
1

A System for Digital Rights Management Using
Key Predistribution

Mahalingam Ramkumar
Department of Computer Science and Engineering

Mississippi State University
Nasir Memon

Department of Computer and Information Science
Polytechnic University

Abstract— We propose a system for digital rights management
(DRM) which facilitates large scale deployments of heterogeneous
devices, manufactured by different vendors, to interact and
authenticate with each other securely in order to ensure fairness
of transactions. The proposed system allows for both pluggable
(and transferable) security modules for end-user authentication
and built-in (non-transferable) security modules for mutual
authentication of compliant devices (manufactured by different
vendors). For the underlying security mechanism we propose the
use of a recently proposed random key predistribution scheme,
HARPS (HAshed Random Preloaded Subsets).

I. INTRODUCTION

Systems for digital rights management (DRM) strive to
achieve fairness of transactions between suppliers (content
creators) and consumers (end-users) of digital content. Typ-
ically the exchange consists of monetary promises by the
consumer in return for “rights” to consume the content. Rights
to consume the content, in turn, may be subject to many
restrictions. For instance, an end-user may purchase rights to
one-time viewing of a movie. In another instance, the end user
may purchase rights for unrestricted access to the content for
a duration of one month. The job of the DRM is to ensure
that the end user does not violate his/her rights. The system
should also provide for flexibility in allowing different models
for the rights of the end user, with respect to consumption of
the content.

Central to the ability of a DRM to achieve its goals is
the ability to develop “trust relationships” between various
components of the system. From a very broad perspective, a
DRM for digital media distribution, consists of three primary
components - the content creator, the content, and the con-
sumer. If the content creator could simply “trust” the consumer
to abide by the conditions under which he/she was provided
access to the content, the DRM has achieved it goals. From a
less broader perspective more components of the DRM come
to light. For instance the “content” initially perhaps resides in
a camera which is then transferred to other devices where
it undergoes further processing. Processed content may be
copied into several storage media for distribution or may be
loaded to a device (like a media server) connected to the
Internet. The content creator may transfer some rights to one or
more distributors. At the site of the consumer, the consumer
employs a device for rendering the content. Obviously, we

could “zoom” in further and identify even more components
of the system, all of which need to work together to ensure
proper functioning of the DRM.

Practical implementation of a system for DRM demands
a mechanism for establishing “trust” between various com-
ponents of the system. In other words, all the components
of the system should in some way guarantee “compliance”
to pre-established rules. The trust mechanism, would then
be a way of ensuring that a device is indeed “compliant.”
There are two fundamental approaches to establishing “trust
relationships.” A first approach involves a centralized “client-
server” model. In such an approach, each component involved
in the DRM first establishes a trust relationship between itself
and the trusted server. This trust can then be leveraged to
develop trust between various components of the DRM by
involving the trusted server in the mediation process between
any two components. In most cases this approach is rendered
impractical due to the requirement of each component to have
access to the trusted server at all times. A second distributed
approach is that of a mechanism to establish trust between
components in an ad-hoc manner. Such an architecture would
permit establishment of trust between any two components
without an active involvement of a trusted authority (TA).

In this paper, we propose a system for DRM based on the
second approach. In the next section we discuss alternatives
for enabling trust relationships between devices. Key predis-
tribution schemes, and in particular HARPS, is identified as
a suitable enabler. Section III provides an overview of the
proposed system. A key element of the proposed system is
its ability to permit different vendors manufacture “compliant
devices” without compromising the overall security of the
system. Conclusions are offered in Section IV.

II. MECHANISM FOR TRUST

From a cryptographic perspective, if two nodes (we shall
interchangeably use the terms node, device or component
to mean the same thing) share a secret that is not privy
to any other node, they can then leverage this secret to
establish a secure and trusted communication channel. The
ability to establish such shared secrets is precisely what a
key distribution scheme (KDS) does. In the absence of a
persistent third party TA, there are two ways of establishing

2

trust between nodes - the use of public key cryptography in
conjunction with an offline certifying authority (CA), or key
predistribution schemes (KPDS) with an offline TA.

