
ABSTRACT

DATA HIDING IN MULTIMEDIA - THEORY AND APPLICATIONS

by

Mahalingam Ramkumar

Multimedia data hiding or steganography is a means 
ommuni
ation using subliminal


hannels. The resour
e for the subliminal 
ommuni
ation s
heme is the distortion of

the original 
ontent that 
an be tolerated. This thesis addresses two main issues of

steganographi
 
ommuni
ation s
hemes:

1. How does one maximize the distortion introdu
ed without a�e
ting �delity of

the 
ontent?

2. How does one eÆ
iently utilize the resour
e (the distortion introdu
ed) for


ommuni
ating as many bits of information as possible? In other words, what

is a good signaling strategy for the subliminal 
ommuni
ation s
heme?

Close to optimal solutions for both issues are analyzed. Many te
hniques for the issue

for maximizing the resour
e, viz. the distortion introdu
ed imper
eptibly in images

and video frames, are proposed. Di�erent signaling strategies for steganographi



ommuni
ation are explored, and a novel signaling te
hnique employing a 
oating

signal 
onstellation is proposed. Algorithms for optimal 
hoi
es of the parameters of

the signaling te
hnique are presented.

Other appli
ation spe
i�
 issues like the type of robustness needed are taken

into 
onsideration along with the established theoreti
al ba
kground to design

optimal data hiding s
hemes. In parti
ular, two very important appli
ations of

data hiding are addressed - data hiding for multimedia 
ontent delivery, and data

hiding for watermarking (for proving ownership). A robust watermarking proto
ol

for unambiguous resolution of ownership is proposed.
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CHAPTER 1

INTRODUCTION

Data Hiding or Steganography is the art of hiding a message signal in a host signal,

without any per
eptual distortion of the host signal [1℄. Though steganography is

often 
onfused with the relatively well-known 
ryptography, the two are but loosely

related. Cryptography is about hiding the 
ontents of a message [2℄. Steganography,

on the other hand, is about 
on
ealing the very fa
t that a message is hidden.

Steganography may be 
onsidered as 
ommuni
ation through subliminal 
hannels,

or se
ret 
ommuni
ation [3, 4℄. This thesis explores the theory and appli
ations of

multimedia steganography.

The proliferation of digital multimedia as opposed to 
onventional analog forms,

is primarily a result of

� the ease with whi
h digital data 
an be ex
hanged over the Internet, and

� the emergen
e of eÆ
ient multimedia data 
ompression te
hniques.

The �rst reason is also a major 
ause for 
on
ern. Unlimited perfe
t 
opies of

the original 
ontent 
an be made, and distributed easily. It was this 
on
ern of

prote
ting intelle
tual property rights of multimedia data in digital form, that

primarily triggered resear
hers to �nd ways to watermark multimedia data. Water-

marking the 
ontent is done by embedding some data in the host signal (original


ontent). The embedded data may be an imper
eptible signature, whi
h, the owner

of the multimedia 
ontent should be able to extra
t when a dispute regarding

ownership o

urs.

The pioneers of digital steganography [5℄, perhaps had no idea of the extent of

potential appli
ations for multimedia data hiding. Data hiding 
an help authenti
ate

1



2

ele
troni
 
orresponden
e. It 
an fa
ilitate adding a `signature' to ele
troni
 mails

whi
h 
ould make an e-mail as valid a do
ument as an agreement signed on stamp

paper! This 
ould fa
ilitate 
arrying out a

ountable business deals 
ould over the

Internet.

Data hiding in multimedia [5, 6, 7, 8℄ 
ould help in providing proof of origin

and distribution of 
ontent. Multimedia 
ontent providers would be able to 
ommu-

ni
ate with the 
ompliant multimedia players through the subliminal, stegano-

graphi
 
hannel. This 
ommuni
ation may 
ontrol or restri
t a

ess of multimedia


ontent, and 
arry out e-
ommer
e for pay-per-use implementations. The 
on
ept

of 
ompliant multimedia players may extend to operating systems whi
h would

re
ognize prote
ted multimedia �les. So one may not be able to print a do
ument or

make additional 
opies unless authorized by the hidden data in the do
ument. All

material available on paper, may eventually be in ele
troni
 form. Downloading or

distributing the do
uments 
ould be 
ontrolled by the hidden data.

