACs (µr) to the node X .

Lemma 4 states that a node can not modify DRs that are signed by its TMM. Hence

node X is inhibited from introducing any illegal changes to the received DR.

Theorem 4.3.2. The TMM X only accepts routing packets from bidirectional neighbors

of node X .

Proof. Every packet received by X should be first submitted to the function UpdateNeigh-

borTable(). This function is encoded in such a way that it only outputs the self-MAC µs

when the packet was received from a bidirectional neighbor. Function like AtomicRelay(),

which are used for further processing the received DR, requires µs as its input. They use

it to authenticate the received DR.

61

Further, Lemma 2 states that X can not modify the internally stored neighbor table

N . Hence routing packets are only accepted from bidirectional neighbors.

Theorem 4.3.3. Sending a false RERR packet would penalize node X .

Proof. The DR required to create a RERR message can only be produced by calling the

function AtomicRelay(). To obtain this DR node X has to submit a DR with finite height

(m < INF), and whose provider (say A) is no longer listed with a status l == 2 in the

neighbor table N .

Node X could generate a fictitious RERR, by manually deleting the bidirectional link

to A. X could do this by calling the function UpdateNeighborTable() as described in Sec-

tion 3.5.2. However doing so would mean thatX can not useA as a bidirectional neighbor

for a period 2∆. The risk of loosing a neighbor (and thereby links to other nodes through

that neighbor) can be an effective deterrent against attacks based on creating superfluous

RERR messages.

Theorem 4.3.4. TMMs does not allow nodes to collude together.

Proof. Lemma 1 states that a node can not expose the secrets that are stored within its

TMM. Further Theorem 4.3.1 proved that a node can not introduce illegal changes to

received routing packets. Hence TMMs prevent nodes from colluding together.

The above mentioned security goals, viz.,

1. ensuring that routing records cannot be modified illegally

2. ensuring that routing records will be accepted only from nodes with tested bidirec-
tional links and will be relayed only to nodes with tested bidirectional links,

62

3. regulating RERR creation, and

4. addressing collusion based attacks

are achieved by performing trivial operations inside the TMM.

A TMM can only make a node to accept authenticated DRs, and ensure that changes

to received DRs are made adhering to the protocol. However, the TMM cannot force the

node to broadcast a packet as the communication interfaces are not included within trusted

boundaries. Hence explicit provisions are required to discourage nodes from maliciously

dropping packets. It is for this purpose we provide a node the ability to revoke a neighbor

from its neighbor tableN . Nodes which identify selfish behavior by neighbors can simply

remove the identified selfish neighbor. Therefore the selfish node would loose connectivity

with these nodes for the next ∆ or 2∆ seconds. Hence, unwarranted dropping of packets

can result in a node being disconnected from the network as the neighbors of the node

would remove the node from their neighbor list.

In other words, active attacks (involving illegal modifications to routing packets) are

addressed by TMMs by ensuring that the rules governing the underlying routing proto-

col cannot be violated. Passive attacks involving selective or selfish participation are ad-

dressed by the nodes through their ability to eject nodes from their “logical neighborhood”

- the neighborhood as seen by the TMM of the node.

4.3.3 Limitations

In DSR a node gets to know the entire path to the destination by examining the included

source path. This additional information can be used to reduce the overhead created by

63

future RREQ packets. Even though the proposed scheme provides RREP creation by

intermediate nodes, it does not support the usage of cached source paths in DSR.

Moreover, due to the physical limitations of a TMM accumulated routing data has to

be stored outside the trusted boundaries. Hence even though a node cannot alter received

information, it can hide the presence of a specific record. For instance in the example

mentioned in Section 4.2 B could hide the presence of the valid DR for D (which it

previously received from P), and forward the RREQ it received from A. The TMM B

cannot identify this selfish behavior, as it has no information about the records currently

stored at the node B. Node B would do this in order to prevent its presence in the final

path between X and D, and thereby can skip forwarding unrelated traffic. This would

allow B to preserve its resources from forwarding others packets.

Apart from hiding received DRs a node could also advertise stale routing information.

For instance say an attacker X has a valid DR (D = [D ‖ q ‖ m ‖ a ‖ τ]), and the

corresponding MAC µs for destination D, which was provided by neighbor A. Now when

X receives a RERR from A, it would forward the RERR after invalidating the stored DR

as D′ by setting m = INF and a = 0. However the TMM cannot remember this change

of information since the DR D is not stored within trusted boundaries. Therefore when X

later on receives a RREQ for D, it can continue to use the stale information it has for D

(D, µs). X can continue to use this stale DR until the expiry of its validity time.

In oder to prevent above mentioned malicious behaviors, a TMM should have the

knowledge of the destination records currently stored at the node housing it. Hence before

forwarding a DR for a destination (say D) a node has to present to its TMM the existing

64

DR for D. Enforcing such a rule would prevent nodes from hiding, or replaying stale

DRs. Additionally, to support the usage of cached routes the TMM should also be able

to verify the auxiliary information (source paths) included in the routing packet. In this

regard we designed a data structure “Index Ordered Merkle Tree (IOMT)” which could be

used to securely maintain the integrity of dynamic database of records that are stored in an

untrusted location.

Every leaf of IOMT corresponds to a unique destination, and a parent node is computed

as a one-way function of its children. Hence the root of the tree binds all the DRs stored

as leaves, and is stored inside the TMM. Whenever a node desires to advertise a DR it

would submit the corresponding leaf, and a set of “instructions” that map the leaf to the

root. Since the value of the root is stored within trusted boundaries, the TMM can validate

the submitted DR by mapping it to the root using the provided instructions. A detailed

description of IOMTs is provided in the next chapter.

65

CHAPTER 5

INDEX ORDERED MERKLE TREE

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 la lb lc ld le lf

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve vf

v01 v23 v45 v67 v89 vab vcd vef

v03 v47 v8b vcf

v07 v8f

v0f

Figure 5.1

A Binary Merkle tree with 16 leaves.

A binary Merkle-tree [59] is a hash tree where a single value (root of the tree) can be

used to authenticate multiple values (leaf nodes of the tree). A merkle tree is constructed

using two functions both of which can be derived from a cryptographic hash function h()

(say SHA-1). A function vi = hl(li) maps a leaf value li to an intermediate node vi at

66

height 0; a function z = he(x, y, f) maps two intermediate nodes at height n − 1 to their

parent node at height n using the flag f .

Figure 5 depicts a merkle tree with N = 16 leaves and height L = 4. As mentioned

above a verifier (that has access only to the root v0f) can confirm the existence of a leaf li,

when provided with the value of the leaf li, and a set of v “instruction” (which are used to

re-compute the root).

For example to prove that l4 is part of the tree, a prover provides L = 4 instructions

(v5, 0), (v67, 0), (v03, 1) and (v8f , 0). Each instruction has two values with the first being a

hash, and the second value is an “order-bit” which specifies how to use the included hash.

A verifier first computes v4 = hl(l4), and later derives the following values x = h(v4 ‖ v5),

x = h(x ‖ v67), x = h(v03 ‖ x) and x = h(x ‖ v8f). Note that the order-bit specifies

the order of the concatenation. The final value is compared against the root stored in the

verifier to confirm the value of the provided leaf l4.

To change the value of a leaf (say from l4 to l′4) a prover submits the following infor-

mation: i) the new value l′4, ii) set of v instructions, iii) justification for the change. The

verifier validates the provided justification, and if satisfied makes the necessary change,

and computes the new root as demonstrated above.

5.1 Index Ordered Merkle Tree

In general, a leaf li, 1 ≤ i ≤ N may contain a record with a record-index i ∈ I where

|I| >> N . For example, I could be the space of 128-bit IPv6 addresses or 48-bit MAC

addresses, but N may be substantially smaller (for example, thousands).

67

For the cases with N > |I| each leaf can correspond to a particular ordered-index. For

instance, ith leaf can represent an entity with index i. Now in order to prove the presence

of an entity with record-index i, a verifier asks for the ith leaf, and the corresponding set

of instructions. Similarly to change the ith leaf, a prover submits the new value, set of

instructions and justification for the change. After verifying the justification the verifier

can update the ith leaf and the final root.

Contrary to the above case, when |I| >> N only a small subset of values in I are

actually associated with leaves l1 · · · lN . Now when a verifier requests for a specific record

(say with index i), the prover has to either provide the requested record, or prove that no

such record currently exists. Without such a requirement a prover can add multiple records

for index i, and can later replay obsolete information about i, which is undesirable.

In general a leaf of IOMT li is of the form (i, θ, i′), where i is record-index of the leaf.

θ is pre-image resistant hash of the record stored for this index. The third value specifies

that the tree does not have records whose indices are enclosed in (i, i′).

A value x is enclosed by (i, i′) if i < x < i′, or if x < i′ < i, or if i′ < i < x.

If i = i′ all values are enclosed - implying that i is the only leaf in the tree. The set of

all current leaves are thus virtually ordered based on an index. where each index points

to the next available index. The highest index wraps around and points to the lowest

index. This approach is used in NSEC records in DNSSEC [64] (domain name system

security) for providing authenticated denial of queried records. An NSEC record of the

form (abc.example.com, abf.example.com) proves that no record pertaining to a name

abe.example.com exists. IOMT combines NSEC and Merkle hash trees.

68

The root of the IOMT is initially set to zero indicating that all the leaves are empty

(initialized to (0, 0, 0)). The first inserted leaf points to itself. In order to add a leaf (C, θC),

the prover has to demonstrate that a record with index C is not present as a leaf. For this it

has to provide: i) a leaf that includes C (say (A, θA, E), ii) an empty leaf (0, 0, 0), and iii)

the respective v instructions to verify both the leaves. When C is inserted, the leaf of A is

changed as (A, θA, C) so that it now points to C, and the empty leaf is set to (C, θC , E).

Similarly, when deleting a leaf with an index S, the prover needs to provide: i) the leaf

of S (say (S, θS, T)), ii) the leaf that is pointing to S (say (P, θP , S)), and iii) the respective

v instructions to verify both the leaves. To finish the deletion, the leaf for P is modified as

(P, θP , T) to point to the leaf that was initially pointed by S, and the leaf of S is emptied

to (0, 0, 0).

As can be seen from the above examples, the process of either adding or deleting a leaf

requires modifying two leaves simultaneously. Consider a scenario where two leaves (say

l1 and l6) need to be modified concurrently. Note that the leaves l1 and l6 have a common

parent (v07) at height n = 3. To modify both leaves simultaneously, verifier is provided

with

1. the old leaves l1 and l6;

2. n − 1 = 2 instructions (v0, 1) (v23, 0) to reach the left-child (v03) of the common
parent, starting from v1 = h(l1);

3. n−1 = 2 instructions (v7, 0) and (v45, 1) to reach the right-child v47 of the common
parent, starting from v6 = hl(l6); the verifier can now compute the common parent
v07 = h(v03 ‖ v47).

4. L − n = 1 instruction(s) (in this case (v8f , 0)) to reach the root from the common
parent, where L is the height of the tree; and

5. the new leaves l′1 and l′6 (along with the justification for the changes).

69

After verifying that l1 and l6 are part of the tree, and the justification provided, the verifier

can now compute a new root starting from values v′1 = hl(l
′
1) and v′6 = hl(l

′
6), using the

same set of 2× (n− 1) + L− n instructions.

5.2 IOMT Functions

Every routing packet received by a node contains information about a specific desti-

nation. A node stores this information for future routing purposes. Additionally apart

from routing data, some protocols require nodes to store some auxiliary information. In

some instances this auxiliary information reduces the routing overhead, while in other it is

mandatory to make routing decisions. For instance, in DSR a node can cache source paths

and later use them to respond to future RREQs. This reasonably reduces the overhead

incurred by future route creations. On the other hand, in TORA a node is required to store

heights of all its neighbors. This information is used to maintain multiple paths, and is

required to determine whether a node has lost its last downstream link.

Hence apart from normal routing data in most cases a node is also required to store

additional auxiliary information. For this purpose we propose to have two IOMTs: i) main

IOMT to store routing data, and ii) auxiliary IOMT to store auxiliary data. The roots of

these two trees are stored internally within the TMM.

Apart from the protocol parameters (as specified in Section 3.4.5) the TMM also stores

the values: r and ra, where r is the root of main IOMT, and ra is the root of auxiliary

IOMT. Moreover the leaf of a IOMT is represented as:

L = [i ‖ θ ‖ i′] (5.1)

70

where i is identity represented by the leaf, θ is the information stored about i, and i′ is

the next available identity pointed by this leaf. θ = 0 means that no information is stored

regarding the identity i, and is termed as an uninitiated leaf.

Additionally, the TMM has an internal function he() defined as:

he(x, (y, b)) =



x if y = 0

y if x = 0

h(x ‖ y) if b = 0

h(y ‖ x) if b = 1

(5.2)

This function is used to map two leaves x and y to their parent, and the value of he(0, (0, b)) =

0.

5.2.1 Merkle Tree Functions

In this section we present various internal TMM functions that are required to carry

out different merkle tree operations. These functions are not exposed to the node, and can

only be invoked by the TMM itself. Figure 5.2.1 outlines the steps followed in each of

these functions.

The function hve(x1,v = {(y1, b1) · · · (yn, bn)}) is used to map an internal node x1 to

a node at a higher level using v instructions. Further the function mapleaf(L,v) is used

to map the leaf L to the root, and returns the computed value of the root.

In Section 5.1 we saw that two leaves have to be modified either while inserting or

deleting a node. For this purpose the TMM calls the functionmapleaves(Ll,Lr,vlr). The

function first maps the passed leaves to their corresponding intermediate nodes xl and xr

71

respectively by utilizing the function hl(). The passed instruction set vlr = {v′l,v′r,v′p},

where v′l and v′r are the instructions that are used to map the leaves Ll and Lr to their

common parent. In this regardmapleaves() internally calls the function hcp(xl,v′l, xr,v
′
r).

Finally the common parent returned by hcp() is mapped to the root by applying the v′p

instructions.

5.2.2 AddDeleteLeaf(Ll,Lr, id,vlr, tree)

The function AddDeleteLeaf() is used to either add or delete a leaf from IOMT. In this

regard the TMM utilizes an internal function checkencloser((i, j), k) which verifies if k

is enclosed by the values i and j. The pseudo code for the function checkencloser(), and

AddDeleteLeaf() can be found in Figure 5.2.2.

The inputs to the function AddDeleteLeaf() are thus

1. id, identity that needs to be deleted/inserted.

2. two leaves Ll = (i, θi, i
′) and Lr = (j, θj, j

′);

3. a sequence of instructions vlr

4. a flag tree that specifies the tree to be operated on

The proposed TMMs have two IOMTs, and the flag tree = (MAIN or AUX) is used

to identify the tree that needs to be modified. Later the TMM tries to map the two leaves

to the root using the function mapleaves().

Now if the tree is empty (root == 0), the TMM adds the first leaf into the tree by

modifying the leaf L′l = (id, 0, id). However if the tree is non empty, and if the function is

invoked to add an identity, the TMM identifies the empty leaf among Ll and Lr. Assume

that Ll is empty (i == 0), now the TMM performs the following steps:
72

Function hve() to map an internal node x0 to a node at a higher level
hve(x1, {(y1, b1) · · · (yn, bn)}) {
FOR i = 1 · · ·n
xi+1 = he(xi, (yi, bi));

RETURN xi+1;
}

Function to map a leaf to the root
r = mapleaf(L,v) {
x = h(L);
RETURN hve(x,v);
}

Function to map two nodes to a common parent
hcp(xl,v

′
l, xr,v

′
r) {

IF (xl 6= xr)
ξl = hve(xl,v

′
l);

ξr = hve(xr,v
′
r);

RETURN h(ξl ‖ ξr);
ELSE //xl == xr

RETURN xl;
}

Function to map two leaves to the root
r = mapleaves(Ll,Lr,vlr) {
xl = hl(Ll);
xr = hl(Lr);
//vlr = {v′l,v′r,v′p}
p = hcp(xl,v

′
l, xr,v

′
r)

RETURN hve(p,v
′
p);

}

Figure 5.2

Merkle Tree Algorithms

73

1. verify that (j, j′) encloses id (to ensure that no leaf for id exists currently);

2. create leaf L′r = (j, θj, id) to replace Lr;

3. create leaf L′l = (id, 0, j′) to replace Ll;

4. update root.

When the function is invoked to delete id, the TMM first identifies the leaf that’s

representing id. Suppose Lr = (j = id, θj, j
′) should be replaced with L′r = (0, 0, 0).

Now the steps taken by the TMM are

1. verify θj = 0 and i′ = id;

2. create L′r = (0, 0, 0) and L′l = (i, θi, j
′) to replace Lr and Ll;

3. update root.