For the former scenario, each node would be loaded with the
public key of the CA, the node’s private key, and a certificate
(signed by the CA) containing public key and ID of the node.

For the latter, some secrets may be preloaded in each node
by a TA prior to deployment. For the most basic form of
KPDS, a node may be preloaded with a secret it shares with
every other node. However, this would imply an unreasonably
large storage requirement in each node, especially if the
network size (or the total number of nodes in the system)�

is large. Fortunately, it is possible for KPDSs to perform
trade-offs between complexity and security.

For instance, with some guarantee of tamper resistance, it
may be possible to ensure that an attacker is not able expose
keys in more than say � devices. There exists mechanisms,
then, to build KPDSs which are � -secure (the KPDSs are
secure as long as the number of compromised nodes is not
greater than � , but no guarantee is provided if the number of
compromised nodes is greater than �). Some KPDSs like the
Blom’s KPDS [3], needs only �������	��
 keys to be preloaded
in each node in order to ensure that the KPDS is � -secure.
However such schemes have the problem of catastrophic
failure. As long as the number of compromised nodes is less
than � the system is completely secure. The moment the
number goes above � the system is completely compromised.
In practice it is definitely desirable to use KPDSs which do
not such a catastrophic onset of failure.

Many KPDSs [6], [7] have been subsequently proposed,
which eliminate the problem of catastrophic failure, for such
schemes, the number of keys needed for each node turn out
to be dependent on

�
(the network size or the total number

of nodes). Random KPDSs [8], [9], [1] which have received
considerable attention in literature recently, which achieve this
requirement without introducing the dependency of � on

�
.

For example, the scheme due to Leighton and Micali (LM),
achieves �������
����
 . RPS (random preloaded subsets) [9] and
HARPS do even better, by achieving �������
��
 .

In practice, to restrict the size of attacker coalitions to � ,
apart from a mechanism for tamper-proofing, we also need
a mechanism for periodic renewal of keys. However with
millions of components in the system, it may be impractical
to perform renewal synchronously. In order to avoid “update
floods”, it is necessary to be able to deploy the KPDS in
a hierarchical fashion. HARPS facilitates such a hierarchical
deployment. While this alone would alleviate the problem to
a large extent, it is also necessary to enable two nodes, one
of which may have updated secrets, and the other which has
not had the opportunity to perform updates yet, to continue to
communicate securely. Once again, HARPS provides a highly
flexible mechanism for updates which makes this feasible.

A. HARPS

HARPS [1] is a simple random KPDS, the performance of
which is dictated by 3 parameters - � the size of the key-
pool, � the size of the “key-ring” in each node, and � the

maximum “hash depth.” A HARPS system consists of a TA
who chooses � secrets. Each node is given a unique ID. The
ID of each node determines the subset of � keys that the node
receives. Each key in the key-ring is further hashed a variable
number of times (uniformly distributed between 1 and � , the
exact values of which are also determined by the ID through
a public one-way function). Two nodes just need to exchange
their IDs to determine the secrets they share.

From their IDs, they can arrive at a unique secret (with
a very high probability) by determining the keys they share,
and the corresponding hash depths of the shared keys. The
node which has a lower hash depth for a particular shared
key needs to hash forward (that specific key) to reach the
same hash depth as the other node. Once both nodes, in this
fashion, have reached a common hash depth for all shared
keys, they can hash the shared keys (now with same hash
depths) together to calculate the shared secret independently.
Under proper selection of parameters of the system (���������)
we can ensure that the probability of compromise of shared
secrets by coalitions of � nodes (this includes the probability
that two nodes cannot arrive at a shared secret) is kept to
vanishingly small levels. That the nodes can arrive at shared
secrets which are tied to their ID, serves also as a mechanism
for mutual authentication of the nodes.

As an example, a HARPS systems designed to ensure that
an attacker who has managed to sniff all keys buried in ���
nodes can only “eavesdrop” on any arbitrary communication
with a probability less than ����� ��� , would need � �!��"����
keys (with � �#��$�%�$&� and �'�("�)). For larger �*� increases
linearly.

