
Improving the Resiliency of Ariadne

Kulasekaran A. Sivakumar and Mahalingam Ramkumar
Department of Computer Science and Engineering

Mississippi State University, MS.

Abstract

Ariadne is a popular secure ad hoc routing protocol based
on the dynamic source routing (DSR) protocol. While Ari-
adne was designed to be capable of detecting attacks by non
colluding attackers, it does not include measures to identify
or narrow down perpetrators responsible for such attacks.
We propose some modifications to Ariadne to improve its re-
siliency, by affording the ability to identify and route around
malicious nodes.

1. Introduction

A distinguishing feature of mobile ad hoc networks
(MANET) is their reduced dependence on infrastructure. For
this reason MANET devices have to perform some additional
tasks, like routing packets between nodes, that are tradition-
ally performed by the network operators in infrastructured
networks. MANET routing protocols are a set of rules to
be followed by every node to cooperatively discover opti-
mal paths and route packets between nodes. The presence of
nodes that do not strictly adhere to the rules can have a dele-
terious effect on the overall performance of the MANET. Se-
cure routing protocols strive to improve the reliability of the
process under the presence of non cooperative nodes.

The ability of secure routing protocols to “live with” ma-
licious nodes is afforded by defensive measures. For most
secure routing protocols in the literature the defense lies in
the ability to detect inconsistencies in routing packets (and
drop such packets). However more consummate defensive
measures are feasible if the routing protocol is able to iden-
tify or at least narrow down the perpetrators responsible for
the observed inconsistency, and includes strategies to “route
around” such nodes.

1.1. Contributions

In this paper we propose strategies which demand very
low overheads to improve the resiliency of Ariadne [1], a
secure routing protocol based on the dynamic source rout-
ing (DSR) protocol. In Section 2 we provide an overview of
DSR and Ariadne. Though in its preferred incarnation Ari-
adne employs the TESLA broadcast authentication scheme,

we enumerate some advantages of using pairwise secrets in-
stead of TESLA in Ariadne. In Section 3 we argue that per-
haps the most compelling advantage of using pairwise se-
crets is that it permits the use of some DSR optimizations
that are not possible when TESLA is used. We then pro-
pose two modifications to Ariadne (with pairwise secrets)
consisting of measures to reduce the degrees of freedom of
attackers and facilitate improved defensive measures through
identification of attackers and routing around such attackers.
Quantitative evaluation of the improvement in resiliency due
to the additional defensive measures are estimated through
simulations.

2. Background

The dynamic source routing (DSR) protocol is an on-
demand protocol where a node S desiring to find a path to
a node T broadcasts a route request (RREQ) packet indicat-
ing the source S, destination T , a sequence number q, and a
hop-limit hc. RREQ packets are flooded. Every node relay-
ing an RREQ inserts its ID. Thus RREQ packets consists of
immutable fields Rq = [S, q,D, hc] specified by the source
and mutable fields (like the IDs) inserted by the intermediate
nodes. When the RREQ reaches the destination it invokes
a route response (RREP) packet indicating the path through
which the RREQ was received. The RREP packet is relayed
back to the source along the reverse path. The source and
destination may discover multiple paths as the destination
can receive up to one RREQ from every neighbor.

2.1. Secure Routing Protocols

Most secure routing protocols mandate cryptographic au-
thentication of disseminated routing data to facilitate mea-
sures to thwart different types of attacks. Cryptographic au-
thentication employs security associations (SA) facilitated
by key distribution schemes (KDS). Cryptographic SAs can
be broadly classified into one-to-one SAs which take the
form of a shared secret between every pair of entities, and
one-to-many SAs, used for source authentication.

Application, Network and Link Layer SAs: Crypto-
graphic SAs for MANETs can also be classified into appli-
cation layer, network layer and link layer SAs. Application

978-1-4244-2100-8/08/$25.00 2008 IEEE

layer SAs are used to secure data exchanged between end-
points (source and destination). Network layer SAs are used
for authentication of intermediate nodes (which route pack-
ets between end points). Link layer SAs are used for authen-
tication of neighboring nodes. While end-points may have
a priori knowledge of their need to interact with each other,
we cannot expect a node A to foresee the need to interact
with an accidental neighbor B, or some node S initiating a
route request to T . Network and link layer SAs should be
established in an ad hoc manner. Schemes for facilitating ad
hoc establishment of network and link layer SAs will need
to be controlled by off-line key distribution centers (KDC).
While convenient, ad hoc establishment of application layer
SAs is not mandatory. Ideally, the KDSs used for facilitat-
ing application layer SAs should not be under the control of
the network operators (as nodes rely on the network only for
delivering their packets).