TMM ensures that it can delete only uninitiated leaves (θ = 0).

Whenever a node X gets information about a new identity (say id) that is not already

present in its IOMT, the function AddDeleteLeaf() is invoked to create a place-holder for

id. AddDeleteLeaf() adds an uninitiated leaf L (whose θ = 0) to the IOMT to represent id.

The TMM needs to offer additional functions, that can be used by X , to later update L to

represent the newly arrived information about id.

Similarly when the information stored for the identity id has expired, the TMM offers

functions which would uninitiate the leaf representing id. Now X can invoke AddDelete-

Leaf() to delete this uninitiated leaf.

Further details on these additional TMM functions are presented in subsequent chap-

ters.

74

checkencloser((i, j), k) {
RETURN ((i < k < j) ∨ ((i > j) ∧ (k > i)) ∨ ((i > j) ∧ (k < j)));
}

AddDeleteLeaf(Ll,Lr, id,vlr, tree) {
//Ll = [i ‖ θi ‖ i′];
//Lr = [j ‖ θj ‖ j′];
IF (tree == MAIN)
root = r;

ELSE
root = ra

x = mapleaves(Ll,Lr,vlr);
IF (x == root)

IF (root == 0) //inserting first leaf
L′l = [id ‖ 0 ‖ id]

ELSE IF (i == 0) ∨ (j == 0) //inserting a leaf
IF ((i == 0) ∧ checkensloser(j, j′, id))

L′l = [id ‖ 0 ‖ j′]
L′r = [j ‖ θj ‖ id]

ELSE IF (j == 0) ∧ (checkensloser(i, i′, id))
L′l = [i ‖ θi ‖ id];
L′r = [id ‖ 0 ‖ i′];

ELSE //deleting a leaf
IF (id == i) ∧ (θi == 0) ∧ (j′ == i)

L′l = [0 ‖ 0 ‖ 0];
L′r = [j ‖ θj ‖ i′];

ELSE IF (id == j) ∧ (θj == 0) ∧ (i′ == j)
L′l = [i ‖ θi ‖ j′];
L′r = [0 ‖ 0 ‖ 0];

root = mapleaves(L′l,L
′
r,vlr);

IF (tree == MAIN)
r = root;

ELSE
ra = root;
}

Figure 5.3

Functions for Adding and Deleting Leaves

75

CHAPTER 6

SECURING ON-DEMAND PROTOCOLS USING IOMT

MANET nodes accumulate routing information that needs to be stored within them

self. In this chapter we present the idea of using IOMTs to prevent a node from mis-

representing or hiding this accumulated information. As explained above, during routing

process nodes gather two types of information: i) routing data, and ii) auxiliary data.

Therefore we proposed the idea of having two trees, where the main IOMT can be used to

store routing data, while the auxiliary IOMT handles auxiliary information.

In this chapter we propose the design of TMMs that can be used to secure AODV

and DSR routing protocols. Hence the auxiliary information stored in a node corresponds

to source paths received in DSR routing packets. In DSR every node appends it address

before forwarding a routing packet. Therefore, a node is aware of the entire path taken by

the received packet. This path information included in routing packets is termed as source

paths (S). Nodes can use this data to respond to future RREQs, and thereby considerably

reducing the overhead incurred by those requests.

6.1 IOMT Design for TMM

In this section we provide more details about the main and auxiliary IOMTs that are

used to store accumulated information.

76

6.1.1 Main IOMT

In general, every routing packet contains information about a specific destination. This

information is extracted as a destination record (DR), and as shown in Equation 3.5 a DR

for D is of the form: DD = [D ‖ q ‖ m ‖ a ‖ τ]. These accumulated DRs are stored as

leaves of main IOMT. Each leaf corresponds to a unique destination identity, and the leaf

representing D is of the form:

Li = [D ‖ θD ‖ D′] (6.1)

where D′ is the next available destination pointed by this leaf, and

θD = h(h(DD) ‖ idp) (6.2)

where idp is the neighbor that provided this DR.

6.1.2 Auxiliary IOMT

The auxiliary IOMT is used to hold gathered source paths. Consider a packet that has

traversed through nodes A,B,C and reached a node X . Now the value a included in the

DR received by X is of the form:

a = h(h(h(hi ‖ A) ‖ B) ‖ C) (6.3)

where hi is hash of the protocol constants included in the packet by node A. Hence for

DSR, the value a is a cumulative hash of the source path included in the packet. Therefore

we design our auxiliary IOMT to hold this hash value, and each leaf corresponds to a

unique value of a.
77

The leaf representing the source path received in the DR for D (DD = [D ‖ q ‖ m ‖

a ‖ τ]) is of the form:

L = [a ‖ (θ = τ) ‖ a′] (6.4)

where a′ is the cumulative hash that represents the next available source path. Additionally,

the expiry period of the source path represented by a is the expiry time of the DR that

delivered a (which is τ). Hence this value is stored in the leaf as θ.

6.2 Usage of Source Paths

Cached source paths can be used to respond to future RREQs. However RREPs gener-

ated by intermediate nodes using stored source paths cannot include the sequence number

of the destination. In MANETs sequence numbers are used by nodes to identify latest in-

formation. Usually information associated with a greater sequence number are preferred,

and hence every RREP generated in the network is associated with the latest sequence

number of the destination. Contrary, intermediate nodes generating replies based on ob-

tained source paths cannot provide this information.

Considering this limitation, and to make use of the optimizations provided in DSR, a

node will unicast the received RREQ towards the destination, along the known source path.

Unicasting an RREQ (rather than broadcast) would considerably reduce the bandwidth it

consumes to reach the listed destination. On receiving this RREQ a destination would

generate a RREP that includes its latest sequence number.

Now consider an example where node X has a source path S = (P,Q,R, S, T), and it

receives a RREQ for destinationQ. Ideally we wantX to respond back with a RREP based
78

on the stored path S. Since X can not provide the sequence number of Q, we propose that

X unicast the RREQ along the path T, S,R,Q to reach the destination.

Therefore, X will unicast the RREQ to T , and within the RREQ includes two values:

i) the path that can be used by T (which is (S,R,Q), and ii) the length of this path (in this

case 3). Node T on receiving this RREQ is forced to either use the path specified by X ,

or one that has fewer hops (say T has a different source path S′ = (P,Q,A, T), where the

number of hops to reach Q is only 2). In this fashion the RREQ is unicast to destination

Q, which on receiving the packet responds back with a RREP that has its latest sequence

number.

However in scenarios where a node receives an RREQ unicast, and when the suggested

path is no longer valid, the node broadcasts the RREQ. Say in the previous example T lost

its connectivity to S, and therefore the path suggested by X is no longer valid at T . Now

T would broadcast the RREQ it received from X .

Each leaf of the auxiliary IOMT represents a source path that details information about

multiple nodes. For instance in the above example at node X , the leaf representing S

provides information about nodes: P,Q,R, S, and T . As stated above, these leaves are

indexed based on the cumulative hash a, rather than the identities of the nodes included

in the source path. Hence, it would be computationally impractical for a TMM to answer

the following question: “is there a valid leaf that represents a source path, which provides

information about the requested destination?”. In order to securely answer this question,

the TMM has to scan through all the leaves searching for the requested destination identity,

for every received RREQ packet.

79

Therefore a feasible solution is to present a choice on the usage of source paths. In the

previous example node X can also broadcast the RREQ (requesting for Q) without using

the stored source path. Nevertheless, when a node decides to unicast a RREQ, every node

down the line is forced to unicast it as long as the suggested source path is valid. As shown

in the above case, node T receiving the RREQ unicast from X is bound to either use the

source path listed in the packet, or one that has fewer hops. Hence, the initial trigger for

a RREQ unicast is optional, but a node that initiates this process forces all the subsequent

nodes to unicast the RREQ.

Finally, it is to be noted that a node would look into available source paths only when it

does not have a valid destination stored for the destination (DR with m < INF). A node

has to respond with a RREP to the received RREQ (irrespective of whether the RREQ

was received either by a broadcast or unicast) if it has a valid height to the requested

destination.

6.3 TMM Data Structures

Apart from the parameters defined in Section 3.4.5, the TMM also holds two values:

i) r: root of main IOMT, and ii) ra: root of auxiliary IOMT. The values of r and ra are

initially set to 0 (which signifies that they are empty), and their value keeps changing as

information is added into the corresponding IOMT.

In Section 3.4.6 we defined that the self-MAC µs(X) = h(idp ‖ hr ‖ r ‖ SX) is bound

to the current state of the TMM. We define the state of the TMM based on the routing

information currently stored at the node. Since the basic TCB, proposed for securing on-

80

demand protocols (design presented in chapter 4), does not contain any information about

the currently stored routing data we assumed that the value of r = 0. However when

designed based on IOMT, a TMM stores the root of the main tree that contains all the

currently stored destination records (DRs). Hence, the value of µs(X) is computed over

the root of the main IOMT r, and is considered valid until r is unchanged.

6.3.1 Self-MAC µaux

Along with the specifications provided in Section 3.4, the TMM issues a new self-

MAC µaux which is utilized for securely unicasting RREQ packets. Its value is computed

by TMM X as:

µaux(X) = h(id ‖ idn ‖ n ‖ am ‖ ra ‖ SX) (6.5)

where id is identity of the destination, idn is the node to whom RREQ should be unicast,

am is a cumulative hash of the path suggested by X to idn, and n is hop distance between

id and idn while using the path represented by am. Unlike µs, µaux is tied to the root of

auxiliary IOMT ra, and is valid until ra is unchanged.

The INV flag was previously used to distinguish between RERR and normal routing

packets. However in this chapter, when INV = 1 it represents that the received packet

is a RREQ, and that it was unicast by the sender. Hence in the example shown in Sec-

tion 6.2, when X decides to unicast the RREQ, it has to submit to its TMM the self-MAC

µaux(X) = h(id = Q ‖ idn = T ‖ n ‖ am ‖ r ‖ SX), where am is cumulative hash

of the source path that should be present at T . Now TMM X would construct a DR for

Q as DQ = [Q ‖ q ‖ m = n ‖ a = am ‖ τ]. Finally the value of hr is computed as:
81

hr = h(h(DQ) ‖ INV = 1). Hence INV = 1 indicates that the DR is sent via unicast,

and that the values of a and m received in the DR represent the suggested path and its

length respectively.

Now suppose that T receives the RREQ unicast (sent by X), and that it does not have

the requested path. To represent this state, the TMM T would compute µaux(T) with

id = Q, idn = n = 0, and a = am. Such a self-MAC indicates that T does not have a

valid leaf for the requested value am in its auxiliary tree.

6.4 TMM Functions

Apart from the various functions listed in Sections 3.5 and 5.2, the TMM exposes the

following interfaces:

1. Update(),

2. Maintenance(),

3. CreateDR(),

4. SendDR(),

5. CheckPath() and

6. SendInvDR()

The function Update() is used to process received DRs with INV 6= 1. It updates the

leaves of the main and auxiliary trees based on the received DR. Maintenance() is invoked

to handle maintenance activities like invalidating stored DRs and auxiliary values. The

interface CreateDR() is used to create DRs either: i) for the node itself, or ii) from an

uninitiated leaf (θ = 0). Conversely, the function SendDR() is used to relay currently

stored DRs. Self-MAC µaux is created using the function CheckPath(), and the process
82

of securely unicasting RREQ packets (as explained in Section 6.2) is carried out by the

function RelayInvRR().

6.4.1 Update(D, µs, idpw,Li,vi,Do, idpo,Lj,vj, ω)

This function is used by node X to update currently stored information based on the

received DR. A detailed description of the algorithm can be found in the Figure 6.4.1.

The inputs accepted by this function are:

1. received DR D = [idw ‖ qw ‖ mw ‖ aw ‖ τw]

2. provider idpw of the received DR, and the corresponding self-MAC µs

3. stored DR Do, and its provider idpo

4. leaf of the main tree Li that represents Do, and the corresponding instruction vi to
map it to the root r.

5. leaf of the auxiliary tree Lj that represents aw, and the corresponding instruction vj

to map it to the root ra.

6. a flag ω that represents the underlined protocol.

The function first maps the received DR D to the self-MAC µs. This function only ac-

cepts DRs whose INV == 0, and hence computes the corresponding hr = h(h(D) ‖ 0).

Additionally, the function does not accepts DRs that have smaller sequence number. Later,

the TMM maps the two leaves Li and Lj to their corresponding roots; and also checks if

they indeed represent information about the received destination (idw) and auxiliary value

(aw) respectively.

When ω == DSR, and the received DR has a finite height (mw < INF), the TMM

updates the leaf Lj that stores information about aw.

Later the TMM updates the stored DR Do based on the received information (D) when:
83

1. received a greater sequence number,

2. received a equal or better height,

3. received DR from provider (idpw == idpo),

4. has no information currently stored for idpw (leaf Li is uninitiated with θi == 0).

Finally the TMM X updates the value of θi to represent the changes done to Do, and

lastly would update the root r.

6.4.2 Maintenance(D, idp,Li,vi, hi)

This function is used by a node X to maintain stale information. The pseudo code of

the function can be found in Figure 6.4.2. It takes the following inputs:

1. stored DR D

2. provider identity idp

3. a leaf Li and the set of instructions vi that map it to the root.

4. a initial hash hi

When the function is invoked to maintain stored DRs (hi == 0), the TMM X will

un-initialize the leaf (sets θi = 0) if the DR has expired. Additionally, when the provider

of the DR is no longer listed as a bi-directional neighbor, the TMM identifies it as a loss

of link. In order to advertise this change the TMM creates a new DR

D′ = [id ‖ q ‖ m = INF ‖ a = 0 ‖ τ] (6.6)

and authenticate it to all the neighbors of X . Finally the stored DR is updated by setting

m = INF + 1, a = 0, and q = q + 1. Later the TMM updates the leaf, and finally the

root r to reflect these changes to the stored DR.
84

Update(D, µs, idpw,Li,vi,Do, idpo,Lj,vj, ω) {
//D = [idw ‖ qw ‖ mw ‖ aw ‖ τw] //received record
//Do = [ido ‖ qo ‖ mo ‖ ao ‖ τo] // stored record
//Li = [i ‖ θi ‖ i′]; //leaf for stored record
//Lj = [j ‖ τj ‖ j′]; //leaf from aux tree
hr = h(h(D) ‖ 0); //hash of received record (assumed that INV flag is 0)
z = h(hr ‖ idpw ‖ r ‖ SX); //verify self-mac
IF ((z 6= µs) ∨ (qw < q)) RETURN ERROR;
x = mapleaf(Li,vi);
y = mapleaf(Lj,vj);
p = h(h(Do ‖ idpo)) //verify θi
IF ((x 6= r) ∨ (y 6= ra) ∨ ((θi 6= 0) ∧ (p 6= θi)) ∨ (ido 6= idw) ∨ (ido 6= i) ∨ (j 6= aw))

RETURN ERROR;
IF ((mw < INF) ∧ (ω == DSR)) //add aux value to aux tree

L′j = [j ‖ τw ‖ j′];
ra = mapleaf(L′j,vj);

IF ((qw > qo) ∨ (mw ≤ mo − 1) ∨ (idpw == idpo) ∨ (θi == 0))
qo = qw; mo = INF ; τo = τw; ao = aw;
IF (mw 6= INF) mo = mw + 1;
hr = h(Do); θi = h(hr ‖ idpw);
r = mapleaf(Li,vi);

}

Figure 6.1

Function Update()

85

However when a stored source path needs to be maintained, the value hi is a cumulative

hash of the stored path except the provider idp. The corresponding leaf is un-initialized

either when the path has expired (θ ≤ tx), or provider idp is no longer listed as a bi-

directional neighbor. Finally the TMM X updates the root ra to reflect these changes.

6.4.3 CreateDR(Li,vi, ω)

The function CreateDR() is used by node X to create DRs about itself; and if requested,

can also create DRs about destinations that have uninitiated leaves (X has no information

stored for them). The algorithm for the function can be see in Figure 6.4.3. The function

takes the following inputs:

1. a leaf Li and the set of instructions vi that map it to the root r.

2. flag ω that determines the protocol.

When invoked the TMM first increments the stored sequence number Qx. Further it

creates a DR about X , and authenticate it to all the listed bidirectional neighbors.

Additionally, when an uninitiated leaf Li is passed as input, the function initializes the

DR for the destination identity i. Later it updates the values of θi and r subsequently to

reflect these changes. Finally the TMM X computes verifiable MACs, for all bidirectional

neighbors, over the initialized DR.