A typi
al appli
ation of data hiding for multimedia 
ontent delivery may take

the form depi
ted in Figure 1.1. The 
ontent providers supply the raw multimedia

data (say a full length movie) along with some hidden agents or 
ontrol data. The

job of the distributors would be to pa
kage the 
ontent in some suitable format

(like MPEG) understandable by the players, and distribution of the multimedia

either through DVDs/CDs, live digital broad
asts or by even hosting web sites for

downloads. The 
ompliant multimedia players, will typi
ally be 
onne
ted to the

Internet.

In 
onventional multimedia distribution, the 
ontent provider looses all 
ontrol

over how the multimedia, is used / abused the moment it leaves his/her hands. The

key idea behind data hiding is to re-establish 
ontrol whenever the 
ontent is used.

The 
ontent provider, by hiding some agents in his raw data, hopes to 
ontrol a

ess

to his/her multimedia 
ontent. This 
an be done with the 
o-operation of the players,
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PLAYER
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Figure 1.1 A multimedia 
ontent delivery s
heme

and an established proto
ol for 
ommuni
ation between the 
ontent providers and the


ompliant multimedia players.

For most data hiding appli
ations to be
ome a reality, some important steps

have to be taken:

� Establishing proto
ols for authenti
ation of 
ontent that is a

eptable in a 
ourt

of law. The proto
ols may be di�erent for di�erent types of multimedia data.

� Establishing proto
ols for 
ommuni
ation over the subliminal 
hannel (between

the 
ontent providers and the 
ompliant multimedia players).

1.1 The Steganographi
 Channel

Figure (1.2) depi
ts a blo
k diagram of a general data hiding 
hannel. A is the

original multimedia data whi
h is also referred to as the 
over or stego obje
t. The
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Figure 1.2 Blo
k diagram of multimedia steganography

stego obje
t serves as the 
arrier for the hidden message M. The message M is


onverted to a signature S whi
h is in a form suitable for being embedded in A:

S = S(M;K) (1.1)

In Eq. (1.1), S is the signature generator blo
k in Figure (1.2), and the key K may

be private or publi
 or a 
ombination of both. Most often the embedding operation

E, takes the form of super positioning of S with A to obtain

^

A. However, other

forms of embedding is also possible.

^

A = A+ S or

^

A = E(A;S): (1.2)

The imper
eptibly modi�ed multimedia data

^

A, is transmitted through a 
hannel C,

and emerges at the other end as

~

A = C(

^

A). Now, the buried message signal M is

retrieved in the re
eiver by a dete
tor D as

~

M = D(

~

A;K) (1.3)

In some 
ases, (for e.g, watermarking appli
ations), the dete
tor D may require the

original A for extra
ting the hidden message or signature;

~

M = D(

~

A;A;K) (1.4)
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The 
hannel apart from other things, may in
lude a lossy 
ompressor at one end

and de
ompresser at the other end. While this is the main 
ause of 
on
ern for most

data hiding appli
ations, the same is not true for watermarking appli
ations. For

watermarking appli
ations, the 
hannel may in
lude agents with deliberate intentions

of removing the watermark.

This thesis is a study of theory and appli
ations of data hiding in still images

and video. However, most of the suggested te
hniques are also appli
able for data

hiding in digital audio.

1.2 Organization of the Thesis

This thesis is organized as follows. Chapter 2 is a brief review of existing literature

devoted to watermarking and data hiding.

In Chapter 3, the image / video steganographi
 
hannel is modeled as a 
ommu-

ni
ation 
hannel [9, 10, 11, 12℄. However, the embedding operation E in Figure 1.2

is assumed to be linear addition (in re
ent data hiding literature, linear data hiding

methods are referred to as Type I methods). The data hiding 
hannel is 
hara
-

terized as a 
hannel with 2 sour
es of noise - noise due to the stego image/ frame

and noise due the data 
ompressor in the 
hannel (the former is also referred to

as image noise, self-noise or host-signal noise, and the latter as pro
essing noise or


hannel noise. It is seen that the performan
e of the data hiding 
hannel 
an be

improved signi�
antly by de
omposing the data hiding 
hannel into multiple parallel


hannels. The de
omposition is usually performed by some unitary transform. The

purpose of the de
omposition, is primarily to eÆ
iently redistribute the two sour
es

of noise amongst di�erent 
hannels. Estimates of the noise sour
es in ea
h sub-


hannel from several test images and video sequen
es, for widely used 
ompressors

like JPEG, SPIHT [13℄ and MPEG [14℄ are obtained. This is in turn used obtain

information theoreti
 estimates of the 
apa
ity of the linear data hiding 
hannel for
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di�erent de
ompositions. It is argued why the 
hoi
e of the de
omposition should

be motivated by the required robustness of the data hiding appli
ation.