2.2. Key Distribution Schemes

Some secure extensions of DSR like SRP [2] employ only
application layer SAs in the form of a shared secret be-
tween the source and the destination. Ariadne [1] employs
1) a shared application layer secret between end points; 2) a
network-wide shared secret at the link layer and; 3) TESLA
[3], or pairwise secrets or digital signatures for authentica-
tion of intermediate nodes (network layer).

Network Layer KDS: When TESLA is used a node
A has access to a one-way TESLA hash chain HT0,∆

A =
{K0

A,K
1
A, . . . ,K

L−1
A } with a commitment KA

L , where
KA

i = h(KA
i−1), and h() is a cryptographic hash func-

tion, T0 is an absolute value of time, and ∆ is a time in-
terval (usually of the order of a few tenths of a second). The
value KL−i

A is privy only to A till time Ti = T0 + i∆, af-
ter which it can be made public. For authenticating a mes-
sage M which is expected reach all verifiers before time Ti,
the source A appends a hashed message authentication code
(HMAC) M i

A = h(M,KA
i). Any verifier with access to

the certified commitment KA
L can verify source and the in-

tegrity of the message after the sourceA discloses the preim-
age (after time Ti). As the hash chain can be used by A only
in the interval T0 to TL−1 = T0 + (L − 1)∆, each node
may be associated with multiple hash chains. The KDC dis-
tributes certified commitments of the form 〈KA

L , A, T0,∆〉
corresponding to all nodes to every node in the network.

The obvious advantage of TESLA over digital signatures
is that TESLA requires only symmetric primitives. The ad-
vantage of TESLA over pairwise secrets is that “distribution
of O(N) public values (TESLA commitments of all nodes)
to all nodes in the network is practical even for large network
sizes N , using a Merkle hash tree [5]. However distributing(
N
2

)
pairwise secrets, or more specifically, providing N − 1

secrets to every node, may be impractical for large N .”

Key Predistribution: In key predistribution schemes
(KPS) every node is provided with a set of secrets (by the
KDC), which permits a node to compute a shared secret with
every other node, without further involvement of the KDC.
Non-scalable KPSs like the “basic” KPS require each node
to store N − 1 secrets. Such schemes demand O(1) com-
putational overheads for computing any pairwise secret and
O(N) storage overheads for every node. Scalable KPSs can
permit unlimited network size N by tolerating susceptibility
to collusions. An n-secure KPS can tolerate collusions of n
nodes pooling their secrets together, irrespective of the net-
work size N . Most scalable KPSs demand O(n) storage and
computational overheads [4].

The reason that concerns regarding the “unsuitability of
KPSs” are becoming irrelevant is due to the dramatic im-
provements in storage capabilities of otherwise resource con-
strained mobile devices. Any conceivable mobile device ca-
pable of participating in multi-hop routing will be able to
afford pluggable flash storage of several GBs. Given that
storing one million 64-bit secrets calls for a mere 8 MB of
storage, network sizes of several tens of millions are indeed
practical even for the non scalable schemes (which are not
susceptible to collusions).

For most scalable KPSs the O(n) computational over-
heads is the bottle-neck which prevents realization of large
n. While storage for many millions of secrets is acceptable, a
million block-cipher operations (for example) is far from ac-
ceptable. However some KPSs have been proposed recently
[4] for which only the storage overhead is O(n). The com-
putational overheads for such schemes are very low (few tens
of block cipher operations), and independent of the desired
collusion resistance n, or the network size N . The high lev-
els of collusion resistance that can be achieved renders the
issue of “fragility” of scalable KPSs irrelevant in practice.