6.4.4 SendDR(Li,vi,D, idp, ω)

This function is used to relay stored DRs, and the algorithm followed can be seen in

Figure 6.4.4. The inputs accepted by this function are:

1. stored DR D

86

Maintenance(D, idp,Li,vi, hi) {
//D = [id ‖ q ‖ m ‖ a ‖ τ] // stored record
//Li = [i ‖ θi ‖ i′];
x = mapleaf(Li,vi);
p = h(h(D) ‖ idp);
IF (hi == 0) //maintenance of stored routing record

IF ((x == r) ∧ (p == θi) ∧ (id == i))
IF (τ ≤ tx) //expired record
θi = 0;

ELSE IF (checkbd(idp) == 0) //invalid record
m = INF + 1; q = q + 1; a = 0
θi = h(h(D) ‖ idp);
D′ = [id ‖ q ‖ m = INF ‖ a = 0 ‖ τ]
hr = h(h(D′) ‖ 0);
computemacs(hr, X, 0);

r = mapleaf(Li,vi);
ELSE //maintenance of aux record

IF ((x 6= ra) ∨ (i 6= h(hi ‖ idp))) RETURN ERROR;
IF ((checkbd(idp) == 0) ∨ (θi ≤ tx)) //expired or invalid aux record
θi = 0;
ra = mapleaf(Li,vi);

}

Figure 6.2

Function Maintenance()

87

CreateDR(Li,vi, ω) {
//Li = [i ‖ θi ‖ i′];
x = mapleaf(Li,vi);
Qx + +;
IF(ω == DSR) a = h(a ‖ X)
D = [X ‖ Qx ‖ n ‖ a ‖ tx + ∆];
hr = h(h(D) ‖ 0);
computemacs(hr, X, 0);
IF ((x == r) ∧ (θi == 0))

D = [i ‖ 0 ‖ INF ‖ 0 ‖ 0];
θi = h(h(D) ‖ idp = 0);
r = mapleaf(Li,vi);
hr = h(h(D) ‖ INV = 0);
computemacs(hr, X, 0);

}

Figure 6.3

Function CreateDR()

2. provider identity idp

3. a leaf Li and the set of instructions vi that map it to the root.

4. flag ω that determines the protocol.

The TMM X first verifies the leaf Li by checking if it indeed represents the values

stored in DR D, and later maps it to the root r. If satisfied, D is authenticated to all the

bidirectional neighbors of X , and the value of hr is computed by setting INV = 0. When

the protocol is DSR (ω == DSR) and DR has finite height, the stored auxiliary value is

extended to include the identity of the node X . Additionally, when m == (INF + 1),

the submitted DR was recently modified due to a link loss. Hence in such scenarios, the

stored sequence number q is decremented by 1 before sending the DR.

88

SendDR(Li,vi,D, idp, ω) {
//D = [id ‖ q ‖ m ‖ a ‖ τ] //stored record
//Li = [i ‖ θi ‖ i′]; //leaf for stored record
x = mapleaf(Li,vi);
p = h(h(D ‖ idp)) //verify θi
IF ((x 6= r) ∨ (i 6= id) ∨ (p 6= θi) RETURN ERROR;
IF ((checkbd(idp)) ∧ (tx < τ))

IF ((ω == DSR) ∧ (m < INF))
a = h(a ‖ X);

q′ = q;
IF (m == (INF + 1)) q′ = q − 1;
D′ = [id ‖ q′ ‖ m ‖ a ‖ τ]
hr = h(h(D′) ‖ 0);
RETURN computemacs(hr, idp, 0);

}

Figure 6.4

Function SendDR()

6.4.5 CheckPath(Li,vi, hi, n, (id1 · · · idn))

This function is used by node X to obtain the self-MAC µaux that is used while unicas-

ting RREQ packets. It accepts the following inputs:

1. a leaf of the auxiliary tree Li = [a ‖ θa = τa ‖ a′], and the corresponding instruc-
tions vi

2. initial hash hi

3. a set on n nodes (id1 · · · idn), where id1 is the required destination, and idn is the
node that provided the auxiliary value a.

The leaf Li represents a source path S whose cumulative hash is the value a. The value

hi is a cumulative hash that represents all the nodes in S until the destination id1. For

instance if S = (P,Q,R, S, T) and id1 = R, the value of hi = h(h(hp ‖ P) ‖ Q) (hp is

hash of the constants included by P), and the three nodes (R, S, T) are passed as inputs to

the function CheckPath().
89

It can be noted that in the above example a = h(h(h(hi ‖ R) ‖ S) ‖ T). The TMM

uses an internal function extend(hi, n, (id1 · · · idn)) to extend the value of hi to include

the n nodes (id1 · · · idn). The algorithm for extend() and CheckPath() can be found in

Figure 6.4.5.

The TMM X first maps the leaf Li to the root ra, using the vi instructions. An unini-

tiated leaf Li (θa == 0) indicates that X does not have a source path identified by a, and

hence creates the self-MAC as:

µaux = h(id1 ‖ 0 ‖ 0 ‖ a ‖ ra ‖ SX) (6.7)

However when θa 6= 0, the TMM X extends the value of hi by the passed n nodes

(id1 · · · idn) to verify that Li indeed points to the indicated source path. Now the TMM

verifies whether the leaf is still valid by checking: i) that the leaf has not yet expired, and

ii) the provider idn is still a bi-directional neighbor. If satisfied, the TMM X identifies that

Li points to a valid source path that includes the destination id1. Hence node X can use

this path information to unicast a RREQ to the provider idn, and in this regard computes

the self-MAC as

µaux = h(id1 ‖ idn ‖ n− 1 ‖ y ‖ ra ‖ SX) (6.8)

where y is the cumulative hash of the source path that should be used by idn to forward

the RREQ. It can be easily observed that the length of this indicated source path is n− 1.

90

x = extend(hi, n, (id1 · · · idn)) {
x = hi;
FOR i = 1 : n
x = h(x ‖ idi);

OUT x;
}

CheckPath(Li,vi, hi, n, (id1 · · · idn)) {
//Li = [a ‖ τa ‖ a′]
x = mapleaf(Li,vi);
IF (x == ra)

IF (τa == 0)
µaux = h(id1 ‖ 0 ‖ 0 ‖ a ‖ ra ‖ SX);

ELSE
y = extend(hi, n, (id1 · · · idn))
IF ((a == y) ∧ (τa > tx) ∧ (checkbd(idn)))
y = extend(hi, n− 1, (id1 · · · idn−1));
µaux = h(id1 ‖ idn ‖ n− 1 ‖ y ‖ ra ‖ SX);

RETURN µaux;
}

Figure 6.5

Function CheckPath()

91

6.4.6 SendInvDR(Li,vi,Do, idpo,Dw, INV, idpw, µs,X, µaux)

This function is used by node X when it receives a DR (say for a destination id) with

either m == INF or INV == 1, and even X has a DR with infinite height stored for id.

This function is used to carry out the RREQ unicast process as explained in Section 6.2.

The pseudo code followed by the function can be see in Figure 6.4.6.

The inputs accepted by this function are:

1. received DR D = [idw ‖ qw ‖ mw ‖ aw ‖ τw]

2. provider idpw of the received DR, the corresponding self-MAC µs, and the flag INV

3. stored DR Do, and its provider idpo

4. leaf of the main tree Li that represents Do, and the corresponding instructions vi to
map it to the root r.

5. self-MAC µaux, and the set X = [id ‖ idn ‖ n ‖ am] that contains the values used
in the computation of µaux.

The TMM X first verifies the received DR by using the input INV flag. It later maps

the provided leaf to the root using the vi instructions, and also checks whether the leaf

indeed points to the DR Do. Finally the TMM verifies the self-MAC µaux, if it is not null

(id 6= 0), by using the values passed in the set X.

Additionally, this function should only be invoked by X when:

1. received an invalid DR for destination idw

2. the stored DR for idw has infinite height, or X has an un-initialized leaf for idw

The TMM X ensures that these conditions are satisfied by verifying the received and

stored DRs.

The TMM uses a flag if lag which when set determines that the received DR should be

unicast to idn (the neighbor indicated in µaux). When Dw is received by unicast (INV ==

92

1) the TMM expects a non-NULL µaux which either specifies: i) a smaller path than mw

(sets if lag to 1), or ii) that the suggested path aw is not valid (sets if lag to 0).

However when INV == 0 and id 6= 0, X is requesting to start the unicast process,

and hence the TMM sets if lag = 1.

Finally if if lag == 1 the TMM creates a DR whose m = n, and a = am. TMM

X unicast this new DR only to the node idn. However when if lag == 0 the TMM

broadcasts a DR, whose m = INF and a = 0, to all the bidirectional neighbors.

6.5 Realizing AODV and DSR

In this section we detail how the above mentioned functions can be used by a node X

to realize AODV and DSR routing protocols. Firstly, the function UpdateNeighborTable()

can be used to maintain connectivity, and to obtain the self-MAC µs. MACs for periodic

HELLO messages can be obtained from SendTS(). Every packet received by X is first

submitted to UpdateNeighborTable().

Additionally, the function AddDeleteLeaf() can be used to create place holders for iden-

tities that were recently known to X . Suppose when X receives a DR about destination

D for the first time, X would invoke AddDeleteLeaf() to create an un-initialized leaf for D

in the main IOMT. This newly created leaf, along with the received DR, can be submitted

to Update() for further processing. Similarly when X receives a new source path (whose

cumulative hash is not present in auxiliary IOMT), X would invoke AddDeleteLeaf() to

create an un-initialized leaf for this newly arrived information.

93

SendInvDR(Li,vi,Do, idpo,Dw, INV, idpw, µs,X, µaux) {
//Dw = [idw ‖ qw ‖ mw ‖ aw ‖ τw] - received record
// if INV=1 in received record, a path a of length m is suggested to forward the record
//Do = [ido ‖ qo ‖ mo ‖ ao ‖ τo] - stored record
//Li = [i ‖ θi ‖ i′]; // leaf for stored record
//X = [id ‖ idn ‖ n ‖ am] //verified path to id from aux tree
IF ((ido 6= idw) ∨ (i 6= ido)) RETURN ERROR;
hr = h(h(Dw) ‖ INV)
IF (µs 6= h(hr ‖ idpw ‖ r ‖ SX)) RETURN ERROR;
x = mapleaf(Li,vi); p = h(h(Do) ‖ idpo);
IF ((x 6= r) ∨ (p 6= θi) ∨ ((INV == 0) ∧ (mw < INF)) ∨ ((θi 6= 0) ∧ (mo < INF)))

RETURN ERROR;
IF (id 6= 0) //self-MAC µaux is not NULL

IF (id 6= ido) RETURN ERROR;
IF ((µaux 6= h(id ‖ idn ‖ n ‖ am ‖ ra ‖ SX)) ∨ (checkbd(idn) == 0))

RETURN ERROR;
if lag = 0;
IF (INV == 1) //path suggested by received record

IF ((id == 0) ∨ (n > mw − 1)) RETURN ERROR; //no path information provided
IF ((n == 0) ∧ (am == aw)) //suggested path is not usable
if lag = 0;

ELSE IF (n ≤ mw − 1)//suggested path or better path
if lag = 1;

ELSE RETURN ERROR
ELSE IF (INV == 0) ∧ (id == ido) ∧ (n < MAX))
//previous hop did not, but X is suggesting a path
if lag = 1;

ELSE IF (INV == 0) ∧ (id == 0)) //broadcast DR
if lag = 0;

IF (if lag)
D′ = [id ‖ qw ‖ n ‖ am ‖ τw];
hr = h(h(D′) ‖ 1);
RETURN computemacs(hr, idn, 1) //compute only one MAC for idn

ELSE
D′ = [id ‖ qw ‖ INF ‖ 0 ‖ τw]; hr = h(h(D′) ‖ 0);
RETURN computemacs(hr, idp, 0); //compute MACs for all except provider;

}

Figure 6.6

Function SendInvDR()

94

When X desires to create a RREQ for a destination (say D) it invokes the function

CreateDR(), and passes an un-initialized leaf for D. The function first increments the

sequence number Qx, and later creates a DR about X . Additionally, it also computes a

DR for D with an infinite height (m = INF). Both these DRs are authenticated to all the

bidirectional neighbors of X . Hence in our approach a RREQ packet contains two DRs:

i) a DR about the source which includes its latest sequence number, and ii) a DR (with

m == INF) about the destination. A node A receiving these two DRs would process

them separately. While first DR updates the currently stored information about X , the

second one is used to forward the received RREQ.

It can be observed that whenever X creates a RREQ its sequence number is incre-

mented. Hence X is charged (by increasing its sequence number) for using the network.

This would prevent a node from generating un-wanted RREQs aimed at creating extra

traffic to launch denial of service attacks.

Suppose when A does not have a path for D, A would submit the received and stored

DR for D to the function SendInvDR(). Since A does not have a path to D, the function

would return a DR for D that has infinite height. Additionally, A can get the updated DR

about X by calling the function SendDR(), which can be used to relay stored DRs. The

RREQ forwarded by A would include these two DRs.

In the above process while relaying the received RREQ, node A is required to also

submit the stored DR for D, while calling the function SendInvDR(). This would prevent

A from selfishly hiding valid paths for requested destinations.

95

Now say when A has a path to D, it has to respond back with an RREP. Now A can

submit the stored DR for D to the function SendDR(), which would authenticate it to all

the bidirectional neighbors of A. Nevertheless, since this RREP should only be unicast

back to X , A would only include the MAC µr that is verifiable by X , and ignore the rest

of the MACs returned by SendDR().

For scenarios where a destination (say D) is required to respond back with an RREP,

the function CreateDR() is invoked by passing NULL for all the parameters. This would

make CreateDR() to create a DR only about the node.

Finally expired leaves in both main and auxiliary IOMTs can be cleared by calling the

function Maintenance().

6.5.1 Creation of RERR

In both AODV and DSR when a nodeX loose a bidirectional link to a neighbor (sayA),

X creates a RERR packet for all the DRs provided by A. Lets assume X created a RERR

for destination D. In this RERR packet the hop count for the unreachable destination

is set to m = INF , and the sequence number q is unchanged. However in order to

prevent routing loops, on-demand protocols like AODV and DSR require X to increment

the sequence number (q′ = q + 1) stored for D. This ensures that X would only accept

RREPs (for D) that has a sequence number greater than q′.

The function Maintenance() is used to carry out the above logic. For the above example

X would invoke Maintenance(), and pass the DR for D (say DD) as input. The TMM X

would create a DR with m = INF , a = 0 and authenticate it to all the neighbors of X .

96

Further it would increment the sequence number stored in DD. The TMM X also sets

m = INF + 1, which indicates that the DR is modified based on a recent link loss at

node X . Such an indication is required when X desires to resend the RERR packet. In

such a scenario (when X wants to resend the RERR), X would invoke SendDR() to relay

DD. Now the TMM X can verify that m == (INF + 1), and relay a RERR packet (with

m = INF , and q = q − 1) after decrementing the stored sequence number for D.

6.5.2 RREQ Unicast for DSR

Accumulated source paths can be used in DSR to unicast RREQs towards the specified

destination. For suppose in the above example say A has a source path (P,D,Q,R, S),

and received a RREQ for D from X . Now when A does not have a path for D, it could use

the stored source path to unicast the received RREQ towards D. For this purpose A would

require to obtain a self-MAC µaux = [D ‖ S ‖ 3 ‖ am ‖ r ‖ SA], where S is the node to

whom the RREQ should be unicast, am represents the cumulative hash of the source path

that could be used by S (which is (P,D,Q,R)), and 3 denotes that by using this path S is

three hops away fromD. A can acquire this certificate by calling the function CheckPath(),

and by passing the auxiliary leaf that points to the stored source path (P,D,Q,R, S).

Now A would pass this certificate to the function SendInvDR(), along with the received

and stored DR for D. SendInvDR() would authenticate the passed inputs, and compute a

DR with m = 3, a = am, and INV = 1. By setting the flag INV = 1, the TMM A

indicates to the receiver of this DR (in our case S) that it (S) should further unicast the

97

RREQ using a source path that has a path length of at most m = 3 hops, and that the

suggested path’s cumulative hash is am.

Now when S receives this RREQ unicast from A, it can either use the suggested path,

or one which has fewer hops that 3 (say a source path (X,D, Y), where S is only 2 hops

away from D). For the selected path, S would obtain the corresponding self-MAC µaux

by calling the function CheckPath(). Later S would invoke SendInvDR() to further unicast

the RREQ along the selected path.