In addition to being the most efficient of the three random
KPDSs, HARPS also offers an excellent feature of a tree-
hierarchy. In such a hierarchy, the node at the top-most level
(say level +) has � keys. Each node at level +-,�� has �
keys. Nodes at level +-,�� are the child nodes of the node
at level + . Each node in level + may serve as the parent
node for many nodes in level +.,/� . Each child node gets a
subset of keys from the parent nodes. The subsets at each level
are hashed a variable number of times. For example, nodes in
level +0,1� have hash depths between � and � . Nodes in level
+�,�� will have hash depths between �321� and �4� . Thus even
if nodes in a lower level are compromised, they reveal nothing
about the secrets at a higher level (if the hash function used
is pre-image resistant).

III. SYSTEM FOR DIGITAL RIGHTS MANAGEMENT

In this section we describe the proposed system for DRM.
For the sake of brevity, we focus simply on the part of the
DRM system that enables two nodes to establish a trusted
relationship. We understand that a full blown DRM system
would consist of protocols and modules for tracking, billing
etc. and our system can be incorporated into any such ar-
chitecture proposed in the literature [2], [4]. The security
component we propose consists of low complexity security
modules employing the HARPS key pre-distribution scheme.
Some security modules may be pluggable devices, which can
perhaps be plugged into a mobile phone or PDA or desktop /

3

laptop computers, for communicating over open channels like
the Internet with external devices. Some security modules may
be built into compliant devices.

Any compliant device has some device specific parts, a
communication module and a built-in security module, in a
tamper-proof casing. The security module serves as a “proof
of compliance” by enabling mutual authentication of such
devices. Figure 1(b) is a block diagram of a compliant device.

Each security module is a HARPS enabled node. Each node
has a unique hierarchical ID. For a 3 level deployment, there
is a single “root” node at level 3. Nodes or security modules at
level 2 (say with IDs ��� are distributed to various vendors, who
manufacture pluggable security modules or compliant devices
with in-built security modules. A vendor with level 2 module
��� for instance, manufactures level 3 devices with IDs ��� ��� .
Such devices would have a subset of keys belonging to the
module �	� which are hashed further.

The protection of higher levels from lower levels ensures
that even though the vendor may have access to keys buried
in the devices �	� ��� that he manufactures, he cannot obtain
the secrets loaded in his own security module ��� from the
lower level secrets. Thus HARPS permits different vendors
to manufacture devices. Two arbitrary devices, say �
� � � and
� �
���

will be able to arrive a shared secret based on their ID’s
and therefore be able to authenticate each other.

Such a 3-layer hierarchical deployment is shown in Figure
1 (a). The boxes in level 1 represent compliant devices,
and the portable communication equipment actually represent
pluggable security modules plugged into such devices.

Each security module exposes a simple interface to encrypt
/ decrypt data that is sent to / from the module. For encryption,
the input to the modules is a data packet and the ID of the
destination node (security module). The output is the encrypted
data packet (using the shared key of the module performing
the encryption and the destination module) which only the
destination module can decrypt. For decryption, the input is the
encrypted packet with the ID of the sender (or sender’s security
module ID). Thus the security modules needs to provide only
two APIs to the outside world. Internally, it needs secure
storage of keys and a processor for performing symmetric
cryptography. A block diagram of such a security module is
shown in Figure 1 (c).

We shall now see an example of how such a deployment
can be used for enforcing rights for digital video distribution.
The system we consider for illustrative purposes, consists of
the following components:

1) Digital content
�� .
2) An encryption device � .
3) A device � employed by the content distributor
4) A pluggable end user module � plugged perhaps in a

hand held device of the end user.
5) A device � , a set-top box (STB), with the end user.
6) The renderer � (say a monitor or a TV).

All devices mentioned above are “compliant” devices, proba-
bly manufactured by different vendors. We shall assume that �
for instance, represents the (hierarchical) ID of the device � . In
the discussion below we use the notation ������� �
 to represent
encryption using key ����� , where ����� is the shared secret

α2β 3

α1 α 2 α 3 α4

α1β 1 α1β 4 α4β 1

Specific
Device

Components

Module
Communication

Tamper Proof Casing

Security
Module

Level 3

Level 2

Level 1
3 1α β

Secure
Memory

Key Ring

Secure ProcessorEncrypt/
Decrypt

ID

Security ModuleCompliant Device(b) (c)

(a)

Fig. 1. (a) Hierarchical deployment of security modules. (b) Block diagram
of a compliant device. (c) Block diagram of a security module.

between nodes and ! . "#����� �
 represents decryption. The
actual (symmetric) cryptographic algorithm employed is of no
concern to us.