Chapter 4 investigates other options for the embedding operation E in Figure

1.2. It is shown how non-linear embedding te
hniques 
an suppress the self-noise

to a large extent [15, 16, 17, 18℄, even though the original 
ontent is not available

at the re
eiver. The problem of data hiding is viewed as a sophisti
ated signaling

method employing a 
oating signal 
onstellation. Therefore, the origin of the signal


onstellation has to be estimated by the re
eiver. The signaling method is split into

two steps. The �rst step estimates the origin of the 
oating 
onstellation. The

se
ond step is the de�nition of the 
onstellation itself. The step that estimates the

origin is termed as the self-noise suppression (SNS) te
hnique. Optimal methods to

a
hieve SNS are proposed and their performan
e evaluated under an additive noise

s
enario, both by means of simulations and rigorous analysis. Some of the widely

reported non-linear data hiding methods, based on quantization (referred to as Type

II methods in re
ent literature), are shown to be spe
ial 
ases of the proposed 
oating

signal 
onstellation. Investigation of optimal 
hoi
e of the parameters of the 
oating

signal 
onstellation, show that an extension of Type II methods is needed. The

extension (Type III), takes the form of thresholding the distortion introdu
ed by

Type II methods. Type III is then shown to be a generalization of both Type I and

Type II methods. Type I methods are a spe
ial 
ase of Type III methods whi
h

are optimal only when the SNR tends to zero. Similarly, Type II methods (another

spe
ial 
ase of Type III) are optimal when the SNR approa
hes in�nity.

Chapter 5 investigates options for the 
hoi
e of the signal 
onstellation for data

hiding. An FFT based signaling method [19℄ with properties that make it espe
ially

useful for multimedia steganography is proposed. In the proposed te
hnique, the

signal 
onstellation is de�ned by 
y
li
 all-pass �lters generated from random keys.
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The intri
ate relationship between data hiding and data 
ompression is explored

in Chapter 6. It is seen that eÆ
ient data hiding te
hniques should utilize \holes" in


ompression te
hniques [20, 21℄. Further, it is ne
essary for data hiding te
hniques to

be robust to all known 
ompression methods, and perhaps 
ompression te
hniques

whi
h may evolve in the future. To a
hieve this it may be ne
essary to utilize

\holes" 
ommon to all 
ompression s
hemes. Su
h a \hole" is identi�ed methods

to exploit that \hole" are proposed. The 
hapter 
on
ludes with an optimal data

hiding method based on the prin
iples outlined in Chapters 4, 5 and 6. In addition

other 
on
erns like se
urity, and 
omputational 
omplexity are taken into a

ount

for making appropriate trade-o�s.

Chapter 7 addresses the problem of unambiguous resolution of ownership

with digital watermarks. A proto
ol for watermarking whi
h virtually guarantees

immunity to 
ounterfeit 
laims [22, 23, 24℄, is proposed. The te
hniques proposed in

Chapter 6 for utilizing \holes" in 
ompression methods addressed how data hiding


an e�e
tively survive 
ompression. However, data hiding methods for watermarking

have to be robust to intentional atta
ks too. Chapter 7 addresses this issue, and

proposes a te
hnique for robust watermarking.

Con
lusions, and suggestions for future resear
h are o�ered in Chapter 8.



CHAPTER 2

A BRIEF REVIEW OF DATA HIDING

Appli
ations of the �eld of steganography date ba
k to earlier than 1000 BC [1℄.

However the revival of its appli
ations started with in
reasing 
on
erns of prote
ting

intelle
tual property rights of digital multimedia. Steganographi
 appli
ations 
an

be broadly 
lassi�ed into two 
ategories [25℄ -

� steganography with a
tive wardens, and

� steganography with passive wardens.

