
ABSTRACT

DATA HIDING IN MULTIMEDIA - THEORY AND APPLICATIONS

by

Mahalingam Ramkumar

Multimedia data hiding or steganography is a means ommuniation using subliminal

hannels. The resoure for the subliminal ommuniation sheme is the distortion of

the original ontent that an be tolerated. This thesis addresses two main issues of

steganographi ommuniation shemes:

1. How does one maximize the distortion introdued without a�eting �delity of

the ontent?

2. How does one eÆiently utilize the resoure (the distortion introdued) for

ommuniating as many bits of information as possible? In other words, what

is a good signaling strategy for the subliminal ommuniation sheme?

Close to optimal solutions for both issues are analyzed. Many tehniques for the issue

for maximizing the resoure, viz. the distortion introdued impereptibly in images

and video frames, are proposed. Di�erent signaling strategies for steganographi

ommuniation are explored, and a novel signaling tehnique employing a oating

signal onstellation is proposed. Algorithms for optimal hoies of the parameters of

the signaling tehnique are presented.

Other appliation spei� issues like the type of robustness needed are taken

into onsideration along with the established theoretial bakground to design

optimal data hiding shemes. In partiular, two very important appliations of

data hiding are addressed - data hiding for multimedia ontent delivery, and data

hiding for watermarking (for proving ownership). A robust watermarking protool

for unambiguous resolution of ownership is proposed.
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CHAPTER 1

INTRODUCTION

Data Hiding or Steganography is the art of hiding a message signal in a host signal,

without any pereptual distortion of the host signal [1℄. Though steganography is

often onfused with the relatively well-known ryptography, the two are but loosely

related. Cryptography is about hiding the ontents of a message [2℄. Steganography,

on the other hand, is about onealing the very fat that a message is hidden.

Steganography may be onsidered as ommuniation through subliminal hannels,

or seret ommuniation [3, 4℄. This thesis explores the theory and appliations of

multimedia steganography.

The proliferation of digital multimedia as opposed to onventional analog forms,

is primarily a result of

� the ease with whih digital data an be exhanged over the Internet, and

� the emergene of eÆient multimedia data ompression tehniques.

The �rst reason is also a major ause for onern. Unlimited perfet opies of

the original ontent an be made, and distributed easily. It was this onern of

proteting intelletual property rights of multimedia data in digital form, that

primarily triggered researhers to �nd ways to watermark multimedia data. Water-

marking the ontent is done by embedding some data in the host signal (original

ontent). The embedded data may be an impereptible signature, whih, the owner

of the multimedia ontent should be able to extrat when a dispute regarding

ownership ours.

The pioneers of digital steganography [5℄, perhaps had no idea of the extent of

potential appliations for multimedia data hiding. Data hiding an help authentiate

1
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eletroni orrespondene. It an failitate adding a `signature' to eletroni mails

whih ould make an e-mail as valid a doument as an agreement signed on stamp

paper! This ould failitate arrying out aountable business deals ould over the

Internet.

Data hiding in multimedia [5, 6, 7, 8℄ ould help in providing proof of origin

and distribution of ontent. Multimedia ontent providers would be able to ommu-

niate with the ompliant multimedia players through the subliminal, stegano-

graphi hannel. This ommuniation may ontrol or restrit aess of multimedia

ontent, and arry out e-ommere for pay-per-use implementations. The onept

of ompliant multimedia players may extend to operating systems whih would

reognize proteted multimedia �les. So one may not be able to print a doument or

make additional opies unless authorized by the hidden data in the doument. All

material available on paper, may eventually be in eletroni form. Downloading or

distributing the douments ould be ontrolled by the hidden data.

A typial appliation of data hiding for multimedia ontent delivery may take

the form depited in Figure 1.1. The ontent providers supply the raw multimedia

data (say a full length movie) along with some hidden agents or ontrol data. The

job of the distributors would be to pakage the ontent in some suitable format

(like MPEG) understandable by the players, and distribution of the multimedia

either through DVDs/CDs, live digital broadasts or by even hosting web sites for

downloads. The ompliant multimedia players, will typially be onneted to the

Internet.

In onventional multimedia distribution, the ontent provider looses all ontrol

over how the multimedia, is used / abused the moment it leaves his/her hands. The

key idea behind data hiding is to re-establish ontrol whenever the ontent is used.

The ontent provider, by hiding some agents in his raw data, hopes to ontrol aess

to his/her multimedia ontent. This an be done with the o-operation of the players,
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Figure 1.1 A multimedia ontent delivery sheme

and an established protool for ommuniation between the ontent providers and the

ompliant multimedia players.

For most data hiding appliations to beome a reality, some important steps

have to be taken:

� Establishing protools for authentiation of ontent that is aeptable in a ourt

of law. The protools may be di�erent for di�erent types of multimedia data.

� Establishing protools for ommuniation over the subliminal hannel (between

the ontent providers and the ompliant multimedia players).

1.1 The Steganographi Channel

Figure (1.2) depits a blok diagram of a general data hiding hannel. A is the

original multimedia data whih is also referred to as the over or stego objet. The
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Figure 1.2 Blok diagram of multimedia steganography

stego objet serves as the arrier for the hidden message M. The message M is

onverted to a signature S whih is in a form suitable for being embedded in A:

S = S(M;K) (1.1)

In Eq. (1.1), S is the signature generator blok in Figure (1.2), and the key K may

be private or publi or a ombination of both. Most often the embedding operation

E, takes the form of super positioning of S with A to obtain

^

A. However, other

forms of embedding is also possible.

^

A = A+ S or

^

A = E(A;S): (1.2)

The impereptibly modi�ed multimedia data

^

A, is transmitted through a hannel C,

and emerges at the other end as

~

A = C(

^

A). Now, the buried message signal M is

retrieved in the reeiver by a detetor D as

~

M = D(

~

A;K) (1.3)

In some ases, (for e.g, watermarking appliations), the detetor D may require the

original A for extrating the hidden message or signature;

~

M = D(

~

A;A;K) (1.4)
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The hannel apart from other things, may inlude a lossy ompressor at one end

and deompresser at the other end. While this is the main ause of onern for most

data hiding appliations, the same is not true for watermarking appliations. For

watermarking appliations, the hannel may inlude agents with deliberate intentions

of removing the watermark.

This thesis is a study of theory and appliations of data hiding in still images

and video. However, most of the suggested tehniques are also appliable for data

hiding in digital audio.

1.2 Organization of the Thesis

This thesis is organized as follows. Chapter 2 is a brief review of existing literature

devoted to watermarking and data hiding.

In Chapter 3, the image / video steganographi hannel is modeled as a ommu-

niation hannel [9, 10, 11, 12℄. However, the embedding operation E in Figure 1.2

is assumed to be linear addition (in reent data hiding literature, linear data hiding

methods are referred to as Type I methods). The data hiding hannel is hara-

terized as a hannel with 2 soures of noise - noise due to the stego image/ frame

and noise due the data ompressor in the hannel (the former is also referred to

as image noise, self-noise or host-signal noise, and the latter as proessing noise or

hannel noise. It is seen that the performane of the data hiding hannel an be

improved signi�antly by deomposing the data hiding hannel into multiple parallel

hannels. The deomposition is usually performed by some unitary transform. The

purpose of the deomposition, is primarily to eÆiently redistribute the two soures

of noise amongst di�erent hannels. Estimates of the noise soures in eah sub-

hannel from several test images and video sequenes, for widely used ompressors

like JPEG, SPIHT [13℄ and MPEG [14℄ are obtained. This is in turn used obtain

information theoreti estimates of the apaity of the linear data hiding hannel for
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di�erent deompositions. It is argued why the hoie of the deomposition should

be motivated by the required robustness of the data hiding appliation.

Chapter 4 investigates other options for the embedding operation E in Figure

1.2. It is shown how non-linear embedding tehniques an suppress the self-noise

to a large extent [15, 16, 17, 18℄, even though the original ontent is not available

at the reeiver. The problem of data hiding is viewed as a sophistiated signaling

method employing a oating signal onstellation. Therefore, the origin of the signal

onstellation has to be estimated by the reeiver. The signaling method is split into

two steps. The �rst step estimates the origin of the oating onstellation. The

seond step is the de�nition of the onstellation itself. The step that estimates the

origin is termed as the self-noise suppression (SNS) tehnique. Optimal methods to

ahieve SNS are proposed and their performane evaluated under an additive noise

senario, both by means of simulations and rigorous analysis. Some of the widely

reported non-linear data hiding methods, based on quantization (referred to as Type

II methods in reent literature), are shown to be speial ases of the proposed oating

signal onstellation. Investigation of optimal hoie of the parameters of the oating

signal onstellation, show that an extension of Type II methods is needed. The

extension (Type III), takes the form of thresholding the distortion introdued by

Type II methods. Type III is then shown to be a generalization of both Type I and

Type II methods. Type I methods are a speial ase of Type III methods whih

are optimal only when the SNR tends to zero. Similarly, Type II methods (another

speial ase of Type III) are optimal when the SNR approahes in�nity.

Chapter 5 investigates options for the hoie of the signal onstellation for data

hiding. An FFT based signaling method [19℄ with properties that make it espeially

useful for multimedia steganography is proposed. In the proposed tehnique, the

signal onstellation is de�ned by yli all-pass �lters generated from random keys.
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The intriate relationship between data hiding and data ompression is explored

in Chapter 6. It is seen that eÆient data hiding tehniques should utilize \holes" in

ompression tehniques [20, 21℄. Further, it is neessary for data hiding tehniques to

be robust to all known ompression methods, and perhaps ompression tehniques

whih may evolve in the future. To ahieve this it may be neessary to utilize

\holes" ommon to all ompression shemes. Suh a \hole" is identi�ed methods

to exploit that \hole" are proposed. The hapter onludes with an optimal data

hiding method based on the priniples outlined in Chapters 4, 5 and 6. In addition

other onerns like seurity, and omputational omplexity are taken into aount

for making appropriate trade-o�s.

Chapter 7 addresses the problem of unambiguous resolution of ownership

with digital watermarks. A protool for watermarking whih virtually guarantees

immunity to ounterfeit laims [22, 23, 24℄, is proposed. The tehniques proposed in

Chapter 6 for utilizing \holes" in ompression methods addressed how data hiding

an e�etively survive ompression. However, data hiding methods for watermarking

have to be robust to intentional attaks too. Chapter 7 addresses this issue, and

proposes a tehnique for robust watermarking.

Conlusions, and suggestions for future researh are o�ered in Chapter 8.



CHAPTER 2

A BRIEF REVIEW OF DATA HIDING

Appliations of the �eld of steganography date bak to earlier than 1000 BC [1℄.

However the revival of its appliations started with inreasing onerns of proteting

intelletual property rights of digital multimedia. Steganographi appliations an

be broadly lassi�ed into two ategories [25℄ -

� steganography with ative wardens, and

� steganography with passive wardens.

The data hiding parallels to the two ategories are respetively data hiding shemes

in whih intentional tampering is not an issue (for example, aptioning) and

shemes whih need resistane to intentional tampering (for example, watermarking).

Depending on the desired properties of the data hiding sheme, we lassify data

hiding appliations into the following three ategories:

� Watermarking for proteting IPR

� Watermarking for Tamper detetion

� Data Hiding for multimedia delivery

{ Captioning

{ Customized media delivery

{ E-Commere

{ Aess ontrol

{ Aess monitoring

{ Intelligent agents (exeutable odes for interative ommuniation)

8



9

2.1 Watermarking

Watermarking shemes an be broadly lassi�ed into two ategories. Methods that

need the original (unwatermarked) image for extration of the watermark (or over

image esrowmethods), and methods for whih the original is not neessary (oblivious

or blind detetion). Apparently, the former methods are bound to be more eÆient as

they have to resist only the noise due to proessing (intentional and unintentional).

The latter however should also overome the host signal noise.

A watermark, added to an image or video frame should in general satisfy the

following properties:

� Robustness. The watermark should resist both intentional and non-

intentional tampering. Examples of non-intentional tampering are some

ommon signal proessing operations like lossy ompression, histogram equal-

ization, edge enhanement, low-pass �ltering, gamma orretion, saling,

rotation, D/A and A/D onversions, olor adjustment et.. Intentional

tampering is done with the sole purpose of removing the watermark while

simultaneously trying to protet the quality of the image. Many shemes /

software pakages for intentional tampering have been proposed, like StirMark,

UnZign, and Rihard Barnett's attak software.

� Invisibility. The watermark should be pereptually transparent. This implies

that the watermark energy should be very small (there exists a possibility of

having visible watermarks, but we shall not disuss them in this thesis due to

their limited appliation).

� Seurity. The watermark should be non-removable even if the embedding

algorithm is known.
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� Unambiguous. Most importantly, the watermark should be able to resolve

rightful ownership unambiguously. This may plae some restritions on the

methods that an be used for watermarking.

The properties a watermark should satisfy for being aeptable in a ourt of

law (to be able to establish the identity of the reator unambiguously) has itself been

an ative area of researh [22, 23, 24, 26, 27, 28, 29℄. Watermarking may also be

used for uniquely identifying eah opy distributed by the owner. For example, in the

above ase the reator A may sell many opies of his image I. While all the opies

will have the same watermark to establish ownership, they might have additional

buried information pertaining to the buyer of the partiular opy (it may just be

a serial number).This would help in inriminating the partiular buyer responsible

for reating unauthorized opies. If a partiular buyer makes illegal opies of the

image for distribution, then the opy an be traed to the buyer responsible for its

irulation. But the aused buyer an still laim that the opies were irulated

by the owner of the original image to frame the buyer. To avoid this situation, a

ooperative buyer-seller protool may be needed [29℄.

2.1.1 Watermarking for Tamper Detetion

Multimedia stored in digital format an be easily modi�ed, or forged with a wide

variety of available software. Data hiding for tamper-proo�ng an go a long way in

verifying the authentiity of the data. Tampering may be intentional or uninten-

tional. Appliations for tamper - proo�ng may prove important for ourtroom

evidene and journalisti photography.

In [30, 31℄, spatial domain watermarks were used. In Ref. [32℄ the watermark

is added in the wavelet domain. This method, in addition to identifying the spatial

loation of the hange, also indiates the type of tampering undergone.
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In Ref. [33℄, a method suited for hardware implementation for watermarking

the images by ameras is proposed. In this method, the watermark is plaed takes

the form of a spread spetrum sequene, added to 32 � 32 or 64 � 64 bloks. The

watermark is apable of identifying the partiular bloks that have been tampered

with.

2.1.2 Attaks Against Watermarks

Attaks against watermarks an broadly be lassi�ed into two ategories viz.,

ounterfeit attaks and signal proessing attaks. The former shemes, exploit inade-

quaies of the watermarking protools to unambiguously resolve rightful ownership.

They are desribed in greater detail in Chapter 8.

The latter are aimed at removing the signature arefully designed strategies.

Some examples are StirMark, UnZign, Rihard Barnett's attak software et. The

StirMark attak, for instane, simulates image distortions that ommonly our when

a piture is printed, photoopied and resanned. This also introdues impereptible

geometrial hanges whih results in a loss of synhronization between the watermark

detetor and the image. In Ref. [34, 35℄, Cox et. al. disuss the e�etiveness of

di�erent attaks like aÆne transformations, noise redution, ompression, exploiting

the watermark detetor / inserter devie to obtain better estimates of the watermark.

In Ref. [36℄ the authors ompare the e�etiveness of di�erent attaks like the

jitter attak, StirMark, and mosai attaks. The jitter attak is meant for water-

marking shemes that modify the least signi�ant bits of audio / image data. In

the mosai attak, a watermarked image is hopped into a large number of small

sub-images whih are embedded in a suitable sequene in a web browser suh that

the �nal presentation image is very similar to the original watermarked image.

Of all the watermark attak software, StirMark is probably the most e�etive,

and proven to e�etively attak most know watermarking shemes. In Ref. [37℄
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Petitolas et. al. suggest that StirMark should be used as a benhmark for evaluating

the e�etiveness of watermarking shemes.

2.2 Data hiding for Multimedia Delivery

There are numerous emerging appliations in this ategory. What is ommon to

all of them is that, unlike watermarking appliations, `unambiguous resolution of

owner's identity' is not an issue. In addition, all these appliations may depend on

the existene of a ommon protool for ommuniation between the ontent provider

and the player (or appliation software for viewing the image or playing the video /

audio lip).

The required robustness, serey, and number of bits to be enoded also varies

from appliation to appliation. For example, aptioning appliations may not need

very good robustness. Commerial appliations may need robustness only to the

standard ompression senarios that the data is most likely to undergo. In most

ases intentional tampering may not be an issue. Intentional tampering an ause

more loss than gain to the end user. Captioning and hiding exeutables may need a

large number of bits, whih might, however, not be problem in video appliations.

2.3 Data Hiding Tehniques

2.3.1 Spatial Domain Methods

Early work in data hiding onsisted mainly of modifying the least signi�ant bits

(LSB) of images to hide data. In Ref. [38℄ the hidden signal was restrited to

modifying the two least signi�ant bits. In Ref. [39℄ the author suggests adding small

geometri patterns - tags - to digitized images at brightness levels that are imper-

eptible. Bender et. al. [40℄ proposed the \Pathwork" algorithm. The algorithm

selets random pairs of pixels. It enhanes the value of high valued pixel and redues

the value of low valued pixel. The ontrast hange in the pair is used to enode one
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bit. This method however is not e�etive for images whih do not have uniformly

distributed pixel values.

Pitas et. al. [41, 42℄ introdue a method whih in priniple is very similar to

Pathwork. But they extend the pairs of points to bloks, whih results in better

resistane to JPEG ompression. Delp et. al. [43, 44℄, use a two dimensional

watermark (whih is atually obtained by reshaping one dimensional M-Sequenes

as a matrix.)

In Ref. [45℄ a more robust watermarking sheme is proposed. The robustness

is ahieved by foring the signature to be low pass, so that the signature is relatively

tolerant to ompression. The extrated bits are mapped to a visualizer to display a

meaningful watermark.

2.3.2 DCT and Wavelets based Data Hiding

Perhaps [46℄ is the �rst work utilizing DCT deomposition for data embedding. In

this method the watermark does not tile the image ompletely - only some randomly

seleted regions are altered to embed the watermark. In this sheme, a \relationship"

is enoded in bloks by swapping seleted oeÆients.

Cox et. al. [47℄ were the �rst to introdue the idea of embedding the watermark

in the pereptually signi�ant oeÆients of an image. In their sheme, the watermark

altered 1000 low frequeny DCT oeÆients (2-D DCT of the entire image). A

Gaussian sequene is used as the signature. Detetion of the signature is aom-

plished by orrelating the Gaussian sequene with the 1000 (modi�ed) DCT oeÆ-

ients after subtration of the orresponding DCT oeÆients of the over image.

In Ref. [48℄, a blok based DCT is used instead of taking the DCT of the

whole image. In Ref. [49, 50℄, 8 � 8 blok DCT is used. However not all bloks

are altered. Only bloks with high ativity are altered. The watermark modi�es the

mid-frequeny DCT oeÆients.



14

Swanson et. al. [51, 52℄ propose an eÆient watermarking sheme based

on spatial masking [53℄ of the watermarking sequene to ensure invisibility of the

watermark. The spatial mask is used to alulate the maximum allowable hange for

eah DCT oeÆient in eah blok.

In Ref. [54℄, Zeng et. al. raise the issue of the inability of over image esrow

watermarking shemes to resolve rightful ownership. They therefore introdue a

oblivious detetion sheme, in whih the watermark signal is added to the 8 � 8

blok DCT oeÆients. The watermark is deteted by orrelating the signature with

the DCT oeÆients.

Fridrih proposes a hybrid watermarking sheme [55℄. This hybrid sheme uses

a full size 2-D DCT deomposition, and modi�es the low-frequeny oeÆients to

introdue the low-frequeny watermark. In addition, a spread spetrum signal is

added to the mid-frequeny DCT oeÆients.

Wavelet based data embedding shemes have been as widely reported as DCT

based shemes. In Ref. [56℄ the wavelet deomposition of a signature matrix is added

to the wavelet deomposition of the over image. However, the signature oeÆients

are saled by a fator depending on the ontrast sensitivity of spatial frequenies

[57℄.

In Ref. [58℄, the over image is deomposed in a pyramidal fashion. The

watermark is added suh that it an be deteted hierarhially. If the image distortion

is not serious, only a few bands of the deomposition are needed to detet the

watermark.

Wang et. al [59℄ introdue a blind watermarking (oblivious detetion) sheme,

in whih embedding sheme searhes for pereptually signi�ant wavelet oeÆ-

ients onto whih the watermark oeÆients are added. In Ref. [60℄, two water-

marking shemes modeled after the EZW [61℄ ompression sheme are presented and
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ompared. While one algorithm uses the \insigni�ant oeÆients", the other uses

\signi�ant" oeÆients.

2.3.3 RST Invariane

In Ref. [62℄ the authors introdue a rotation, sale and translation (RST) invariant

watermarking sheme. The RST invariane is ahieved as follows. Translation

invariane is ahieved by taking the DFT of the image and using only the DFT

magnitude. The DFT magnitude is then mapped to log-polar oordinates. Trans-

lation invariane in the log polar domain orresponds to saling and rotational

invariane in the spatial domain. Thus taking the 2-D DFT of the log-polar mapping

and retaining only the magnitude, results in an RST invariant domain. The signature

is added to the RST invariant domain and then mapped bak to the log-polar domain

(using the original unmodi�ed phase). The log polar mapping is now mapped bak

to the 2-D DFT magnitude oeÆients of the image. Again the original phase of

the image is retained and a inverse 2-D DFT performed to obtain the watermarked

image.

2.3.4 Other Methods

Ruanaidh et. al. [63℄ propose a watermarking sheme, where only the phase of the

DFT oeÆients (2-D DFT) of the image are modi�ed to embed the signature. The

watermark is embedded in the phase of signi�ant DFT oeÆients. The authors

laim that information in DFT phase is superior for the same reason that angle

modulation is expeted have better noise immunity than amplitude modulation in

ommuniations theory. In Ref. [64℄ Fridrih et. al introdue a deomposition based

on random keys. In this sheme, a set of random smooth patterns are generated

from a key. These patterns are then subjet to Gram-Shmidt orthogonalization

proess to obtain a set of smooth orthogonal patterns whih are used to embed the

watermark in the image.
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In Ref. [65℄, the di�erene between a pixel and the average value of its four

adjaent pixels is modi�ed to embed a bit. Note that this is equivalent to low pass

�ltering and modifying the high pass oeÆients to embed a bit. The main advantage

of this method is that this sheme will be relatively una�eted by histogram equal-

ization.