The content creator employs device � to encrypt the con-
tent, with content key ��$. We shall represent the encrypted
content as
0�%�&�
' �(
 �
 . The encrypted content through some
channel, is received by the end user (may even be distributed
in DVDs for example).

A guarantee that both devices � and � for instance, can
arrive at a secret ��)+* that no other device (even other devices
manufactured by the same vendor) can, serves as a mechanism
of mutual authentication of the handheld device � of the end
user, and the distributor’s module � . Having confirmed the
authenticity of each other, the device � and � negotiate the
terms and conditions for access to the content
 . The end
user, also submits to � , the ID � of the STB that the end
user would use to unscramble the content. After � and �
agree on the terms and conditions , , the device � submits
the authorization , to the content creators device � . Among
other things, set of rights , will also contain the ID of the
user � and the ID of the decrypting device � .

Now � encrypts the content key � $ first with ��-/. (the
shared key between � and the STB �) to get �0$�1 �
�&��2&3 �4��$
 , followed by an encryption with key � -) (shared
key between � and �) to get �0$�5 �6�&��287 �4��$�1
 .

Thereafter, � sends � $ 5 to the device � (all exchanges
between � and � are further encrypted using key �0- *).
Device � appends to the rights , , the encrypted content key
��$95 . All exchanges between � and � may occur over the
Internet.
, (now with � $ 5) is passed to device � by � . All

exchanges between � and � are encrypted with �:)+* to
ensure that only � can decrypt messages sent by � . �
decrypts , , and also decrypts the attached �0$95 to get ��$�1 �
";��7<2 �4��$�5
 . Exchanges between � and � may occur over
the Internet if the device � is plugged into is say a PDA /
laptop / desktop. It may even occur over phone lines if the
communication device is a mobile phone.
��$=1 and the rights , are transmitted to the device �

4

(once again, all exchanges between � and � are encrypted
with ��) .). The device � decrypts ��$�1 with � .�- to obtain
the content key ��$. The device � proceeds to decrypt the
content using ��$, decompresses it to get raw video
 � � .
Communication between � and � may be utilize IR or blue
tooth channels that both devices (the device with � and the
compliant STB �) possess.
� encrypts the video
 �/� using � � . before sending it to

the renderer � . The renderer � decrypts the encrypted video
and possibly inserts invisible and indelible fingerprints into the
video before it is sent to the screen. Exchanges between � and
� could occur through physical cables.

The STB � which is also supplied with the rights , ensures
compliance to the rights. The rights may include, for instance,
the number of times the content may be viewed, duration of
validity of the “license” , etc. Note that the content is not
restricted to be on a particular form of media device. The
content could be distributed in a DVD or could be streamed
over the Internet.

In the scenario above, every device is “trusted” by every
other device as the security modules enables verification of
authenticity, by means of shared secrets (tied to the IDs). The
device � for instance, is trusted not to reveal the key � $.
Similarly � trusts � to insert a fingerprint before each frame
is painted on the screen. If � were not compliant, it would
obviously not be able to decode the encrypted raw-video it
receives from � .

If the device � is portable, an end user who has purchased
rights to view the content for a period of a week, may use
perhaps another STB � � to watch the content - the user just has
to specify the device he/she wishes to employ (for example the
user may wish to watch the movie when he/she is travelling).

While it is possible for the device � to establish a connec-
tion (eg. over the Internet) directly with the device � , most
home users, sensitive of privacy issues, would be averse to the
idea of employing devices at home, whose usage can perhaps
be monitored by external agents. However, in the proposed
scenario the device � only communicates with the end user’s
hand-held device � (perhaps using blue-tooth or IR channels).