The data hiding parallels to the two 
ategories are respe
tively data hiding s
hemes

in whi
h intentional tampering is not an issue (for example, 
aptioning) and

s
hemes whi
h need resistan
e to intentional tampering (for example, watermarking).

Depending on the desired properties of the data hiding s
heme, we 
lassify data

hiding appli
ations into the following three 
ategories:

� Watermarking for prote
ting IPR

� Watermarking for Tamper dete
tion

� Data Hiding for multimedia delivery

{ Captioning

{ Customized media delivery

{ E-Commer
e

{ A

ess 
ontrol

{ A

ess monitoring

{ Intelligent agents (exe
utable 
odes for intera
tive 
ommuni
ation)

8
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2.1 Watermarking

Watermarking s
hemes 
an be broadly 
lassi�ed into two 
ategories. Methods that

need the original (unwatermarked) image for extra
tion of the watermark (or 
over

image es
rowmethods), and methods for whi
h the original is not ne
essary (oblivious

or blind dete
tion). Apparently, the former methods are bound to be more eÆ
ient as

they have to resist only the noise due to pro
essing (intentional and unintentional).

The latter however should also over
ome the host signal noise.

A watermark, added to an image or video frame should in general satisfy the

following properties:

� Robustness. The watermark should resist both intentional and non-

intentional tampering. Examples of non-intentional tampering are some


ommon signal pro
essing operations like lossy 
ompression, histogram equal-

ization, edge enhan
ement, low-pass �ltering, gamma 
orre
tion, s
aling,

rotation, D/A and A/D 
onversions, 
olor adjustment et
.. Intentional

tampering is done with the sole purpose of removing the watermark while

simultaneously trying to prote
t the quality of the image. Many s
hemes /

software pa
kages for intentional tampering have been proposed, like StirMark,

UnZign, and Ri
hard Barnett's atta
k software.

� Invisibility. The watermark should be per
eptually transparent. This implies

that the watermark energy should be very small (there exists a possibility of

having visible watermarks, but we shall not dis
uss them in this thesis due to

their limited appli
ation).

� Se
urity. The watermark should be non-removable even if the embedding

algorithm is known.
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� Unambiguous. Most importantly, the watermark should be able to resolve

rightful ownership unambiguously. This may pla
e some restri
tions on the

methods that 
an be used for watermarking.

The properties a watermark should satisfy for being a

eptable in a 
ourt of

law (to be able to establish the identity of the 
reator unambiguously) has itself been

an a
tive area of resear
h [22, 23, 24, 26, 27, 28, 29℄. Watermarking may also be

used for uniquely identifying ea
h 
opy distributed by the owner. For example, in the

above 
ase the 
reator A may sell many 
opies of his image I. While all the 
opies

will have the same watermark to establish ownership, they might have additional

buried information pertaining to the buyer of the parti
ular 
opy (it may just be

a serial number).This would help in in
riminating the parti
ular buyer responsible

for 
reating unauthorized 
opies. If a parti
ular buyer makes illegal 
opies of the

image for distribution, then the 
opy 
an be tra
ed to the buyer responsible for its


ir
ulation. But the a

used buyer 
an still 
laim that the 
opies were 
ir
ulated

by the owner of the original image to frame the buyer. To avoid this situation, a


ooperative buyer-seller proto
ol may be needed [29℄.

2.1.1 Watermarking for Tamper Dete
tion

Multimedia stored in digital format 
an be easily modi�ed, or forged with a wide

variety of available software. Data hiding for tamper-proo�ng 
an go a long way in

verifying the authenti
ity of the data. Tampering may be intentional or uninten-

tional. Appli
ations for tamper - proo�ng may prove important for 
ourtroom

eviden
e and journalisti
 photography.

In [30, 31℄, spatial domain watermarks were used. In Ref. [32℄ the watermark

is added in the wavelet domain. This method, in addition to identifying the spatial

lo
ation of the 
hange, also indi
ates the type of tampering undergone.
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In Ref. [33℄, a method suited for hardware implementation for watermarking

the images by 
ameras is proposed. In this method, the watermark is pla
ed takes

the form of a spread spe
trum sequen
e, added to 32 � 32 or 64 � 64 blo
ks. The

watermark is 
apable of identifying the parti
ular blo
ks that have been tampered

with.