In Ref. [66℄, Paute et. al ombine watermarking sheme with fratal or IFS

ompression sheme. The signature is added by restriting the hoie of `domain

bloks' depending on the bit to be enlosed. The robustness of the embedding

inreases as the \range' blok sizes inrease. However this will result in poorer

quality of ompression, and the resulting image may not be of aeptable quality.

In Ref. [67, 68℄ Voyatzis and Pitas apply nonlinear dynamial priniples to

watermarking images. The watermark extrated is usually a logo with very few gray

levels. The logo is mapped to N �N lattie whih is less than the size of the image.

The lattie is mixed with the image. Extration of the watermark is performed by

repeated appliation of an auto-morphism to extrat the logo.

2.4 Video Steganography

While data hiding in video, an be done by onsidering eah frame as an image,

eÆient watermarking shemes should take into aount the di�erenes between the

nature of images and video frames. As video data is muh more redundant than

image data, they are suseptible to a wider variety of attaks like frame averaging,

frame dropping et.. To aount for the peuliar nature of the possible attaks on

video frames, Swanson et. al. [69℄ present a watermarking sheme, in whih the

watermark is embedded in objets (8� 8 bloks of frames). In smooth regions of the

image use a onstant watermark while the motion regions use dynami watermarks.

In Ref. [70, 71℄ Hartung et. al. propose shemes to enode raw and ompressed

(MPEG ompressed) video. For watermarking in the raw domain they use a spread
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spetrum sequene as the watermark. For watermarking in the MPEG ompressed

domain, the MPEG bit-stream is separated into header, side information, motion

vetors and DCT enoded signal bloks. The Hu�man oded DCT oeÆients are

deoded, and then inverse quantization is applied. The DC oeÆients are modi�ed

to add the watermark and reinserted into the MPEG bit-stream.



CHAPTER 3

LINEAR DATA HIDING

3.1 Introdution

Most of the state-of-the-art tehniques for data-hiding in images utilize some deom-

position for embedding the message bits. Among di�erent orthonormal deompo-

sition tehniques, it was probably the inspiration from image ompression appli-

ations that aused DCT and subband (wavelet) transforms to be more popular

than the others. Another reason for the hoie of DCT and wavelet based tehniques

is perhaps to `math' the data hiding [72℄ tehnique with the proessing the image

is most likely to undergo. Currently, the most ommon image ompression tools are

the DCT based JPEG, and the wavelet based SPIHT / EZW [13℄ oding tehniques.

Adding the signature or the message signal intelligently (for example taking the

JPEG quantization tables into aount) in the DCT domain an insure robustness

to JPEG. Similarly, one ould design wavelet based methods robust to EZW / SPIHT

ompression. It is no surprise that most wavelet based methods are very robust to

EZW or SPIHT ompression [59℄, but are not very robust to JPEG. Similarly, DCT

based methods are robust to JPEG, but not to EZW / SPIHT. Of ourse, one

annot expet robustness of these methods to other forms of ompression / signal

proessing. Though it is true that most images are very likely to go through Wavelet

/ DCT based ompression, the situation is di�erent for video frames. For most video

frames the major soure of `information' is the motion vetors. So it is diÆult to

intelligently devise DCT / Wavelet based methods for data hiding in video frames.

It is of great interest therefore, to devise robust data hiding methods given that

no knowledge of the ompression tehnique to be employed, is available. Now the

question to be answered is, what is underlying deomposition that should be used?

In this hapter, we attempt to answer that question. We provide an information

18
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theoreti approah to estimate the ahievable apaities for di�erent orthonormal

deompositions like DCT, subband, DFT, Hadamard and Hartley transforms.

Several authors, [73, 74, 75℄ have proposed information theoreti approahes to

haraterize or evaluate the performane of the data hiding hannel. In [73℄, Smith

et al. model the image as a Gaussian noise soure of variane given by the average

noise (image) power. The data hiding apaity is then alulated as the apaity of

the Gaussian hannel. In [74℄ Servetto et al. obtain the apaity of the data hiding

hannel where the soure of noise is intentional jamming. However, it is assumed

that the original image is available at the reeiver. The work of Hernandez et al [75℄

is a more thorough model, whih analyses the performane of a proposed method for

data hiding. In this model, L orthogonal sequenes are used for the signature. The

image is broken down into hannels orresponding to its projetions onto eah of the

orthogonal signatures. The apaity of the hannels are analyzed for unproessed

images and images after linear �ltering operations.

3.2 Problem Statement

Let I be the original (over) image, to whih a message S (a representation for

embedded information bits) is added, suh that

^

I = I+ S. The modi�ed image

^

I, is

visually indistinguishable from I and may typially be subjeted to lossy ompression,

like JPEG,

~

I = C(

^

I), where C(:) denotes the ompression / deompression operation.

The embedded bits in image I are to be extrated from

~

I. We would like to know the

maximum number of bits that an be hidden and reovered from the image with an

arbitrarily low probability of error, namely, the apaity of the data-hiding hannel,

for a given ompression senario.

A blok diagram of the data-hiding hannel is shown in Figure 3.1. S is the

message (signature) to be transmitted through the hannel. The hannel has two

soures of noise; I, the noise due to the (original) over image, and P, the noise
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S

P

S
~

I

Figure 3.1 The data hiding hannel

omponent due to proessing (ompression / deompression).

~

S is the \orrupted"

message. Note that for the over image esrow methods, there is only one soure

of noise - due to proessing. The image noise an be subtrated from the reeived

image

~

I. One an expet suh methods to have higher apaity than the oblivious

detetion methods.

Figure 3.2 displays the blok diagram of a typial data-hiding method. The

forward transform blok deomposes the image I into its oeÆients of L bands. A

omponent of the signature / message signal is added to eah band. The inverse

transform blok reonstruts the modi�ed image

^

I.

I

S

I
^Inverse

Transform Transform

Compressor/

Decompressor

I
~

S
~

Forward

Forward

TransformExtractor

Figure 3.2 Generalized shemati of data hiding / retrieval

The image

^

I then undergoes some proessing (lossy ompression) to yield the

image

~

I. The hidden message signal / signature is to extrated from

~

I. The image

~

I is

deomposed into L bands by the same forward transform blok and eah omponent

of the signature is extrated separately. In this hapter, we assume the system of

Figure 3.2 and estimate the apaity of data-hiding hannel for di�erent deompo-

sitions (di�erent forward and inverse transform bloks).
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3.3 Capaity of Additive Noise Channels

Prior to onsidering the data-hiding hannel of Figure 3.1, we onsider the simpler

hannel displayed in Figure 3.3(a). X � [f

X

(x); �

2

x

℄ is the message signal to be

transmitted, Z � [f

Z

(z); �

2

z

℄ is the additive noise in the hannel, andY � [f

Y

(y); �

2

y

℄

is the reeived signal at the output of the hannel.

X

Z

Y

Z

Z

X Y

g

Information

Processor

(a) (b)

Figure 3.3 (a) A simple additive noise hannel. (b) The hannel of (a) modi�ed to

obtain equivalent additive Gaussian noise.

We also assume that X and Z are independent, implying that �

2

y

= �

2

x

+ �

2

z

.

Therefore, the hannel apaity is given by [76℄

C = max

f

X

(x)

I

M

(X;Y) = max

f

X

(x)

h(Y)� h(YjX) = max

f

X

(x)

h(Y)� h(Z) bits: (3.1)

where I

M

(X;Y), is the mutual information between X and Y. For a given noise

statistis f

Z

(z) and input variane �

2

x

, one an maximize the entropy of the output

Y,

h(Y) = �

Z

f

Y

(y) log

2

(f

Y

(y))dy bits; (3.2)

by hoosing a suitable distribution f

X

(x) for the input message X. For a given

variane �

2

y

, the maximum entropy value of h(Y) =

1

2

log

2

(2�e�

2

y

) bits is ahieved

when Y has a normal distribution. For instane, the maximum entropy value is

ahievable if both pdfs f

Z

(z) and f

X

(x) are normally distributed. However, for an

arbitrary distribution f

Z

(z), and a �xed �

2

x

, the maximum ahievable entropy value

is not immediately obvious. To alulate that, we pass the noise Z through an

ideal information proessor, (see Figure 3.3(b)) whih does not alter the amount of
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information in Z, but hanges its statistis to a Gaussian distribution for its output

Z

g

. (The information proessor an be onsidered as an ideal data ompressor,

where `ompression' is measured in terms of signal energy. The information proessor

translates the data to a form whih has minimum energy while maintaining the

information ontent or entropy). Sine the output of the information proessor has

the same entropy as the input, the variane of the output, �

2

zg

, an be obtained by

solving

h(Z

g

) = h(Z) =

1

2

log

2

(2�e�

2

zg

) bits: (3.3)

It is well known that the Gaussian distribution has the highest entropy for a given

variane [76℄. Alternately, the Gaussian distribution has the least variane for a given

entropy. Thus it is always true that �

2

zg

� �

2

z

. We all �

2

zg

the entropy equivalent

Gaussian variane. The maximum value of h(Y) is therefore obtained as

max

f

X

(x)

h(Y) = max

f

X

(x)

h(X+ Z

g

) =

1

2

log

2

(2�e(�

2

zg

+ �

2

x

)) bits: (3.4)

In order to alulate the hannel apaity, we an now replae f

Z

(z) by N [0; �

2

zg

℄.

C = max

f

X

(x)

h(Y)� h(Z

g

) =

1

2

log

2

(1 +

�

2

x

�

2

zg

) bits: (3.5)

Note that if proessing noise is Gaussian and independent of the image noise,

the two hannel noise soures in Figure 3.1 an be replaed by a single Gaussian

noise soure of variane �

2

ig

+ �

2

p

, where �

2

ig

is the equivalent Gaussian variane for

the image noise I, and �

2

p

is the variane of the proessing noise. If �

2

s

is the message

signal energy, the apaity of the data-hiding hannel an be expressed as

C

h

=

1

2

log

2

(1 +

�

2

s

�

2

ig

+ �

2

p

) bits: (3.6)

As a �rst approah to alulate the apaity of the data-hiding hannel, the

image noise I (the original image pixels) is assumed to be uniformly distributed

random variables i taking values between 0 and 255 with variane �

2

i

. Let �

2

p

be the
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variane of the noise (per pixel) introdued due to proessing, (e.g. ompression).

As we shall see later, the proessing noise is an estimate of the variane of an

equivalent additive noise whih substitutes the atual non-linear proessing noise

soures (mainly quantization for the ase of lossy ompression). Sine we do not

know anything about the distribution of the equivalent proessing noise, we assume

the worst - Gaussian distribution. Finally, let �

2

s

be the average energy per pixel

allowed for the message signal. If MN is the number of pixels in an image, then the

energy (or variane if zero-mean) of the message signal is alulated as

�

2

s

=

P

MN

i=1

S

2

i

MN

; (3.7)

where, S

i

is the message signal added to the i

th

pixel. The (di�erential) entropies,

h(g), of a Gaussian random variable g, with variane of �

2

g

, and h(u), that of a

uniformly distributed random variable u with variane �

2

u

are expressed as [76℄

h(g) =

1

2

log

2

(2�e�

2

g

) bits h(u) =

1

2

log

2

(12�

2

u

) bits:

From Eq. (3.8), the entropy equivalent Gaussian noise (or the Gaussian random

variable that has the same entropy as the uniform random variable u of variane �

2

i

),

has a variane given by

�

2

ig

=

12

2�e

�

2

i

: (3.8)

Although we would expet the variane of u, the pixel values, to be given by �

2

i

=

255

2

12

(or �

i

= 73:6), statistis from many test images (see Setion 4 for the details of the

test images used) show that �

i

= 55. Therefore, we assume that u has a uniform

distribution with �

i

= 55. From Eq. (3.8) it is alulated that �

ig

= 55(

12

2�e

)

0:5

� 46.

If we allow a degradation of the image after the addition of a message to a PSNR of 40

dB, then the message energy is alulated to be �

2

s

= 6:5. Furthermore, if the image

goes through JPEG ompression at 50% quality, then it is measured for test images

that the proessing noise has a standard deviation of �

p

� 6:7 (the atual proedure
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for estimating proessing noise is desribed in Setion 3.4.2). This would yield a

apaity C

h

value of 0.0022 bits/pixel (140 bits for a 256� 256 image). Even if the

message-embedded image undergoes some other proessing whih results in a barely

reognizable image orresponding to �

p

� 20, the apaity C

h

would still be 0.0019

bits per pixel (about 124 bits for a 256 � 256 image). Therefore, one an see that

hiding the message in the image domain an be very robust. However, in most ases,

we do not require suh robustness. Sine most data-hiding appliations aim to protet

and asertain opyright or ontrol aess, it is unlikely in suh a senario that anyone

would want to laim ownership or ontrol aess of an image of no ommerial value

(an image whih has been signi�antly degraded in pereptual quality). Typially,

it is suÆient if the message survives well-known image ompression/ deompression

operations with aeptable quality.

Given that we are satis�ed with less robustness than the above mentioned

method o�ers, ould we do better than this? In our �rst approah, what we have

done is very similar to the method reported in [73℄ (the only di�erene being that

we have also introdued proessing noise in the hannel). By assuming a Gaussian

hannel, we assume that the image pixels have a at spetrum. However, it is well

known that the spatial frequeny harateristis of a typial image is far from at

(white). Most of the image energy is onentrated in the low-frequeny bands. It

is therefore intuitive that a deomposition of the image into its di�erent frequeny

bands might help. We expet the low frequeny bands of the deomposition to

very noisy due to the high energy ontent of the image. On the other hand, high

frequeny omponents would be very vulnerable to proessing, as most ompressors

would disard them at low bit-rates. At mid-frequeny bands, however, we ould

strike a ompromise. A typial distribution of image and proessing noise in various

bands of a deomposition is shown in Figure 3.4.
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Figure 3.4 A Typial Distribution of Image and Proessing Noise Among Di�erent

Bands

In Figure 3.5, the hannel of Figure 3.1 is deomposed into its multiple sub-

hannels. The deomposition is performed by the Forward and Inverse Transform

bloks of Figure 3.2. The deomposition of an image into its L sub-bands results in L

parallel sub-hannels with two noise soures in eah sub-hannel. Let �

2

i

j

; j = 1 � � �L,

be the varianes of the oeÆients for eah sub-band (or the varianes of the image

noise in eah sub-hannel) of the deomposition. Similarly, let their orresponding

equivalent Gaussian varianes be �

2

ig

j

. If �

2

p

j

is the variane of the proessing noise

(Gaussian) in the j

th

sub-hannel, then, the total apaity of the L parallel sub-

hannels is given by

C

h

=

MN

2L

L

X

j=1

log

2

(1 +

v

2

j

�

2

ig

j

+ �

2

p

j

) bits (3.9)

for an image of size MN pixels. In Eq. (3.9), v

j

is the visual threshold of band

j. In other words, v

2

j

is the maximum message signal energy permitted in band j

based on its pereptual quality e�ets. Note that if the hannel was a purely energy

onstrained hannel (or if the onstraint is on the total signature energy with no
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Figure 3.5 Deomposition of the data hiding hannel into parallel hannels

regard to how the signature energy is distributed among di�erent bands), then the

best solution would be to use the water-�lling approah [76℄ to alulate the hannel

apaity. However in this ase, the maximum signal energy permitted in a hannel

is onstrained by the visual threshold of the band. Ideally, we would like to utilize

all hannels to the fullest extent possible.

In the following setions, we evaluate the apaity of the data-hiding hannel

for DCT, DFT, Hadamard, and uniform subband deomposition based embedding

methods. We use well-known ompression methods like JPEG and SPIHT to model

the proessing (ompression) noise in eah sub-band of the deomposition.

3.4 Modeling Channel Noise

In order to model the hannel noise (the two noise soures I and P in Figure 3.1),

we measure their statistis from 15 monohrome test images of size 256 � 256, and

their JPEG and SPIHT ompressed versions at various quality fators / bit rates.

The 15 test are shown in Figure 3.6.

3.4.1 Modeling Image Noise

The over images are deomposed into L sub-bands using an orthonormal transform.

Let f

I

j

(i

j

) be the distribution of the j

th

sub-band with variane �

2

i

j

. (The image
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Figure 3.6 The 15 256� 256 test images used

noise I is split into its omponents in L sub-hannels, whih are modeled as random

variables f

I

j

(i

j

) with varianes �

2

i

j

; j = 1 � � �L.)

Having obtained the varianes of the image noise in eah sub-hannel, the next

step is to obtain their entropy equivalent Gaussian varianes. This is ahieved by

plotting a histogram of the oeÆients for eah band, and alulating the entropy.

If �x is the width of the n bins of the histogram g

j

(m); m = 1 � � �n, and p is the

total number of oeÆients in band j, the entropy H

j

and the equivalent Gaussian

variane �

2

ig

j

of the sub-band are obtained as

H

j

= �

P

n

i=1

g

j

(i)

p�x

log

2

(

g(i)

p�x

)�x; bits �

2

ig

j

=

2

2H

j

2�e

:

Thus, the image noise in sub-hannel (band) j an be substituted by a Gaussian

noise of variane �

2

ig

j

. In our simulations, the image noise is estimated for eah image

individually for �ve di�erent transforms.
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3.4.2 Modeling Proessing Noise

At the outset, one should note that Proessing noise is introdued due to quantization

of transform domain parameters. While one ould aurately estimate the type

of quantization noise that is introdued by JPEG on the DCT oeÆients of the

image (assuming that the quantization table is known), the same annot be done,

for instane, for the Hadamard transform oeÆients of the image. The quantization

of one DCT oeÆient would a�et many Hadamard oeÆients. More importantly,

for the reasons explained earlier, viz. we wish to make the model of the proessing

noise more general. The only reason we restrit ourselves to JPEG and SPIHT for

proessing noise soures is their widespread availability. We de�ne proessing noise as

the equivalent additive noise whih aounts for the redution in orrelation between

the transform oeÆients of the original image and the transform oeÆients of the

image obtained after lossy ompression. Note that while this estimate provides us

with the variane of the equivalent additive noise, it does not tell us anything about

the nature of the noise (like its distribution). We therefore assume the worst -

Gaussian distribution for the proessing noise.

Let the proessing noise in eah sub-hannel be �

2

p

j

; j = 1 � � �L. The steps to

obtain the proessing noise variane are:

� Apply lossy ompression / deompression (JPEG / SPIHT at various quality

fators / bit rates) to n

i

test images.

� Deompose the n

i

test images using some transform.

� Obtain

MNn

i

L

samples for eah sub-band. Let i

j

k

; k = 1; : : : ;

MNn

i

L

, be the

oeÆients of band j.

� Deompose the n

i

reonstruted images using the same transform.

� Let

~

i

j

k

; k = 1; : : : ;

MNn

i

L

be the orresponding oeÆients of the images

subjeted to lossy ompression
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� De�ne the intra-band orrelation as

hi

j

;

~

i

j

i

ji

j

jj

~

i

j

j

=

hi

j

; (i

j

+ n

j

)i

ji

j

jji

j

+ n

j

j

= �

j

; (3.10)

where n

j

is a vetor of random variables, unorrelated with i

j

.

� �

2

n

j

= jn

j

j

2

is the variane of the equivalent additive noise due to ompression

(or �

p

j

= �

n

j

).

� Sine hi

j

;n

j

i = 0, Eq. (3.10) an be simpli�ed to obtain

�

2

p

j

= jn

j

j

2

= (

1

�

2

j

� 1)ji

j

j

2

(3.11)

It an be easily seen that the proessing noise in eah sub-band an not be

obtained as

~

i

j

k

� i

j

k

. Consider a senario, where DCT is used for the deomposition,

and low quality JPEG for proessing. Let us assume that a high frequeny sub-band

is ompletely removed due to ompression (

~

i

j

k

= 0 8 k for some j). This implies that

all information buried in that sub-hannel (sub-band) is lost. In other words, the

proessing noise in that sub-hannel has in�nite variane (and not) the variane of

~

i

j

. This is beause no orrelation exists between

~

i

j

k

and i

j

k

. Note that in Eq. (3.11)

when �

j

! 0, �

p

j

!1.

Also, note that while the image noise is estimated individually for eah image,

the proessing noise is not. There are two reasons for this:

� As the equivalent image noise is estimated by orrelation, the result is likely

to be more aurate if more samples are used. If we alulate proessing noise

for eah image separately, (for 256� 256 images using some 64 band deompo-

sition), we have only 1024 oeÆients in eah band. However, using 15 images

yields 1024� 15 oeÆients per band.

� The seond reason is that this method of estimating the proessing noise would

yield unrealisti (very low) estimates of proessing noise for low entropy images.
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The original and ompressed versions of low entropy images are bound to be

very `lose', leading to high orrelation in most bands. This would ause an

overestimate of apaity for smooth images. To mitigate this e�et we average

proessing noise over many images.

3.5 Visual Threshold

The value of the visual threshold for sub-hannel j, v

j

in Eq. (3.9) however, is highly

subjetive. Sine the amount of message signal energy permitted in any sub-band

is determined by the visual threshold, di�erent models for visual thresholds would

yield di�erent estimates of ahievable apaity. The visual threshold depends not

only on the band, but also on the magnitude of the partiular oeÆient. Within

the same band, a oeÆient with high magnitude an be altered to a larger extent

than a oeÆient with small magnitude. Additionally, the visual threshold may also

depend on the magnitudes of oeÆients of other bands orresponding to the same

blok / spatial loation.

However, what we desire is an estimate of the average energy of the message

signal that an be added to a partiular band. Sine it is well known that the human

visual system is more sensitive to the lower frequenies than the higher frequenies,

the signal-to-noise-ratio (message signal to image noise) should be smaller for lower

frequeny sub-bands. In general lower frequeny sub-bands have higher varianes.