It is also possible for device � itself to add a fingerprint
and thereby eliminate the need for another compliant device
� . But adding additional features may increase the cost of
devices. For example not all content creators may demand that
the content be fingerprinted before consumption at the end-
user’s site. Some end users may employ an alternate device
� � which perhaps does not add fingerprints, but probably
ensures compliance to some form of analog copy protection
scheme. The rights , would dictate the class of monitors the
device � may send its output to, for that particular content.
The “class” of course, is easily identifiable, perhaps by a
device’s “level 2 part” of the hierarchical ID. The system
also allows for vendors to obtain multiple level 2 devices.
Yet another possibility is for vendors to introduce additional
levels of hierarchy below each level 2 device they possess.

IV. CONCLUSIONS

Digital rights management systems depend on a method for
establishing trust relationships between different components

involved in executing the transactions between creators and
consumers of content. Public key cryptography based tech-
niques, are perhaps one of the more common approaches to
realize the requirement for trust relationships. In this paper
we have proposed a system that employs key predistribution
to establish a trusted relationship. A recent flurry of research,
principally aimed at securing ad hoc resource constrained
nodes forming MANETS (Mobile Ad hoc NETworks) and
sensor networks [1], [9], has resulted in significant advances in
key predistribution schemes. An obvious advantage of KPDSs,
is the drastic reduction in resource requirements (in terms of
processing power and bandwidth) when compared to nodes
relying on public key cryptographic techniques to establish
trust relationships.

The main disadvantage of KPDSs is that they depend
on some form of assurance on tamper-resistance. However,
systems employing the other alternative of public key cryptog-
raphy, will also need to protect nodes from exposure of their
private keys. The principal difference then is in the extent
of tamper resistance needed. For public key cryptography,
compromise of private keys of one node does not affect
exchanges not involving the compromised node. However,
preliminary results from our ongoing work, indicate that
under certain realistic assumptions on a model for tamper-
resistance, practical deployments of HARPS could reasonably
resist tampering even with tens of thousands of nodes (all of
which has to be carried out within a single update cycle).

Another supposed disadvantage of KPDSs is the necessity
for nodes to perform periodic key updates - for which they
need to communicate with the TA (or parent node). However,
systems employing a public key based infrastructure also need
to contact the CA periodically for the purpose of revocation
of nodes. Additionally, HARPS offers an easier mechanism
for revocation of nodes. Revocation of nodes is automatically
achieved with updates, by not allowing revoked devices to
participate in updates. All that is necessary is for the TA
(the parent security module) to maintain a list of nodes to
be revoked - the nodes do not maintain a revocation list.

REFERENCES

[1] M.Ramkumar, N. Memon, “An Efficient Key Predistribution Scheme for
MANET Security,” submitted to the IEEE Journal on Selected Areas of
Communication.

[2] ContentGuard. Rights management from Xerox. Available at
www.contentguard.com, 2000.

[3] R. Blom, “An Optimal Class of Symmetric Key Generation Systems,”
Advances in Cryptology: Proc. of Eurocrypt 84, Lecture Notes in
Computer Science, 209, Springer-Verlag, Berlin, pp. 335-338, 1984.

[4] InterTrust Technologies Corp. Digital rights management. Available at
www.intertrust.com/de/index.html, 2000.

[5] L. Gong, D.J. Wheeler, “A Matrix Key Distribution Scheme,” Journal
of Cryptology, 2(2), pp 51-59, 1990.

[6] C.J. Mitchell, F.C. Piper, “Key Storage in Secure Networks,” Discrete
Applied Mathematics, 21 pp 215–228, 1995.

[7] M. Dyer, T. Fenner, A. Frieze and A. Thomason, “On Key Storage in
Secure Networks,” Journal of Cryptology, 8, 189–200, 1995.

[8] T. Leighton, S. Micali, “Secret-key Agreement without Public-Key
Cryptography,”Advances in Cryptology CRYPTO 1993, 456-479, 1994.

[9] M. Ramkumar, N. Memon, R. Simha, “Pre-Loaded Key Based Multicast
and Broadcast Authentication in Mobile Ad-Hoc Networks,” Globecom-
2003.