However when S does not have a valid source path to further carry on the unicast

process, it has to broadcast the received RREQ. Such a scenario would arise, say when S

lost its connectivity with the neighbor R. In this regard, S first has to prove to its TMM

that the suggested path (represented by a = am in the received DR) is not valid, which

means that S has to provide an un-initialized auxiliary leaf for am. S could obtain this leaf

by calling the function AddDeleteLeaf(). However a leaf for am can not be added when S

already has an auxiliary leaf representing am. This would prevent S from hiding the path

suggested in the received DR.

Now S would pass this newly created un-initialized leaf to the function CheckPath(),

which issues a self-MAC µaux that signifies that S does not have the suggested path am.

Later X would submit µaux and the received DR to SendInvDR(), where the TMM verifies

if the auxiliary values included in both µaux and the received DR are identical (am == a).

Finally the TMM would return MACs which authenticate the received DR to all the bidi-

rectional neighbors of S. By utilizing these MACs S can broadcast the received RREQ.

98

6.6 Analysis of IOMT design

In this section we analyze the security offered by TMMs when IOMTs are used to store

acquired routing data. The design of the TMMs using IOMT is an extension to the basic

TCB proposed in chapter 4. Hence all the security features mentioned in Section 4.3 are

also offered when IOMTs are used along with TMMs. Additionally, employing IOMT

guarantees that a node can not hide or replay stale information. Further, the proposed

design also enables a node to securely use cached source paths to forward future RREQs.

In this section we present informal proofs to these additional features.

6.6.1 Assertion Statements

Lemma 1. A modification to the information stored in a leaf, would change the root of

the IOMT.

Proof. According to the property of a merkle tree, and therefore even for IOMT, the root

of the tree can be used to map all the leaves of the tree. Hence, the root represents the state

of the information currently stored in an IOMT. According to its design, every leaf of an

IOMT stores information about a specific identity. Whenever this information is modified,

even the root has to be updated to reflect these changes.

In the proposed TMM functions, whenever a function updates the information stored

by a leaf, the TMM ensures that it also updates the root of the IOMT.

Lemma 2. In a given IOMT, every leaf represents information about a unique identity.

Proof. A node X has to invoke the function AddDeleteLeaf() to add a leaf that represents

an identity (say j) thats not already present in the IOMT. Before making this addition the
99

function requires an input leaf L = (i, θ, i′), where (i, i′) encloses the newly added identity

j. If a leaf for j already exists in the IOMT, it would be impossible for X to produce a leaf

that encloses j. Hence the function AddDeleteLeaf() can only add a leaf that represents an

identity thats not yet present in the IOMT.

Further as AddDeleteLeaf() is the only function that can be used to add leaves, we can

claim that every leaf in an IOMT represents a unique identity. For the main IOMT every

leaf represents a DR about a unique destination, while for auxiliary IOMT, every leaf

represents a unique source path.

Lemma 3. While processing a received routing packet about a destination D, the TMM

also requires the internally stored DR for D.

Proof. The only two functions that can be used to process received DRs are Update(), and

SendInvDR(). While Update() handles received DRs with finite height (m < INF) or

those sent with INV == 0, the function SendInvDR() is used to process received DRs

with infinite height (m == INF). Both these functions require the internally stored DR

as their input, and hence the statement is proved.

Lemma 4. The self-MAC µaux can be used by node X to indicate information about a

stored source path.

Explanation: The value of µaux == h(id ‖ idn ‖ n ‖ am ‖ r ‖ SX). When idn = n = 0,

µaux indicates that X does not have a valid source path represented by a.

However when ((idn 6= 0) ∧ (n 6= 0)), µaux indicates that X has a valid source path

which can be used to reach destination id. Further it conveys that the next node in this path
100

is neighbor idn, which should have a source path as represented by am, and that by using

this indicated path idn is n hops away from destination id.

Node X can obtain this self-MAC by invoking the function CheckPath().

6.6.2 Assurances Offered by the TMMs

Theorem 6.6.1. A node X can not hide or replay stale DRs for a destination D.

Proof. Lemma 3 states that in order to process a received routing packet, node X has to

submit the stored DR it has for D. This would prevent X from hiding information about

D, while processing routing packets regarding D.

According to Lemma 1 whenever TMM X updates the stored DR for D, it would

also update the root of the main IOMT. Further, Lemma 2 states that X can only have a

single DR for D currently stored in main IOMT. Therefore X can not replay a stale DR

for D.

Theorem 6.6.2. Suppose nodeX received hop counts 4, 3, and 2 subsequently from neigh-

bors A,B, and C respectively (say for a destination D). After processing all these DRs,

in the order they are arrived at X , node X can not advertise a height based on the heights

it received either from A or B.

Proof. Lemma 2 states that X can have only a single leaf in its IOMT that represents

destination D. Further according to Lemma 3, X has to submit the stored DR for D while

processing routing packets about D. Since in this example the DRs received by X has

finite heights, the function Update() has to be invoked to process these received DRs.

101

The function Update() is encoded in such a way that the stored DR is updated (more

specifically the values of hop count (m), and provider idp are changed) whenever X re-

ceives a smaller height. As the hop count advertised by C is the smallest, after processing

all the three received DRs, the stored DR is updated based on the DR sent by C.

Again according to Lemma 2 X can have only a single DR stored for D in its main

IOMT. Hence the TMM X would update this DR whenever it receives a smaller height.

Therefore at the end of processing all the three DRs, the TMM X can only advertise the

stored DR for D, which is updated based on the hop count received from C.

Theorem 6.6.3. For a RREQ packet that is being unicast towards a destinationD, at every

hop the source path used to forward this RREQ is decreasing in length. In absence of a

required source path, the RREQ would be broadcast.

Proof. The function SendInvDR() is used to forward RREQs. When X receives a DR that

has its flag INV = 1, X is required to submit a µaux whose am == a, where a is the

auxiliary value received in the DR. When ((idn 6= 0) ∧ (n 6= 0)), the TMM X expects

a path shorter than the one indicated in the DR. The TMM X would accept µaux only

when these conditions are satisfied, and would forward the DR (that represents the RREQ

packet) to idn with INV = 1.

Additionally when idn = n = 0, this indicates that the requested source path is no

longer valid at X . Hence the TMM X , would broadcast the DR.

Therefore, whenever the RREQ is unicast the TMM ensures that it is being forwarded

in the path whose length is decreasing. But when a valid source path is not available the

RREQ is broadcast.
102

CHAPTER 7

COLLISION RESISTANT TORA

Broadly the applications of MANETs can be divided into two types: i) those that pro-

vide connectivity between any two pairs of nodes, and ii) those that provide connectivity

only to a few set of nodes. For example of the former application consider a group of

ad hoc devices deployed in a hostile environment that require peer communication. Ad-

ditionally, a classic example of the later application could be an ad hoc network that is

established to extend the reach of a few base-stations. In such a scenario all the nodes in

the MANET desire to establish a path to the available base-stations over multiple hops.

Routing protocols like AODV and DSR which establish routes on demand, and pro-

vide minimal latency are better choices for applications that require peer communications.

However the proactive version of TORA presents itself as a good choice for applications

that require the advertisement of only a few nodes.

7.1 Shortcomings of TORA

Consider a simple subnet topology depicted in Figure 7.1.

After the OPT from the destination φ is propagated the heights of the node will be:

(rl, 0, φ), (rl, 1, A), (rl, 2, C), (rl, 2, B), (rl, 3, G), (rl, 3, E), and (rl, 3, F), where rl

103

B A φ

E C

G F

Figure 7.1

A Subnet running TORA

denotes the reference level and is rl = (0, 0, 0). Assume that the link C → A goes down

at time τ . The sequence of events that will transpire are then as follows:

a) C generates a new RL rl′ = (τ, C, 0) by sending a UPD with height (rl′, 0, C); G

takes no action as it still has downstream neighbors E and F ;

b) F propagates the new RL by sending a UPD with height (rl′,−1, F); even after this

link reversal G has a downstream neighbor E, hence no action is taken.

Clearly, TORA strives to reduce the number of control packets required to deal with

changes in topology, and does this well. Where TORA does not do so well is in scenarios

that result in partitioning of the subnet. To see this consider a scenario where A looses its

link to destination φ at time τ . The sequence of events in TORA will be as follows:

a) A→ UPD (rl, 0, A) (A generates new RL rl = (τ, A, 0));

b) B → (rl,−1, B); C → (rl,−1, C) (B and C propagate new RL);

c) E → (rl,−2, E) and F → (rl,−2, F) (E and F propagate new RL);

d) G→ (rl′, 0, G) (G reflects RL as rl′ = (τ, A, 1));

e) F → (rl′,−1, F), C → (rl′,−1, C) and E → (rl′,−1, E) (F , C and E propagate

reflected RL);

104

f) B → (rl′,−2, B) (B propagates reflected RL);

g) A→ CLR (A detects partition);

h) B → CLR; C → CLR (propagating CLR in the isolated subnet);

i) G→ CLR, F → CLR; E → CLR (propagating CLR in the isolated subnet);

Note that a UPD with a new RL has to reach all nodes in the partition. The RL is then

reflected and returned to the originator of the RL, which detects a partition. Following this

the originator of the RL creates a CLR packet which needs to be propagated throughout the

partitioned subnet. If the average per-hop processing delay is ∆, and L is the longest path

in the partitioned subnet, for a time of up to 3L∆ several nodes in the partitioned subnet

may possess non-NULL heights which are actually invalid. During this time data packets

created by nodes in the partition may be relayed back and forth till the time the nodes

realize that they do not actually have a valid height. Another disadvantage of TORA is the

need for some mechanism for time-synchronization between nodes to correctly interpret

the field τ in an RL.

Additionally, when a node sends a routing packet it is desirable to verify that 1) the

packet has reached its neighbors and 2) they have processed the packet in adherence to

the protocol. Using acknowledgments satisfies the first requirement, but does not guaran-

tee the second. Making a node respond to every routing packet it receives, will appease

both these requirements. This will also alleviate the need for sending explicit acknowl-

edgments, thereby potentially saving network bandwidth. More importantly, by verifying

the response, a sender can judge the legitimacy of the responder; if malicious intent is

observed such nodes can be avoided from future routes.

105

TORA does not meet this requirement during its route maintenance. After losing its

last downstream link, a node reverses its upstream links (by making its height as local

maximum). An upstream neighbor that has a downstream link, even after the reversal, is

not required to respond. Now the initiator of the route maintenance cannot differentiate

this legitimate behavior from an illegitimate one, where the upstream neighbor simply

ignores the received maintenance packet.

Collisions: Perhaps the most acute of TORA’s shortcomings is its susceptibility to

collisions. Once again consider a scenario above where A reverses its link to C by send-

ing a UPD packet. Now assume that the packet was lost due to collision. At this point

A assumes that C is its downstream neighbor, while C assumes that A is downstream,

thereby creating a simple loop. More complex loops can also result due to collision [30].

That TORA by itself was not designed to address collisions is the reason that mandates a

lower layer for this purpose. While TORA itself requires low overhead for control packets,

when considered together with the lower layer (for sending/processing acknowledgments

to/from every neighbor) TORA becomes far less appealing.

7.2 Collision Resistant TORA

Like the proactive version of TORA, CR-TORA is intended for application scenarios

where all mobile nodes require to send data packet to a single (possibly mobile) destina-

tion. Similar to proactive TORA, CR-TORA employs CLR, UPD and OPT packets. CLR

packets indicate NULL height of the sender; UPD and OPT packets indicate a non-NULL

height.

106

The primary difference between CR-TORA and TORA is that CR-TORA, as the name

implies, has some in-built features to handle collisions, and thereby eliminates the need

for a lower layer like IMEP to address collisions. In doing so CR-TORA also lowers the

control packet overhead and the settling time during network partitions, and eliminates the

need for time-synchronization.

Some of the other salient differences are as follows:

i) CR-TORA does not use reference levels; the height of a node i is a single value δi

which is typically the number of hops from the destination.

ii) Two neighbors i and j at the same height (or δi = δj) do not consider each other as

upstream/downstream based on their identities. In CR-TORA a node i is downstream of j

only if δi < δj .

Like TORA, data flows only downwards in CR-TORA.

7.2.1 CR-TORA: Principle of Operation

Recall that in TORA a node responds to link-failures or link-reversals by generating

an RL, or propagating an RL, or reflecting an RL, or clearing an RL. In CR-TORA nodes

respond by creating CLR, or propagating CLR, or creating UPD, or propagating UPD, or

retransmitting CLR.

The basic principle of operation of CR-TORA is as follows. A node losing its last

downstream link creates a CLR packet. If the receipt of a CLR packet leaves a node X

with no downstream neighbor, X propagates the CLR right away. However, if X has

other downstream neighbors it starts a timer which runs for a duration TW . While the

107

timer is running X may continue to receive other control packets. If (during this time)

other control packets cause X to lose its last downstream neighbor, X propagates a CLR

right away. On the other hand, if X retains one or more downstream neighbors after the

timer expires, X creates a UPD. Neighbors of X with NULL heights then propagate the

UPD. Most often CLR packets are created when a node loses its last downstream neighbor.

However there are other scenarios (which could result due to collisions) which would also

mandate creation of a CLR packet, or retransmission of a CLR packet.

To facilitate comparison of TORA and CR-TORA we shall once again consider the

same example subnet considered for TORA in Section 7.1. At this point we shall ignore

collisions (a more detailed explanation follows in Section 7.2.2). After the OPT from the

destination φ is propagated the heights of the nodes will be (0, φ), (1, A), (2, B), (2, C),

(3, E), (3, G), and (3, F), and subnet is depicted in Figure 7.2.1. Note that In CR-TORA

links between nodes that have same height are undirected (unlike TORA).

B A φ

E C

G F

Figure 7.2

Subnet Running CR-TORA

Assume that as earlier, the link C → A goes down. The typical sequence of events in

CR-TORA will be as follows:

108

a) C → CLR (C creates CLR);

b) F → CLR; G→ CLR; (F and G propagate CLR); E waits for a time TW ;

c) (No clear from B) E → UPD, δE = 3 (E creates a UPD);

d) G→ UPD, δG = 4 (G propagates UPD);

e) F → UPD, δF = 5; C → UPD, δC = 5 (F and C propagate UPD).

In a scenario where A loses its link to destination φ (causing a subnet partition) the

sequence of events that transpire in in CR-TORA will be:

a) A→ CLR (A creates CLR);

b) B → CLR; C → CLR (B and C propagate CLR);

c) E → CLR; F → CLR; G→ CLR (E, F and G propagate CLR).

In general, TORA generates lower number of control packets compared to CR-TORA

when there is no network partition. However, this does not necessarily mean that CR-

TORA has a higher overhead under such scenarios as we have ignored the overhead for

IMEP in TORA. Even if IMEP overhead is ignored, TORA still generates a substantially

higher number of control packets compared to CR-TORA when partitioning occurs in the

subnet.

7.2.2 The CR-TORA Protocol

In the rest of this section we shall take a more in-depth look at the CR-TORA protocol.

109

7.2.2.1 CLR Event Identifiers (CEI):

In CR-TORA a CLR is created in response to a specific event - like a broken link. We

shall see soon that there are two other specific events that lead to creation of a CLR. A

node creating a CLR assigns a unique CLR event identifier (CEI) to the event.

A
B

C

D

E

Figure 7.3

Sample Network Running CR-TORA

For example, if the link B → A goes down, B will set its height to NULL, and create

a CLR with CEI α. Node D, which on receipt of the CLR-α, has lost its only downstream

neighbor sets its height to NULL and simply propagates CLR-α. On the other hand, if the

node A goes down, two different CEIs will be created: one by B, say CLR-α, due to the

loss of the link B → A, and one by C, say CLR-β, due to the loss of the link C → A.

Unlike UPD reference heights in TORA, CR-TORA CEIs are not tied to time - or

time synchronization is not necessary in CR-TORA. The only requirement is that no two

CEIs should be the same. A simple strategy to accomplish this is choose the CEI by

concatenating the identity of the creator with a sequence number maintained by the creator.

In this case a CLR created by a node C will have a CEI C ‖ qc. The next CLR created by

C will have a CEI C ‖ (qc + 1). In the rest of this paper we shall simply employ a lower

case Greek letters to represent CEIs.

110

7.2.2.2 CLR-List and UPD-List:

Every node maintains a CLR-list and UPD-list, both being a list of CEIs. Both lists are

emptied from time-to-time, under different circumstances. The CLR-list Ci of node i is a

list of CEIs made known to i, through CLR packets received by i. Both CLR and UPD

packets broadcast by a node i will include its CLR-list1 Ci:

i) a CLR from i is of the form [i, CLR, Ci];

ii) a UPD from i is of the form [i, UPD, δi, Ci].