Hene, a reasonable model for the visual threshold v

j

ould be

v

2

j

= K�

2�

i

j

(3.12)

where 0 < � < 1, and K << �

i

j

8j, is a onstant. When � = 0, the message signal

energy is distributed equally among all sub-bands regardless of their varianes. On

the other hand, when � = 1 the message signal energy is distributed in the ratio of

the band varianes.
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From Eqs. (3.9) and (3.12), for the ase of no proessing noise, if we assume

that all sub-hannels have the same pdf type (suh that K�

i

j

= K

1

�

ig

j

), the hannel

apaity an be alulated as

C

h

=

MN

2L

L

X

j=1

log

2

(1 +

K

1

�

2�

ig

j

�

2

ig

j

) �

MN

2L

log

2

(1 +

L

X

j=1

K

1

�

2(1��)

ig

j

); (3.13)

In the above equation, the approximation is justi�ed beause

K

1

�

2�

ig

j

�

2

ig

j

<< 1 8j. Note

that for the ase of � = 1, the deomposition does not have any e�et on the apaity.

However, for � < 1, C

h

an be inreased by hoosing a suitable transform, as shown

in the next setion. Thus, the inrease in apaity is due to the fat that one an add

relatively more message signal energy to bands of lower varianes (or high frequeny

bands).

However, in Eq. (3.12) there seems to be no rationale for �xing the value of

� apart from atual simulations. We therefore adopt a di�erent model for visual

threshold. To derive the model, we argue that JPEG, at a reasonably good quality

fator is well tuned visually in distributing the quantization errors amongst the bands,

at least with respet to preserving the visual �delity of the ompressed image. More

advaned methods like SPIHT tend to optimize the mean square error rather than

visual �delity (in general, the visual quality of a JPEG ompressed image at a ertain

PSNR is muh better than that of a SPIHT ompressed image at the same PSNR).

Let i

j

k

be the oeÆients of the original images, and

~

i

j

k

the oeÆients of the same

images that have gone through JPEG-75 (quality fator 75) ompression and deom-

pression. Let �

2

q

j

be the variane of the quantization error, e

q

j

=

~

i

j

� i

j

, for sub-band

j. If quantization error (due to JPEG-75) of variane �

2

q

j

in sub-band j, results in

an image that is visually satisfatory, we an argue that addition of message signal

with energy �

2

q

j

in sub-band j, would still render the image

^

I with an aeptable

visual quality. However, in order to maintain the PSNR of

^

I in the range of 40-50

dB (so that the

^

I is visually indistinguishable from I), we hoose the sub-band visual
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thresholds as

v

2

j

= K

2

�

2

q

j

(3.14)

where K

2

< 1. (The average PSNR of JPEG-75 images is only about 35 dB. Hene

a hoie of K

2

= 1 would yield images

^

I of PSNR 35 dB. This might not be an

aeptable quality. For our simulations we use K

2

= 0:25.)

3.6 Channel Capaity vs Choie of Transform

It should be noted that both Eqs. (3.9) and (3.13), are subjet to the following

onstraints

P

L

j=1

�

2

i

j

= L�

2

i

P

L

j=1

�

2

ig

j

= L�

2

ig

I =

1

2

log

2

(2�e�

2

ig

)

where �

2

i

is the variane of images, �

2

ig

is the entropy equivalent Gaussian variane for

�

2

i

, and I is the average entropy of image pixels. The �rst equation states that unitary

transforms (the transforms used for the embedding deompositions) preserve energy.

The seond and third equations state that the transforms also preserve entropy. With

the above onstraints, it an be shown that the minimum hannel apaity (for the

ase of no proessing noise or Eq.(3.13)) is ahieved for �

ig

j

= � 8j, or when no

deomposition (spatial embedding) is used.

Note that a transform with good energy ompation or higher Transform

Coding Gain (GTC) [77℄ would result in more imbalane of the oeÆient varianes.

This would enhane the term

P

L

j=1

K

1

�

2(1��)

ig

j

in Eq. (3.13), and therefore inrease the

apaity (when the proessing noise is small). Therefore, good energy ompation

transforms like DCT and subband transforms are good embedding deompositions

for low proessing noise senarios.

However, the relationship between proessing noise and the hoie of transform

is not immediately obvious. For example if we use JPEG at low quality fator

for ompression and DCT as the embedding deomposition, it is very easy to see
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that the proessing noise will approah in�nity for many high frequeny bands

as they are bound to be ompletely eliminated. On the other hand, the high

frequeny oeÆients of say Hadamard transform will have omponents in many

DCT oeÆients. So it is not very likely that any Hadamard transform band is

ompletely eliminated. In fat, even if the proessing the image undergoes is SPIHT,

it is still more likely to a�et the high frequeny DCT oeÆients more than the

high frequeny Hadamard transform oeÆients. Any eÆient ompression method

would a�et the low variane (high frequeny) bands of the transforms suitable for

ompression (or high GTC transforms).
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Figure 3.7 Comparison of standard deviations of proessing noise for DCT and

Hadamard deompositions. The soure of proessing noise is SPIHT ompression at

1 bpp and 0.35 bpp.

To illustrate this point Figure 3.7 shows the distribution of the proessing

noise for DCT and Hadamard transform bands for proessing noise due to SPIHT

at 1 bpp and 0.35 bpp. While the proessing noise for the two deompositions are

omparable for SPIHT at 1 bpp, it is seen that proessing noise inreases drastially

for high frequeny DCT bands for SPIHT at 0.35 bpp. The high frequeny bands of

Hadamard transform, however, are relatively immune to proessing noise. Similarly
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low quality JPEG a�ets the high frequeny bands of subband deomposition (using

8-tap Daubehies �lter) to a muh larger extent than the high frequeny Hadamard

bands. We already know that low frequeny bands are not eÆient hannels due

to the presene of high image noise. If the high frequeny bands are also a�eted

by proessing, it leaves a small number useful of mid-frequeny bands. Transforms

with lower GTC have many more of this useful `mid-frequeny' bands than the high

GTC transforms, at higher proessing noise senarios. Therefore, deompositions

unsuitable for ompression would in general be more immune to proessing noise

than deompositions with high GTC. Also, reall that in Setion 2 embedding in the

image domain (or using identity transform for the transform bloks in Figure 3.2),

was found to be very robust to proessing noise. The identity transform, whih has

the lowest GTC has the highest robustness to proessing noise. It is relevant to point

out here that the term `robustness', is a measure of the hange in overall apaity

with a hange in the proessing noise (or proessing senario). More robust the

deomposition, less is the redution in apaity for a senario of inreased proessing

noise (or lower quality ompression). One should note that the robustness of the

low frequeny bands of say the DCT deomposition will be muh higher than the

robustness of the single band oeÆients (pixels) in the image domain. However

the low frequeny bands of the DCT have very little apaity due to high image

noise. The redued `robustness' of DCT is due to the drasti redution in the overall

apaity due to the drasti inrease of proessing noise in the high frequeny bands.

The next question that arises is the hoie of the number of bands for the

deomposition. From Eq. (3.13) we see that a deomposition will not hurt. At

worst, it may ause no improvement. Therefore deomposing eah sub-hannel of

say a 16 band deomposition further into four sub-hannels an only improve the

apaity of data hiding, at least when proessing noise is low.
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3.7 Results

The estimated apaities for di�erent 64 band deompositions (for 256�256 images,

or 65536 pixels) like DFT, DCT, subband, Hartley and Hadamard transformations,

are shown in Figure 3.8. The apaities were estimated for 5 di�erent transforms for

8 di�erent proessing senarios and averaged over 15 images. Figures 3.9 and 3.10

show the individual apaities of 4 di�erent images (Baboon, Barbara and Lena,

Bridge).

Figure 3.11 shows the average hannel apaities of eah video frame of 3 video

sequenes (Table Tennis, Football and Garden) averaged over 90 frames per sequene.

The soure of proessing for the video sequenes is MPEG-2 ompression (30 frames/

se, 15 frames in GOP and I/P frame distane of 3), at various bit-rates. In Figure

3.11, the left olumn is the estimates of apaity of I-Frames and the right olumn

for P/B-Frames.

1 2 3 4 5
0

2000

4000

6000

8000

C
ap

ac
ity

 in
 B

its

JPEG Compression

1 2 3 4 5
0

2000

4000

6000

8000

C
ap

ac
ity

 in
 B

its

SPIHT Compression

DCT
Hadamard
Hartley
DFT
Subband

Figure 3.8 Average apaity estimates for 15 256�256 images. The indies for JPEG

ompression orrespond to di�erent JPEG quality fators. (1 - lossless ompression,

2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indies for SPIHT ompression orrespond

to di�erent bit rates (1 - lossless , 2 - 1 bpp, 3 - 0.75 bpp, 4 - 0.5 bpp, 5 - 0.35 bpp).

For the subband deomposition we use the 8-tap Daubehies �lter (though

it would be better idea to use the linear phase 9-7 �lters used more ommonly



36

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

Baboon − JPEG

C
ap

ac
ity

 in
 B

its

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

Baboon − SPIHT

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

Barbara − JPEG 

C
ap

ac
ity

 in
 B

its

1 2 3 4 5
0

1000

2000

3000

4000

5000

6000

7000

Barbara − SPIHT

DCT
Hadamard
Hartley
DFT
Subband

Figure 3.9 Capaity estimates for 256 � 256 Baboon and Barbara images. The

indies for JPEG ompression orrespond to di�erent JPEG quality fators. (1 -

lossless ompression, 2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indies for SPIHT

ompression orrespond to di�erent bit rates (1 - lossless , 2 - 1 bpp, 3 - 0.75 bpp, 4

- 0.5 bpp, 5 - 0.35 bpp).
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Figure 3.10 Capaity estimates for 256� 256 Lena and Bridge images. The indies

for JPEG ompression orrespond to di�erent JPEG quality fators. (1 - lossless

ompression, 2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indies for SPIHT ompression

orrespond to di�erent bit rates (1 - lossless , 2 - 1 bpp, 3 - 0.75 bpp, 4 - 0.5 bpp, 5

- 0.35 bpp).
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Figure 3.11 Channel apaities of di�erent deompositions for Football and

Tabletennis Sequenes. The proessing senarios 1-5 orrespond to lossless

ompression, and ompression ratios of 10, 25, 50 and 100 (MPEG-2) respetively.

for subband or wavelet image ompression, the biorthogonality of the �lters would

ompliate the analysis). More spei�ally, we use uniform subband deomposition.

For the DFT deomposition we use only the magnitude of the DFT oeÆients. The

phase is ignored. (In other words, the message signal added would hange only

the magnitude of the DFT oeÆients. The phase is left intat. As no message

signal information is available in the phase, the phase is ignored during detetion

of the message signal). The 2-D DFT of a 8 � 8 real matrix has 4 real, and 60

omplex (out of whih only 30 are unique) oeÆients. Note that this auses a

redution in the number of available hannels from 64 to 34, as only 34 magnitude

oeÆients are unique (the magnitudes of 30 omplex and 4 real oeÆients). In

addition, this also redues the message energy available to eah hannel by a fator

of (approximately) half { only half the message signal energy distributed among the

60 omplex oeÆients is available for detetion. Half the message signal energy is

added just for the purpose of maintaining the symmetry properties of the DFT of a

real signal. But by sari�ing some hannels, (or by reduing the degrees of freedom),
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we obtain smaller noise varianes in eah hannel. As an example, onsider N iid

random variables (N degrees of freedom) with variane �

2

. If we onstrut N=2

random variables from the N original variables by averaging every two of them, the

variane of the resultant N=2 random variables will be iid with varianes equal to

�

2

=2. Therefore, we redue the variane of noise in the hannels by reduing the

degrees of freedom (from N to N=2).

From the plots in Figures 3.8 - 3.11, we see that apaities for all deompositions

fall with inreased proessing noise as expeted. DCT and subband deompositions

are better than Hartley and Hadamard deompositions for detetion of the message

when proessing noise is low. It is also seen that deompositions unfavorable for

ompression (DFT, Hartley and Hadamard) are more immune to proessing noise

than deompositions suitable for ompression (DCT, subband).

What is surprising, is that magnitude DFT deomposition o�ers more apaity

than better energy ompation transforms even when there is no proessing noise.

In this ase a redution in the entropy of the image noise is ahieved by ignoring the

phase of the DFT oeÆients. The redution in entropy is preisely the information

ontent in the DFT phase. Apparently, this redution in entropy more than o�sets

the redued signal energy available for detetion (again, only half the signal energy

is available for detetion as the added signal power is divided between 64 oeÆients

while only 34 of them are available for detetion). Yet magnitude DFT performs

better than other transforms beause DFT phase ontains disproportionately more

information than the DFT magnitude!. Note that in Figures 9 and 10 the the apaity

of magnitude DFT deomposition for Baboon and Bridge images is muh higher than

that of the high GTC transforms even for no proessing noise senario. On the other

hand the apaity of magnitude DFT is omparable to or even less than high GTC

transforms for smoother images like Lena and Barbara. This an be due to the

following reasons:
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� High GTC transforms suitable for most images are not very well suited for

these high ativity images.

� The disparity between information ontent in the phase and magnitude is even

more pronouned for these high-ativity images.

In addition, being a relatively low GTC transform, DFT is also robust to

proessing noise like Hadamard and Hartley transforms.

Another surprising result, is that we �nd embedding in DCT domain is slightly

more resistant to Subband ompression methods than JPEG. Similarly embedding

in the Subband domain is slightly more resistant to JPEG than SPIHT. This

may appear to ontradit the idea of \mathing" embedding transforms with the

ompression method. But one should note that the mathing is useful only if we

design the methods `intelligently'. So designing a DCT based data hiding method

with no idea of say, the quantization matrix used, may not be more robust to JPEG

than a wavelet based data hiding method.

As an indiator of the performane of these deompositions for other possible

ompression methods, we look at the apaities of the deompositions when an image

has to survive JPEG or SPIHT. We group the four di�erent proessing senarios of

JPEG and SPIHT into four pairs - (JPEG-75, SPIHT 1 bpp), (JPEG-50, SPIHT 0.75

bpp), (JPEG-35, SPIHT 0.5 bpp) and (JPEG-25, SPIHT 0.35 bpp). For example,

to alulate the apaity when the message signal has to survive JPEG-50 or SPIHT

0.75 bpp we hoose the worst proessing noise in eah sub-band (from the estimates

of proessing noise for SPIHT 0.75 bpp and JPEG-50). The apaities so obtained

are plotted in Figure 3.12. Note that the estimates of the apaity still follow the

same trend.

We an de�ne a �gure of merit, for eah of the L (

L

2

+ 2 for magnitude DFT)

sub-hannels for the various deompositions. The �gure of merit is given as the ratio

of the apaity of eah sub-hannel to the logarithm of the power of the message signal
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Figure 3.12 Average apaity estimates for 15 images when the message signal has

to survive SPIHT or JPEG. The ompression indies 1 - 5 orrespond to 1 - lossless

ompression, 2 - (JPEG - 75, SPIHT 1 bpp), 3 - (JPEG - 50, SPIHT 0.75 bpp), 4 -

(JPEG - 35, SPIHT 0.5 bpp), 5 - (JPEG - 25, SPIHT 0.35 bpp).

in that sub-hannel. The approximate (rounded) values of the �gure of merit for the

hannels of di�erent deompositions (when the message has to survive SPIHT 0.5

bpp or JPEG-35), are listed in Table 3.1 for various 64-band deompositions. These

�gures indiate the relative performane of eah sub-hannel, and would therefore

be useful in designing hidden ommuniation methods to make optimal trade-o�s

between the visual quality of the image and the number of bits that an be embedded.

As the �gure of merit is normalized with respet to the message signal energy in eah

band, it is independent of the model used for the visual threshold. The high �gures

of merit for the hannels of the magnitude DFT deomposition show that it would

perform better than other deompositions for any message signal energy assignment

method (model for visual threshold).

Figure 3.13 shows the average apaities for 15 images for 256 band deompo-

sitions. As expeted, we see an inrease in the estimate of the apaity. The inrease

is more substantial for low proessing noise senarios.
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Table 3.1 Figure of merit of the bands of di�erent deompositions when the image

has to survive SPIHT 0.5 bpp. (a) magnitude DFT, (b) DCT, () uniform subband

and (d) Hadamard.

(a)-DFT (b)-DCT

0 27 49 69 83 0 0 0 0 8 19 29 37 42 29 23

27 53 72 70 87 0 0 0 8 17 28 34 41 28 10 28

49 72 69 38 51 0 0 0 19 28 36 40 35 15 7 22

69 70 38 18 32 0 0 0 29 34 40 40 23 8 2 22

83 87 51 32 43 0 0 0 37 41 35 23 15 2 11 2

0 69 46 33 0 0 0 0 42 28 15 8 2 0 0 0

0 71 69 46 0 0 0 0 29 10 7 2 11 0 0 6

0 54 71 69 0 0 0 0 23 28 22 22 2 0 6 14

()-Subband (d)-Hadamard

0 9 29 37 43 41 37 33 0 23 11 22 5 22 10 22

9 18 19 26 37 43 32 18 23 34 30 12 38 24 34 22

29 19 30 37 29 23 30 16 11 30 31 24 22 29 28 26

37 26 37 28 44 43 10 8 22 12 24 13 28 21 27 13

43 37 29 44 11 19 2 7 5 38 22 28 11 32 17 30

41 43 23 43 19 39 6 9 22 24 29 21 32 22 33 24

37 32 30 10 2 6 2 12 10 34 28 27 17 33 24 30

33 18 16 8 7 9 12 11 22 22 26 13 30 24 30 17
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Figure 3.13 Average apaity estimates for 15 256�256 images for 256 band deom-

position. The indies for JPEG ompression orrespond to di�erent JPEG quality

fators. (1 - lossless ompression, 2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indies

for SPIHT ompression orrespond to di�erent bit rates (1 - lossless , 2 - 1 bpp, 3 -

0.75 bpp, 4 - 0.5 bpp, 5 - 0.35 bpp).
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Finally, note that we evaluate proessing noise by measuring the orrelation

between the image omponents before and after ompression. By this, we impliitly

assume that the message signal (signature) is a�eted to the same extent as the image

oeÆients themselves by the ompressor / deompresser. In a pratial method, this

may not be true. In fat, as pointed out in Chapter 1, an ideal ompression method

would ompletely suppress any extra information added to the image oeÆients

(no data hiding would be possible with an ideal ompression method). But pratial

ompression methods an probably be triked into believing that the embedded infor-

mation is an integral part of the image if the embedded message signals are hosen

intelligently. However, hoosing the signature S intelligently may imply redued

degrees of freedom for its hoie, translating into redued apaity.

3.8 The Ideal Deomposition

For a moment, if we ignore the magnitude DFT deomposition, the performane of

a deomposition depends roughly on its position in the GTC Sale. In Figure 3.14,

a few transforms are marked in the GTC Sale. To the extreme left is the identity

transform whih has no energy ompation. In the extreme right is the KLT [77℄.

Transforms to the right would yield high apaities for low proessing noise senarios.

As the proessing noise inreases, we should move towards the left to hoose a

transform. The question is, given a proessing noise senario, what would be the

ideal deomposition?

KLTDCT

HAD

HARIDENTITY

WAVELET

LOW GTC HIGH GTC

Figure 3.14 The GTC Sale
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Figure 3.15 The ideal deomposition

For example, if � = 0:5 in Eq. (3.12), the apaity of eah sub-hannel of a

deomposition is given by

C

h

j

= log

2

(1 +

K�

ig

j

�

2

ig

j

+ �

2

p

j

) (3.15)

In order to maximize C

h

j

it is enough to maximize t =

�

ig

j

�

2

ig

j

+�

2

p

j

. It an be easily

seen, that t (and hene C

h

j

) is maximized when �

2

ig

j

= �

2

p

j

. The ideal deomposition

would be the one whih results in image noise varianes lose to the proessing noise

varianes in the maximum number of sub-bands. Typially for high GTC deompo-

sitions, (Figure 3.15 (a)) �

i

>> �

p

in the low frequeny bands and �

p

>> �

i

in the

high frequeny bands. For lower GTC transforms, the disrepany is redued (Figure

3.15 (b)). On the other hand, for identity transform �

i

>> �

p

in the single band

(Figure3.15 ()). Therefore, for the ideal deomposition, the image and proessing

noise varianes should be distributed as shown in Figure 3.15 (d). For the ideal

deomposition, the image and proessing noise varianes should be distributed as

shown in Figure 3.15. It should also be noted, that a deomposition so obtained

would perform as expeted only if we are able to assume the same model for the
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relationship between the oeÆient variane and the visual threshold. Therefore,

the searh for suh a deomposition may not be simple.

3.9 Fators Inuening Choie of Transform

The superiority of the magnitude DFT deomposition, among the deompositions

ompared, lies in an advantageous trade-o�, where we redue the degrees of freedom

to redue the entropy of the image. Simulations show that the magnitude DFT

deomposition yields uniformly superior performane (over other deompositions)

for both low and high proessing noise senarios.

The �nal hoie of the deomposition should depend on the end appliation.

While some data hiding appliations, like watermarking, may need robustness to

intentional tampering, some appliations like aptioning may not. The performane

of magnitude DFT deomposition is superior to others beause of its low information

ontent. For the very same reason the magnitude of DFT oeÆients an be altered

signi�antly without a�eting the visual quality of the image. This makes the DFT

oeÆients very vulnerable to intentional tampering. Thus, the magnitude DFT

deomposition may not be suitable hoie for watermarking appliations. However,

standard image ompression methods do not seem to a�et the magnitude DFT

oeÆients drastially. This `hole' in standard ompression methods an be put

to use advantageously. So for appliations where intentional tampering is not an

issue, magnitude DFT may be a good hoie for both low and high proessing noise

senarios.

For robustness to `ommerial quality' ompression methods (better than

JPEG-50 or SPIHT 1 bpp), high GTC transforms like DCT and Wavelets (subband)

perform better than low GTC transforms. Further, being transforms espeially

used for image ompression appliations, they would leave very little room for

intentional tampering without signi�ant degradation of the image. This property
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would make them very suitable for watermarking appliations. For other data hiding

methods, with perhaps redued resistane to intentional tampering but inreased

resistane to proessing noise (lower quality ompression), transforms like Hadamard

or Hartley transform would probably be more useful. For example, an average video

frame is likely to su�er more proessing noise than an average still image. So low

GTC transforms may be good hoies for data hiding in video frames. Further,

though lower GTC transforms are bound to have redued resistane to intentional

tampering (ompared to DCT or wavelets) if the transform employed is known, the

ase is di�erent if the transform used is not known. There exists a high degree

of freedom for the hoie of the low GTC embedding transforms. This enhaned

degree of freedom for the hoie of the embedding transform ould result in very

high robustness to intentional tampering. In the next setion we outline a method

for obtaining low GTC subband transforms, from random seeds.