2.1.2 Atta
ks Against Watermarks

Atta
ks against watermarks 
an broadly be 
lassi�ed into two 
ategories viz.,


ounterfeit atta
ks and signal pro
essing atta
ks. The former s
hemes, exploit inade-

qua
ies of the watermarking proto
ols to unambiguously resolve rightful ownership.

They are des
ribed in greater detail in Chapter 8.

The latter are aimed at removing the signature 
arefully designed strategies.

Some examples are StirMark, UnZign, Ri
hard Barnett's atta
k software et
. The

StirMark atta
k, for instan
e, simulates image distortions that 
ommonly o

ur when

a pi
ture is printed, photo
opied and res
anned. This also introdu
es imper
eptible

geometri
al 
hanges whi
h results in a loss of syn
hronization between the watermark

dete
tor and the image. In Ref. [34, 35℄, Cox et. al. dis
uss the e�e
tiveness of

di�erent atta
ks like aÆne transformations, noise redu
tion, 
ompression, exploiting

the watermark dete
tor / inserter devi
e to obtain better estimates of the watermark.

In Ref. [36℄ the authors 
ompare the e�e
tiveness of di�erent atta
ks like the

jitter atta
k, StirMark, and mosai
 atta
ks. The jitter atta
k is meant for water-

marking s
hemes that modify the least signi�
ant bits of audio / image data. In

the mosai
 atta
k, a watermarked image is 
hopped into a large number of small

sub-images whi
h are embedded in a suitable sequen
e in a web browser su
h that

the �nal presentation image is very similar to the original watermarked image.

Of all the watermark atta
k software, StirMark is probably the most e�e
tive,

and proven to e�e
tively atta
k most know watermarking s
hemes. In Ref. [37℄
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Petit
olas et. al. suggest that StirMark should be used as a ben
hmark for evaluating

the e�e
tiveness of watermarking s
hemes.

2.2 Data hiding for Multimedia Delivery

There are numerous emerging appli
ations in this 
ategory. What is 
ommon to

all of them is that, unlike watermarking appli
ations, `unambiguous resolution of

owner's identity' is not an issue. In addition, all these appli
ations may depend on

the existen
e of a 
ommon proto
ol for 
ommuni
ation between the 
ontent provider

and the player (or appli
ation software for viewing the image or playing the video /

audio 
lip).

The required robustness, se
re
y, and number of bits to be en
oded also varies

from appli
ation to appli
ation. For example, 
aptioning appli
ations may not need

very good robustness. Commer
ial appli
ations may need robustness only to the

standard 
ompression s
enarios that the data is most likely to undergo. In most


ases intentional tampering may not be an issue. Intentional tampering 
an 
ause

more loss than gain to the end user. Captioning and hiding exe
utables may need a

large number of bits, whi
h might, however, not be problem in video appli
ations.

2.3 Data Hiding Te
hniques

2.3.1 Spatial Domain Methods

Early work in data hiding 
onsisted mainly of modifying the least signi�
ant bits

(LSB) of images to hide data. In Ref. [38℄ the hidden signal was restri
ted to

modifying the two least signi�
ant bits. In Ref. [39℄ the author suggests adding small

geometri
 patterns - tags - to digitized images at brightness levels that are imper-


eptible. Bender et. al. [40℄ proposed the \Pat
hwork" algorithm. The algorithm

sele
ts random pairs of pixels. It enhan
es the value of high valued pixel and redu
es

the value of low valued pixel. The 
ontrast 
hange in the pair is used to en
ode one
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bit. This method however is not e�e
tive for images whi
h do not have uniformly

distributed pixel values.

Pitas et. al. [41, 42℄ introdu
e a method whi
h in prin
iple is very similar to

Pat
hwork. But they extend the pairs of points to blo
ks, whi
h results in better

resistan
e to JPEG 
ompression. Delp et. al. [43, 44℄, use a two dimensional

watermark (whi
h is a
tually obtained by reshaping one dimensional M-Sequen
es

as a matrix.)

In Ref. [45℄ a more robust watermarking s
heme is proposed. The robustness

is a
hieved by for
ing the signature to be low pass, so that the signature is relatively

tolerant to 
ompression. The extra
ted bits are mapped to a visualizer to display a

meaningful watermark.