2.3. Ariadne

Ariadne provides an assurance that non colluding nodes
cannot convince the end-points of the validity of a path con-
taining malicious insertion of nonexistent nodes or deletion
of nodes. Deletion attacks are addressed by using a per-hop
hashing strategy. Insertion attacks are addressed by man-
dating intermediate nodes to append a HMAC. The network-
wide secret is used to encrypt / authenticate all packets trans-
mitted by every node to keep external nodes out of the net-
work.

Per-Hop Hashing and Deletion Attacks: For a RREQ
from source S to a destination T , where S and T share an
application layer secret K̄ST , the source computes a HMAC
βS = h(Rq, K̄ST), whereRq represents the immutable por-
tions of the RREQ. If a scheme for facilitating pairwise se-
crets is used instead of TESLA the source and destination
can employ the network-layer secret KST instead of K̄ST .

Apart from serving as an authentication token (verifiable

only by the destination) for the immutable RREQ fields, the
value βS also seeds the per-hop hashing strategy. The seed
βS is sent along with the RREQ to all neighbors of S. A
neighbor A of S replaces the value βS with βA = h(βS , A).
A neighbor B of A relaying the RREQ onwards replaces βA

with βB = h(βA, B) (and so on, at every hop).
When the RREQ reaches the destination T indicating

a path (A,B,C,D,E, F,G), along with the per-hop hash
value βG, T can compute βS (as T has access to K̄ST), and
recursively compute βG based on the IDs in the path. If the
value βG computed by T agrees with the value sent by G, T
can establish that the immutable RREQ fields have not been
modified, and that no nodes have been deleted from the path.
Note that the per hop hash value βA is privy only to neigh-
bors of A. Thus C, for example, cannot remove B from the
path as it cannot compute βC = h(βA, C), which is required
to “trick” the destination into accepting the path as valid.

Insertion Attacks: If pairwise secrets are used, an inter-
mediate node A appends a HMAC MA based on the secret
KAT shared by A and the destination. Thus illegal node in-
sertions can be detected by the destination. RREP packets
are raised in response to RREQ packets free of deletion and
insertion attacks. RREP packets include the list of all nodes
in the path and is authenticated to the source S using the
secret KTS .

For Ariadne with TESLA the immutable RREQ fields in-
clude a value Ti, the time before which the RREQ should
reach the destination. The HMAC MA appended by a node
A employs a secret from the TESLA hash chain of A, which
will be made public only after time Ti. If the RREQ reaches
the destination before time Ti, and is determined to be free of
node deletion attacks, the destination waits till time Ti, and
relays an RREP. The RREP includes the IDs of all nodes in
the path and the HMACs appended by the nodes during the
forward path. During the reverse path the intermediate nodes
release the value used for computing the HMAC (which was
a secret during the forward path). The RREP is authenti-
cated by the destination using the secret K̄TS for verification
by the source S. At the end of the reverse path, the source
(based on the assurance provided by the destination that the
HMACs were appended by the intermediate nodes before Ti)
can verify the HMACs. No entity claiming to be X can be
inserted in the path unless the entity had access to the secrets
of X’s TESLA chain.

2.4. Pairwise Secrets vs TESLA

Some of the advantages of using pairwise secrets instead
of TESLA (some of which are also enumerated in [1]) are as
follows. The destination can detect both insertion and dele-
tion attacks. In Ariadne-TESLA the destination can detect
only deletion attacks. Detection of insertion attacks had to
wait until the end of the reverse path. Secondly, the source S
and destination T can also readily use a secret KST for au-

thenticating RREQ and RREP instead of relying on an out-
of-network mechanism for establishing an application layer
shared secret1 K̄ST .

Thirdly, no additional in-network bandwidth overheads
are required during the RREP. For Ariadne-TESLA the pre-
image has to be released by every intermediate node. To
verify the preimage the source should have access to certi-
fied commitments of all intermediate nodes. In large scale
networks where every node cannot store all TESLA com-
mitments of all nodes, every intermediate node will have to
attach the certified commitments along with the released pre-
image. If a Merkle hash chain [5] is used by the KDC to
certify S commitments, every intermediate node will have to
release log2 S hashes along with the commitment.