3.10 Fast Transforms Generated from Random Seeds

In this setion we outline 3 ways of generating low GTC subband transforms from

random seeds:

� perturbation of high GTC subband �lters

� random searh

� generating yli subband �lters in the DFT domain

The �rst and seond methods generate non-yli subband �lters of �nite support,

while the third method generates yli subband �lters. The di�erenes between

subband �lters with �nite support and yli subband �lters, and fast implementation

of these transforms using FFT, are outlined in Appendix A.
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3.10.1 Perturbation of High GTC Subband Filters

It is well known [78℄ that a degree k, 2-band paraunitary system E(z) an be obtained

from k + 1 unit norm vetors, v

1

� � �v

k

and u of size 2� 1, as

E(z) = V

1

(z)V

2

(z) � � �V

k

(z)U (3.16)

where

V

i

(z) = I� v

i

v

T

i

+ z

�1

v

i

v

T

i

; (3.17)

where I is an identity matrix of size 2� 2 and

U = I� 2uu

T

(3.18)

In other words, for every hoie of the unit norm vetors v

1

� � �v

k

and u, there exists

a unique paraunitary system.

To generate paraunitary systems from random seeds, we ould start with the

unit norm vetors v

1

� � �v

k

and u orresponding to some high GTC known �lter

(say 20 tap Daubehies �lter) and perturb those vetors randomly to obtain their

orresponding lower GTC �lters.

3.10.2 Random Searh

In this method, the key from whih the �lters are generated has two parts. The �rst

part of the key is used as a seed to generate a random sequene of seeds. Eah seed in

turn is used to generate the unit norm vetors randomly. From the generated vetors

the harateristis of the orresponding �lter is obtained. The searh is stopped when

a `satisfatory' �lter is obtained. The seond part of the key now beomes the index

number of the random seed that generates a satisfatory �lter. This method however,

may not be aeptable for watermarking appliations (we shall see in Chapter 7 that

watermarking protools should have very limited degree of freedom for hoosing the

signature or the deomposition).
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3.10.3 Cyli Subband Filters in the DFT Domain

The harateristis of yli subband �lters [79℄ is outlined in Appendix A. If h$ H,

and h 2 <

N

, then h satis�es the onditions for a 2 - band yli subband �lter if

jH(l)j

2

+ jH(l +

N

2

)j

2

= 2 for l = 0; � � � ;

N

2

� 1: (3.19)

A relatively low GTC yli subband �lter an be generated in the DFT domain by

�xing the magnitude response jH(l)j for l = 0; : : : ;

N

2

� 1 and hoosing the phase

6

H(l) for l = 0; : : : ;

N

2

� 1 randomly.



CHAPTER 4

OPTIMAL SIGNALING FOR MULTIMEDIA STEGANOGRAPHY

Conventional ommuniation methods employ a wide variety of signaling tehniques

whih essentially map a bit sequene to a real valued sequene. The real valued

sequene is in turn transmitted over a hannel. However, ommuniation tehniques

for the purpose of multimedia steganography or data hiding have to transmit the

real valued sequene orresponding to the signal onstellation superimposed on the

original ontent (without a�eting the �delity of the original ontent notieably). In

Chapter 3 we explored the possibility of super-positioning the signature sequene

onto the ontent. However, there exists other options for embedding the signature

in the ontent.

In this hapter, we explore pratial solutions for signaling methods for

multimedia steganography. Data hiding is seen as a sophistiated signaling tehnique

using a oating signal onstellation. We propose suh a signaling method and present

both theoretial and simulated evaluations of its performane in an additive noise

senario. The problem of optimal hoie of the parameters of the proposed tehnique

is also explored, and solutions are presented.

4.1 Problem Statement

The proess of data hiding in images onsists of an embedder E, and a detetor D.

If I is the original or over image, and b is a sequene of bits to be embedded in the

image, the stego image

^

I (the image with the embedded data) is obtained as

^

I = E(I;b;K) (4.1)

where K is a key. We expet the image

^

I to undergo some modi�ation (like

lossy ompression) before it reahes the reeiver (detetor D), where the hidden

bit sequene is extrated. Let

~

I =

^

I+N be the reeived image.

48
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Depending on whether the method is esrow or oblivious, the detetor takes

the form

~

b =

(

D(

~

I;K; I) esrow

D(

~

I;K) oblivious

(4.2)

In most data hiding methods, the bit sequene to be embedded, viz. b, is onverted

to a form suitable for embedding in the over image. Let s = S(b). In other words,

the signaling method for the steganographi ommuniation, viz. S, onverts the

bit sequene b to a signature sequene s. Most often, the signature sequene s is

embedded in some transform domain. Let T represent a unitary transformation

employed, and C = T (I). For an M � N image I, C is M � N dimensional. The

overall embedding and detetion operations now take the following form:

C = T (I) s = S(b)

^

C = E(C; s)

^

I = T

�1

(

^

C)

~

I =

^

I+N

~

C = T (

~

I)
~
s = D(

~

C)

~

b = S

�1

(
~
s)

(4.3)

From a signal proessing perspetive, data hiding methods an be lassi�ed into two

ategories, depending on the type of embedding and deteting operators. In the �rst

ategory [9, 12℄ lies methods where the E adds the signature sequene linearly to

C, as in Chapter 3, and D detets
~
s from

~

C by orrelative proessing. For linear

methods, if the original image is not available at the reeiver, (or if C is not known),

then the original image itself (or its transform oeÆients C) is noise, for the purpose

of detetion of the hidden bit sequene b. Alternately, linear data hiding methods

employ \onventional" signaling tehniques for data hiding. In the seond ategory E

and D are non-linear. One of the important harateristis of the non-linear methods

is their ability to suppress the noise due to the original image (or self-noise), even

though the original image is not available at the reeiver.

For linear data hiding methods (or Type I methods), the purpose of the deom-

position is to obtain a favorable distribution of the image and proessing noise in the

di�erent bands. However we shall see that even with ideal redistribution of the two

noise soures, linear or Type I data hiding an never be optimal.
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4.2 Non linear Data Hiding

The non-linear methods are apable of utilizing the robust low frequeny bands

even though the original image is not available at the detetor. In one of our prior

arts [15℄ the signature is introdued in 8 low frequeny DCT oeÆients (of eah

8 � 8 blok). The vetor x of the low-frequeny DCT oeÆients is srambled by

means of an (invertible) yli all-pass �lter F with pseudo random oeÆients. Let

y = F(x). The signature is added and deteted in the srambled `domain' y. To

embed the bit we modify the signs of many small amplitude oeÆients of y so that

the resulting sequene has more positive than negative oeÆients. CoeÆients with

large amplitudes in the srambled domain y are untouhed. Altering (by ipping

signs) only the small magnitude oeÆients guarantees that the distortion introdued

is tolerable. The modi�ed sequene
^
y is unsrambled to obtain the modi�ed (DCT)

oeÆients
^
x = F

�1

(
^
y). For deteting the buried bit, the reeived vetor

~
x is

srambled by the �lter F to obtain
~
y. The exess number of positive oeÆients

is ounted. Note that by treating both high and low magnitude oeÆients of
~
y

with equal weight (only the sign of the oeÆient is onsidered), suppression of

image noise is ahieved. Unlike linear detetion methods using orrelative proessing

(whih would attah more signi�ane to the high amplitude oeÆients), in this

ase, large magnitude oeÆients a�et the result of the detetion proess in the

same way as the small magnitude oeÆients.

In the data hiding sheme by Wang et. al. [59℄, the signi�ant wavelet oeÆ-

ients are altered. The oeÆients are modi�ed so that they quantize to an even or

odd value depending on the bit to be embedded. In [54℄ Wu et. al. introdue a

similar sheme based on JPEG quantizers. The signature is introdued in the DCT

domain. Chen et. al [80℄ provide a more formal treatment of data hiding tehniques,

that use the quantization index to embed bits (methods whih fore the quantized

indies to take a desired value depending on the information signal to be embedded).
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In fat the earliest data hiding methods [38, 39℄, whih modi�ed only 1 or 2 LSBs

of images were also non-linear. For example, a method whih modi�es only 2 LSBs

may be onsidered as a form of quantization index modulation where the step size

of quantizer used is 4. In reent data hiding literature, the data hiding methods

[54, 59, 80℄ employing quantization are referred to as Type II methods. In the next

setion we provide a generalization of Type II methods. The generalization is based

on the observation that quantization ahieves self-noise suppression beause of its

periodi nature. This implies that other periodi funtions are also (probably better)

andidates for this purpose.

4.3 Data Hiding as a Signaling Tehnique

Consider a (metri) spae I of vetors C (eah point in the metri spae may

orrespond to the transform oeÆients of some image). Let C represent the

transform oeÆients orresponding to the original (over) image. To embed a bit

sequene b of length n

b

, we should be able to de�ne a onstellation with a minimum

of 2

n

b

points in I. The problem now is the hoie of a signaling set or a signal

onstellation, suh that any point in I an be reloated to a point in the onstel-

lation orresponding to the arbitrary bit sequene to be hidden, without pereptual

distortion. The new point to whih the image (or C) is moved is then the stego

image, (or its transform oeÆients

^

C). If the spae I is tiled by the onstellation,

reasonably low amounts of distortion an be ahieved. On the other hand, we also

need the hidden bits to survive some distortion that the stego image is expeted

to undergo before it reahes the detetor. Therefore we need the points of the

onstellation to be \well separated".
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4.3.1 Signaling for Data Hiding

Given a sequene of bits b of length K, and oeÆients C 2 <

MN

(transform oeÆ-

ients of M � N images), where typially K << M � N , we need to map the bit

sequene to a new \state"

^

C. Let � = T (N), be the e�et of the additive noise N in

the hannel on the transform oeÆients

^

C. Or,

~

C =

^

C+�. However, we would like

to minimize the hannel noise �. We know that most of the noise would be onen-

trated in the high frequeny omponents of the image (a ompression method like

JPEG quantizes the high frequeny oeÆients very oarsely). Therefore a signi�ant

portion of the noise an be eliminated if the data is embedded in the transform

domain, and high frequeny oeÆients are ignored (not used for data hiding). We

ould use a subset (low-to-medium frequenies)  2 <

D

of the oeÆients C 2 <

MN

for data hiding.

We an now onsider any image as a point in D dimensional metri spae (of

D-dimensional vetors ). Therefore, the over-all embedding and deteting sequenes

now take the form

s = S(b)
^
 = E(s; ) Embedding

~
s = D(

~
)

~

b = S

�1

(
~
s) Detetion

: (4.4)

The over all signaling method has now been split into two parts - a part (E and D)

whih depends on , and the part S and S

�1

whih are independent of . Moreover,

s represents a point in a signal onstellation with known origin. We shall see that E

and D an be implemented as simple periodi funtions, and of ourse, a wealth of

knowledge exists for the hoie of the onventional signaling part S.

4.3.2 Self-Noise Suppression

Figure 4.1 is an illustration of the funtion of E and D. In the �gure, for purposes

of illustration we have D = 2 (typially, for images D may be of the order of tens of

thousands). A bit sequene b is mapped by S to a point s in the bold retangular

region near the origin. The �lled box represents the position of s in D-dimensional
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Figure 4.3 (a) Linear over image esrow data hiding. (b) Equivalent additive noise

hannel. () Non-linear oblivious detetion data hiding. (d) Equivalent additive

noise hannel.

spae. The �lled irles represent the position of 

1

and 

2

(transform oeÆients

of 2 images). E maps 

1

to the point
^


1

and 

2

to
^


2

. D, on the other hand, would

map both
^


1

and
^


2

to s. We all the pair (E , D) as the self-noise suppression

(SNS) method. As explained earlier, for linear oblivious data hiding tehniques, for

the purpose of detetion of the hidden bits in an image, the image itself is noise.

The SNS operators \suppress" the original image omponent in
~
 and extrat the

omponent
~
s whih is needed for obtaining b. The SNS method, whih obtains

the origin of the signal onstellation, is haraterized by step sizes �

i

; i = 1 � � �D

orresponding to eah of the D dimensions. The SNS method uses periodi funtions

in eah of the D dimensions to translate the point s in the onstellation with known

referene (the origin), to points like
^


1

or
^


2

depending on the position of the original

oeÆients (

1

or 

2

) suh that the distortion introdued (d(

1

;
^


1

) or d(

2

;
^


2

)) is

minimal.

4.3.3 Correlation and Equivalent Noise

Before we explore spei� SNS tehniques, onsider the linear over image esrow

data hiding method of Figure 4.3 (a). Let � � [f

�

(�); �

2

�

℄ be additive noise in the

hannel.

^
 = + s

~
 =

^
+ �

~
s

+

=
~
� 

~
s

+

= s + �

(4.5)
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Let the signature be a binary sequene (s(k) = �t

k

; k = 1 � � �D). For simpliity we

further assume that t

k

= t 8 k. This is equivalent to the senario in Figure 4.3 (b),

of transmitting s over a hannel with additive noise variane �

2

�

.

In suh a senario, the normalized inner produt of the s and
~
s

+

(for suÆiently

large D) an be written as

�

+

=

s

T

~
s

+

jsjj
~
s

+

j

=

R

1

�1

t(t + �)f

�

(�)d�

q

R

1

�1

t

2

(t+ �)

2

f

�

(�)d�

: (4.6)

If the pdf f

�

(�) is even, then it an be easily seen that

�

2

+

=

t

2

t

2

+�

2

�

or �

2

�

=

t

2

(1��

2

+

)

�

2

+

(4.7)

Now onsider the Type II data hiding senario in Figure 4.3 (). To di�erentiate

between the the reovered signature sequenes
~
s in Type I and Type II methods, we

use di�erent subsripts - + and E. Let �

E

be the normalized inner-produt of s and

~
s

E

. We ould represent Figure 4.3 () by Figure 4.3 (d) where, similar to Eq. (4.7),

�

E

=

s

T

~
s

E

jsjj
~
s

E

j

�

2

�

e

=

t

2

(1��

2

E

)

�

2

E

: (4.8)

Even though the additive noise in the hannel is the same as the previous (linear

esrow tehnique of (a)) ase, typially, �

2

�

e

> �

2

�

(or �

E

< �

+

). We may onsider �

2

�

e

as the variane of the equivalent additive noise. The di�erene �

2

�

e

� �

2

�

may then be

onsidered as the penalty paid for having to \guess" the origin of the signal onstel-

lation. We shall see later that for the proposed SNS tehnique, analytial evaluation

of �

E

is possible (similar to Eq. (4.6)). From the value of �

E

, the equivalent additive

noise variane (�

2

�

e

) an be evaluated.

4.3.4 Periodi Funtions for SNS

As mentioned in the previous setion, what we need is a periodi funtion for tiling

the spae of  with a onstellation de�ned by a onventional signaling sheme (with

known origin). Classi Type II methods, whih embed a zero or one by foring
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the quantization index to be odd or even in e�et, use a periodi funtion of square

waves (O/E M) in Figure 4.2. The �gure also shows other possible periodi funtions.

Dither Modulation (DM), proposed by Chen et. al in [80℄ may an be onsidered as

using the saw-tooth periodi funtion in Figure 4.2. In Ref. [81℄, we introdued a

ontinuous periodi funtion (CM) for self-noise suppression. Another possibility is

a Sine / Cosine periodi funtion (CsM).

4.3.4.1 Dither Modulation In this method

^
 = E(; s) = Q( + s)� s

~
s = D(

~
) = Q(

~
)�

~
 (4.9)

where, Q represents a uniform quantizer with step size �.

Figure 4.4 illustrates the simulated performane of this SNS tehnique for

uniformly distributed and binary sequenes s(k). The simulations were obtained

for Gaussian sequenes  (�



= 200) of length 4096 for � = 30. The normalized

orrelation � was obtained by averaging over many realizations of additive Gaussian

noise �.

Note that embedding any signature sequene s (even a sequene of zeroes!)

results in a mean square distortion of

�

2

12

. The SNR in the x-axis therefore represents

the ratio of the power of the distortion introdued to embed the signature, viz,

�

2

12

,

to the variane of the additive noise �

2

�

- SNR = 10 log

10

�

2

12�

2

�

. It is lear from Figure

4.4 that the best performane is obtained for binary �

�

4

sequenes. This is due to

the fat that as long as ��=4 � s(k) � �=4, orresponding points in neighboring

quantization ells are maximally separated.
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Figure 4.4 Performane of dither modulation for uniformly distributed and binary

signature sequenes

4.3.4.2 Continuous Periodi SNS The algorithm for D(
~
) of the CM-SNS is as

follows:

q(k) = rem(

j~(k)j

�

); k = 1 � � �D

~s(k) = (q(k) �

�

2

) ? (

3�

4

� q(k)) : (q(k)�

�

4

)

In the above equation x = (Condition) ? x

1

: x

2

stands for \If Condition is

true x = x

1

, else, x = x

2

", in the spirit of the C language. The operation rem(:)

stands for \reminder".

Let p = D(). To introdue the signature s, we need to modify  to obtain

^
 suh that s = D(

^
). To ahieve this, the distortion e(k) introdued in oeÆient

(k); k = 1 � � �D is equal to je(k)j = ĵ(k)� (k)j = js(k)� p(k)j. The algorithm for

embedding the sequene s in  is as follows

e(k) = s(k)� p(k)
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Figure 4.5 Comparison of DM (QIM), CM-SNS and osine modulated SNS

tehniques

e(k) = (rem

 

(k)

�

!

>

�

2

) ? � e(k) : e(k)

̂(k) = ((k) � 0) ? (k) + e(k) : (k)� e(k)

Figure 4.5 ompares the performane of the CM-SNS tehnique with that of the

dither modulation (DM) tehnique for s(k) = �

�

4

. The better performane of the

proposed tehnique (CM) is not surprising, onsidering the periodi funtion used by

CM is ontinuous, as opposed to the DM method. For instane, for the DM method

(employing signature sequenes �

�

4

) noise greater than

�

4

an hange an originally

�

4

signal to �

�

4

, due to the disontinuity. Figure 4.5 also illustrates the performane of

another ontinuous periodi funtion - a osine funtion (CsM) whih performs even

better than CM (espeially for high SNRs). For the osine periodi SNS tehnique,

the detetor an be represented as

s = D(
^
) =

�

4

os(

^


2��

): (4.10)
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However, due to reasons of analytial tratability, we restrit ourselves to CM-SNS.

Additionally, note that at low SNRs, the di�erene between CsM and CM-SNS is

negligible. Typially, data hiding appliations operate at low SNR levels (the ratio

of permitted distortion to additive noise in the hannel).

4.3.5 Analysis of CM-SNS

We shall now analytially evaluate the equivalent noise for the CM-SNS sheme,

when the additive noise in the hannel is � (Figure 4.3 ()). Let � � [f

�

(�); �

2

�

℄, and

s(k)�

�

4

. The expeted value of the normalized orrelation between s and
~
s, similar

to Eq. (4.6), an be obtained as

�

n

=

2

P

1

i=0

R

(i+1)�

2

i�

2

(�1)

i

(

(2i+1)�

4

� �)f

�

(�)d�

s

2

P

1

i=0

R

(i+1)�

2

i�

2

(

(2i+1)�

4

� �)

2

f

�

(�)d�

(4.11)

The main di�erene between Eqs. (4.6) and (4.11) is that in the latter, the integrals

are split into segments of length

�

2

to aount for the periodiity. For Gaussian

f

�

(�), eah term (both of the numerator and denominator) of the above integral an

be solved and expressed in terms of the Gaussian error funtion, erf(t) =

2

�

R

t

0

e

�y

2

2

dy

The variane of the equivalent additive noise �

2

�

e

an then be obtained as

�

2

�

e

=

�

2

12

(1� �

2

n

)

�

2

n

(4.12)

Note that even though the signature (�

�

4

binary sequene) energy is

�

2

16

in Eq.

(4.12) we use the energy of the distortion introdued for embedding the signature ,viz.

�

2

12

, instead. Its bears repeating, that the \signal" for data hiding is the distortion

introdued in the ontent. In the rest of this hapter, the term SNR represents the

ratio of the energy of the \signal" (whih is the distortion introdued), to the energy

of noise in the hannel.

Figure 4.6 is a plot of the normalized orrelation vs the standard deviation of

additive Gaussian noise for various values of the quantizer step size �, obtained from
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Figure 4.6 E�et of additive Gaussian noise. The lines represent values obtained

from simulations. The �s represent the values alulated from Eq. (4.11).

simulations. The stars (�) represent the orresponding values alulated by solving

Eq. (4.11). The exellent agreement between simulation and the values obtained

from analysis on�rm the validity of Eq. (4.11). Figure 4.7 is a plot of �

2

�

e

vs �

2

�

for

various values of �. Note that the equivalent noise variane �

2

�

e

an be onsiderably

greater than �

2

�

, the variane of the additive noise in the hannel.

As mentioned earlier, the hoie of � ditates the distortion introdued by the

embedding funtion D. The distortion introdued for embedding a �

�

4

sequene, is

uniformly distributed between �

�

2

. Therefore, as mentioned earlier, the a variane of

the distortion introdued is

�

2

12

. If the permitted distortion has a variane 

2

, then we

need to hoose � =

q

(12

2

) This implies that � is hosen without any onsideration

of the expeted noise variane �

2

�

! Obviously, this an not be an optimal solution.

This problem an be overome by introduing thresholding in the SNS method.
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4.4 CM-SNS with Thresholding

Let 

2

be the variane of permitted distortion due to data embedding. Let �

2

0

= 12

2

.

The question we are faed with now is that given  and some additive noise �

2

�

, what

is the optimal hoie of � for the SNS method?

We de�ne a modi�ed embedding funtion E

t

with the same deteting funtion

D. Let p = D(). In the modi�ed embedding method, the distortion je(k)j

introdued in oeÆient (k), is hard limited to �

�

2

< e(k) <

�

2

, where � < �

0

< �.

The algorithm for embedding the sequene s in  is therefore

e(k) = s(k)� p(k)

e(k) = (e(k) >

�

2

) ? sign(e(k))

�

2

: e(k)

e(k) = (rem

 

(k)

�

!