When a node i with CLR-list Ci receives a packet [j, CLR, Cj], it adds all CEIs in Cj

that were not already in its CLR-list Ci to its CLR-list. Thus, after the CLR is received

Ci = Ci ∪ Cj .

A UPD is created by node i only after its TW -timer fires. The timer is started when i

receives a CLR, and if i still has at least one downstream neighbor. If i has at least one

downstream neighbor left even after the timer fires, i creates a UPD which includes Ci. As

soon as the UPD is sent, i i) creates a UPD-list Ui = Ci; and ii) empties CLR-list Ci.

A node propagating a UPD merely empties its CLR-list - it does not create a UPD-list.

A node will propagate a UPD only if it had a NULL height before it received the UPD.

A node i at a NULL height receiving a UPD [j, UPD, δj, Cj] verifies if Ci ⊂ Cj (in other

words, i checks if all CEIs known to i are “addressed” by the UPD by j). Only if Ci ⊂ Cj ,

i sets its height to δi = δj + 1, propagates UPD [i, UPD, δi, Ci], and empties its CLR-list

Ci.

1In our simulations the average number of CEIs that accompany a CLR or a UPD packet was found to
be less than 2; thus the size of UPD and CLR packets in both TORA and CR-TORA are comparable.

111

On the other hand, if Ci 6⊂ Cj node i retransmit CLR [i, CLR, Ci].

7.2.2.3 Other CLR Creation Scenarios:

When a node i with a non-NULL height receives a UPD [j, UPD, δj, Cj]. Assume that

j was i’s last downstream neighbor, and the height δj announced by j is such that δj ≥ δi

(or this UPD causes i to lose its last downstream neighbor); Now i creates a CLR (with

a new CEI). Such a scenario arises when the CLR sent by j is lost due to collision, and

i creates an UPD assuming j as its downstream neighbor; which (UPD generated by i) is

then propagated by j.

When a node i with a non-NULL height receives a CLR [j, CLR, Cj], which leads to

the loss its last downstream neighbor, i checks if any of the CEIs in Cj are also present

in i’s UPD-list Ui. If not (or Cj ∩ Ui = ∅) i propagates CLR Ci. On the other hand, if

Cj ∩ Ui 6= ∅, then i creates a new CEI. The new CEI is added to i’s CLR-list Ci before

i broadcasts CLR Ci. When a node creates a new CEI, or when it propagates a CLR, its

UPD-list is emptied.

Thus, while a UPD is created by a node i only under one condition (after the TW timer

fires, if i retains a downstream neighbor), a CLR with a new CEI is created by a node i

under three conditions:

i) i looses its last downstream link;

ii) i, which had a downstream neighbor j, receives a CLR which renders it with no

downstream neighbor, and at least one of the CEIs that accompany the CLR packet by j

is included in the UPD-list of i. Such a scenario can occur if i had prematurely created a

112

UPD assuming that j is still downstream (the CLR sent by j earlier may have been delayed

or lost due to collision).

iii) When i receives a UPD packet from its last “downstream” neighbor j, node i finds

that δj ≥ δi (or i’s belief that j was downstream is recognized to be wrong).

7.2.3 The CR-TORA Algorithm

In CR-TORA the state of a node i is defined by i) latest OPT sequence number φq; ii) its

height - δi; iii) a neighbor-table with list of neighbors and their height (we shall represent

the height of a neighbor j as H(j)); iv) a CLR-list Ci, and v) a UPD-list Ui.

In CR-TORA every node reacts to the following five triggers: i) loss of last down-

stream link; ii) a CLR is received; iii) a UPD is received; iv) timer fires; and v) a OPT

is received. The rules that govern CR-TORA under each trigger is summarized by the

pseudo code as shown in Figure 7.4. In the following, DN represents “has downstream

neighbor” (and !DN represents “no downstream neighbor”). We shall use the notation δi−

to represent the height of a node i before it received a control packet. After the packet is

processed, the height of the node i may change, and is represented as δi+ .

In CR-TORA an OPT packet relayed by a node i is of the form [i, OPT, δi, φq], where

φq is the OPT sequence number chosen by the destination. A node i receiving an OPT

from a neighbor j, [j, OPT, δj, φq], with a fresh sequence number, node i i) sets its height

to δi = δj + 1 and retransmits the OPT; and ii) empties its CLR-list and UPD-list. As

mentioned earlier, the CLR-list is emptied when a node creates or propagates an UPD, and

113

1. Node i looses last downstream link:
CREATE CLR

2. Node i receives [j, CLR, Cj]:
IF (δi− == NULL) return;
IF ((DN)&(timer-not-running))

start-timer;
IF (!DN)

IF (Cj ∩ Ui == ∅) PROPOGATE CLR
ELSE CREATE CLR

3. Timer fires:
IF (DN) CREATE UPD

4. i receives [j, UPD, δj , Cj]:
IF (δi− = NULL)

IF (Ci ⊂ Cj) PROPOGATE UPD
ELSE RETX CLR

ELSE IF (!DN)
CREATE CLR

5: i receives OPT [j,OPT, δj , φq
′]:

IF (φq
′ > φq)

φq = φq
′

H(j) = δj
δi = δj + 1
flush Ci,Ui
SEND [i, OPT, δi, φq]

IF (φq
′ = φq)

H(j) = δj

Figure 7.4

CR-TORA Algorithm

114

the UPD list is emptied either when it creates or propagates a CLR. The CLR-list and the

UPD-lists of a node i are also flushed clear when a i creates a new CLR.

7.3 Formal Proof for Loop-Free Property of CR-TORA

The main idea of CR-TORA is influenced by the half-reversal technique proposed in

[75]. After the initial OPT exchange, the entire network can be seen as a directed acyclic

graph (DAG), where every node points to its downstream neighbors. Hence the entire

topology of the network can be viewed as a DAG.

Route maintenance in CR-TORA is carried out using CLR and UPD packets. When

a node X announces a CLR its height is set to NULL, and hence has all the links that

originate or point toX can be removed from the DAG. Removing links from a DAG would

still retain its acyclic property. Additionally, X will only accepts a UPD that answers all

the CEIs included in the CLR packet sent by X . In other words X would accept a UPD

created by A, only when this UPD is generated in response to the CEIs sent by X . This

shows that the height announced by A is not dependent on that of X , as A created this

UPD after receiving the CLR from X .

If the UPD includes all the CEIs sent by X , it (node X) would accept the UPD, and

updates it height based on the height advertised by A. Now a link from X to A is added

to the DAG, and this still does not violate the acyclic property, since X previously had no

links in the DAG, and that the links that originate from A are not dependent on X . Hence

the network topology still resembles a DAG even after executing the route maintenance

phase.

115

Below we present a formal proof that emphasizes the loop-freedom in CR-TORA.

Theorem 7.3.1. The network that runs CR-TORA is loop-free.

Proof based on Contradiction: Let there be a set of m nodes (N1, N2, · · · , Nm) that form

a loop. Without loss of generality lets assume that the downstream neighbor of N1 is N2

(represented as downNeigh(N1) = N2), downNeigh(N2) = N3, and that downNeigh(Nm) =

N1.

Further it can be seen that the sequence numbers stored at (N1, N2, · · · , Nm) are iden-

tical, as a node would update the internally stored sequence number when it receives a

greater one.

Now since downNeigh(N1) = N2, the height of N1 (represented as Height(N1)) is

Height(N1) = Height(N2) + 1

and that of N2 is

Height(N2) = Height(N3) + 1

and hence

Height(N1) = Height(N3) + 2

Expanding this equation we get

Height(N1) = Height(Nm) + (m− 1) (7.1)

Further since downNeigh(Nm) = N1

Height(Nm) = Height(N1) + 1 (7.2)
116

The equations 7.1 and 7.2, can only be satisfied when m = 0. This means that the

size of the set of nodes that form a loop in CR-TORA is 0, and hence CR-TORA is loop-

free.

7.4 Simulations

Simulations were carried out to evaluate the performance of TORA and CR-TORA

using random realizations of subnet topologies with mobile nodes.

7.4.1 Simulation Environment

The simulating environment generates N = 150 randomly placed nodes in square region

with edges of size 500 meters. The range of each node was assumed to be R meters

(simulations were performed for R = 55, 60, 65). The destination is randomly chosen.

Every node periodically attempts to send a data packet to the destination - once every TD

seconds on an average (simulations were performed for TD = 1, 2, 3 seconds). However,

a node sends a data packet only if it has a non-NULL height. All simulation runs were

performed for a network time of 100 seconds.

Mobility: To model mobility, at random instances of time some nodes were moved

by random distances in X and Y directions (distance uniformly distributed between ±15

meters); some nodes were turned off; some of the nodes that are currently off were turned

on and relocated at a random position. We simulated two mobility models. In the model

M-I with lower mobility, on an average, during every second, i) Mm = 7.5% of the total

number of nodes were moved; ii) Mo = 3.75 % of the nodes were turned off; and 50 %

of nodes that are currently off are turned on. For the higher mobility model (Model M-II)

117

the parameters were Mm = 15% and Mo = 7.5%. In applying the mobility model, the

only difference between the destination and the other nodes is that the destination is never

turned off.

MAC Layer: The channel bit rate was assumed to be 2Mb/s. Nodes employ p-persistent

CSMA with p ≈ 1/20. The carrier sense delay was assumed to be τcs = 1µsec sec.

In other words, two nodes within the range of each other may not sense each other’s

transmission if they begin their transmissions within τcs = 1µsec of each other2. If a

node senses that the channel becomes available at a time t, it begins its transmission at a

time t + xτcs where x is random, and uniformly distributed between 1 and 20. A packet

is received successfully by a node (without collision) only if not more than one of the

receiver’s neighbors (the sender of the packet) was transmitting during the entire duration

of the packet. Most collisions at a node occur due to the “hidden station problem” -

overlapping transmissions from neighbors of a node who are not within each other’s range.

Control, Data and HELLO Packets: For both TORA and CR-TORA the destination

sends OPT packets once every Topt = 5 seconds. The duration of control packets were as-

sumed to be 0.25 msec (about 64 bytes). The HELLO packets were 0.0625msec long

(about 16 bytes). IMEP ACK packets (only for TORA) were also assumed to be of

0.0625msec duration. For both protocols we assumed a random processing delay in each

node, uniformly distributed between 1 and 5msec.

21µsec is a conservative estimate given that the propagation delay for the maximum distance of 65 m is
less than 0.25µsec.

118

In TORA IMEP attempts to encapsulate multiple control/ACK packets into one IMEP

packet. To offer a collision-free environment for TORA, IMEP sends ACKs for every

control packet received. If a node has not heard an ACK from one or more of its neighbors

within a time Tack = 15 ms, it retransmits the control packet and explicitly indicates the

identities of nodes which had not acknowledged the previous transmission. Only such

nodes will need to send an ACK for the retransmitted packet. We limited the number of

retransmissions to 2.

Data packets were of duration 1 msec (about 256 bytes). The maximum duration of

IMEP packets was set at 1.0625msec (272 bytes) to permit an ACK for a data packet to be

sent along with the data packet. Only CSMA (no RTS/CTS handshake is used) was used

even for data packet transmissions due to the relatively small size of packets.

In both TORA and CR-TORA a node A with multiple downstream neighbors chooses

the one with the least height as the next hop to forward a data packet. If the data packet

transmitted by A to a neighbor B is deemed unsuccessful, then A sends the data packet

to its next downstream neighbor (if available). In both protocols a node A sending a

data packet to a neighbor B attempts to overhear the retransmission of the data packet

within a duration Tack, failing which the data packet is retransmitted. The number of

retransmissions are limited to 2 before the data transmission is deemed unsuccessful.

For maintaining dynamic list of neighbors every node tries to break silence once every

Ts seconds. If a node A has not had the need to transmit a control or data packet (or ACK

in TORA) in the last Ts seconds, A sends a HELLO packet to notify its presence to its

neighbors. If a node A has not heard a transmission from a neighbor B for more than 2Ts

119

seconds, the neighbor B is removed from A’s neighbor table (if B happened to be A’s last

downstream link, link-failure route maintenance activities are triggered).

7.4.2 Results

Many simulation runs were performed; each run was for a network time of 100 seconds.

The simulations were instantiated by the destination, by sending an OPT packet. Some of

the parameters that were measured by the simulations were

a) Ntot = Nctrl +Nopt +Nack +Ndat: total number of packets: which is the sum total

numbers of control packets, OPT packets, ACK packets, and data packets.

b) Ntx: total number of transmissions; for CR-TORA Ntot = Ntx; for TORA Ntx <

Ntot as packets queued for transmission can be aggregated by the IMEP layer.

c) ndat: number of data packets instantiated by all nodes; note that ndat << Ndat as

each of the unique ndat data packets will need multiple transmissions/retransmissions over

multiple hops.

d) nsuc: Total number of data packets reaching the destination;

e) tlat: average latency for data packets.

f) nev: Total number of last-downstream-link-loss events

Table 7.1 gives a detailed comparison of TORA and CR-TORA for one specific choice

of parameters: viz, Topt = 5, R = 60, and TD = 1 second for two mobility models M-I

and M-II.

Ideally, in the span of 100 seconds, each node should have created one data packet

- or 100N = 15000 data packets should have been created. However, as data packets

120

Table 7.1

TORA (T) vs CR-TORA (CR-T) for two mobility models M-I and M-II.

Ntot/Ntx ndat nsuc Ndat tlat nev

M-I T 624,869/446,861 13,615 7071 312,374 0.09 198
M-I CR-T 231,169 13,229 8742 182,296 0.05 259
M-II T 866,082/632,243 13,261 6232 459,083 0.11 397
M-II CR-T 254,318 12,917 7621 195,461 0.052 512

are sent by a node only when they have a non-NULL height, the actual number of cre-

ated data packets is less than 15,000. Ultimately the intent is to increase the number of

packets received by the destination, while lowering the cost. In the TORA subnet for

the mobility model M-I, the destination receives 7071 packets, compared to 8742 in the

CR-TORA subnet. One simple measure of the “cost” is the total number of transmis-

sions (by all nodes together). In the TORA subnet 624,869 TORA packets are aggregated

into 446,861 IMEP transmissions compared to 231,169 packets (and the same number of

transmissions as there is no aggregating lower layer) in CR-TORA. Furthermore, the av-

erage latency in TORA is 0.09 seconds while it is only 0.05 seconds in CR-TORA. Thus,

CR-TORA outperforms TORA in every conceivable respect. CR-TORA results in a 15%

higher throughput with a 40% reduction in latency, for 40% of the cost.

Data Packets: It is interesting to note that slightly more data packets were created in

the TORA subnet (ndat = 13615) compared to ndat = 13229 for CR-TORA. The reason

for this is TORA’s long settling time during subnet partitions, during which nodes possess

a non-NULL height while they do not actually have a physical path. This is also one reason

for the substantially higher number of data packet transmissions Ndat in TORA compared

to CR-TORA (about 1.7 times higher).

121

While both TORA and CR-TORA do not strive to determine the shortest path, the

average path length for TORA is 9.9 compared to 7.1 for CR-TORA. This is in part due to

the fact that a node does not consider a same height neighbor as downstream. Typically,

CR-TORA heights reflect the actual number of hops between the node and the destination.

Lower path lengths obviously lead to in lower latency. and lower data traffic. Furthermore

the substantially higher Ndat in TORA also results in more packets being queued, leading

to increased latency.

Route Maintenance Overhead: In both TORA and CR-TORA a series of route main-

tenance steps are triggered by an event where a node loses its last downstream neighbor.

The number of such events nev were also measured during the simulations. While both

TORA and CR-TORA were simulated for the exact same network topology (and mobil-

ity) the value nev was lower in TORA (198) compared to CR-TORA (259). As CR-TORA

does not consider a neighbor of the same height as downstream the loss of the last down-

stream neighbor occurs more often in CR-TORA. However, even while more maintenance

activities are triggered, CR-TORA mandates lower number of maintenance packets. Apart

from data packets, the TORA subnet invoked 624869−312374 = 312, 495 “other” packets

(HELLO, OPT, control packets like UPD and CLR, and IMEP ACK). In CR-TORA the

number of “other packets” is substantially lower at 48, 873.

Effect of Mobility: As can be seen from Table 1 CR-TORA out-performs TORA by

similar margins even for the scenario with increased mobility (M-II instead of M-I). While

increased mobility results in increased overhead and lower throughput in both TORA and

CR-TORA, the increase in TORA overhead (866082 − 624869 = 241, 213) is 10 times

122

greater than that of CR-TORA (254318 − 231, 169 = 23, 149). This significant increase

in traffic also affects the latency tlat of TORA which is increased by 0.02sec (and only by

0.002sec in CR-TORA).