Fourthly, issues related to the delay sensitivity of TESLA
are avoided. Note that when TESLA is used the source
(which in general may not know the distance to the desti-
nation) will have to choose a conservative (large) value of
time Ti to ensure that the RREQ will reach the source before
Ti. Unfortunately as the pre images can be released by the
intermediate nodes only after time Ti, the reverse path will
have to be delayed till time Ti (even if the RREQ reached the
destination well before Ti).

3. Improving Ariadne With Pairwise Secrets
Most ad hoc routing protocols, in their original incar-

nations, included several optimizations for improving their
performance. However, as such protocols implicitly as-
sumed that all participants are trustworthy, they were not
constrained by the need to enforce the additional (more com-
plex) rules associated with such optimizations. For example,
the original DSR protocol includes several optimizations that
employ cached routes to facilitate route response by inter-
mediate nodes. Some attempts to salvage broken paths [6]
during the RREP have also been considered, although with-
out considering security issues. In most secure extensions of
such protocols (including Ariadne), all such optimizations
cannot be used. However, one of the more compelling ad-
vantage of using pairwise secrets instead of TESLA is that
it is now feasible to use some optimizations (that cannot be
used in Ariadne-TESLA).

3.1. Re-enabling Some Optimizations

The reason that optimizations involving salvaging of
routes cannot be used in Ariadne-TESLA is due to the fact
intermediate nodes do not share a secret with all nodes. Con-
sider a scenario where an RREP instantiated in response to
an RREQ indicating a path (A,B,C,D,E, F,G) fails when
D is unable to unicast the RREP to C. This situation may
occur if C had moved away from the path, or if C is a mali-
cious node which simply ignores the RREP. However, even

1If desired, S and T can still use K̄ST for protecting the privacy of data
packets exchanged between them after a path is established.

if nodes cache RREQs only for small duration, D may have
in its cache other RREQs from S indicating an alternate path,
say (A, J,K,L), from S. To use this hitherto untested par-
tial path D → L → K → J → A → S to relay the RREP
around C, it is necessary for D to share a secret with S.
This is obviously not possible when we rely only an applica-
tion layer shared secret between end-points (as in Ariadne-
TESLA) as D would not have a readily available shared se-
cret (as D has no prior knowledge of its need to establish a
path to S). However, for Ariadne with pairwise secrets, D
can salvage the path as it shares a network layer secret KDS

with S.
Resilience to Active Attacks: Even while active attacks

involving malicious insertions or deletions (or combinations
thereof) can be detected by the destination, and such incon-
sistent RREQs dropped, the motivation for the attacker may
be to simply preempt other RREQs. As every node forwards
only one RREQ, and the inconsistencies in the RREQ can
be detected only by the destination, a bad RREQ reaching a
node first can prevent propagation good RREQs that reach
the node later. In general, attacks that try to preempt good
RREQs with invalid RREQs are termed as rushing2 attacks
[7]. The motivation for the attacker to perform rushing at-
tacks is obviously stronger in scenarios where the attacker
can carry out such attacks in a covert manner, i.e., without
facing the risk of being recognized as malicious by other
nodes (like the end points or even neighbors operating in the
promiscuous mode).

The strategy of routing around to salvage broken paths
can also be used to improve the efficacy of the routing pro-
tocol (by reducing the need for repeated RREQs) under the
presence of active attackers in the path. For example, in a
scenario where the destination can detect some inconsistency
in the RREQ through the path (A,B,C,D,E, F,G) and is
able to determine that the perpetrator responsible for the ob-
served inconsistency is C, the destination can still send the
RREP through the path and include a request to D to route
aroundC using cached routes (if they exist). However, while
the use of pairwise secrets provides the new ability to sal-
vage broken routes, in order the use this ability, the protocol
should provide mechanisms for identifying attackers.

We now illustrate that Ariadne is susceptible to several
covert attacks. The modifications introduced to Ariadne are
aimed at making it possible to attribute inconsistencies in
order to facilitate evasive actions.

3.2. Modified Ariadne

The modifications introduced are two fold. The first is
the substitution of the network wide group secret used for
link-level authentication in Ariadne with a one-hop secret.

2The specific nature of the invalidity of the rushed RREQ can take sev-
eral forms like active attacks involving insertions and / or deletions, for-
warding RREQs received through one-way links, etc.