>

�

2

) ? � e(k) : e(k)

̂(k) = ((k) � 0) ? (k) + e(k) : (k)� e(k)
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Figure 4.8 (a) The retangular funtion. (b) and () Probability distributions of

f

E

(e) - distortion introdued by the modi�ed embedding funtion, and f

S

t

(s

t

) - noise

introdued due to modi�ed embedding funtion.

The distortion e introdued by the modi�ed embedding funtion E

t

has a proba-

bility distribution and variane given by

f

E

(e) =

1

�

ret(�) +

�� �

2�

 

Æ(e�

�

2

) + Æ(e+

�

2

)

!

�

2

e

=

�

2

12�

(3�� 2�) (4.13)

Therefore, we an hoose � > �

0

, and � < �

0

, suh that the distortion

introdued is equal to 

2

= �

2

0

=12 if



2

= �

2

0

=12 =

�

2

12�

(3�� 2�) (4.14)

Note that, with the modi�ed embedding funtion, if
^
 = E

t

(; s), then D(̂) 6= s.

The di�erene s

t

= s�D(̂) has a probability distribution and variane given by

f

S

t

(s

t

) =

�

�

Æ(s

t

) +

1

�

ret(�� �)

�

2

s

t

=

(�� �)

3

12�

(4.15)

Alternately, we ould assume that a distortion of variane �

2

=12 (orresponding to

s) was introdued in  by the embedding sheme, along with a noise of variane �

2

s

t

,

given by Eq. (4.15).

One again, the equivalent additive noise due to thresholding an be obtained

by a measure of orrelation. Let

�

t

=

�

�

�

4

+

2

�

R

���

2

0

(

�

4

� x)dx

r

�

�

�

2

16

+

2

�

R

���

2

0

(

�

4

� x)

2

dx

=

p

3�(2�� �)

�

q

6�

3

�

4�

3

�

+�

3

:
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The equivalent additive noise, is therefore

�

2

s

t

e

=

�

2

(1� �

2

t

)

12�

2

t

(4.16)

The plot of �

s

t

vs �

s

t

e

for di�erent values of � is shown in Figure 4.9.

4.4.1 Combined E�et of Channel Noise and Thresholding Noise

Let the additive noise in the hannel is Gaussian with variane �

2

�

. The thresholding

noise has a probability distribution given by Eq. (4.15). The probability distribution

of the total noise, z = � + s

t

, viz f

Z

(z) is obtained as

f

Z

(z) =

Z

1

�1

f

�

(x)f

S

t

(z � x)dx: (4.17)

If f

�

(�) is Gaussian,

f

Z

(z) =

�

�

f

�

(z) +

1

2�

(

erf

 

z +

���

2

p

2�

�

!

� erf

 

z �

���

2

p

2�

�

!)

(4.18)
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The normalized orrelation �

nt

, and hene the equivalent additive noise an then be

obtained by solving

�

nt

=

2

P

1

i=0

R

(i+1)�

2

i�

2

(�1)

i

(

(2i+1)�

4

� z)f

Z

(z)dz

s

2

P

1

i=0

R

(i+1)�

2

i�

2

(

(2i+1)�

4

� z)

2

f

Z

(z)dz

(4.19)

One again, the solution for the above integral an be obtained in terms of the

Gaussian error funtion, and the equivalent noise variane �

2

nt

is obtained from

�

2

nt

=

�

2

(1� �

2

nt

)

12�

2

nt

: (4.20)

Figure 4.10 is a plot of the normalized orrelation �

nt

versus the SNR for values

of k = �=�

0

ranging from 1 to 1.6. The k = 1 ase orresponds to no thresholding

(or �

0

= � = �). For all four plots, �

0

= 30. This implies that the distortion

introdued to embed the signature is the same for all the four ases. The plots have

been obtained from simulations. The �'s represent the orresponding values obtained

from alulating the normalized orrelation from Eq. (4.19).

Note that as the hannel noise inreases, we need to inrease the size of �

for the optimal SNS sheme. This an be explained as follows. Let the value of

an arbitrary oeÆient of
~
 be, say, 350. Further, it is known that the oeÆient

ould not have undergone drasti modi�ation in the hannel (for example, we know

that the ontent ould have only undergone lossy ompression of reasonably good

quality). We an now say with a high degree of ertainty that the orresponding

oeÆient in the original ontent had a value between 350� Æ and 350 + Æ (Æ = 30,

for example). For Type I methods, the self-noise of the image is diretly related

to the variane of the image oeÆients. It should be appreiated however, that

`noise' is atually a measure of the lak of information. In other words, the entropy

of the self-noise is equal to the entropy of the original oeÆient, given the reeived

oeÆient. Mathematially, H, the entropy of the self-noise, is given by

H = h( j
~
) (4.21)
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Figure 4.10 Plot of orrelation vs SNR for k = 1; 1:2; 1:4 and 1:6

bits, where h(:) denotes the entropy [76℄. Self noise suppression shemes utilize the

fat that the self-noise entropy H is substantially smaller than h(). Type II methods

therefore employ some sort of predition of  from the reeived signal
~
. The period �

an be onsidered as a degree of on�dene or tightness of the predition. Obviously,

if the hannel noise is low � an be small. On the other hand, if hannel noise is high

we need to hoose larger values of �. However, in traditional Type II SNS methods,

the hoie of � was deided solely by the permitted distortion. The introdution of

thresholding to Type II, goes a long way in overoming that limitation.

We shall refer to the modi�ed SNS sheme (SNS with thresholding) as a Type

III method. It is interesting to note that as �! �, Type III beomes Type II. What

is more interesting is that as � ! 1 (and � is �nite), Type III systems beome

Type I! As � approahes 1 every oeÆient of  will be \perturbed" by ��. This

is exatly the same as adding a binary ( ��) sequene to !
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Table 4.1 Optimal values of k =

�

�

0

for di�erent SNRs (SNR = 10 log

10

(



2

�

2

�

))

SNR k SNR k SNR k

0.00 1.87 3.01 2.57 4.77 3.14

6.02 3.59 6.99 4.04 7.78 4.40

8.45 4.78 9.03 5.11 9.54 5.41

10.00 5.71 13.01 8.10 14.77 9.95

16.02 11.51 16.99 12.85 17.78 14.10

18.45 15.20 19.03 16.25 19.54 17.30

20.00 18.20 20.97 20.40 21.76 22.30

Also note that from the trend in Figure 4.10 neither Type I nor Type II an

perform as well as Type III methods. For high SNRs the \optimal" Type III method

is \lose" to Type II. However, as the SNR redues, the \optimal" Type III method

approahes Type I. The steps to obtain the optimal parameters for the Type III

CM-SNS, for a given permitted distortion 

2

and additive noise variane �

2

�

, an be

summarized as follows:

� Obtain �

2

0

= 16

2

.

� Let k > 1 suh that � = k�

0

.

� Evaluate � under the onstraint of Eq. (4.14).

� Choose k to maximize �

nt

(Eq. (4.19)).

Table 4.1 shows the optimal values of k =

�

�

0

, where �

2

0

= 12

2

, for di�erent signal to

noise ratios (SNR=10 log

10

(



2

�

2

�

). Figure 4.11 depits the maximum value of � and

the orresponding theoretial apaities (assuming that the onventional signaling

part that follows the SNS approahes theoretial apaity) for di�erent SNRs, for

esrow, Type III and Type II systems. The relationship between � and apaity is

obtained by using Eq. (4.12) to obtain the variane �

2

�

e

of the equivalent additive

noise, and then using the Gaussian apaity equation [76℄

C =

1

2

log

2

 

1 +



2

�

2

�

e

!

: (4.22)
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Figure 4.11 The maximum value of normalized orrelation � (left) and orre-

sponding apaities (right) ahievable by esrow, Type III and Type II methods

Note that Type III methods an signi�antly outperform Type II methods (for typial

SNRs of interest), and ahieve about half the apaity of esrow methods.

4.4.2 Sub-optimality of Type III Methods

Even though Type III methods outperform Type I (oblivious) and Type II methods

by a onsiderable margin, they are still not the best possible solution. To see why,

onsider the power onstrained ommuniation sheme modeled as

~
 = +w + �; (4.23)

where ;w; � 2 <

N

, and (i) � N [0; �

2

℄; w(i) � N [0; 

2

℄ and �(i) � N [0; �

2

�

℄ 8 i

are i.i.d. Further ; w; and � are independent. In the above model w is power

onstrained (variane 

2

), and � is the noise in the hannel.
~
 is the signal reeived

at the reeiver, whih does not have aess to . This problem is exatly similar

to the oblivious data hiding, where  is the ontent, � is the additive noise in the
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hannel, and w =
^
� . It is obvious, that if  is available at the reeiver, one ould

theoretially ahieve a apaity of

C

0

=

1

2

log

2

 

1 +



2

�

2

�

!

(4.24)

bits per oeÆient. Costa [82℄, however, argued that one ould ahieve apaity C

0

even if  is not available at the deoder. Unfortunately, this would require the use of

odebooks of size 2

N(C

0

+L)

where

L =

1

2

log

2

 

1 +



2

(

2

+ �

2

+ �

2

�

)

�

2

�

(�

2

�

+ 

2

)

!

: (4.25)

On the other hand, the maximum odebook size used for Type III methods (employed

by the signaling sheme (S;S

�1

) whih will be desribed in the next hapter) is 2

NC

0

.

To get a learer piture of the di�erene in omplexity between the two approahes,

let us onsider a spei� ase of data hiding in 256� 256 images. Some reasonable

hoies of N = 8192 (8192 transform oeÆients used for data embedding), �

2

=

12000 (variane of the low frequeny oeÆients used for data hiding), 

2

= 32

(distortion of the host signal), and �

2

�

= 320 imply L � 40C

0

. In other words, the

Type III method an ahieve apaities of approximately

C

0

2

(as shown in Figure 4.11)

while their omplexity is 2

40

times less than methods whih an approah apaity C

0

.

However, this does not rule out the possibility, that there may exist other suboptimal

alternatives whih an do better than Type III methods while maintaining reasonable

signaling omplexity. However, as we have already seen, other periodi funtions for

(E ;D) may perform better than the triangular funtion proposed and analyzed in

this paper.

One the optimal values of � and � have been hosen, for a given additive noise

variane �

2

�

and given distortion tolerane 

2

, the next step is to hoose the optimal

\onventional" signaling method for the equivalent noise �

2

�

e

(or orrelation �

nt

). In

the next hapter, we explore options for the hoie of the onventional signaling

method.



CHAPTER 5

FFT-BASED SIGNALING

5.1 Conventional Signaling

The onventional signaling part, viz. the pair (S;S

�1

), addresses the problem of

mapping a K length bit sequene b to a possibly real valued sequene s of length D,

where D >> K. As a simple approah we have

s = [s

1

s

2

� � � s

K

℄; (5.1)

where s

i

= sign(b(i))�; i = 1 � � �K, and � is random vetor (obtained from a random

seed or the private key K), of length

D

K

. On the other hand, we ould generate

2

K

sequenes s

i

; i = 1 � � �2

K

of length D, suh that the sequenes s

k

are maximally

separable. Geometrially, the sequenes s

k

an be represented by a set of 2

K

points

in a D-dimensional hypersphere. In other words, the minimum distane between

any two of 2

K

points should be as high as possible, under the given onstraint of

the hypersphere radius. The binary sequene [b

1

b

2

� � � b

K

℄ an be interpreted as a

deimal number between 0 to 2

K

� 1. To transmit a partiular sequene of bits,

whose deimal equivalent is say d, we hoose s = s

d

.

Detetion of the hidden bit sequene, or equivalently the number d an be

aomplished as

~

d = argmax

i=0���2

K

�1

h
~
s; s

i

i.

While it is assured that the latter sheme, will approah the hannel apaity

loser than the former, in pratie, implementation of the seond sheme may be

prohibitively expensive, espeially for large K and/or D. A reasonable ompromise

might be to hoose an alphabet size between 2 of the former (bit-by-bit signaling)

tehnique , and 2

K

of the latter. For example, if the alphabet size is hosen as 2

K

k

,

then a single member of the alphabet is deteted from eah of the k sequenes of

length

D

k

.

69
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An FFT-based signaling method proposed in the next setion o�ers an eÆient

way to inrease the alphabet size used for signaling, while keeping the omputa-

tional omplexity at manageable levels. Furthermore, the maximally separable signal

onstellation itself is generated from random seeds.

5.2 FFT Based Signaling

In the FFT-based signaling tehnique, the maximally separable sequenes are

onstrained to be orthogonal. Let s

k

2 <

L

k

; L

k

= 2

p

k

�1

. Maximally separable

signature sequenes s

l

k

; l = 1 � � �2

p

k

, orresponding to p

k

bits, are obtained as L

k

orthogonal sequenes and their negatives. Random signature spaes are generated

from a seed. This is ahieved by onstraining the signatures to be yli all-pass

sequenes.

5.2.1 Cyli All-Pass Sequenes

Let h 2 <

N

and H = F(h) where, F(:) stands for the Disrete Fourier Transform

(DFT). Further, let h be suh that

j H(n) j= 1 for n = 0; 1; � � � ; N � 1 (5.2)

Hene

(H:H

�

) = [1; 1; � � � ; 1℄: (5.3)

Taking the IDFT of both sides of Eq. (5.3) we get

F

�1

(H:H

�

) = [1; 0; 0; � � � ; 0℄: (5.4)

As F

�1

(H:H

�

) is the irular autoorrelation of the vetor h, it follows that all

irular shifts of h are mutually orthogonal [79℄. As the phases �

n

; n = 0; 1; : : : ; N�1

of the elements of H an be arbitrary, we have in�nitely many hoies for the vetor

h with mutually orthogonal irular shifts. For real h we have

N

2

� 1 phase values
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whih an be arbitrarily hosen. Thus a pseudo-random all pass sequene of length

N an be generated from a pseudo-random (uniformly distributed between � and

��) sequene of length

N

2

� 1. If

�

k

=

8

>

<

>

:

0 or � k = 0; k =

N

2

�

k

k = 0 � � �

N

2

� 1

��

N�k

k =

N

2

+ 1 � � �N � 1

H(k) = os(�

k

) + i sin(�

k

); k = 0 � � �N � 1; (5.5)

where �

k

; k = 1 � � �

N

2

� 1 are randomly distributed between � and ��, i =

p

�1,

then h = F

�1

(H), is a yli all-pass sequene.

Alternately, a pseudo-random binary sequene is generated from a seed. Then,

the unique all-pass sequene \losest" (in the mean-square sense) to the binary

sequene is obtained (this guarantees that the signature energy will not onentrated

in few oeÆients).

Let f = [f(0) f(1) � � � f(N � 1)℄ be a random binary sequene. We need to

�nd the all-pass sequene that is losest to f . In other words, we need to �nd the

vetor h = [h(0) h(1) � � �h(N � 1)℄

T

that minimizes the error " de�ned as

" =

N�1

X

n=0

j h(n)� f(n) j

2

; (5.6)

subjet to the onstraint that h is a yli all-pass sequene. Sine the DFT of a

(yli) all-pass sequene an be written as H = [e

j�

0

e

j�

1

� � � e

j�

N�1

℄, let

h(n) =

P

N�1

k=0

e

j(

2�kn

N

+�

k

)

f(n) =

P

N�1

k=0

a

k

e

j(

2�kn

N

+�

k

)

for n = 0 � � �N � 1. It an be easily shown (see Appendix) that the error " is given

by

" = N

h

N � 2

N�1

X

k=0

a

k

os(�

k

� �

k

) +

N�1

X

k=0

a

2

k

i

: (5.7)

The error is minimized if we hoose �

k

= �

k

for k = 0; 1; � � � ; N � 1. In other words,

we hoose H to have the same phase as F, while the magnitude of all oeÆients of

H are set to unity.
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5.2.2 Signal Constellation

The proedure employed for generating the maximally separable sequenes is as

follows.

1. From a random seed, generate a binary (�1) sequene e

k

of length L = 2

p

k

�1

.

2. Obtain the length-L

k

DFT E

k

of the binary sequene.

3. Obtain S

k

from E

k

suh that jS

k

(l)j = 1; l = 1 � � �L

k

and

6

S

k

(l) =

6

E

k

(l); l =

1 � � �L

k

.

4. Take the length-L

k

IDFT of S

k

to obtain s

k

. s

k

is a yli all-pass funtion.

All L

k

= 2

p�1

yli shifts of s

k

are orthogonal.

5. s

k

and the other L

k

� 1 yli shifts of s

k

, and their negatives are the 2

p

k

maximally separable sequenes.

Note that the inner produt of the sequene s

k

of length L

k

with eah of the 2L

k

= 2

p

k

maximally separable sequenes an be obtained by one length-L

k

yli orrelation

eÆiently implemented using the FFT. The index of the maximum absolute value

of the yli orrelation oeÆients gives then deteted sequene of p bits. Let

0 � d

k

� 2

p

k

� 1 be the deimal representation of s

d

k

.

s

d

k

=

(

�C(s

k

; d

k

) if d

k

< 2

p�1

��C(s

k

; d

k

� 2

p�1

) if d

k

� 2

p�1

(5.8)

where C(x; q) stands for yli shift of the vetor x by q (ounter-lokwise) positions,

and � is a saling fator that depends on � of the SNS tehnique. For detetion,

R

k

= F(s

k

)F(
~
s

k

) r

k

= F

�1

(R

k

)
(5.9)

where F denotes the DFT, and,

~

d

k

=

(

arg max

i=0���L

k

�1

jr

k

(i)j if r

k

(i) > 0

arg max

i=0���L

k

�1

jr

k

(i)j+ L

k

if r

k

(i) � 0:
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An easier way of generating yli all-pass sequenes s

k

would be to generate them in

the DFT domain by hoosing unit magnitudes for DFT oeÆients, but hoosing the

phases randomly. However, we need binary sequenes of length

�

4

for the optimality

of the self-noise suppression method employed to �nd the origin of the oating signal

onstellation. Steps 1-4 ensure that the generated signature sequenes s

k

is an all-

pass sequene losest in the mean- square sense to the binary random sequene e

k

.

The hoie of the length L

k

of eah segment (whih in-turn deides the alphabet

size) will depend mainly on the orrelation �

n

t

for the partiular hoie of � and �.

Typially, lower the value of �

n

t

, higher will be the value of L

k

. Obviously, other

fators like omputational omplexity may also inuene the hoie of L

k

.

As the segment lengths are restrited to be powers of 2 for eÆient implemen-

tation of the FFT, smooth trade-o�s between bit-rate and the probability of error an

only be ahieved by redundant signaling. In the next setion we propose a suitable

and pratial redundant signaling tehnique for improving the over-all eÆieny of

the signaling method.

5.2.3 Redundant Signaling

For the proposed FFT-based signaling tehnique, we propose a ombination of Reed-

Solomon oding [83℄ and introdution of parity for error orretion. A sequene of

d-bit symbols D

1

to D

n

is enoded using Reed-Solomon enoding over GF(2

d

), with

blok size of 2

d

� 1 (if n < 2

d

� 1, the \shortened" ode an be easily implemented

by zero-padding D

1

� � �D

n

to length 2

d

�1, and onsidering the non-existent symbols

as \erasures" at the deoder). The RS enoded sequene of d-bit symbols is then

\appended" with q-parity bits to produe a p-bit symbol sequene, where p = d+ q.

Signaling with parity an be done eÆiently for the FFT-based tehnique. To

introdue one parity bit (or redue the valid points in the onstellation by a fator

of 2) we hoose only odd values D between 0 and 2

p�1

and only even values between
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2

p�1

and 2

p

. This would orrespond to hoosing the largest from the even-indexed

oeÆients of r

k

in Eq. (5.9). If L

k

= 2

p�1

is the length of r

k

, the even indexed

oeÆients r

e

k

of r

k

an be obtained as (proof in Appendix)

R

2

k

(l) = R

k

(l) +R

k

(l + L

K

=2); l = 0 � � �

L

k

2

� 1

r

e

k

= F

�1

L

k

=2

(0:5R

2

k

): (5.10)

In the above equation, F

�1

L

k

=2

(:) is a

L

k

2

- point IDFT (the fator 0:5 is irrelevant as our

intention is only to pik the oeÆient with the highest magnitude). For introduing

q parity bits, (in the segment L

k

representing p bits, where p = q + d) valid points

in the onstellation are given by

D =

(

m2

q

� 1 D < L

k

� 1

m2

q

L

k

� D < 2L

k

m = 0; 1; : : : ;

L

k

2

q

(5.11)

In this ase, only oeÆients of r

k

, with indies whih are multiples of 2

q

are needed.

For l = 0 � � �

L

k

2

q

� 1,

R

q

k

(l) =

P

2

q

�1

i=0

R

k

(l + i

L

k

2

q

) r

q

k

= F

�1

L

k

=2

q

(R

q

k

):

Signaling with parity is espeially useful for very low SNR data hiding (if �

n

t

in Eq.

(4.19) is very small - whih results in large p or L

k

).

For example, let  2 <

8192

. For a low-noise senario we may use segment

lengths of L

k

= 64 for eah p = 7 bit symbol (L

k

= 2

p�1

). Under suh a senario,

we may use for example two bloks of RS ode (127,111) over GF(2

7

= 128), whih

an orret up to 8 errors in eah blok of length 127 (number of soure bits =

2bloks � 111symbols per blok � 7bits per symbol = 1554). However, if the SNR

is low, and we use say segment sizes of L

k

= 1024 (p = 11). If we do not employ

parity bits, we need to use an RS ode, say (2047, 2045). The maximum blok size

possible is however, 8192=1024 = 8. We need a shortened ode. We may start with

a soure of 6 11-bit symbols (66 bits), zero-padded to length 2045, and then perform

(2047,2045) RS enoding, whih an orret 1 error out of the 8 transmitted symbols.
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Obviously this is omputationally expensive. An alternative is to use L

k

= 512 and

p = 10, and also have say q = 5 parity bits. We may now start with 14 5-bit soure

symbols (70 bits), and zero-pad it to a length 29 symbol blok. This is followed by

a omputationally simple RS enoding (31,29). The �rst 16 5-bit symbols obtained

after RS enoding are then made into 10-bit symbols by introduing 5 parity bits

(whih is done eÆiently in the FFT-based method). For detetion, the parity bits

are stripped �rst to obtain a 16 symbol sequene of 5 bit symbols. This may be

zero-padded to length 31 and RS deoded.