2.3.2 DCT and Wavelets based Data Hiding

Perhaps [46℄ is the �rst work utilizing DCT de
omposition for data embedding. In

this method the watermark does not tile the image 
ompletely - only some randomly

sele
ted regions are altered to embed the watermark. In this s
heme, a \relationship"

is en
oded in blo
ks by swapping sele
ted 
oeÆ
ients.

Cox et. al. [47℄ were the �rst to introdu
e the idea of embedding the watermark

in the per
eptually signi�
ant 
oeÆ
ients of an image. In their s
heme, the watermark

altered 1000 low frequen
y DCT 
oeÆ
ients (2-D DCT of the entire image). A

Gaussian sequen
e is used as the signature. Dete
tion of the signature is a

om-

plished by 
orrelating the Gaussian sequen
e with the 1000 (modi�ed) DCT 
oeÆ-


ients after subtra
tion of the 
orresponding DCT 
oeÆ
ients of the 
over image.

In Ref. [48℄, a blo
k based DCT is used instead of taking the DCT of the

whole image. In Ref. [49, 50℄, 8 � 8 blo
k DCT is used. However not all blo
ks

are altered. Only blo
ks with high a
tivity are altered. The watermark modi�es the

mid-frequen
y DCT 
oeÆ
ients.
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Swanson et. al. [51, 52℄ propose an eÆ
ient watermarking s
heme based

on spatial masking [53℄ of the watermarking sequen
e to ensure invisibility of the

watermark. The spatial mask is used to 
al
ulate the maximum allowable 
hange for

ea
h DCT 
oeÆ
ient in ea
h blo
k.

In Ref. [54℄, Zeng et. al. raise the issue of the inability of 
over image es
row

watermarking s
hemes to resolve rightful ownership. They therefore introdu
e a

oblivious dete
tion s
heme, in whi
h the watermark signal is added to the 8 � 8

blo
k DCT 
oeÆ
ients. The watermark is dete
ted by 
orrelating the signature with

the DCT 
oeÆ
ients.

Fridri
h proposes a hybrid watermarking s
heme [55℄. This hybrid s
heme uses

a full size 2-D DCT de
omposition, and modi�es the low-frequen
y 
oeÆ
ients to

introdu
e the low-frequen
y watermark. In addition, a spread spe
trum signal is

added to the mid-frequen
y DCT 
oeÆ
ients.

Wavelet based data embedding s
hemes have been as widely reported as DCT

based s
hemes. In Ref. [56℄ the wavelet de
omposition of a signature matrix is added

to the wavelet de
omposition of the 
over image. However, the signature 
oeÆ
ients

are s
aled by a fa
tor depending on the 
ontrast sensitivity of spatial frequen
ies

[57℄.

In Ref. [58℄, the 
over image is de
omposed in a pyramidal fashion. The

watermark is added su
h that it 
an be dete
ted hierar
hi
ally. If the image distortion

is not serious, only a few bands of the de
omposition are needed to dete
t the

watermark.

Wang et. al [59℄ introdu
e a blind watermarking (oblivious dete
tion) s
heme,

in whi
h embedding s
heme sear
hes for per
eptually signi�
ant wavelet 
oeÆ-


ients onto whi
h the watermark 
oeÆ
ients are added. In Ref. [60℄, two water-

marking s
hemes modeled after the EZW [61℄ 
ompression s
heme are presented and
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ompared. While one algorithm uses the \insigni�
ant 
oeÆ
ients", the other uses

\signi�
ant" 
oeÆ
ients.

2.3.3 RST Invarian
e

In Ref. [62℄ the authors introdu
e a rotation, s
ale and translation (RST) invariant

watermarking s
heme. The RST invarian
e is a
hieved as follows. Translation

invarian
e is a
hieved by taking the DFT of the image and using only the DFT

magnitude. The DFT magnitude is then mapped to log-polar 
oordinates. Trans-

lation invarian
e in the log polar domain 
orresponds to s
aling and rotational

invarian
e in the spatial domain. Thus taking the 2-D DFT of the log-polar mapping

and retaining only the magnitude, results in an RST invariant domain. The signature

is added to the RST invariant domain and then mapped ba
k to the log-polar domain

(using the original unmodi�ed phase). The log polar mapping is now mapped ba
k

to the 2-D DFT magnitude 
oeÆ
ients of the image. Again the original phase of

the image is retained and a inverse 2-D DFT performed to obtain the watermarked

image.