Waiting Time TW : One new parameter introduced by CR-TORA is the waiting time

TW . Recall that if a node receiving a CLR packet has other downstream nodes it waits

for a duration TW before it sends a UPD. We experimented with various waiting times

ranging from 10 to 20 msec. Our simulations show that a waiting time of 15 msec max-

imized throughput (fraction of data packets that reached the destination). However the

performance of CR-TORA is not very sensitive to this parameter. Between 10 to 20 msec

the worst and best case scenarios varied only by less than 5%.

7.4.3 Effect of Network Density

In our simulations network density is controlled by adjusting the value of the range R.

For the three of choices of R = 55, 60, 65 meters, the total number of nodes connected

to the destination (averaged over many random realizations) are 94, 128 and 141 (63%,

85%, and 94%) respectively. As can be seen from Figure 7.5(a) CR-TORA offers greater

throughput in all three cases.

Figure 7.5(b) depicts the maintenance traffic generated for different network densities.

An increase in network density (and hence connectivity) will lead to lower number of

maintenance events nev leading to lower maintenance traffic. However increased network

density can also lead to higher probability of collisions, and consequently an increase in

traffic due to retransmissions. The total number of control packets Nctrl reduced with

123

(R = 55) (R = 60)(R = 65)
40%

50%

60%

70%

80%

T
hr

ou
gh

pu
t (a)

(R = 55) (R = 60)(R = 65)
0

8000

16000

24000

32000

M
ai

nt
en

an
ce

Tr
af

fic (b)
TORA

CR-TORA

(R = 55) (R = 60)(R = 65)
0

125000

250000

375000

500000
D

at
a

Tr
af

fic
(c)

(R = 55) (R = 60)(R = 65)
0

0.03

0.06

0.09

0.12

L
at

en
cy

(i
n

se
c) (d)

Figure 7.5

Comparison of TORA and CR-TORA for different network densities

increased network density for CR-TORA; on the other hand, in TORA Nctrl increases for

high network densities due to IMEP retransmissions due to collisions.

Increased connectivity resulted in an increase in the total number of data packets cre-

ated (ndat) in both TORA and CR-TORA, and consequently led to greater data traffic

(Ndat). As can be seen from Figure 7.5(c) the increase in Ndat with network density is

substantially higher for TORA, due to the higher number of collisions.

If we ignore collisions, one would expect lower latency with higher R due to a re-

duction in the number of hops. However increase in collisions with network density will

create more retransmissions and thus increase the latency. As can be seen in Figure 7.5(d),

in CR-TORA the two opposing effects almost balance out each other, causing only a very

small increase in latency with increasing network density. On the other hand, due to the

substantially higher number of collisions in TORA, the latency in TORA increases sub-

stantially with network density.

124

Recall that the TORA subnet generates more “useless” data packets (which will ulti-

mately be undeliverable) as nodes possess invalid non-NULL heights for long durations

under scenarios involving network partitions. We expect this phenomenon to be more ev-

ident for low density networks where more network partitions occur. As expected, for

R = 55, the total number of data packets originated by the TORA and CR-TORA sub-

net are ndat = 13282 and ndat = 11588 respectively. The total number of data packets

delivered are nsuc = 5835 for TORA and nsuc = 6612 for CR-TORA.

The facts that i) the goal of TORA is an important one for many application scenarios

and that ii) there are compelling reasons to eliminate the need for an expensive lower layer

were the motivations for the CR-TORA protocol. CR-TORA has in-built features that

address collisions, and thereby eliminates the need for IMEP. Apart from eliminating the

need for a lower layer the other beneficial properties of CR-TORA are i) lowering settling

time during network partitions (leading to less instances of “useless” data traffic); ii) lower

latency (primarily attributable to the fact that same height neighbors are not considered as

downstream) due to shorter path lengths; and iii) lack of the need for time-synchronization.

Simulations show that, compared to TORA, CR-TORA reduces the number of to-

tal number of transmissions by 60%; results in a 15% increase in throughput; and a

40% reduction in latency. CR-TORA is thus a promising protocol for many practical

MANET/sensor networks.

125

CHAPTER 8

SECURING CR-TORA

In this chapter we propose to use TMMs to secure CR-TORA. CR-TORA has the same

design goals as TORA, which is to provide connectivity to a limited set of destinations.

Like TORA it provides multiple paths to each available destination. This is achieved by

storing the heights reported by each neighbor for each destination. Hence apart from its

own height, a node is also required to store the heights of its neighbors.

Further in CR-TORA, for each destination, a node has to maintain a few separate fields

like: i) the CLR and UPD lists, ii) a field to hold the waiting period, iii) current count of

available downstream neighbors.

The TMMs designed to secure CR-TORA must address the above mentioned charac-

teristics.

8.1 IOMT Design

For securing CR-TORA a node X requires to maintain two IOMTs: i) main IOMT that

stores the height of X for each available destination, and ii) an auxiliary IOMT that stores

the heights reported by X’s neighbors for each destination.

126

8.1.1 Main IOMT

This tree is used to store the heights of a node for each available destination. Apart

from the height metric m, CR-TORA also requires a node X to store the following for

each destination:

• CLR-list

• UPD-list

• waiting period

• number of available downstream neighbors

Hence a destination record (DR) stored for a destination in CR-TORA is represented

as:

Dc = [D ‖ d ‖ u ‖ T] (8.1)

where D = [id ‖ q ‖ m ‖ a ‖ τ]. In the above equation:

• a and u are the cumulative hash of the current CLR and UPD lists stored for des-
tination id respectively. The cumulative hashes are computed as explained in Sec-
tion 6.1.2

• d is the number of available downstream neighbors

• T is used to hold the current waiting period

Even thoughX has to store additional information for each destination, a DR broadcast

for destination id should only include the current CLR-list of id. Hence while broadcasting

a packet about id it is sufficient to include the values stored in D = [id ‖ q ‖ m ‖ a ‖ τ].

Therefore while Dc represents the stored DR, D represents the DR broadcast by a node.

127

Every leaf of the main IOMT is used to store information about a unique destination,

and is of the form:

L = (id ‖ θid ‖ id′) (8.2)

where id is the identity of the destination this leaf represents, and id′ is the next available

destination. The value θid = h(Dc) is hash of the DR stored for destination id.

In CR-TORA the height of X for a particular destination (say id) is based on the

heights reported by several neighbors of X . This deviates from protocols like AODV and

DSR, where the height of a node is based on the DR received from a single neighbor

(stored as the provider of the DR (idp)). Hence in CR-TORA, the value of θ does not

include any provider’s identity. However, X stores all the reported neighbors heights in a

separate auxiliary tree.

8.1.2 Auxiliary IOMT

This tree is used to store the reported heights of the neighbors for each destination.

Every leaf of the auxiliary tree represents a unique tuple (destination identity (say id),

neighbor identity (say idn)). The information stored for each tuple is:

d = [id ‖ idn ‖ m] (8.3)

where m is the height advertised by idn.

The leaf of the auxiliary tree is of the form:

L = (i ‖ θi ‖ i′) (8.4)

where i = h(id ‖ idn), i′ is the next available tuple, and θi = h(d).
128

8.2 TMM Data Structures

Apart from the parameters defined in Section 3.4.5, the TMM also holds two values:

i) r: root of main IOMT, and ii) ra: root of auxiliary IOMT. The value ∆W , mentioned

in Section 3.4.5, defines a constant period by which a node has to wait before creating an

UPD packet.

The self-MAC µs is bound to the root of the main IOMT r, and is valid until r is

unchanged. Additionally we introduce a new self-MAC µset which is computed as:

µset = h(x ‖ y ‖ z ‖ Opt ‖ SX) (8.5)

where x, y and z are cumulative hashes of three different sets (say S1,S2,S3 respectively),

and opt is a flag that specifies the operations performed on sets S1 and S2. The various

operations supported are: i) Union, ii) Intersection, and iii) Set Minus. A self-MAC µset

indicates that when an operation Opt is performed between the sets represented by x and

y, the result is a set represented by z.

The cumulative hash of the elements represented in the set can be found using the func-

tion extend() (as shown in Figure 6.4.5). For example let set S = (c1, c2, c3, c4, c5). Now

the cumulative hash of the set S can be found by making the function call extend(c1, 4, (c2, c3, c4, c5)).

The value of the flag INV which is used for computing the value of hr while sending

a DR, is assumes to be 0 in this chapter. Finally, the TMM has an internal function rand()

that returns unique CEIs.

129

8.3 TMM Functions

Apart from the functions UpdateNeighborTable() and AddDeleteLeaf(), the proposed TMM

design exposes the following functions:

1. SetOps(),

2. SendCRT(),

3. LossOfLink(),

4. UpdateUPD() and

5. UpdateCLR()

The function SetOps() is used to carry out set operations, and is responsible for issuing

the self-MAC µset. The function SendCRT() is used to either create a DR about the node,

or send stored DRs. Stale information is removed from the tree using the function Los-

sOfLink(). A stored DR for a destination is updated based on the received UPD/OPT and

CLR packets using the UpdateUPD() and UpdateCLR() functions respectively.

8.3.1 SetOps(n, {x1 · · ·xn},m, {y1 · · · ym}, Opt)

This function is used to execute set operations, and the algorithm followed is shown in

Figure 8.3.1. The inputs taken by this function are:

1. a set {x1 · · ·xn} of size n

2. a set {y1 · · · ym} of size m

3. Opt, that mentions the operation that need to be performed on the input sets

The function performs the specified operation, and computes the cumulative hash z of

the resulting set. Finally it issues a self-MAC µset.

130

SetOps(n, {x1 · · ·xn},m, {y1 · · · ym}, Opt) {
IF Opt == UNION //Union
{z1 · · · zr} = {x1 · · ·xn} ∪ {y1 · · · ym};

ELSE IF Opt == INT
{z1 · · · zr} = {x1 · · ·xn} ∩ {y1 · · · ym};

ELSE IF Opt == SETM
{z1 · · · zr} = {x1 · · ·xn} \ {y1 · · · ym};

x = extend(x1, n− 1, {x2 · · ·xn});
y = extend(y1,m− 1, {y2 · · · ym});
z = extend(z1, r − 1, {z2 · · · zr});
RETURN µset = h(x ‖ y ‖ z ‖ Opt ‖ SX);
}

Figure 8.1

Function SetOps()

8.3.2 LossOfLink(d,Lj,vj,Dc,Li,vi)

This function is used by node X to maintain stale information, and the algorithm fol-

lowed by this function can be seen in Figure 8.3.2. It takes the following inputs:

1. stored neighbor height d

2. auxiliary leaf Lj that represents d, and the set of instructions vj that map it to the
root ra

3. stored DR Dc

4. leaf Li that represents Dc, and the set of instructions vi that map it to the root r

The TMM X first maps the two leaves to their corresponding roots, and checks whether

they indeed represent the provided information.

When the stored DR is expired (τ ≤ tx) the TMM will un-initialize the leaf Li, and

thereby erasing the information stored in the expired DR.

The TMM will un-initialize the auxiliary leaf, if the corresponding leaf for the same

destination has its θi == 0.
131

Additionally the leaf Lj is also un-initialized, when the neighbor represented in d is no

longer a bidirectional neighbor. Further, if the lost neighbor was previously downstream,

the value of d is decremented. Finally, if this results in the loss of the last downstream link

(d == 0) the TMM initializes a to a newly created CEI by calling the function rand().

Lastly the leaf and the root r are updated to reflect these changes.

8.3.3 SendCRT(Dc,Li,vi)

This function is used by node X to send stored DRs, and also to create DR about X

itself. The pseudo code can be seen in Figure 8.3.3. The function takes the following

inputs:

1. stored DR Dc

2. leaf Li that represents Dc, and the set of instructions vi that map it to the root r

The TMM first checks if the function is invoked to create a DR about itself (id == X).

If so, the TMM X increments the internal sequence number, create a DR about itself, and

finally authenticate it to all the bidirectional neighbors of X .

However if the function is invoked to relay stored DRs, the TMM first maps the leaf to

the root r, and later verifies if the leaf holds information about Dc. If the stored DR has

an infinite height the TMM authenticates it to all the bidirectional neighbors right away.

Nevertheless, if m < INF the TMM only sends the DR if the corresponding waiting

period has expired (T ≤ tx). For this case, the TMM copies the value of u into a (copies

the UPD-list into CLR-list). Finally TMM X updates the leaf and the root r subsequently.

132

LossOfLink(d,Lj,vj,Dc,Li,vi) {
//Dc = [id ‖ q ‖ τ ‖ m ‖ a ‖ INV ‖ n ‖ u ‖ T];
//Li = [i ‖ θi ‖ i′];
//d = [ido ‖ idpo ‖ mo];
//Lj = [j ‖ θj ‖ j′];
IF (r 6= mapleaf(Li,vi)) ∨ (ra 6= mapleaf(Lj,vj)) RETURN ERROR;
IF ((θi 6= h(Dc) ∨ (θj 6= h(d))) RETURN ERROR;
IF (id 6= ido) RETURN ERROR;
//house keeping without external input
IF (τ ≤ tx) //prepare main leaf for removal

Li = (i ‖ 0 ‖ i′); r = mapleaf(Li,vi);
RETURN;

IF (θi == 0) //prepare aux leaf for removal
Lj = (j ‖ 0 ‖ j′); ra = mapleaf(Lj,vj);
RETURN;

//update without external input
IF (checkbd(idpo) == 0) // only possible reason is loss of link to idpo
θj = 0; ra = mapleaf(Lj,vj);
IF (mo < m)
d = d− 1;
IF (d < 1)
m = INF ;
T = 0; u = 0;
a = rand(); create new CEI

θi = h(Dc); r = mapleaf(Li,vi);
}

Figure 8.2

Function LossOfLink()

133

SendCRT(Dc,Li,vi) {
//Dc = [id ‖ q ‖ τ ‖ m ‖ a ‖ INV ‖ n ‖ u ‖ T];
//Li = [i ‖ θi ‖ i′];
IF (r 6= mapleaf(Li,vi)) ∨ (id 6= i) ∨ (h(Dc) 6= θi)) RETURN ERROR;
hr = h(h(id ‖ q ‖ τ ‖ m ‖ a) ‖ 0);
IF (T < tx)

RETURN computemacs(hr, X, 0);
IF (a 6= 0)
u = a; a = 0;
θi = h(Dc); r = mapleaf(Li,vi);

}

Figure 8.3

Function SendCRT()

8.3.4 Macro INPUT-VALIDATE

For the sake of simplicity we divided the function that updates stored DRs into Update-

UPD() and UpdateCLR(). Function UpdateUPD() is invoked when a UPD packet is received,

while UpdateCLR() is called when a CLR packet is received. However the inputs accepted,

and the initial input validations performed by these two functions are identical. Hence we

defined a macro INPUT-VALIDATEthat performs these identical operations, and it is loaded

in both the function UpdateUPD() and UpdateCLR(). The operations carried out by INPUT-

VALIDATEcan be seen in Figure 8.3.4.

The inputs accepted by both the function UpdateUPD() and UpdateCLR() are:

1. the received DR Dw, and its provider idpw

2. self-MAC µs

3. stored neighbor height d

4. auxiliary leaf Lj that represents d, and the set of instructions vj that map it to the
root ra

134

5. stored DR Dc

6. leaf Li that represents Dc, and the set of instructions vi that map it to the root r

7. S = [x ‖ y ‖ z ‖ Opt ‖ µset]

The TMM first validates the self-MACs µset and µs. Later the TMM maps the two

leaves to their corresponding roots, and also verifies if they indeed point to the information

provided.

Further, if either of θi or θj are set to 0 the TMM initializes them to their default values.

Finally before updating the received height of the neighbor, the TMM stores the currently

stored height into a temporary variable. This is done to enable further checks on the status

(either upstream or downstream) of the neighbor, before receiving the DR Dw.

8.3.5 UpdateUPD(Dw, idpw, µs,d,Lj,vj,Dc,Li,vi,S)

This function is invoked by node X to update stored DRs when a DR with finite height

(mw < INF) is received. The pseudo code followed by the function can be seen in

Figure 8.3.5.

TMM X first loads the macro INPUT-VALIDATEto perform input validations. Later the

TMM performs two checks. First, the TMM checks if both the received (mw) and stored

(m) heights are finite. If so, the TMM increments d if mw < m, and if the sender was

previously not counted as downstream. Additionally, if mw ≥ m and the provider was

previously counted as downstream the value of d is decremented. Now if the updates d

is equal to 0, it means that X lost its last downstream link due to link reversal. Hence X

would clear its stored height, and create a new CEI as mentioned in Section 7.2.2.3.