For data hiding appliations where omputational omplexity of detetion is

not a serious limitation, or if hannel noise is low (implying small p), signaling with

parity would be sub-optimal. However, if p is large, and q = 0 (or d = p), then RS

enoding / deoding may beome prohibitively expensive.



CHAPTER 6

OPTIMAL DESIGN OF DATA HIDING METHODS

In this hapter, we explore the intriaies of the duality of data hiding and data

ompression to help develop optimal data hiding tehniques for images, that an

reasonably resist lossy ompression. The problem of eÆient data hiding is split into

two sub-problems First is to maximize the resoure - whih is the permitted distortion

of images. The seond is the eÆient use of the resoure by means of sophistiated

signaling tehniques presented in the earlier hapters.

6.1 Introdution

Growing onerns over protetion of intelletual property rights of digital multimedia,

has resulted in an explosive growth of the �eld of data hiding, or multimedia

steganography. Appliations of data hiding an be lassi�ed in many ways. One

lassi�ation of data hiding may be based on the key required to extrat the hidden

data. For example \hidden" aptions in multimedia data may be aessed through

a publi key (though there is no reason to \hide" something that an be read by

anybody, using data hiding for embedding aptions assures that the aption stays

with the data irrespetive of format onversions). On the other hand private key

steganography is the basis for appliations like invisible watermarking and seret

ommuniations. Another lassi�ation may be based on the robustness requirements

of the data hiding appliation. For instane, appliations like watermarking typially

require robustness to intentional tampering. On the other hand, some appliations

may need robustness only to unintentional attaks (attaks not espeially direted

at removing the hidden data) like lossy ompression. Yet another lassi�ation

may be depending on the restritions to be plaed on data-hiding. For example,

invisible watermarking is expeted to resolve rightful ownership of the multimedia

76
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ontent, unambiguously, in a ourt of law. For this purpose many restritions may

have to be imposed [26, 23, 22, 29℄ on data hiding for watermarking. On the other

hand virtually no restritions are plaed on appliations like seret ommuniations,

(ommuniation between two private parties through a subliminal hannel failitated

by data hiding).

We fous on data hiding appliations and methods for images and video.

We also restrit ourselves to appliations that only require robustness to lossy

ompression. In the next setion, we suggest possible appliations [21℄ where only

robustness to lossy ompression is an issue, espeially for seure multimedia delivery.

We then investigate the inverse relationship between eÆieny of lossy ompression

and eÆieny of data hiding. In fat, data hiding would be impossible if lossy

ompressors were ideal. Therefore eÆient data hiding should utilize holes in the

ompression methods. We explain and illustrate why, while it is very easy to develop

eÆient data hiding tehniques if the type of ompression the multimedia data is

likely to undergo is known in advane, it may be very diÆult to design tehniques

robust to any type of ompression [21℄. In Setion IV we point out a hole ommon to

all known ompression shemes, and suggest methods to utilize that hole for eÆient

data hiding.

6.2 Data Hiding For Seure Multimedia Delivery

Data Hiding is expeted to be a boon for multimedia ontent providers. Content

providers an expet to ommuniate with ompliant multimedia players through

the subliminal hannel provided by data hiding. This ommuniation ould ontrol

aess, provide ustomized delivery, and provide solutions for pay-per-view imple-

mentations [7℄. A ompliant multimedia player would honor an agreed upon protool

for extrating (and abiding by) the hidden ontrol information.
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Hidden Data
Content +Multimedia

Content

Original

MPEG

H.263

Fractal Video

Subband Video

Prop. Comp

Player 1

Player 2

Player 3

Player 4

Player 5

Control
Data

PLAYERSDISTRIBUTORSCONTENT PROVIDER

+

Figure 6.1 Blok diagram of a multimedia distribution system. Though the generi

multimedia players may support only a limited number of ompression formats, all

the players follow the same protool for extrating the hidden ontrol information.

Player 3 supports 3 di�erent formats while Player 5 supports only the proprietary

ompression format.

Figure 6.1 is a blok diagram of a possible multimedia delivery system. Content

providers (the reators of multimedia ontent) an hide pertinent ontrol information

for the multimedia players and make it available for distribution. The distributors

may ompress the ontent using some standard or proprietary ompression method

before it reahes the end users (or their multimedia players). The ontent may be

distributed by several distributors in di�erent formats, understandable by di�erent

players. However, as long as all suh players follow an established protool for

extrating the hidden information, and the hidden data is able to survive all

lossy ompression shemes the distributors may employ, the ontent providers

an indiretly ontrol ompliant players through the hidden information. Hiding

the information in the raw multimedia data ensures that the hidden data stays

embedded forever in the ontent.
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Unless the hidden data is extrated with a \reasonable degree of ertainty",

the ompliant multimedia players may refuse to play the ontent. Thus intentional

tampering for the purpose of removing the hidden information only serves to make

that partiular opy of the ontent unusable. On the other hand, the motivation to

make it robust to all ompression methods is to failitate more eÆient distribution

of the ontent. Failure of the hidden data to survive a \good" ompression method,

makes that ompression method unusable for distributing that ontent.

6.3 Compression and Data Hiding

Multimedia ompression tries to onvey the information of a multimedia ontent as

eÆiently as possible - with the fewest number of bits. Data hiding on the other hand

tries to sneak in additional bits of information into the ontent. As the \additional

information" does nothing to improve the quality of the ontent, an ideal ompressor

would ompletely suppress the hidden information.

Let I represent the spae of M � N images of b bits per pixel (2

MNb

possible

images). Alternately, every point in I is anM�N image. As the image is represented

by fewer bits in the ompressed domain, many original image points are mapped by

the ompressor to one image point after (lossy) ompression and deompression. As

an example, in Figure 6.2, all points in the range R are mapped to a single point D.

Consider an image A (represented by +) in the region R. Let us say we want

to hide one bit of information in the image A that would survive ompression. The

spae I is ompletely tiled by two regions that represent 0 or 1. For example, if the

image A is loated in a region representing 0, it ould be left intat if the bit to be

hidden is 0. To hide a bit 1 however, A has to be moved to a point B (represented

by �) whih simultaneously belongs to region 1 and lies outside the range R, so that

after ompression (and deompression), the image is mapped to a di�erent point B

1

.
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*R D

Space of Uncompressed Images Space of Compressed Images

+

*

A

B

*B1

Figure 6.2 A lossy ompression - deompression sequene maps all points in the

range R to a single point in the domain D

To hide n

b

bits in an image whih an survive ompression, the image has to be

distorted suh that after deompression the image is mapped to any of 2

n

b

possible

points. In other words, the spae of images has to be tiled by 2

n

b

regions.

Now it is easy to see that no data hiding would be possible with an ideal

ompressor. If Æ

t

is the visual distortion permitted (Æ

t

may not be a measure of the

mean square error), then there exists a �nite number of points to whih the original

image may be \moved". However, an ideal ompressor with the same threshold

Æ



= Æ

t

would map all suh points to a single point in the spae of deompressed

images! So unless we employ di�erent standards (a measure of Æ) for the quality

of the image after data hiding and that for the deompressed image, (or unless

Æ



> Æ

t

), no data hiding would be possible with ideal ompressors. However, pratial

ompression tehniques are not ideal. Therefore, eÆient design of data hiding should

utilize the holes in ompression tehniques.

6.3.1 Data Hiding With Known Compression

When the ompression method the image is likely to undergo is known in advane, it

is easier to design eÆient data hiding methods. For example, let us assume that it is
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Figure 6.3 Data hiding apaities (number of DCT oeÆients that quantize to a

non-zero value with quantization matrix Q) of 11 256� 256 test images

Table 6.1 The DCT quantization matrix Q

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99
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known in advane that the images will only undergo DCT based JPEG ompression

with the default quantization matrix. Let us also assume that image is not expeted

to undergo ompression more severe than quality fator 50%. The best data hiding

method, for suh a situation would be the following [20℄:

� Obtain the 8� 8 2-D DCT of the image bloks of an M �N image.

� Let Q(m;n); m = 1 � � �8; n = 1 � � �8 be the quantization matrix for JPEG at

50 % quality. The matrix is tabulated in Table 6.1.

� Fix a partiular san order for the

M

8

�

N

8

image bloks.

� Fix a san order for the 8� 8 oeÆients of eah blok.

� Let K be the total number of oeÆients (among the M�N DCT oeÆients)

that quantize to a non-zero value when the quantization matrix Q is used. We

shall hide one bit in eah of those non-zero oeÆients. (A signi�ant amount

of ompression is ahieved by JPEG ompression due to eÆient run-length

oding of the oeÆients that quantize to zero. So hanging oeÆients that

quantize to zero would a�et the ompression ratio of the image with embedded

data). Let  be the vetor of the non-zero oeÆients.

� Let b

s

be a bit sequene of length K to be hidden in the image.

� For i = 1 � � �K, if b

s

(i) = 0 then fore the oeÆient (i) to quantize to an odd

number. Otherwise fore it to quantize to an even number. If the values are

fored to the mid points of the quantizers, then the hidden data would survive

JPEG ompression of any quality as long as it is better than 50 % (if they are

not fored to the midpoints of the quantizer steps, the hidden data will survive

JPEG-50 but may not survive any higher quality ompression, like JPEG-75!).
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Figure 6.4 Known ompression sheme

� For extrating the hidden information, the DCT of the image bloks (of the

reeived image) are obtained. The DCT oeÆients are quantized using the

quantization matrix Q. All oeÆients quantizing to zero are ignored. All

other oeÆients are arranged in the presribed order. If the quantized result

is odd, the hidden bit is a zero. Otherwise the hidden bit is a 1.

Figure 6.3 depits the ahievable data hiding apaities for 11 standard test images

using this simple data hiding tehnique. However, the hidden data is very unlikely

to survive other forms of lossy ompression, or even if DCT based JPEG is used with

a di�erent quantization matrix.

6.3.2 Simultaneous Robustness to Multiple Compression Tehniques

Consider the spae I of original images. When the ompression method is known,

(as in the previous setion), we make use of the fat that points (or \states") R

1

to

R

n

are mapped to the same points R

1

to R

n

in the spae of deompressed images.

Therefore, the number of valid \states" of the ompression method that lie within

an envelope of \unnotieable visual distortion" is a diret measure of the number

of bits that an be hidden in an image (in the example above, it is the number

of valid JPEG-50 ompressed images within the envelope of \unnotieable visual

distortion").
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Figure 6.5 Data hiding with robustness to di�erent ompression shemes

The problem beomes more ompliated if the hidden data has to survive

multiple ompression methods. To see how the requirement of robustness to

di�erent ompression shemes (simultaneously) an drastially redue the data

hiding apaity, onsider 3 ompression shemes C

1

, C

2

, and C

3

. In Figure 6.5 the

`+'s denote points in I whih are permissible C

1

-ompressed (and deompressed)

images. Similarly �lled `o's and `*'s stand for C

2

and C

3

ompressed images. Let A

be the original image R an envelope of the possible points A ould be moved to,

without notieable visual distortion. If the data hiding sheme has to survive only

one of the 3 ompression shemes, one an see that there are roughly 9 points to

whih the image an be moved in eah ase. However, if the hidden data has to

survive any ompression sheme, then the number of possible states (2

p

, where p is

the number of bits that an be hidden) is limited to the number of non-interseting

regions (marked by dotted irles) where at least one of the valid points of di�erent

ompression shemes an be found.
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6.3.3 Robustness to Unknown Compression Methods

However if the exat e�et of ompression is not known (the valid states are not

know a priori), the job of designing eÆient data hiding methods warrants a totally

di�erent approah. As one has no idea of the \valid" ompression points (or valid

ompressed images for that partiular ompression method), the enters of the non-

interseting regions have to be onsiderably well separated to ensure that at least

one valid ompression point of all ompression methods lies in eah hyper-sphere.

However, the following questions arise:

� Large distane between the enters of the hyper-spheres implies that it may be

neessary to introdue a signi�ant amount of distortion to move the image to

a desired \state". Is it possible to do that without a�eting the visual �delity

of the image?

� Assuming that it is possible to to introdue a signi�ant amount of distortion

without a�eting the visual �delity to move the image A to a new point

^

A,

why should a good ompressor map two visually idential images A and

^

A to

di�erent points in the ompressed domain?

The answer to the seond question is the following.

� All known ompression methods try to minimize the mean square error

between the original and the ompressed image. In fat, the new generation of

ompression methods (like EZW, SPIHT and IFS (fratal) image ompression)

even more so than the DCT based JPEG. This is a hole ommon to all

ompression methods and an be used e�etively for data hiding, if satis-

fatory answers to the �rst question exist.

In the next setion we explore solutions to the �rst question.
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6.4 Utilizing the Hole in Compression Tehniques

As stated in the previous setion, if the images an be modi�ed onsiderably in the

mean square sense without a�eting the visual �delity of the image, then one ould

ahieve large separation between \states" orresponding to di�erent bit sequenes,

and thus ahieve robust data hiding.

One solution to this problem (of trying to introdue as muh distortion as

possible without a�eting the visual �delity) is to use good models of \visual

thresholds" (for example, see Ref. [53, 84℄) to embed the hidden bits. Many data

hiding methods [85℄ that utilize these models have been proposed. However, a main

draw bak of these methods is that well de�ned visual threshold models (say in the

DCT or wavelet domain) also suggest the ompression tehniques means to improve

their performane. Thus when one uses these models to add signi�ant amount of

signature energy to ertain oeÆients of the image, a better ompression tehnique

whih may evolve in the future may also make use of these visual thresholds to

perhaps quantize those oeÆients more oarsely. In other words utilizing these

visual threshold models indiretly amounts to utilizing holes that an be easily

\plugged" in the future. One of the main advantages of data hiding is that the

hidden data stays with the ontent forever. As ompression tehniques improve in

the future, ontent distribution beomes more eÆient. But if the hidden data is not

able to survive those ompression methods, the ontent loses its value. Therefore,

more useful data hiding tehniques should utilize holes whih are very diÆult to

plug.

Figure 6.6 depits the original 256�256 Goldhill image, its histogram reshaped

version, and image after StirMark [37℄ (StirMark is a watermark attak software that

introdues impereptible geometri distortions in the image). Though the seond and

third images are very lose to the original in visual �delity, their PSNRs are 20 and 19

dB respetively! It is lear that signi�ant amounts of distortion (in the MSE sense)
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After Histogram Modification After StirMarkOriginal Image

Figure 6.6 Left : original Goldhill image. Center: Goldhill image obtained by

modifying the histogram. Though both images look similar, and are of good visual

quality, the di�erene between the two images in terms of PSNR is 20 dB. Right:

Image obtained after StirMark.The di�erene between the two images in terms of

PSNR is 19 dB.

an be tolerated as long as the introdued distortion only modi�es the histogram or

introdues small geometri distortions, or perhaps, both. So if we are able to embed

the hidden data by introduing geometri distortions / histogram modi�ation, a

large separation between di�erent \states" an be obtained.

However, things may not be as simple as it seems at �rst glane. Let H(I) be

a funtion of the histogram of the pixels of an image I. If we try to embed data

by speifying H(I) [86℄, the hidden data will not be robust to ompression. Even

small modi�ations in the MSE (like what may typially be introdued by lossy

ompression) an hange the histogram signi�antly. Similarly, if G(I) is a funtion of

some geometri features of the image I, and d(:; :) is some metri, d(G(I);G(I

1

)) may

be large even if d(I; I

1

) is small. Just as introdution of small geometri distortions

an ause a signi�ant hange in the MSE, introdution of small distortions in the

MSE may ause signi�ant hanges to G(:). This is the reason that the watermarking

tehnique proposed by Rongen et. al [87℄ is robust to StirMark, but not very robust

to JPEG ompression. To ahieve robustness to ompression, the well separated
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Figure 6.7 Left : original Boats image. Center: Boats image obtained by retaining

the DFT phases of the original image and hoosing random magnitudes (PSNR

14.1 dB). Right: image obtained by retaining DFT magnitudes of the original and

hoosing random DFT phases (PSNR 15.6 dB).

\states" (orresponding to the bit sequene to be embedded) have to be spei�ed �rst.

Then geometri distortions and / or histogram modi�ations have to be introdued

to move the image lose to the spei�ed state. However, there may not be a simple or

even methodial way to do this. But if suh a method an be found and implemented

with reasonable degree of omputational omplexity,

1

it promises to be an exellent

solution to the problem of robust data hiding.

A pratial solution to introdue a large amount of distortion in the image

without a�eting its visual �delity, is to modify the DFT magnitudes. Figure 6.7

(left) shows the original 256� 256 Boats image. The seond image (enter, 14.1 dB

PSNR) was derived by retaining the DFT phases of the original image and hoosing

random magnitudes. In spite of the very low PSNR of the image, we see that a

signi�ant amount of \information" about the original image is preserved. The third

image (right, 15.6 dB PSNR) was derived by retaining the magnitudes of the DFT

oeÆients of the original image but hoosing the DFT phases randomly. Even

though the PSNR of the third image is 1.5 dB better than that of the seond, the

1

Computational omplexity of the data embedding algorithm is not a serious limitation

for the appliations proposed in Setion II. Data embedding is done only one.
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resulting image onveys almost no information about the original. This illustrates

the well known fat that the human visual system (HVS) is muh more sensitive to

DFT phase than DFT magnitudes [88℄.

Thus if the data embedding is done in the magnitude DFT domain (the \states"

are spei�ed by their magnitude DFT oeÆients - embedding the data hanges the

magnitudes of the DFT oeÆients of the original image, but leaves the phase intat)

a signi�ant amount of distortion (in the MSE sense) an be introdued without

a�eting the visual �delity of the image. In addition, unlike the use of well de�ned

visual threshold models, this is not a hole that is apable of being easily \plugged" in

the future (ompression tehniques that utilize the DFT and quantize the magnitudes

oarsely and the phases �nely have been proposed earlier, but have not been e�etive

[89, 90℄).

Introduing the distortion to the magnitude DFT oeÆients (for embedding

information bits) an be ahieved as follows. Let I be the original M � N image.

Let

I

F

() I (6.1)

where

F

() stands for 2-D DFT pairs. I has 4 real oeÆients and MN � 4 omplex

oeÆients. Only half (D

0

=

MN�4

2

) oeÆients however, have unique magnitudes.

Let C 2 <

D

0

be a vetor of the unique magnitudes of the omplex DFT oeÆients

of I. Every image an be represented as a point in D

0

-dimensional spae. The

D

0

magnitude DFT oeÆients serve as the arriers for the subliminal ommuni-

ation. However, as high frequeny DFT oeÆients may not be able to survive

lossy ompression, we shall use only a subset  2 <

D

of C for data hiding.
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6.5 The Data Hiding Sheme

Figures 6.8 and 6.9 show the blok diagrams of data embedding and the data

detetion shemes. The �gures are self explanatory, exept for the additional \Key

Based Transform" bloks. A truly seure data hiding sheme, should be diÆult to

rak even if every step of the algorithm for data hiding is publi. In this ase, the

only `seret' should be the key K (though it is possible to have � as part of the key,

as its hoie is demanded by design riteria, one would not have very muh freedom

in hoosing �). So if the transform employed (DFT) and the value of � is publi,

then the signature an be easily `read', espeially if binary signatures are used. While

erasing hidden data may not be a very serious issue for multimedia delivery, modifying

it may have disastrous onsequenes. The seurity an be vastly improved by using

a key based transform before data embedding (and therefore before deteting). In

the proposed sheme, we use a simple key based transform based on yli all-pass

�lters.

Let h

F

 ! H where h 2 <

N

is yli all-pass (or jH(k)j = 1 8k). As all

yli shifts of h are orthogonal, they form a basis for <

N

. The basis funtions are

generated from the key as in Eq. (5.5). A transform employing the h and all its

yli shifts as its basis an be easily implemented by yli orrelation. If x 2 <

N

is

a vetor of oeÆients, the orresponding transform oeÆients X an be obtained

as

X = F

�1

(F(x):F(h)) (6.2)

and the inverse transform an be obtained as

x = F

�1

(F(X):F(h)

�

) (6.3)

Figure 6.10 shows the performane of the data hiding sheme for several test

images undergoing JPEG (at various quality fators), and SPIHT ompression (at

di�erent bit-rates). From applying JPEG at quality fators of 75, 65, 55 and 50
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Figure 6.10 Plots of ahieved data hiding apaities for JPEG (Left) and SPIHT

(Right) ompression for 5 256�256 test images (Lena, Barbara, Boats, Goldhill and

Girl). JPEG ompression senarios 1 - 5 orrespond to quality fators 75, 65, 55,

50 and 40 respetively. SPIHT ompression senarios 1 - 5 orrespond to 1.35, 1.25,

1.15, 1.10 and 1.0 bpp respetively.

respetively, it was found that the resulting images on an average were ompressed

to 1.35, 1.25, 1.15 1.10 and 1.0 bpp respetively. So in the �gure, the X-axis for both

plots (JPEG and SPIHT) is an indiation of the bit-rate of the ompression method

employed.

For all ases, we used 8192 low frequeny magnitude DFT oeÆients. By

subjeting various images to bitrate-N ompression (N = 1 � � �5, the x-axis) shemes,

the average noise varianes �

�

were estimated. The permitted distortion , was

hosen depending on the overall \ativity" of the image. The measure of ativity

used was the MSE of the image after SPIHT ompression at 1-bpp. The estimates

of  and �

�

was used to obtain optimal values of � and � for eah senario.



CHAPTER 7

A ROBUST PROTOCOL FOR PROVING OWNERSHIP OF STILL

IMAGES

In this hapter, we explore the problem of proving ownership or origin of digital

images through watermarking. The need for watermarking arises out of the unsuit-

ability of present opyright laws for laiming ownership of digital ontent. Water-

marking shemes, however, are threatened by ounterfeit attaks, whih primarily

use the freedom available in hoie of signature or hoie of the watermarking

method. A restritive protool for watermarking ould go a long way in rendering

ounterfeit attaks extremely diÆult. We suggest a omprehensive protool that

makes it possible for the true owner to laim ownership unambiguously, while

making it pratially impossible for a pirate to do so. A robust watermarking

method, ompliant to the protool, is also proposed.

7.1 Introdution

Digital watermarking is a means of proteting multimedia data from intelletual

piray. It is ahieved by impereptibly modifying the original data to insert a

\signature". The signature is extrated when neessary to show proof of ownership.