A node A chooses a random secret KA and conveys the se-
cret to all its neighbors by encrypting KA using individu-
ally shared pairwise secrets. For example a node A with
neighbors B, J and S conveys the secret KA to the nodes
as3 KAB(KA),KAJ(KA),KAS(KA), respectively. Subse-
quently, all RREQ packets relayed by A are encrypted using
the secretKA. The second is an additional upstream per-hop
hash value inserted by every intermediate node.

The immutable RREQ fields includeRq the source S, se-
quence number q, the destination T , and a hop count hc.
The sequence of exchanges that occur for relaying an RREQ
through a path (A,B, · · ·) between S and T are as follows.

Rq = [S, q, T, hc], βS = h(Rq,KST)
S → ∗ KS([Rq, βS])
νS

A = KAT (βS), βA = h(βS , A)
MA = h(Rq, (A, νS

A), βA,KAT)
A→ ∗ KA([Rq, (A, νS

A,MA), βA])
νA

B = KBT (βA), βB = h(βA, B)
MB = h(Rq, (A, νS

A,MA), (B, νA
B)βB ,KBT)

B → ∗ KB([Rq, (A, νS
A,MA), (B, νA

B ,MB), βB])

In the original Ariadne (with pairwise secrets), a network
wide secret is used instead of secrets like KS , KA and KB .
The values ν are the additional values introduced in modified
Ariadne. The upstream per-hop hash value βA received byB
is conveyed to the destination T by B, as νA

B = KBT (βA).
The reason for encrypting the value is to protect it from
downstream nodes (as the security of the per-hop hashing
strategy rests on the assumption that only neighbors of A
have access to the value βA).

An intermediate node B will receive as many RREQs
(from S with sequence number q) as the number of its neigh-
bors, but forward only one. In Ariadne B will need to cache
only one such RREQ relayed by B for a small duration -
say a few seconds, before which it is reasonable to expect
a RREP from the destination corresponding to the RREQ.
In the modified Ariadne B will cache all RREQs for a few
seconds, which could be used for routing the RREP around
nodes that do not accept the RREQ, or on the request of the
destination to avoid specific nodes in the path.

One Hop Group Secret: The purpose of the one-hop
group secret is to thwart simple covert attacks that can ex-
ploit the shared universal group secret. Note that when only
the universal secret is used at the link-level, an internal node
can impersonate any other internal node, for purposes of au-
thentication by neighbors. If a malicious node C relays a
RREQ claiming to be some random “node Z”, downstream
nodes will not be able to detect the impersonation. While
the RREQ will fail when it finally reaches the destination (as
T can detect that the authentication MZ is not consistent)
it can nevertheless preempt other RREQs. Furthermore, C

3In the rest of this paper C = K(M) denotes symmetric encryption of
a message M using a secret K, and M = K−1(C) denotes decryption.

faces no risk in doing so. The use of unique group secrets by
every node can prevent such attacks.

3.3. Identification of Active Attackers

To see the need for the additional value ν we shall see
why some covert active attacks are still possible without the
value ν.

Scenario Sans ν: Consider a scenario where C receives
a RREQ (from S to T) along a path (A,B), and relays the
RREQ indicating a path (Q,R,C) instead, where Q and R
are fictitious nodes inserted by C. Nodes downstream of C
have no reason to suspect that Q and R do not exist, and B
does not have access to βS and hence βQ = h(βS , Q) or
βR = h(βq, R). Assume that the destination receives the
request indicating a path (Q,R,C,D,E, F,G). The desti-
nation T can detect that the per-hop hash value βG submitted
by G is inconsistent with βS and the path. However the des-
tination learns little else. All that T can conclude with cer-
tainty is that node G exists (as T can verify verifying MG).
As T does not have access to the value βF used by F to com-
pute the HMAC MF , T cannot verify the HMAC MF , and
thus cannot even determine if the node F actually exists in
the path.

If T desires to determine who is responsible for perpetrat-
ing this attack, it can come to several likely conclusions: a)G
is a malicious node and every other node in the path has been
maliciously inserted by G; b) G is a good node, but F may4

have maliciously inserted nodes (Q,R,C,D,E) in the path;
c) Both G and F are good nodes and the node E may have
inserted nodes (Q,R,C,D) in the path, and so on. In other
words, all that the destination learns is that “some node in
the path is malicious.” Furthermore there is no viable strat-
egy to rectify the situation. While the source may invoke a
second RREQ after the first RREQ times out, the end result
may be the same (barring topology changes).