135

INPUT-VALIDATE(Dw, idpw, µs,d,Lj,vj,Dc,Li,vi,S) {
//Dw = [idw ‖ qw ‖ mw ‖ aw ‖ τw];
//d = [ido ‖ idpo ‖ mo];
//Dc = [id ‖ q ‖ m ‖ a ‖ τ ‖ d ‖ u ‖ T];
//Lj = [j ‖ θj ‖ j′];
//Li = [i ‖ θi ‖ i′];
//S = [x ‖ y ‖ z ‖ Opt ‖ µset]
//verify all inputs
IF ((µset 6= 0) ∧ (µset 6= h(x ‖ y ‖ z ‖ Opt ‖ SX)) RETURN ERROR;
IF (µs 6= (h(h(Dw) ‖ 0) ‖ idpw ‖ r ‖ SX)) RETURN ERROR;
IF (r 6= mapleaf(Li,vi)) ∨ (ra 6= mapleaf(Lj,vj)) RETURN ERROR;
IF ((θi 6= h(Dc) ∨ (θj 6= h(d))) RETURN ERROR;
IF (((idw 6= id) ∧ (idpw 6= idpo)) ∨ (id 6= ido) ∨ (id 6= i) ∨ (qw < q)) RETURN ERROR;
IF (θj == 0)
ido = idw; idpo = idpw;mo = INF]

IF (θi == 0)
id = idw; q = 0; τ = 0;m = INF ; a = 0; INV = 0; d = 0;u = 0;T = 0;

m′o = mo;mo = mw;
IF (qw > q)
q = qw; a = 0; τ = τw;u = 0;T = 0;m = INF ; d = 0;

}

Figure 8.4

Macro INPUT-VALIDATE

136

The second check performed by the TMM is to verify ifX received a finite height when

the stored height for the destination is infinite. According to CR-TORA, X only accepts

this UPD if all the CEIs stored in its CLR-list are included in the received packet. In other

words, performing set minus between the stored and received CEIs should return NULL.

The TMM uses the values included in the self-MAC µset to evaluate this condition. If

satisfied, the received height is accepted by the TMM, else the stored height is unchanged.

Finally the TMM X updates the leaf and root subsequently.

UpdateUPD(Dw, idpw, µs,d,Lj,vj,Dc,Li,vi,S) {
INPUT-VALIDATE//load the macro
IF ((mw < INF) ∧ (m < INF)) //UPD

IF ((mw < m) ∧ (m′o > m− 1))
d = d+ 1;

ELSE IF ((mw ≥ m) ∧ (m′o < m))
d = d− 1;
IF (d < 1) //last DN lost due to link reversal
a = rand();u = 0;T = 0;m = INF ; d = 0; mo = INF ; //create new clear

ELSE IF ((mw < INF) ∧ (m == INF)) //UPD
IF ((a == 0) ∨ ((µset) ∧ (Opt = SETM) ∧ (x == a) ∧ (y == aw) ∧ (z == 0)))

//accept UPD as all CEIs addressed
m = mw + 1; d = 1;

ELSE
mo = INF ; T = 0;

θj = h(d); ra = mapleaf(Lj,vj);
θi = h(Dc); r = mapleaf(Li,vi);
}

Figure 8.5

Function UpdateUPD()

137

8.3.6 UpdateCLR(Dw, idpw, µs,d,Lj,vj,Dc,Li,vi,S)

This function is used by node X to update the stored DRs based on received CLR

packets (mw == INF). The algorithm followed can be seen in Figure 8.3.6.

Like UpdateUPD() the function first loads INPUT-VALIDATEto perform input validations.

The function only executes when the stored height (m) is finite. When both the stored

and received heights are infinite, its usually the case when a node is hearing back the CLR

it sent, and no action is needed.

Hence when m < INF , the TMM first checks if the provider of the CLR was pre-

viously listed as downstream. If yes the value of d is decremented. Now if the updated

d > 0, node X has a valid height even after processing the CLR. Hence the TMM sets the

waiting time T (if its not already set), and adds the received CEIs to its existing CLR-list.

The TMM uses the values included in S to carry out this operation.

However if d becomes 0, the TMM has lost its last downstream link, and would clear

the stored height. Now the TMM first checks if the received CEIs intersect with the stored

UPD-list. In such a case the TMM would create a new CEI as explained in Section 7.2.2.3.

If not the TMM adds the received CEIs to its existing CLR-list.

8.4 Realizing CR-TORA

In this section we explain how the above mentioned functions can be used to realize

CR-TORA protocol. Firstly the function UpdateNeighborTable() can be used to maintain

connectivity and to create self-MAC µs. The function SendTS() is used to create periodic

HELLO packets. The function AddDeleteLeaf() can be used to create place holders when

138

UpdateCLR(Dw, idpw, µs,d,Lj,vj,Dc,Li,vi,S) {
INPUT-VALIDATE// loading the macro
IF ((mw == INF) ∧ (m < INF)) //CLR

IF ((m′o < m) ∧ (d > 1))
d = d− 1;
IF (T ≤ tx) //timer has not been set
T = tx + ∆W ; //start timer

IF ((µset == 0) ∧ (a == 0)) a = aw;
ELSE IF ((µset) ∧ (Opt = UNION) ∧ (x == a) ∧ (y == aw)) a = z;
ELSE RETURN ERROR;

ELSE IF ((m′o < m) ∧ (d == 1)) //last DN will be lost
mo = 0; T = 0; //ready to send CLR
IF (u 6= 0)

IF ((µset == 0) ∨ (Opt 6= INT) ∨ (x 6= u) ∨ (y 6= aw)) RETURN ERROR;
IF (z 6= 0)
a = rand();u = 0;T = 0 //create new CEI

ELSE IF (z == 0)
a = aw;u = 0;T = 0 //copy received CEI

ELSE IF ((µset == 0) ∧ (a == 0))
a = aw;

ELSE IF (µset ∧ (Opt = UNION) ∧ (x == a) ∧ (y == aw))
a = z;

ELSE RETURN ERROR;
θj = h(d); ra = mapleaf(Lj,vj);
θi = h(Dc); r = mapleaf(Li,vi);
}

Figure 8.6

Function UpdateCLR()

139

information about new identities arrive. For example when node X receives a DR about

destination D from a neighbor A for the first time, it invokes AddDeleteLeaf() to create an

uninitiated leaf in the main tree for identity D. Additionally, X calls AddDeleteLeaf() one

more time to create an uninitiated leaf for h(D ‖ A) in the auxiliary tree. These uninitiated

leafs are later submitted to either UpdateUPD() or UpdateCLR() for further processing.

When destination D desires to create an OPT packet, it calls the function SendCRT()

which returns a DR about D that includes its latest sequence number. Every node on

receiving the OPT packet submits the received and saved DR for D to the function Upda-

teUPD().

Further maintenance of stale information is carried out by invoking the function Los-

sOfLink(). Say X looses its connectivity to a neighbor A, through which it received a DR

for D. Now X invokes its LossOfLink() to un-initialize the auxiliary leaf for h(D ‖ A).

Further the function also updates the downstream count d to reflect this loss. If d is up-

dated to 0, the function LossOfLink() clears the heights stored for D. The updated DR can

later be submitted to SendCRT(), which authenticates it to all the bidirectional neighbors

of X .

The functions UpdateUPD() and UpdateCLR() are used to update stored DRs based on

the received packets. Changes caused due to OPT and UPD packets are handled by in-

voking UpdateUPD(), while those introduced by received CLR packets are made by calling

UpdateCLR().

The function SetOps() is used to perform the various set operations required for CR-

TORA. As explained earlier the UPD-list and CLR-list are represented by their cumulative

140

hashes in the stored DR. For example consider that a node X receives a CLR that wipes

out its last downstream link for destination D. Now according to CR-TORA protocol, X

would clear its stored height for D, and have to update its stored CLR-list.

For instance, if any of the CEIs included in X’s UPD-list are listed in the received

CLR packet, X has to create a new CEI. In order to achieve this functionality node X

makes the call SetOps(n, {x1 · · ·xn},m, {y1 · · · ym}, INT), where {x1 · · ·xn} represents

the stored UPD-list and {y1 · · · yn} represents the received CEIs. The function would

return a self-MAC µset that specifies the result of performing an intersection on the inputs

sets. Now along with the received and stored DRs for D, X also submits this self-MAC

µset to the function UpdateCLR(). In this fashion the function SetOps() can be used to carry

out required set operations.

Finally the function SendCRT() can be used by a node X to relay stored DRs. If the

DR has infinite height the function relays it immediately. However, the condition T ≤ tx

must be satisfied while relaying DRs with finite heights. This ensures that a particular DR

cannot be sent until the expiry of its waiting period.

8.5 Security Offered by the TMMs

In this section we analyze how the proposed approach secures CR-TORA. The TMMs

designed in this chapter are an extension to the basic TCB presented in Chapter 4. Hence

the assurances offered by the basic TCB can also be extended to the TMMs used to secure

CR-TORA. These TMMs use IOMTs to store acquired routing information to thwart the

attacks listed in Section 4.3.3.

141

8.5.1 Assertion Statements

Lemma 1. A node X can not illegally modify information stored in an IOMT.

Proof. The designed TMMs have two IOMTs: i) main IOMT to store the height of X for

each available destination, and ii) an auxiliary IOMT to store the heights of each neighbor

for every destination. The roots of both the trees (r and ra) are securely stored within

the TMM. According to the property of a merkle tree, the root binds all the values that are

stored in its leaves. Hence it is impossible for the node to change the information currently

binded by the roots r and ra.

8.5.2 Assurances Offered by the TMMs

Theorem 6.6.1. A node X can not hide available downstream links for a destination D.

Proof. As shown in Section 8.1.1 the destination record (DR) stored for D is of the form:

Dc = [D ‖ d ‖ u ‖ T] (8.6)

where d is the number of available downstream links. Whenever X submits a received

routing packet (either to the function UpdateUPD() or UpdateCLR()) for further processing,

the value of d is updated based on the newly arrived data. Additionally the value of d

is also updated by LossOfLink(), whenever X looses a neighbor. Therefore at any given

instant the value d represents the number of downstream neighbors available for D.

Further, Lemma 1 states that node X can not introduce illegal modifications to the

information stored in an IOMT. Hence X can not hide available downstream links to a

destination D.

142

CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH

This chapter summarizes the contributions of this dissertation to secure MANET rout-

ing protocols, and outlines some possible extensions to this research.

The primary motivation for the research was that proactive security approaches - which

attempt to ensure that nodes will not be able to misbehave - have many compelling advan-

tages over reactive approaches which attempt to detect and react to inconsistencies. The

specific advantages of proactive (as opposed to reactive) approaches are as follows:

Overhead: Proactive approaches mandate lower bandwidth overhead as the overhead

for carrying over authentication is eliminated.

Efficiency: Improved efficiency results both from reduction in bandwidth overhead

and the enhanced scope of assurances provided. Proactive approaches can be as efficient

as the original protocols which simply assume that nodes will not misbehave. Reactive se-

cure extensions to such protocols had to deliberately turn-off many efficiency-enhancing

features of such protocols due to the fact that providing assurances for such complex fea-

tures will mandate very high overhead to make them useful.

Universality: Reactive approaches are intricately tied to the exact nature of the pro-

tocol. Proactive approaches with higher level goals are not. It is for this reason that the

approach proposed in this dissertation mandates very little changes to the original pro-

143

tocols. For all protocols the packet output by a node conforms to the original protocol

specification. The only difference is that each packet is accompanied by one or more

message authentication codes and a time stamp.

9.1 Contributions

While some researchers have investigated strategies to realize secure routing protocols

through trustworthy computing, such approaches have been superficial. Such approaches

make unjustifiable assumptions regarding the components of node that are trusted. At

the very essence of trustworthy computing is the compelling need to reduce the trusted

computing base to the extent feasible. Only a well trusted TCB can be meaningfully

amplified to realize the desired assurances.

This dissertation makes several contributions in the area of securing MANETs using

trustworthy computing. We provide a detailed description of trusted MANET modules

(TMM), their functionality, and the interfaces exposed to access such functionality. In

the approach based on TMMs, TMMs create routing data, send authenticated routing data

to TMMs of neighboring nodes, receive authenticated data from TMMs of neighboring

nodes. From the perspective of two TMMs the nodes that house them are untrusted middle-

men who facilitate exchanges between the TMMs and store routing information.

One contribution of this dissertation was the trivial AtomicRelay() function to provide

several assurances not provided by current secure routing protocols. The AtomicRelay()

function simply needs to accept routing data from neighbors and relay them to neighbors

while enforcing some simple rules (for example, incrementing the hop-count field by one).

144

Simply accepting and relaying data poses no significant challenge even for severely

resource limited modules. The main challenge stems from the need to store routing data,

as relayed routing information may be a function of several pieces of routing data received

in the past.

Perhaps the most important contribution of this dissertation is the index ordered merkle

tree (IOMT), which makes it possible for a TMM to virtually store the routing data. More

specifically, while it is believed that a merkle tree is sufficient to virtually store dynamic

data, we demonstrated that using a merkle tree opens up replay attacks due to the inability

to confirm negative queries. This necessary ability is provided by using an IOMT instead

of a merkle tree.

With the ability to store routing data using IOMTs our research proceeded to identify

specific functionality required of TMMs to secure various routing protocols like AODV,

DSR and CR-TORA.

As mentioned in our hypothesis, the tasks performed within the proposed TMMs are

deliberately restricted to cryptographic hash functions and logical operations. Moreover,

when TMMs are utilized to provide secure routing, only few MACs need to be appended

to existing routing packets. Hence, the overhead required for realizing the proposed TCB

is considerably reduced.

Another important contribution of this dissertation is a novel protocol - collision re-

sistant TORA, developed to address several weaknesses of TORA. In particular, TORA

is susceptible to collisions, has complex rules for maintaining the height of a node (for

which reason no secure extension of TORA has been proposed in the literature to carry

145

over authentication in TORA), and demands high overhead when network partitions occur.

CR-TORA was designed to simultaneously address all of TORA’s weaknesses.

9.2 Scope for Future Work

Two avenues of future work include

1. investigating possible improvements to the TMM interfaces and functionality,

2. investigating the utility of IOMT in other application settings

In regard to the first avenue, one important addition can be identifying TMM function-

ality required for link-state based protocols. Note that all protocols that have been ad-

dressed by this dissertation are based on distance vector routing. Another possibility is to

make necessary modifications to the interfaces and TMM functionality to enable the next

specification of trusted platform modules (TPM) to support additional functionality. Cur-

rently, an extension of TPM specification is underway which focuses on mobile platforms

[76, 77]. However, thus far the additional features in mobile TPMs are restricted to those

features/restrictions demanded by mobile phone network operators and content distribu-

tors. The developed TMM functionality could be a useful addition to TPMs in mobile

devices as many mobile devices of the future are expected to take part in ad hoc routing.

One of the primary differences between IOMT and a merkle tree is that in the merkle

tree each leaf is independent. In an IOMT we deliberately introduce inter-dependencies

between leaves to permit querying. More specifically, by ordering by a unique index we

can facilitate negative queries. However many other types of inter-dependencies may be

146

imposed for performing different types of queries. Some of the ongoing work investigating

such extensions of IOMT include [78] and [79].

9.3 Publications

The following publications resulted from the research performed towards the disserta-

tion:

1. V. Thotakura, M. Ramkumar, Collision Resistant Temporally Ordered Routing Al-
gorithm, International Journal of Information Sciences and Computer Engineering,
pp 1-8, Vol 1, No 1, 2010.

2. V. Thotakura, M. Ramkumar, “Leveraging a Minimal Trusted Computing Base for
Securing On-Demand MANET Routing Protocols”, Proceedings: 9th International
Information and Telecommunication Technologies Symposium (I2TS’2010), Brazil,
Dec 2010.

3. V. Thotakura, M. Ramkumar, “Minimal TCB for MANET Nodes”, Proceedings: 6th
IEEE International Conference on Wireless and Mobile Computing, Networking and
Communications, Niagara Falls, Oct 2010.

4. V. Thotakura, M. Ramkumar, Securing AODV and DSR Using Trustworthy Com-
puting, Submitted to IEEE Transactions on Dependable and Secure Computing (TDSC)

5. V. Thotakura, M. Ramkumar, Design of a Trusted Module for Securing CR-TORA,
Submitted to the IEEE Transactions on Information Forensics and Security (TIFS).