In this hapter, we restrit ourselves to watermarking digital images.

Let I be the original (over) image. A watermark embedding funtion E inserts

a watermark S in the image I to generate the watermarked image

^

I = E(I; S). The

existene of the watermark S in an image

~

I is heked by a detetor funtion D.

Watermark detetors an be broadly lassi�ed into two ategories. Cover image

esrow detetors need the original image I to hek for the presene of the signature

S in

~

I. On the other hand, oblivious detetion methods do not require the original

93
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image. We shall term the output of the detetor funtion,

s

d

=

(

D(

~

I; S; I) over image esrow

D(

~

I; S) oblivious detetion

(7.1)

as the detetion statisti. The detetion statisti is an indiation of the degree of

ertainty with whih the signature S is deteted in the image

~

I.

Establishing ownership of reations like books or blueprints, have traditionally

been done by obtaining opyright on that ontent, perhaps from the opyright

oÆe. However, the nature of digital ontent makes traditional opyright mehanisms

unsuitable for establishing ownership. Figure 7.1 depits two typial senarios, where

existing opyright mehanisms may be unsuitable for seuring opyright of say, digital

images. In senario I, A and B represent two distint but idential photographs

reated by Alie and Bob respetively (both photographs may have been shot from

the same plae at di�erent instanes of time). Alie is responsible for irulating

opies of her art as A

1

. Meanwhile, Bob irulates his reation as B

2

. Both Alie

and Bob register their ontents A and B with the Copyright OÆe

1

. If both A

and B (and hene A

1

s and B

2

s) look idential, Bob an laim that A and all A

1

s

are violations of his opyright while Alie an laim that B and B

2

are violations of

her opyright. Obviously, this is not a desirable situation. In a seond senario, the

photograph was reated by Alie who is not interested in obtaining a opyright. Bob

may have reeived a opy of A (whih Alie may have made freely available on her

web-site), for whih he promptly obtains a opyright, and then irulates it as A

2

.

While it may still be aeptable for Bob to laim ownership of all A

2

s (irulated by

Bob) it is de�nitely unethial to let the opyright law enable Bob to laim ownership

of the original A reated by Alie. The key issue here (whih annot be determined

by traditional opyright mehanisms) is to determine opies whih originate from a

partiular soure. Watermarking the soure an e�etively address this problem.

1

to register a work of visual art a ompleted appliation form, a non-refundable �ling

fee of $30 and a non-returnable deposit of the material to be registered are to be mailed

to the Copyright OÆe. See http://www.lo.gov/opyright/reg.html for more details
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Scenario I

Figure 7.1 Senarios where existing opyright laws may be Inadequate for resolving

ownership. Top - senario I: A and B are two similar photographs reated by di�erent

individuals. Bottom - senario II : reator Of A does not want to obtain opyright.

7.2 Counterfeit Attaks on Watermarks

One of the primary problems to be addressed by watermarking methods is their

ability to make a ounter-laim pratially impossible. A ounter-laim arises from

situations where a pirate an use the inadequaies of watermarking protools to

\demonstrate" the presene of a his / her \watermark" (fake watermark or signature)

in the atual original ontent. Time stamping [91, 2℄ has been proposed as an

enhanement to the seurity provided by watermarking to overome the problems

assoiated with ounter-laims in watermarks. In addition to watermarking, the

reator an obtain a time stamp from a time stamping servie (TSS). If the time

stamp is obtained before the ontent is released to the publi, (before the pirate an

obtain a time stamp on the ontent) nobody else an laim legitimate ownership

of the ontent. However, time-stamping have the disadvantage of requiring ongoing

involvement of a third party. Moreover, there are some situations for whih it does

not provide aeptable solutions:

� Time-stamping, does not protet people who do not want to obtain time stamp

and/or watermark their ontent, like Alie in Senario II. If Bob is able to show

a ounterfeit signature in A reated by Alie, and if Alie has not obtained a
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time-stamp, then Bob will be able to laim ownership of ontent reated by

Alie. Clearly, time stamping does not help in situations like this.

� Time stamping simply is not a solution for time sensitive appliations. The

reator may not want to wait till he/she obtains a time stamp from the TSS.

Obviously, time stamping annot be used for seuring live broadasts as well.

However, we shall demonstrate, that with a suitable protool, whih would lay some

(very reasonable) restritions on watermarking algorithms, the above mentioned

problems an be e�etively addressed.

7.2.1 Freedom in Choie

Let Alie be the reator of the original image I. She embeds her signature S

A

in

I to obtain the watermarked image

^

I

A

= E

A

(I; S

A

). The presene of her signature

S

A

in

^

I

A

or any image

~

I

A

derived from

^

I

A

(

~

I

A

=

^

I

A

+ N) an be demonstrated

with a reasonably good degree of ertainty, by obtaining a suÆiently high detetion

statisti

s

d

A

= D

A

(

~

I

A

; S

A

; < I >) (7.2)

In the above equation < I > denotes that I may or may not be used by the detetor.

The job of Bob, an aspiring pirate, is to demonstrate the presene of his (arbitrary)

signature S

B

in Alie's original image I. In other words

s

d

B

= D

B

(I; S

B

; < I

1

>) (7.3)

where I

1

may be Bob's fake original image. Note that Bob is at liberty to hoose his

own watermarking sheme (E

B

;D

B

). If Bob has freedom in hoosing his signature

S

B

, he ould �x some (E

B

;D

B

), and \onstrut" a signature S

B

that yields a high

detetion statisti s

d

B

. Note that even though Bob does not possess a opy of I

(whih is never released to the publi by Alie), he does have

^

I

A

, whih is \very
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lose" to I. If Bob does not have freedom in hoosing his signature (say, if the

signature is assigned to him by a Watermarking Authority), he ould still try to

tweak the watermarking sheme (E

B

;D

B

) to obtain a high detetion statisti. It is

obvious therefore, that a good protool for watermarking should lay some restritions

both on the hoie of signature and hoie of the embedding and deteting funtions

(or the watermarking algorithm).

7.2.2 Detetion Statisti

The detetion statisti s

d

, is a measure of degree of ertainty with whih the signature

is deteted. Typially, the signature S takes the form of a Gaussian or binary pseudo

random sequene s (say of length N) generated from a key K. The watermark

embedding and detetion operations an therefore be written as

^

I = E(I; s)
~
s = D(

~

I; < I >) s

d

=

s

T

~
s

jsjj
~
sj

(7.4)

In other words, the detetion statisti is a measure of (normalized) inner produt of

the embedded and the deteted signature sequene.

The inner produt of randomly generated signature sequenes will also be

random. More spei�ally, for large N , the distribution of the inner produt will

be Gaussian N [0;

1

N

℄. If the reator (or pirate) has absolutely no freedom in hoosing

the signature, and if the detetion statisti s

d

obtained is say 6 times the standard

deviation (if s

d

= 6

1

p

N

), then we ould say that the signature is deteted with a

probability of error of less than Q(6) � 1 � 10

�9

. This is due to the fat that on

an average only 1 out of 1 � 10

9

signatures hosen randomly an yield suh a high

orrelation.

Any judge would be more than willing to rule in favor of detetion of the

signature, say if the probability of him/her making a wrong deision is one in a

million. In this ase, s

d

= 5

1

p

N

is more than aeptable. However, if the pirate an

�nd a loop hole in the watermarking protool that enables him / her to searh for
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a suitable signature, then he / she has to searh for one million signatures (on an

average) before he / she an obtain one that yields satisfatory detetion statisti.

One way to overome this problem is to insist that the detetion statisti be

of the order of say 9

1

p

N

. This would imply that the pirate has to searh for about

1� 10

19

signatures before he an obtain one whih yields satisfatory orrelation. If

a pirate an searh for say 1�10

8

signatures in a seond then he/she would still need

over 300 years to ome up with a satisfatory signature! However, this restrition

may make it onsiderably simpler for the pirate to remove the watermark by arefully

planned attaks. After suh attaks, the real owner may not be able to extrat the

signature with suh a high degree of on�dene (obtain high detetion statisti).

7.2.3 Fake Originals

Even if the watermarking sheme and the hoie of signature is �xed, it may still

be possible for a pirate to engineer a ounterfeit attak, if the detetion sheme is

over image esrow. This would permit the pirate to reate a fake original (over)

image, for whih there are no restritions! This problem an be solved to a ertain

extent if the detetion method is oblivious. But some geometri attaks on images

like StirMark

2

may be extremely diÆult to overome unless it is permitted to

use the original image to undo the geometri distortions. Under this ondition, the

pirate may gain some freedom in hoosing an algorithm for undoing the geometri

distortions. A good watermarking protool should also therefore, �x the algorithm

to be used. However, the pirate still has freedom in hoosing the fake original whih

will be used by the �xed algorithm for undoing geometri distortions. In other words,

the pirate (Bob) an engineer a (fake) original whih when used in onjuntion with

the �xed algorithm, an \undo the distortion" in Alie's original image I (Bob would

laim that the fake original he has reated to be the original, and Alie's image I,

2

Free software available for download from http://www.l.am.a.uk
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to be an image derived from his original) to show the presene of his watermark.

Again, to engineer the attak, he has the image

^

I whih is \very lose" to I.

7.3 Watermarking Algorithms

To gain a better idea of the e�et of ounterfeit attaks on watermarking algorithms,

we need to take a loser look at the model of the watermarking sheme used. Usually,

the watermark is inserted in some transform domain. Let C = T (I). More generally,

only a subset of  2 <

N

ofCmay be modi�ed to embed the watermark. LetC = [
�
,

where  \
�
 = �. The overall embedding and deteting operation may be expressed

as

C = T (I) C =  [
�


^
 = E(; s)

^

C =
^
 [

�


^

I = T

�1

(

^

C)

~

I =

^

I +N

~

C = T (

~

I)

~

C =
~
 [

�

~


~
s = D(

~
) s

d

=

s

T

~
s

jsjj
~
sj

(7.5)

The watermarking algorithms that �t into the general model of Eq. (7.5) an further

be lassi�ed into 3 types, Types I, II and III as in Chapter 4, depending on the

embedding and deteting operators (E ;D). For Type I methods, (E ;D), take the

form of linear addition. Mathematially,
^
 =  + s. Type I methods an further be

lassi�ed as esrow methods, where D(
~
) �

~
�  (for example, the method in [47℄),

and oblivious methods (for example, [28℄), where D(
~
) �

~
 (no operation). Type II

and Type III methods on the other hand utilize periodi funtions for embedding /

deteting. We also saw that optimal methods should be Type III, using ontinuous

periodi funtions. The embedder E , haraterized by a period � and threshold � is

as follows:

p = D() (7.6)

e(k) = s(k)� p(k)

e(k) = (je(k)j >

�

2

) ? sign(e(k))

�

2

: e(k)
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e(k) = (rem

 

(k)

�

!

>

�

2

) ? � e(k) : e(k)

̂(k) = ((k) � 0) ? (k) + e(k) : (k)� e(k)

The algorithm for D(
~
) is as follows:

q(k) = rem(

j~(k)j

�

k

); k = 1 � � �D (7.7)

~s(k) = (q(k) �

�

2

) ? (

3�

4

� q(k)) : (q(k)�

�

4

)

For high SNR's the optimal method will be a Type III whih is lose to Type II (�

lose to �). On the other hand, for low SNRs the optimal Type III method will be

loser to Type I (large � and small �). As we expet the watermarks to undergo

signi�ant attaks, we would like to design the watermarking sheme for low SNRs.

As an example, if one-eighth of the oeÆients of some unitary transform of the

image are used for watermarking, and if the permitted distortion of the image after

addition of the watermark is restrited to have a peak SNR of 42 dB, then 

2

� 33,

implying �

0

� 20. The expeted attaks (�

2

�

) is typially expeted to be muh larger

than 

2

. So a reasonable hoie may be k = 5 (or � = 100) and � = 12. As the

deoder does not need to know the value of �, the value of � may be hosen depending

on the nature of the image. Small values of � may be hosen for very smooth images,

and larger values for highly textured images. A better approah might be to hoose

a high value of � and obtain the watermarked image

^

I

1

. The distortion introdued

due to watermarking, viz.

^

I

1

� I may then be thresholded using a reasonable visual

threshold model to obtain the �nal watermarked image

^

I.

7.4 Aids to Overoming Attaks on Watermarks

Conventional watermarking methods rely on the assumption that if the image is

altered signi�antly in the mean-square error (MSE) sense, then the quality of the

resultant image would be so poor that it would not warrant a ownership laim.
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Therefore, most attaks on watermarks would rely on hanging the image signi�-

antly in the MSE sense, without visually distorting the image. There are many

ways to aomplish this - for example, saling of pixel intensities, modifying the

histogram, introduing small geometri distortions et..

Figure 7.2 (left) shows the original Goldhill image. Figure 7.2 (enter) shows the

modi�ed Goldhill image obtained by reshaping the histogram. Though both images

are very similar and are of good visual quality, the di�erene in terms of PSNR

between the two images is 20 dB! Figure 7.2 (right) shows the Goldhill image after

appliation of StirMark whih introdues impereptible geometri distortions to the

image. Appliation of StirMark on 15 256�256 test images yielded resulting images,

of reasonably good pereptive quality, though the di�erene in PSNR between the

original and the modi�ed image was around 19 to 20 dB on an average.

One way to survive geometri attaks like StirMark would be to ause the

watermarking method to introdue geometri distortions [87℄. Let G(I) be a funtion

of some geometri features of the image I. The watermark is an be introdued

by speifying G(

^

I). However, we annot expet suh methods to be robust to

ompression. Just as small geometri distortions an modify the MSE signi�-

antly, small hanges in MSE (suh as those that might be introdued due to lossy

ompression) an hange G(I) signi�antly. In this light it is not surprising that the

watermarking method proposed by Rongen et. al [87℄ is robust to StirMark, but not

robust to ompression. Similarly methods that speify the histogram [86℄ too, are

not very resistant to ompression. One ould still use onventional watermarking

methods e�etively if the primary ways by whih the fake original an be moved

away from the original in the MSE sense an be identi�ed, and suitable algorithms

to undo the hanges an be employed. For example, against attaks that modify

the histogram, we ould permit reshaping the histogram of the image in question to

math the histogram of the original image before deteting the signature. Similarly
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After Histogram Modification After StirMarkOriginal Image

Figure 7.2 Left : original Goldhill image. Center: Goldhill image obtained by

modifying the histogram. Though both images look similar, and are of good visual

quality, the di�erene between the two images in terms of PSNR is 20 dB. Right:

Image obtained after StirMark.The di�erene between the two images in terms of

PSNR is 19 dB.

a good algorithm for deteting salient points of the original image and those of

the image in question may be used to re-warp the image so that the salient points

math, before the signature is deteted. Similar algorithms ould also be used to

overome pixel saling attaks. However, only \permitted" algorithms may be used

for reshaping the histogram / identifying the salient points to re-warp the image,

or for resaling the pixel values. As mentioned in Setion II C, permitting freedom

in hoie of these algorithms would provide the pirate with additional degrees of

freedom to engineer ounterfeit attaks.

7.5 Restritions on Choie of Signature

The type of restritions for hoie of signature, proposed in watermarking literature,

an be lassi�ed into 3 types -

1. issued by a Watermarking Authority (Sheme I).

2. derived from a meaningful string [28℄ (Sheme II).
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3. derived from the over image [26℄ (Sheme III).

Sheme I has a major disadvantage of needing a Watermarking Authority in

possession of all \serets". The disadvantage of the Sheme II is the following;

if the method of obtaining the signature from the meaningful string is �xed (as it

should be - otherwise the whole purpose is defeated), then it may be possible for

pirates to \guess" the meaningful string used by Alie, thus reduing seurity). In

addition, both Shemes I and II su�er from the fake original problems illustrated in

Setion 3.4.

In Ref. [26℄, Craver et. al suggested a novel idea (Sheme III) to solve the fake

original problem, whih at one stroke solves the fake original problem and the need

for an ageny to issue signatures. They suggested that the signature be obtained

from the original image itself. The original image is hashed by a �xed hash funtion.

The output is used as a seed for a �xed random sequene generator to generate the

signature. Tying up the signature to the original image in an inextriable way goes

a long way in restriting the freedom available for the pirate to engineer ounterfeit

attaks. The signature is obtained as s

A

= H(I). More importantly, H(I) 6= H(

^

I).

The watermarking sheme is over image esrow desribed by Eq. (7.8).

s

A

= H(I)
^
 = + s

A

~
s

A

=
~
�  s

d

=

s

T

A

~
s

A

js

A

jj
~
s

A

j

(7.8)

However, Sheme III too is not entirely foolproof. At least, to be foolproof Alie

should obtain very high detetion statistis in Bob's image, whih may not be possible

in some ases. The attak for this method rests on the fat that Bob an still searh

for a ombination of a fake original and its orresponding signature. Bob, who has in

his possession

^

I (or equivalently
^
), ould hange

^

I signi�antly, in the mean-square-

error sense while maintaining the \visual similarity" between the original

^

I and the

resulting (modi�ed) image

^

I

m

.
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Let I

d

be the di�erene image

I

d

=

^

I

m

�

^

I 

d

=
^


m

�  (7.9)

Even though the algorithms for undoing geometri distortions / histogram modi�-

ations / pixel resaling would not permit Bob to move very far away from

^

I, he

should be able to introdue distortions suh that the total power of I

d

(

d

) is muh

larger than that of the signature S

A

(s

A

) added by Alie. Mathematially,

N

X

i=1



2

d

(k) >>

N

X

i=1

((i)� ̂(i))

2

(7.10)

Therefore



d

=
^


m

�
^
 �

^


m

�  (7.11)

The next step for Bob is to derive his \original" (fake original) image from

^

I

m

. Before

we see how he an do that, note that the hash funtion H maps di�erent images to

(possibly) di�erent seeds. For example if all the images in the world were of size

256� 256 and restrited to 8 bits per pixel, there are still 2

256�256�8

possible images.

ThoughH would map the spae of images to a (omparatively) very restrited `spae'

of seeds, the spae of seeds should still be large enough to ensure that the probability

that di�erent signatures are orrelated is very small. Two `obviously' di�erent images

having the same signature is not likely to reate a problem. The problem only arises

when images are `similar'. So it is important that the (�xed) hash funtion generates

di�erent seeds espeially when the images are `similar'. So the hash funtion would

be required to \respond" to the LSBs of image more than to the MSBs. This works

to Bob's advantage.

Bob ould probably generate enough (di�erent) signature sequenes from the

image

^

I

m

(or
^


m

) just by tweaking 1-2 LSBs of the image pixels. But when he

does that the resulting image is still very lose to

^

I

m

. So he would orrelate every

signature sequene obtained frommodi�ed versions of

^

I

m

with the �xed 

d

. Whenever



105

a partiular \tweaking" of the bits results in a signature sequene with satisfatory

orrelation with 

d

, he stops. He alls the resultant image I

m

�

^

I

m

as his \original"

image. If S

B

(or s

b

) is the signature generated from I

m

, and s

b

has a reasonable

orrelation with
^
� 

m

, then it an also be expeted to have high orrelation with

�

m

. So Bob an demonstrate the presene of his signature in I! Note that making

I

m

�

^

I large swamps out the di�erene between I and

^

I. Let

�

e

=

(
^
� 

m

)

T

(� 

m

)

j(
^
� 

m

)jj(� 

m

)j

(7.12)

It an be easily seen that to generate a random signature sequene whih yields a

detetion statisti s

d

with ( � 

m

), Bob has to obtain a detetion statisti of

s

d

�

e

with (
^
 � 

m

). So, larger the MSE between  and 

m

, loser the value of �

e

in Eq.

7.12 to unity. As the signature energy is typially very small, it would be very easy

for Bob to introdue a distortion of energy more than 10 times that of the energy

of the signature introdued by Alie (this would imply �

e

> 0:95). After a series

of arefully planned attaks on Alie's watermark in I

m

, Alie, may not be able to

detet her signature in I

m

with a high degree of ertainty. Lets assume that Alie,

using a sophistiated watermarking method manages to detet her signature in I

m

with P

e

� 3� 10

�7

, (or s

d

= 5

1

p

N

). To obtain a omparable detetion statisti of his

signature in I, Bob has to searh roughly 3:3�10

6

sequenes if �

e

= 1. For �

e

= 0:95

and �

e

= 0:90, Bob has to searh 1:5� 10

7

and 7:2� 10

7

signatures respetively (on

an average), before obtaining a suitable signature. This is ertainly omputationally

feasible.

7.6 Improving Sheme III

Ideally, we would like to redue the detetion threshold, to enable the ontent reators

to laim ownership even under substantial attaks by a pirate. As mentioned earlier,

if ounterfeit laims do not exist, any judge would deide in favor of detetion of the
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watermark, even if the probability of error is 1 in 10000. The problem with Sheme

III is that the omplexity of the attak would also be of the same order of the aepted

threshold for signature detetion. With the following small modi�ation to Sheme

III we shall see that we an substantially inrease the omplexity of engineering a

ounterfeit attak:

� The watermark should be deteted without subtrating the original image. But

the original image is still neessary beause the seed is obtained from the

original image as in Sheme III.

� The signature should yield a high detetion statisti with the image in whih

the signature is to be deteted.

� The signature should yield a low detetion statisti (less than a threshold Æ)

with the original image.

To engineer a signature, Bob again starts with I

m

, obtained as earlier, and

^

I whih is

a good approximation of Alie's original I. Let ŝ

i

be the detetion statisti obtained

as the inner-produt of randomly generated signature sequenes with the oeÆients

D(
^
) of the the image

^

I (we shall assume that that E ;D are Type III with � � 100

and � � 12). Let s

i

be the statistis of the inner-produt of randomly generated

signature sequenes with the oeÆients D() orresponding to the true original I.

In order to show his signature in the image I with the same degree of ertainty as

in Method III (P

e

< 10

�7

), the signature should be hosen suh that s

i

> 5

1

p

N

.

However, in addition, the same signature should also yield a low detetion statisti

with Bob's (fake) \original" image I

m

. Let s

i

m

be the statisti obtained as the

inner-produt of randomly generated signature sequenes with the oeÆients D(

m

).