Scenario With ν: Now consider the scenario where ev-
ery node appends the upstream per-hop hash value. The
three values appended by every node (for example, the val-
ues (C,MC , ν

R
C) appended by C) permits the destination T

to verify the self-consistency of the values. The three values
indicated by C (if self-consistent) convey to the destination
that a node C (which has access to the secret KCT) actually
exists in the path, and claims that a value βR = K−1

CT (νR
C)

was sent by its “upstream nodeR.” However, such a claim is
not verifiable by T unless the HMAC MR appended by R is
consistent with βR. If this is not the case, there are two possi-
ble explanations for the inconsistency i) a malicious C could
have chosen a random βR and appended values (MC , ν

R
C)

consistent with the random βR; or ii) a malicious R could
have advertised random βR (as C claims). In either case, the
upstream per-hop hash value enables the destination to elim-

4If G is a good node F should exist as G would have verified the link-
level authentication appended by F .

inate the nodes between the last self-consistent node and the
destination as possible perpetrators.

3.4. Corrective Measures

When any inconsistency is detected by the destination,
it proceeds to verify the self-consistency of the values ap-
pended by every node in the path, starting with the node
closest to the destination. In this scenario where C was an
active attacker, depending on the C’s strategy, the destina-
tion can conclude that nodes D,E, F,G or nodes E,F,G
are “beyond blame.” If C had chosen a random βR and ap-
pended consistent (MC , ν

R
C), then C is the last consistent

node, and it is desirable to avoid C and R during the RREP.
The destination can instruct D to deliver the RREP to S us-
ing a cached path that does not include R or C. Alternately,
if C had appended non self-consistent (MC , ν

R
C) (and D is

the last self-consistent node), the destination can request E
to route the RREP around C and D.

The RREP, along with the warning (say) that R and C
should be avoided, is authenticated individually to the source
and all intermediate nodes between C and the destination T
(nodes D,E, F,G). Now D uses its other cached RREQs
from S to determine an alternate path to S that does not in-
clude R or C. This “corrective measure” can improve the
chances of discovering an alternate path free of malicious
nodes, without the need for a second RREQ.

In scenarios where no alternate path can be discovered
by D, a second RREQ is raised by S (after the first RREQ
times out). During this time however, nodes like D,E, F,G
(downstream ofC andR) will simply drop RREQs from S to
T that include C orR in the path. This improves the chances
of other RREQs (which were preempted the first time) reach-
ing the destination. A warning from the destination indicat-
ing that “R and C should be avoided,” is not construed by
other nodes that R or C is necessarily malicious. Nodes
which receive this warning will simply interpret it as a re-
quest from T to avoid C and R for RREQs in which T is
the destination. T has every right to make this request even
without offering conclusive proof of misbehavior by R or C.
Thus nodes like D,E, F,G will not drop RREQs relayed by
C or R which indicate destination other than T .

Evaluation of Improvements in Resilience: Simula-
tions were carried out to evaluate the practical utility of
strategies for narrowing down possible perpetrators and dis-
covering alternate paths by estimating the fraction of RREQs
that succeed under the presence of active attackers, with
and without the use of the additional upstream per-hop hash
value. Sets of 200 nodes were simulated (with uniformly
distributed x and y coordinates) in a square region with unit
edges. The range of the nodes was chosen as 0.1 units
(each node had 5 neighbors on an average). Of the two
hundred nodes, b randomly chosen nodes were labeled mali-
cious. RREQ propagation was simulated between every pair

of nodes. On the whole, three different realizations of the
network were simulated with different sets and numbers of
bad nodes. The simulation results are depicted as fraction of
nodes that succeed in discovering a path free of bad nodes
(y-axis) vs the shortest number of hops between the source
and destination (between which RREQ propagation was sim-
ulated). RREQ propagation was simulated for over 400,000
pairs separated by hop lengths between 4 and 10.