147

REFERENCES

[1] P.Johanson , D. Maltz, “Dynamic source routing in ad hoc wireless networks,” Mo-
bile Computing, Kluwer Publishing Company, 1996, ch.5 , pp. 153-181

[2] Charles E. Perkins, Elizabeth M. Belding-Royer, and Ian Chakeres, “Ad hoc On
Demand Distance Vector (AODV) Routing,” IETF Internet draft, draft-perkins-
manetaodvbis-00.txt, Oct 2003

[3] V. Park and S. Corson, “Temporally Ordered Routing Algorithm (TORA) Version 1
Functional Specification”, IETF MANET, Internet Draft (work in progress), 2001.

[4] C Perkins, P Bhagvat, “Highly Dynamic Destination-Sequenced Distance-Vector
Routing (DSDV) for Mobile Computers,” ACM SIGCOMM Symposium on Com-
munication, Architectures and Applications, 1994.

[5] P. Jacquet, P. Mühlethaler, T. Clausen, A. Laouiti, A. Qayyum, L. Viennot, “Opti-
mized link state routing protocol for ad hoc networks,” Proceedings of the 5th IEEE
Multi Topic Conference (INMIC 2001),” 2001.

[6] Vincent D. Park and M. Scott Corson , “A Highly Adaptive Distributed Routing
Algorithm for Mobile Wireless Networks”, Proceedings of IEEE INFOCOM ’ 97 ,
Kobe, Japan (April 1997)

[7] B. Lampson, M. Abadi, M. Burrows, E. Wobber, “Authentication in Distributed Sys-
tems: Theory and Practice,” ACM Transactions on Computer Systems, 1992.

[8] V. Thotakura, M. Ramkumar Collision Resistant Temporally Ordered Routing Algo-
rithm, International Journal of Information Sciences and Computer Engineering, pp
1-8, Vol 1, No 1, 2010.

[9] V. Thotakura, M. Ramkumar, “Leveraging a Minimal Trusted Computing Base for
Securing On-Demand MANET Routing Protocols”, Proceedings: 9th International
Information and Telecommunication Technologies Symposium (I2TS’2010), Brazil,
Dec 2010.

[10] V. Thotakura, M. Ramkumar, “Minimal TCB for MANET Nodes”, Proceedings: 6th
IEEE International Conference on Wireless and Mobile Computing, Networking and
Communications, Niagara Falls, Oct 2010.

148

[11] V. Thotakura, M. Ramkumar, Securing AODV and DSR Using Trustworthy Comput-
ing, Submitted to IEEE Transactions on Dependable and Secure Computing (TDSC)

[12] V. Thotakura, M. Ramkumar, Design of a Trusted Module for Securing CR-TORA,
Submitted to the IEEE Transactions on Information Forensics and Security (TIFS).

[13] URL: http://laptop.org/laptop/

[14] P. Papadimitratos, Z. Haas, “Secure Link State Routing for Mobile Ad Hoc Net-
works,” in Proceedings of the IEEE CS Workshop on Security and Assurance in Ad
hoc Networks, 2003.

[15] G. Pei, M. Gerla, T. Chen, “Fisheye State Routing in Mobile Ad Hoc Networks,”
ICDCS Workshop on Wireless Networks and Mobile Computing, D71-D78, 2000.

[16] Y-C Hu, A. Perrig, D.B. Johnson, “Packet Leashes: A Defense against Wormhole
Attacks in Wireless Ad Hoc Networks,” Rice University Department of Computer
Science Technical Report TR01-384, Dec 2001.

[17] P Papadimitratos, Z. J.Haas, “Secure Routing for Mobile Ad Hoc Networks,” Pro-
ceedings of the SCS Communication Networks and Distributed Systems Modeling
and Simulation Conference(CNDS 2002), San Antonio, Texas ,2002

[18] Y-C Hu ,A Perrig,. D B.Johnson, “Ariadne: A Secure On-Demand Routing Protocol
for Ad Hoc Networks,” Journal of Wireless Networks, 11, pp 11–28, 2005.

[19] J. Kim, G. Tsudik, “SRDP: Securing Route Discovery in DSR,” IEEE Mobiqui-
tous’05, July 2005.

[20] M G Zapata, N.Asokan ,“Securing Ad Hoc Routing Protocols,” Proceedings of the
ACM workshop on Wireless security, Atlanta, Georgia, September 2002.

[21] X. Du, Y. Wang, J. Ge, Y. Wang, “A Method for Security Enhancemens in AODV
Protocol,” Proceedings of the 17th International Conference on Advanced Informa-
tion Networking and Applications, AINA03, Xian, China.

[22] T Wan, E kranakis P.C. Van Oorschot,“Securing the Destination Sequenced Distance
Vector Routing Protocol,” Proceedings of the 6th International Conference on Infor-
mation and Computer Security, Malaga, Spain, October 2004.

[23] Y-C Hu, D B. Johnson, A Perrig, “SEAD: Secure Efficient Distance Vector Routing
for Mobile Wireless Ad Hoc Networks,” Proceedings of the Fourth IEEE Workshop
on Mobile Computing Systems and Applications, 2002.

[24] M. Burmester, T. Van Le, M. Weir, “Tracing Byzantine Faults in Ad Hoc Networks,”
Proceedings of Communication, Network, and Information Security (CNIS), NY,
Dec 2003.

149

[25] TCG Specification: Architecture Overview, Specification Revision 1.4, 2nd August
2007.

[26] S.W. Smith, S. Weingart, “Building a High-Performance Programmable Secure Co-
processor,” IBM Technical Report RC21102, Feb 1998.

[27] M. Ramkumar, “The Subset Keys and Identity Tickets (SKIT) Key Distribution
Scheme,” IEEE Transactions on Information Forensics and Security, 5(1), pp 39–
51, March 2010.

[28] M. Ramkumar, “On the scalability of a “non-scalable” key distribution scheme,”
IEEE SPAWN, Newport Beach, CA, June 2008.

[29] M.G.Zapata, N.Asokan, “Securing Ad hoc routing protocols,” WISE-02, Atlanta,
Georgia, 2002.

[30] E. Weiss, G. R. Hiertz, B. Xu, “Performance Analysis of Temporally Ordered Rout-
ing Algorithm based on IEEE 802.11a,” IEEE 61st Vehicular Technology Conference
(VTC), May 2005.

[31] B. Awerbuch, D. Holmer, C. Nita-Rotaru, H. Rubens, “An On-Demand Secure Rout-
ing Protocol Resilient to Byzantine Failures,” ACM Workshop onWireless Security
(WiSe–02), September 2002.

[32] A. Perrig, R. Canetti, D. Song, D. Tygar, “Efficient and Secure Source Authentication
for Multicast,” in Network and Distributed System Security Symposium, NDSS ’01,
Feb. 2001.

[33] K.A. Sivakumar, M. Ramkumar, “On the Effect of Oneway Links on Route Dis-
covery in DSR,” Proceedings of the IEEE International Conference on Computing,
Communication and Networks, ICCCN-2006, Arlington, VA, October 2006.

[34] K.A. Sivakumar, M. Ramkumar, “An Efficient Secure Route Discovery Protocol for
DSR,” to be presented in IEEE Globecom 2007, Washington, DC, Nov 2007.

[35] A. A. Pirzada, A. Datta, and C. McDonald, “Trustworthy Routing with the TORA
Protocol,” Proceedings of the AusCERT Asia Pacific Information Technology Secu-
rity Conference, 2004.

[36] Tingyao Jiang, Qinghua Li, Youlin Ruan, ”Secure Dynamic Source Routing Proto-
col,” cit,pp.528-533, Fourth International Conference on Computer and Information
Technology (CIT’04), 2004

[37] Jihye Kim , Gene Tsudik, “SRDP: Securing Route Discovery in DSR”, Proceed-
ings of the The Second Annual International Conference on Mobile and Ubiquitous
Systems: Networking and Services, p.247-260, July 17-21, 2005

150

[38] K.A. Sivakumar, M. Ramkumar, “Safeguarding Mutable Fields in the AODV Route
Discovery Process,” the Sixteenth IEEE ICCCN-07, Honolulu, HI, Aug 2007.

[39] K.A. Sivakumar, M. Ramkumar, “Improving the Resilience of Ariadne,” IEEE
SPAWN 2008, Newport Beach, CA, June 2008.

[40] S. Bucheggar. J-Y Le Boudec, “Nodes bearing grudges: Towards routing security,
fairness, and robustness in mobile ad hoc networks,” 10th Euromicro Workshop on
Parallel, Distributed and Network-based Processing, Spain,2002.

[41] S Marti, T. J. Giuli, Kevin Lai and Mary Baker,“Mitigating routing misbehavior in
mobile ad hoc networks,” Proceedings of the 6th Annual International Conference
on Mobile Computing and Networking, Boston, 2000.

[42] J.Marshall, V.Thakur, A.Yasinsac,“Identifying flaws in the secure routing protocol,”
Proceedings of the 2003 IEEE International Performance, Computing, and Commu-
nications Conference, 2003.

[43] A. A. Pirzada, C. McDonald, “Trusted Route Discovery with TORA Protocol,” Pro-
ceedings of the Second Annual Conference on Networks and Services Research
(CNSR), 2004.

[44] S. Buchegger, J.-Y. Le Boudec, “Performance Analysis of the CONFIDANT Proto-
col,” Proceedings of the 3rd ACM international symposium on Mobile ad hoc net-
working and computing, Lausanne, Switzerland, 2002.

[45] P. Michiardi, R. Molva, “CORE: A COllaborative REputation mechanism to enforce
node cooperation in Mobile Ad Hoc Networks,” Communication and Multimedia
Security Conference, Portoroz, Slovenia, Sep 2002.

[46] P. Dewan, P. Dasgupta, A. Bhattacharya, “On Using Reputations in Ad hoc Networks
to Counter Malicious Nodes,” QoS and Dynamic Systems, Newport Beach, USA,
2004.

[47] S. Ganeriwal, M. B. Srivastava, “Reputation-based framework for high integrity sen-
sor networks,” Proceedings of the 2nd ACM workshop on Security of ad hoc and
sensor networks, Washington, DC, 2004.

[48] J. Liu, V. Issarny, “Enhanced Reputation Mechanism for Mobile Ad Hoc Net-
works,” Proceedings of the Second International Conference on Trust Management
(iTrust’2004), March 2004.

[49] M. Jarrett and P. Ward, “Trusted Computing for Protecting Ad-hoc Routing,” Pro-
ceedings of the 4th Annual Communication Networks and Services Research Con-
ference, IEEE Computer Society, May 2006.

151

[50] J-H. Song, V. Wong, V. Leung, “Secure Routing with Tamper Resistant Module for
Mobile Ad Hoc Networks,” ACM SIGMOBILE Mobile Computing and Communi-
cations Review, vol. 7, no. 3, ACM Press, New York, Jul. 2003.

[51] L. Buttyan, J. Hubaux, “Nuglets: a Virtual Currency to Stimulate Cooperation in
Self-Organized Mobile Ad Hoc Networks,” Technical Report DSC/2001/001, De-
partment of Communication Systems, Swiss Federal Institute of Technology, Jan.
2001.

[52] J-P. Hubaux, L Buttyan, S. Capkun, “Quest for Security in Mobile Ad Hoc Net-
works,” Proceedings of the ACM MOBIHOC 2001.

[53] K. Sivakumar, M. Ramkumar, “APALLS: A Secure Routing Protocol,” manuscript
under preperation.

[54] B. Gaines, M. Ramkumar, “A Framework for Dual Agent MANET Routing Proto-
cols,” IEEE Globecom 2008.

[55] M. Liu, Q. Meng, Y. He and D. Cheng, “The Ad Hoc Network Security Research
Based on Trusted Computing and Semantic Remote Attestation,” Proceedings: 2nd
International Workshop on Educational Technology and Computer Science, Wuhan,
China, March. 2010, pp. 724-727.

[56] M. Dejun, R. Shuai, Z. Degang and Z. Tao, 2008. Application of trusted computing
to the adhoc networks security. Asia J. Inform. Technol., pp 370-373, Vol 7, No 8,
2008.

[57] Joo-Han Song, Vincent Wong, Victor Leung, and Yoji Kawamoto. 2003. Secure rout-
ing with tamper resistant module for mobile Ad hoc networks. SIGMOBILE Mob.
Comput. Commun. Rev. 7, 3 (July 2003), pp. 48-49.

[58] Jarrett, M.; Ward, P.; , “Trusted computing for protecting ad-hoc routing,” Communi-
cation Networks and Services Research Conference, 2006. CNSR 2006. Proceedings
of the 4th Annual , vol., no., pp.8 pp.-68, 24-25 May 2006

[59] R.C. Merkle “Protocols for Public Key Cryptosystems,” In Proceedings of the 1980
IEEE Symposium on Security and Privacy, 1980.

[60] V.L. Chee and W.C. Yau, “Security Analysis of TORA Routing Protocol”, ICCSA
2007, LNCS 4706, Part II, pp. 975986, 2007.

[61] A.A. Pirzada and C. Donald. “Secure Routing with the AODV Protocol,” IEEE, 2005.

[62] L. Li, C. Chigan. “Token Routing: A Power Efficient Method for Securing AODV
Routing Protocol,” IEEE, 2006.

[63] Y. Hu and A. Perrig, “A Survey of Secure Wireless Ad Hoc Routing,” IEEE Security
and Privacy Magazine, vol. 2, no. 3, May-June 2004, pp. 28-39.

152

[64] S. Weiler, J. Ihren, “RFC 4470: Minimally Covering NSEC Records and DNSSEC
On-line Signing,” April 2006

[65] A. Broder, M. Mitzenmacher, “Network Applications of Bloom Filters: A Survey,”
Internet Mathematics, vol. 1, no. 4, pp 485–509, 2005.

[66] M. Ramkumar, “Trustworthy Computing Under Resource Constraints with the
DOWN Policy,” IEEE Transactions on Dependable and Secure Computing.

[67] Patroklos Argyroudis and Donal O’Mahony, “Secure Routing for Mobile Ad hoc
Networks,” IEEE Communications Surveys and Tutorials, vol. 7, no. 3, pp 2-21,
2005.

[68] M. Ramkumar “An efficient broadcast authentication scheme for ad hoc routing pro-
tocols,” IEEE ICC 2006, Istanbul, Turkey, Jun 2006.

[69] M. Ramkumar, “Broadcast Encryption Using Probabilistic Key Distribution and Ap-
plications,” Journal of Computers, Vol 1 (3), June 2006.

[70] M. Scott Corson, S. Papademetriou, Philip Papadopoulos, Vincent D. Park, and
gmir Qayyum. An Intemet MANET Encapsulation Protocol (IMEP) Specification.
Interact-Draft, draft-ieff-manet-imep-spee- 01.txt, August 1998. Work in progress.

[71] T. Clausen, C. Dearlove, and J. Dean, “MANET Neighborhood Discovery Protocol
(NHDP) draft-ietf-manet-nhdp-07,” IETF MANET, Internet Draft, 2008.

[72] H. Ehsan and Z. Uzmi. “A Performance Comparison of Ad-Hoc Wireless Network
Routing Protocols,” IEEE, 2004.

[73] J. Cano and P. Manzoni. “A Performance Comparison of Energy Consumption for
Mobile Ad-Hoc Network Routing Protocols,” IEEE, 2000.

[74] E.M. Royer and C.-K. Toh, “A Review of Current Routing Protocols for Ad Hoc
Mobile Wireless Networks,” IEEE Personal Communications, pp. 46-54, 1999.

[75] E. Gafni and D. Bertsekas, Distributed algorithms for generating loop-free routes in
networks with frequently changing topology, IEEE Trans. Commun. (January 1981).

[76] Mooseop Kim, Hongil Ju, Youngsae Kim, Jiman Park, and Youngsoo Park , “Design
and implementation of mobile trusted module for trusted mobile computing,” IEEE
Transactions on Consumer Electronics, vol.56, no.1, pp.134-140, February 2010

[77] J. Ekberg and M.Kylanpaa, “Mobile Trusted Module (MTM) - an introduction,” Re-
port of Nokia Research Center, 2007.

[78] A. Velagapalli, M. Ramkumar, “An Efficient Trusted Computing Base (TCB) for a
SCADA System Monitor,” submitted to the ACM/IEEE Second International Con-
ference on Cyber-Physical Systems (ICCS 2011), Chicago, IL.

153

[79] S. Mohanty, M. Ramkuamr, “Ordered Merkle Trees for Trusted File Storage,” sub-
mitted to the 1st International Conference on Cloud Computing (CLOSER 2011),
Noordwijkerhout, Netherlands.

154

	Trustworthy Computing Approach for Securing Ad Hoc Routing Protocols
	Recommended Citation

	tmp.1625165283.pdf.YDIic