Obviously, the detetion statistis s

i

and s

i

m

are not independent. As I and I

m

are

still more \similar" than \not similar", we would expet a random sequene that

yields a high statisti s

i

to also yield a high statisti s

i

m

. This makes it extremely



107

diÆult for Bob to engineer a signature. Let

�

o

=

D(
^
)

T

D(

m

)

jD(
^
)jjD(

m

)j

�

h

=

D()

T

D(
^
)

jD()jjD(
^
)j

(7.13)

Eq. (7.13) states that �

o

� 100% of the subspaes of D(
^
) and D(

m

) overlap. The

projetion of the engineered signature s

B

= H(I

m

) in the subspae shared by D(
^
)

and D(

m

) does not help Bob. Bob should therefore searh for signatures lying in

the disjoint subspae ((1 � �

o

) � 100%). At the same time the signature should

also lie in the subspae ommon to D() and D(
^
) (reall that Bob does not have

the original I with him). Therefore, to obtain s

i

> 5

1

p

N

, and a small s

i

m

, or to

obtain s

i

� s

i

m

> 5

1

p

N

, is equivalent (in terms of omplexity of searh) obtaining

ŝ

i

>

5

(1��

o

)�

h

p

N

. Like �

e

in Eq. (7.12), the values of �

o

and �

h

would depend on

1. The MSE distortion Bob an introdue to move I

m

\away" from

^

I (and I), and

2. The MSE between I and

^

I, and

Let s

d

B

= (s

i

� s

i

m

)

B

, and s

d

A

= (s

i

m

� s

i

)

A

. The suÆxes A and B stand for

Alie's and Bob's signatures respetively. For instane s

d

A

is obtained by heking

for the presene of Alie's signature s

A

in I

m

and I. To win a ounterlaim, Bob

has to obtain s

d

B

> s

d

A

. For the suggested Type III watermarking methods, our

simulations on many test images show that it may be extremely diÆult to obtain

�

o

less than 0.5. Therefore, even if �

h

is lose to unity, Bob needs to searh over 10

23

signatures before he an be reasonably sure that he an obtain a detetion statisti

in Alie's original image higher than Alie an obtain in his fake original.

7.7 Protool for Robust Watermarking

We suggest the following list of restritions to be plaed on watermarking methods, in

order to make them resolve rightful ownership unambiguously. The overall protool

for watermark embedding and detetion are shown in Figure 7.3. All the unshaded
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Figure 7.3 Watermark embedding and detetion protool

bloks in the �gure are �xed (or regulated from time to time by the Watermarking

Authority). Only the watermark embedding funtion and deteting funtion will

depend on the partiular watermarking algorithm.

1. A presribed algorithm for equalizing histogram. The signature is added to the

original image after equalizing its histogram. The histogram of the image in

question is equalized (using the same equalizer) before performing detetion of

the signature.

2. A presribed algorithm for determining signi�ant points and re-warping the

image if neessary.

3. A presribed algorithm for determining sale fators of pixel values and re-

saling.

4. Fixed hash funtion H to be used. The hash funtion ould be made omputa-

tionally intensive to further disourage engineering of digital signatures. The

hash funtion operates on the (histogram equalized) original image I to produe

the seed H

I

.

5. The seed H

I

is input to a �xed random sequene generator G to generate the

signature sequene S

I

.

S

d

N

= G(H

I

; N; d) (7.14)
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is the omplete set of sequenes that ould be generated by G. For a �xed I, the

only parameters that an be hanged are N - the length of the sequene, and

d - the probability distribution. Probably d ould take two options - Gaussian

and Uniform. Another useful option for d might be to generate a list of integers

from 1 � � �N in a random order. This may be used for reordering the image

oeÆients if the algorithm alls for it. No restrition is plaed on the length

N .

6. Any deomposition of the original image an be used. If deompositions are

generated from random sequenes only one from the set of possible sequenes

S

d

N

an be used. If the watermarking algorithm alls for a random sequene

(say for re-ordering of oeÆients), at any stage of the watermark embedding

/ extration proess, only random sequenes S

d

N

are permitted.

7. Signature to be extrated from the image without subtrating the original

image.

8. High detetion statisti of the signature with the image in whih the existene

of the signature is heked, and low detetion statisti between the signature

and the original image. Equivalently, the detetion statisti may be onsidered

as the di�erene between the detetion statistis obtained from the image in

question and the original.

The proposal does not limit itself only to methods in whih the signature is deteted

by orrelative proessing. For example, in [16℄ some low frequeny DCT oeÆ-

ients are srambled by a random yli all-pass �lter. The detetion statisti is

obtained by ounting the di�erene between positive and negative oeÆients. The

only restrition the proposal plaes on the method above is how the seed is obtained

and the orresponding random sequene to be used to generate the all-pass �lter

oeÆients. To our knowledge any existing oblivious detetion watermarking method
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(with the exeption of methods [87, 86℄ that introdue geometri distortions or modify

the histogram to introdue the watermark) an be modi�ed to meet the requirements

of the proposed protool.

7.8 An Example Watermarking Sheme

This setion outlines a possible watermarking sheme. The main purpose of this

setion, is to illustrate with an example, the inuenes of the proposed protool in

hoosing parameters for the watermarking sheme. However, the setion also briey

addresses other issues for inreasing the seurity and robustness of the watermarking

sheme. The blok diagram of the sheme (embedding and deteting) is shown in

Figure 7.4. This blok diagram may be onsidered as loser look at the shaded bloks

in Figure 7.3.

Perhaps, high GTC (Transform Coding Gain) [77℄ transforms like DCT or

wavelet transforms are the best suited for watermarking appliations. As high

GTC transforms provide the most ompat representation of the image, attaking

DCT / wavelet oeÆients for the purpose of watermark removal will most likely

destroy the image. From the omplete set of DCT / wavelet oeÆients we hoose

a low to medium frequeny subset for watermarking purposes. The seleted oeÆ-

ients undergo a key based transform (employing all-pass �lters, similar to the data

hiding sheme suggested in Chapter 6) to obtain the oeÆients  to be used for

embedding the signature. The signature sequene s to be embedded in  may be

obtained as a pseudo-random binary sequene using the presribed random sequene

generator (RSG) trigerred by the key K (whih in turn is derived from hashing the

original image). The oeÆients obtained after embedding, viz.
^
 then undergo

the inverse Key-based transform to obtain the modi�ed DCT / wavelet oeÆients,

whih together with the unmodi�ed oeÆients are inverted to obtain the water-

marked image or the stego-image.
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For detetion, of the signature the same operations are performed on the

reeived noisy image

~

I to get the orresponding oeÆients
~
. The detetor funtion

is used to extrat the noisy signature sequene
~
s whih is ompared with the vetor

s generated by the RSG at the reeiver (using the original image I) to extrat the

hidden bits.

Note that any permitted watermarking algorithm should have very little

freedom in hoosing arbitrarily de�ned parameters. For example in this ase, the

protool may impose a ondition that all watermarking algorithms should use the

same � (whih should be hosen after a lot of thought). A less restritive (and

probably more reasonable) rule ould be that the value � be at least 5 signi�ant

digits - while the �rst digit may be hosen based on the design riteria, the next 4

digits should be derived from the key K using the RSG.



CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This thesis is a omprehensive study of the issues involved in multimedia steganography,

and more spei�ally for image and video steganography.

The thesis views the problem of data hiding as a ommuniation system where

the resoure is the distortion that an be introdued without hanging the original

ontent pereivably. The distortion introdued should be used eÆiently to ommu-

niate information bits by using an appropriate signaling tehnique.

The thesis �rst examines linear data hiding methods, whih are also referred

to as Type I methods. A omprehensive analysis of Type I methods is addressed in

Chapter 3. We then take a novel approah to the problem of signaling for multimedia

steganography and introdue the onept of oating signal onstellations. It is seen

that the new signaling method is a generalization of the so alled Type II methods,

based on quantization, widely used by many researhers. We further extend the Type

II methods by introduing thresholding in Type II signaling methods. The extended

Type II (or Type III) methods is then shown to be a generalization of both Type I

and Type II methods. It is also seen that neither a (oblivious) Type I or a Type II

method an be optimal. For low SNR ommuniation hannels, the optimal Type

III is lose to Type I. On the other hand, for high SNR hannels, the optimal Type

III is loser to Type II.

The fundamental di�erene between the lassi Type II methods and the gener-

alization proposed in this thesis is a result of the realization that it is the periodi

nature of quantization that is useful for the signaling method, to ahieve self-noise

suppression. The generalization permits use of other periodi funtions. We proposed

two suh periodi funtions - a ontinuous triangular funtion (CM-SNS) and a

sinusoid (CsM). Though the superiority of the two over quantization was learly

shown, the problem of �nding the best periodi funtion is still open. The best

113
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periodi funtion would obviously depend on the nature of the additive noise in the

hannel. For both Type II and Type III methods, binary sequenes seem to be the

best hoies for signaling. However, as pointed out in Chapter 5, the optimality

of the onventional signaling sheme that follows SNS may demand use of non-

binary signatures. In this ase a joint optimization of the SNS and and onventional

signaling method is alled for. This is perhaps another area for future researh.

The thesis also points out that Type III methods are still sub-optimal. It is well

established that oblivious methods an approah the apaity of esrow methods.

However, to ahieve that we might need to use very large odebooks, whih may not

be pratial. Other (probably sub-optimal) alternatives whih may perform better

than Type III methods is a diretion for future researh.

The thesis then addressed the problem of maximizing the resoure - the

distortion that an be introdued in the ontent. However, the problem has been

addressed only for images. We suggested a pratial option of introduing the

distortion in the magnitude DFT domain. However, it appears that muh more

robust data hiding an be ahieved if pratial solutions to the inverse problem of

moving an image to a spei�ed state or introduing a distortion that is lose to a

desired distortion, by introduing impereptible geometri distortions or histogram

modi�ation, or both, an be found.

The thesis �nally addressed the problem of watermarking images for unambiguous

resolution of ownership. The thesis proposes a protool to be followed for water-

marking, whih an drastially inrease the omplexity of engineering an e�etive

ounterfeit attak.



APPENDIX A

IMPLEMENTATION OF CYCLIC 2-BAND FILTERBANKS

Let h 2 <

N

and h$ H, where $ denotes a disrete Fourier transform (DFT) pair.

Let

h

e

(n) = h(2n); h

o

(n) = h(2n+ 1); n = 0; : : : ;

N

2

� 1: (A.1)

As h is orthogonal to alternate yli shifts,

N

2

�1

X

n=0

fh

e

(n)h

e

(n� p) + h

o

(n)h

o

(n� p)g = Æ(p): (A.2)

Let H

e

$ h

e

and H

o

$ h

o

. Taking the DFT of both sides of Eq. (A.2),

H

e

:H

�

e

+H

o

:H

�

o

= [1 1 � � � 1℄ 2 <

N

2

(A.3)

where (; :; ) stands for the Hadamard produt (multipliation of orresponding

elements) of two vetors. It an be easily shown that the l

th

elements of H

e

and H

o

are given by

H

e

(l) =

N

2

�1

X

n=0

h(2n) exp

 

�j2�nl

N

2

!

=

H(l) +H(l +

N

2

)

2

H

o

(l) =

1

2

exp

 

j2�l

N

!

h

H(l)�H(l +

N

2

)

i

: (A.4)

Substituting Eqn. (A.4) into Eqn. (A.3) and simplifying,

jH(l)j

2

+ jH(l +

N

2

)j

2

= 2 for l = 0; � � � ;

N

2

� 1: (A.5)

Equation (A.5) is a neessary and suÆient ondition for the vetor h to be

orthogonal to all its alternate irular shifts. Note that in addition to the freedom in

seleting the DFT magnitudes of H, there is omplete freedom in the hoie of their

phases (exept, of ourse if h has to be real, only

N

2

�1 phase values are independent).

Now

N

2

orthonormal basis vetors an be obtained from h. We now want to obtain
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N

2

omplementary basis vetors, to omplete the basis for <

N

. Let g be a vetor

whih is also orthogonal to its alternate shifts. Then

jG(l)j

2

+ jG(l +

N

2

)j

2

= 2 for l = 0; � � � ;

N

2

� 1: (A.6)

Sine we desire g and its alternate yli shifts to omplement the basis vetors

derived from h, g should further satisfy

N

2

�1

X

n=0

fh

e

(n)g

e

(n� p) + h

o

(n)g

o

(n� p)g = 0; (A.7)

where, g

e

(n) and g

o

(n) are respetively the even and odd indexed elements of g.

Taking the DFT of Eqn. (A.7),

H

e

(k)G

�

e

(k) +H

o

(k)G

�

o

(k) = 0 8 k: (A.8)

Using Eqn. (A.4), and similar relations for G

e

(l) and G

o

(l), Eqn. (A.8) an be

rewritten as

H(k)G

�

(k) = �H(k +

N

2

)G

�

(k +

N

2

): (A.9)

Equation (A.9) is satis�ed if we hoose

G(k) = H

�

(k +

N

2

) exp

 

j2�k

N

!

exp (j�) (A.10)

where � is an arbitrary phase angle. Choosing � = 0, we get

g(n) = (�1)

n�1

h(N � 1� n): (A.11)

A.1 Forward Transform

De�ne

y

h

(m) =

N�1

X

n=0

x(n)h(n�m); m = 0; � � � ; N � 1 (A.12)

and

y

g

(m) =

N�1

X

n=0

x(n)g(n�m); m = 0; � � � ; N � 1: (A.13)
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Let Y

h

$ y

h

and Y

g

$ y

g

. Taking the DFT of Eqs. (A.12) and (A.13),

Y

h

(k) = X(k)H

�

(k); and Y

g

(k) = X(k)G

�

(k): (A.14)

In view of Eqn. (A.15), we an obtain the transform oeÆients x

h

(m) and x

g

(m) by

sub-sampling the IDFTs of Y

h

and Y

g

. Alternatively, from Eqs (A.12) and (A.13)

we have

x

h

(m) = y

h

(2m); x

g

(m) = y

g

(2m): (A.15)

Therefore,

x

h

(m) = y

h

(2m) =

1

N

N�1

X

k=0

Y

h

(k) exp

 

j4�mk

N

!

=

1

N

N

2

�1

X

k=0

Z

h

(k) exp

 

j4�mk

N

!

; (A.16)

where

Z

h

(k) = Y

h

(k) + Y

h

(k +

N

2

); k = 0; : : : ;

N

2

� 1: (A.17)

Similarly,

x

g

(m) =

1

N

N

2

�1

X

k=0

Z

g

(k) exp

 

j4�mk

N

!

: (A.18)

where

Z

g

(k) = Y

g

(k) + Y

g

(k +

N

2

); k = 0; : : : ;

N

2

� 1: (A.19)

Thus x

h

(m) and x

g

(m) an be determined by omputing the

N

2

-point IDFTs of

Z

h

and Z

g

, instead of omputing the N -point IDFTs of Y

h

and Y

g

and sub-sampling

them.

The implementation of the forward transform of x thus onsists of the following

steps

1. Obtain the DFT X of x.
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2. Compute the Hadamard produts Y

h

= X:H

�

and Y

g

= X:G

�

.

3. Split the N -vetor Y

h

into two

N

2

-vetors and add them to obtain the

N

2

-vetor

Z

h

. Form the

N

2

-vetor Z

g

from the N -vetor Y

g

in a similar fashion.

4. Obtain x

h

and x

g

as the IDFTs of Z

h

and Z

g

respetively.

A.2 Inverse Transform

Let X

h

and X

g

denote the periodi extensions of the

N

2

-point DFTs of x

h

and x

g

respetively, i.e.,

X

h

(k) =

N

2

�1

X

m=0

x

h

(m) exp

 

�j4�km

N

!

; k = 0; : : : ; N � 1; (A.20)

X

g

(k) =

N

2

�1

X

m=0

x

g

(m) exp

 

�j4�km

N

!

; k = 0; : : : ; N � 1; (A.21)

It an be shown that (see Appendix B)

x(n) =

1

N

N�1

X

k=0

[X

h

(k)H(k) +X

g

(k)G(k)℄ exp

 

j2�nk

N

!

(A.22)

The implementation of the inverse transform therefore, onsists of the following steps:

1. Obtain the

N

2

length DFTs of x

h

and x

g

.

2. Make periodi extensions of these DFTs to length N to obtain X

h

and X

g

.

3. Compute the Hadamard produts X

h

:H and X

g

:G.

4. Compute the IDFT of X

h

:H+X

g

:G to obtain x.



APPENDIX B

MATHEMATICAL PROOFS

B.1 Proof of Eq (5.7)

h(n) =

P

N�1

k=0

e

j(

2�kn

N

+�

k

)

f(n) =

P

N�1

k=0

a

k

e

j(

2�kn

N

+�

k

)

for n = 0 � � �N � 1. From Eq (5.6),

" =

N�1

X

n=0

N�1

X

l=0

N�1

X

k=0

h

e

j(

2�kn

N

+�

k

)

� a

k

e

j(

2�kn

N

+�

k

)

i

�

h

e

�j(

2�ln

N

+�

l

)

� a

l

e

�j(

2�ln

N

+�

l

)

i

=

N�1

X

k=0

N�1

X

l=0

 

N�1

X

n=0

�

e

j(

2�(k�l)n

N

)

e

j(�

k

��

l

)

� a

l

e

j(

2�(k�l)n

N

)

e

j(�

k

��

l

)

� a

k

e

j(

2�(k�l)n

N

)

e

j(�

k

��

l

)

+ a

k

a

l

e

j(

2�(k�l)n

N

)

e

j(�

k

��

l

)

��

: (B.1)

Using the identity

N�1

X

n=0

e

j(

2�(k�l)n

N

)

=

8

<

:

N for k = l

0 otherwise

; (B.2)

Eq (B.1) redues to

" = N

"

N � 2

N�1

X

k=0

a

k

os(�

k

� �

k

) +

N�1

X

k=0

a

2

k

#

: (B.3)

B.2 Proof of Eq (5.10)

Given that h 2 <

N

, H = F

N

(h), and h

e

(n) = h(2n) for n = 0; : : : ;

N

2

� 1, and

H

e

= F

N=2

(h

e

), we need to show

H

e

(l) =

H(l) +H(l +

N

2

)

2

; l = 0 � � �

N

2

� 1: (B.4)

H

e

(l) =

N

2

�1

X

n=0

h(2n) exp

 

�j2�nl

N

2

!

(B.5)

=

N

2

�1

X

n=0

1

N

N�1

X

k=0

H(k) exp

 

j4�nk

N

!

exp

 

�j4�nl

N

!

=

1

N

N�1

X

k=0

H(k)

N

2

�1

X

n=0

exp

 

j4�n(k � l)

N

!

=

H(l) +H(l +

N

2

)

2

; l = 0 � � �

N

2

� 1:

119
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B.3 Proof of Eq. (A.22)

x(n) =

1

N

N�1

X

k=0

[X

h

(k)H(k) +X

g

(k)G(k)℄ exp

 

j2�nk

N

!

= T

1

(n) + T

2

(n): (B.6)

Consider the �rst term, T

1

(n) of (B.6),

T

1

(n) =

1

N

N�1

X

k=0

X

h

(k)H(k) exp

 

j2�nk

N

!

(B.7)

=

1

N

N�1

X

k=0

N

2

�1

X

m=0

x

h

(m) exp

 

�j4�mk

N

!

H(k) exp

 

j2�nk

N

!

(B.8)

As x

h

(m) = y

h

(2m), and y

h

$ Y

h

, we have

x

h

(m) =

1

N

N�1

X

l=0

Y

h

(l) exp

 

j4�ml

N

!

(B.9)

Substituting for x

h

(m) from Eq. (B.9) into Eq. (B.8), we obtain

T

1

(n) =

1

N

2

N�1

X

k=0

N

2

�1

X

m=0

N�1

X

l=0

Y

h

(l)H(k) exp

 

j2�[2ml + nk � 2mk℄

N

!

=

1

N

N�1

X

l=0

N

2

�1

X

m=0

(

1

N

N�1

X

k=0

H(k) exp

 

j2�k(n� 2m)

N

!)

Y

h

(l) exp

 

j4�ml

N

!

=

1

N

N�1

X

l=0

Y

h

(l)

N

2

�1

X

m=0

h(n� 2m) exp

 

j4�ml

N

!

:

For even n, i.e. n = 2q, we have h(n� 2m) = h

e

(q �m) (see Eq. (A.1)). Therefore,

T

1

(2q) =

1

N

N�1

X

l=0

8

>

<

>

:

N

2

�1

X

m=0

h

e

(q �m) exp

 

j4�ml

N

!

9

>

=

>

;

Y

h

(l)

=

1

N

N�1

X

l=0

8

>

<

>

:

q+1�

N

2

X

p=q

h

e

(p) exp

 

�j4�lp

N

!

9

>

=

>

;

Y

h

(l) exp

 

j4�lq

N

!

:

=

1

N

N�1

X

l=0

H

e

(l)Y

h

(l) exp

 

j4�lq

N

!

: (B.10)

Substituting for H

e

(l) from Eq. (A.4) into Eq. (B.10),

T

1

(n) =

1

N

N�1

X

l=0

1

2

�

H(l) +H(l +

N

2

)

�

Y

h

(l) exp

 

j2�ln

N

!

for even n: (B.11)
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Similarly it an be easily shown that

T

1

(n) =

1

N

N�1

X

l=0

1

2

�

H(l)�H(l +

N

2

)

�

Y

h

(l) exp

 

j2�ln

N

!

for odd n: (B.12)

Similar expressions an be derived for T

2

(n) to obtain

T

2

(n) =

8

<

:

1

N

P

N�1

l=0

1

2

h

G(l) +G(l +

N

2

)

i

Y

g

(l) exp

�

j2�ln

N

�

1

N

P

N�1

l=0

1

2

h

G(l)�G(l +

N

2

)

i

Y

g

(l) exp

�

j2�ln

N

�

for even and odd n respetively.

In view of Eqs. (A.10) and (A.5)),

H

�

(l)H(l +

N

2

) +G

�

(l)G(l +

N

2

) = 0: (B.13)

jH(l)j

2

+ jG(l)j

2

= 2: (B.14)

Combining Eq. (A.14), viz.,

Y

h

(k) = X(k)H

�

(k); andY

g

(k) = X(k)G

�

(k);

with the equations for T

1

(n) and T

2

(n), and using Eqs. (B.13) and (B.14),

T

1

(n) + T

2

(n) =

1

N

N�1

X

l=0

X(l) exp

 

j2�ln

N

!

= x(n): (B.15)
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