The quest to discover a path between two nodes is as-
sumed to succeed if at least one of the paths established is
free of malicious nodes. In Figure 1 plots labelled S1 corre-
spond to the scenario where the additional upstream hash is
not used. The plot indicates the fraction of node pairs which
can establish a path free of any of the b bad nodes. Simu-
lation results are reported for b = 15 (S1-15) and b = 30
(S1-30). In the scenario where the upstream hash is used, in
our simulations we assumed that in a path with one or more
bad nodes, destination will “identify” the bad node closest to
the destination, and its immediate neighbor (downstream or
upstream, chosen randomly) as nodes to be “avoided.” The
node downstream of the pair of nodes specified by the desti-
nation will succeed in salvaging a path if 1) an alternate path
(based on other RREQs received) exist that do not include
the nodes specified by the destination; and 2) the alternate
path is free of any of the b bad nodes. The plots labelled S2
indicate the fraction of node pairs which succeed in finding
a path without requiring a second RREQ from the source. In
scenarios where even the attempt to slavage RREP fails, the
source invokes a second RREQ. The plots labelled S3 indi-
cate fraction of successful node pairs (either the first or the
second RREQ attempt succeeds).

As can be seen from the simulation results the success rate
after the second RREQ for the scenario with 30 bad nodes
(S3-30) is comparable to the success of the first RREQ with
just 15 bad nodes (S1-15). It is important to note that in the
absence of warnings from the destination (which depends on
the ability of the destination to narrow down perpetrators -
provided by the additional value ν) the second RREQ has
only as much chance of succeeding as the first. Thus, in this
particular instance, it could be argued that the modifications
proposed provide Ariadne with the ability to resist twice as
many malicious nodes.

4. Conclusions

We proposed some improvements to Ariadne with pair-
wise secrets to improve its ability to tolerate malicious
nodes. We argued why the use of a scheme for pairwise se-
crets is indeed practical, and enumerated several compelling
advantages of using pairwise secrets instead of TESLA in
Ariadne. In our opinion, the most compelling advantage
is that a scheme for establishing private channels between
nodes permits more comprehensive defensive measures. The
specific modifications suggested included 1) using such pri-

Shortest Distance Between Source and Destination

F
ra

c
ti

o
n
 o

f
S

u
c
c
e
s
s
fu

l
P

a
ir

s

S1−30

S2−30

S3−30 S2−15

S3−15

S1−15

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 4 5 6 7 8 9 10

Figure 1. Quantitative measures for the utility
of the upstream per-hop hash value.

vate channels to establish a private neighborhood with the
intent of overcoming several simple covert attacks and pro-
viding the ability for nodes to cut off neighbors suspected of
malicious intents; 2) conveying the upstream per hop hash
value securely (while hiding it from downstream nodes) to
the destination to aid the destination in narrowing down pos-
sible perpetrators.

References

[1] Y-C Hu, A Perrig, D B.Johnson, “Ariadne: A Secure
On-Demand Routing Protocol for Ad Hoc Networks,”
Journal of Wireless Networks, 11 pp 11–28, 2005.

[2] P Papadimitratos, Z. J.Haas, “Secure Routing for Mobile
Ad Hoc Networks,” Communication Networks and Dis-
tributed Systems Modeling and Simulation Conference
(CNDS 2002), San Antonio, Texas,2002.

[3] A. Perrig, R. Canetti, D. Song, D. Tygar, “Efficient and
Secure Source Authentication for Multicast,” Network
and Distributed System Security Symposium (NDSS),
Feb. 2001.

[4] M. Ramkumar, “Trustworthy Computing Under Re-
source Constraints With the DOWN Policy,” IEEE
Transactions on Dependable and Secure Computing, 5
(1), pp 49–61, Jan-Mar 2008.

[5] R.C. Merkle “Protocols for Public Key Cryptosystems,”
IEEE Symposium on Security and Privacy, 1980.

[6] R.Duggirala, R.Gupta, Q.A.Zeng, D.P.Agarwal, “Per-
formance Enhancements of AdHoc Networks with Lo-
calized Route repair,” IEEE Transactions on Computers,
Vol 52, no.7, pp. 854-864,2003.

[7] Y-C Hu, A. Perrig, D.B. Johnson, “Rushing Attacks in
Wireless Ad Hoc Network Routing Protocols,” WiSe
2003, San Diego, CA, September 2003.