2.3.4 Other Methods

Ruanaidh et. al. [63℄ propose a watermarking s
heme, where only the phase of the

DFT 
oeÆ
ients (2-D DFT) of the image are modi�ed to embed the signature. The

watermark is embedded in the phase of signi�
ant DFT 
oeÆ
ients. The authors


laim that information in DFT phase is superior for the same reason that angle

modulation is expe
ted have better noise immunity than amplitude modulation in


ommuni
ations theory. In Ref. [64℄ Fridri
h et. al introdu
e a de
omposition based

on random keys. In this s
heme, a set of random smooth patterns are generated

from a key. These patterns are then subje
t to Gram-S
hmidt orthogonalization

pro
ess to obtain a set of smooth orthogonal patterns whi
h are used to embed the

watermark in the image.
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In Ref. [65℄, the di�eren
e between a pixel and the average value of its four

adja
ent pixels is modi�ed to embed a bit. Note that this is equivalent to low pass

�ltering and modifying the high pass 
oeÆ
ients to embed a bit. The main advantage

of this method is that this s
heme will be relatively una�e
ted by histogram equal-

ization.

In Ref. [66℄, Paute et. al 
ombine watermarking s
heme with fra
tal or IFS


ompression s
heme. The signature is added by restri
ting the 
hoi
e of `domain

blo
ks' depending on the bit to be en
losed. The robustness of the embedding

in
reases as the \range' blo
k sizes in
rease. However this will result in poorer

quality of 
ompression, and the resulting image may not be of a

eptable quality.

In Ref. [67, 68℄ Voyatzis and Pitas apply nonlinear dynami
al prin
iples to

watermarking images. The watermark extra
ted is usually a logo with very few gray

levels. The logo is mapped to N �N latti
e whi
h is less than the size of the image.

The latti
e is mixed with the image. Extra
tion of the watermark is performed by

repeated appli
ation of an auto-morphism to extra
t the logo.

2.4 Video Steganography

While data hiding in video, 
an be done by 
onsidering ea
h frame as an image,

eÆ
ient watermarking s
hemes should take into a

ount the di�eren
es between the

nature of images and video frames. As video data is mu
h more redundant than

image data, they are sus
eptible to a wider variety of atta
ks like frame averaging,

frame dropping et
.. To a

ount for the pe
uliar nature of the possible atta
ks on

video frames, Swanson et. al. [69℄ present a watermarking s
heme, in whi
h the

watermark is embedded in obje
ts (8� 8 blo
ks of frames). In smooth regions of the

image use a 
onstant watermark while the motion regions use dynami
 watermarks.

In Ref. [70, 71℄ Hartung et. al. propose s
hemes to en
ode raw and 
ompressed

(MPEG 
ompressed) video. For watermarking in the raw domain they use a spread
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spe
trum sequen
e as the watermark. For watermarking in the MPEG 
ompressed

domain, the MPEG bit-stream is separated into header, side information, motion

ve
tors and DCT en
oded signal blo
ks. The Hu�man 
oded DCT 
oeÆ
ients are

de
oded, and then inverse quantization is applied. The DC 
oeÆ
ients are modi�ed

to add the watermark and reinserted into the MPEG bit-stream.



CHAPTER 3

LINEAR DATA HIDING

3.1 Introdu
tion

Most of the state-of-the-art te
hniques for data-hiding in images utilize some de
om-

position for embedding the message bits. Among di�erent orthonormal de
ompo-

sition te
hniques, it was probably the inspiration from image 
ompression appli-


ations that 
aused DCT and subband (wavelet) transforms to be more popular

than the others. Another reason for the 
hoi
e of DCT and wavelet based te
hniques

is perhaps to `mat
h' the data hiding [72℄ te
hnique with the pro
essing the image

is most likely to undergo. Currently, the most 
ommon image 
ompression tools are

the DCT based JPEG, and the wavelet based SPIHT / EZW [13℄ 
oding te
hniques.

Adding the signature or the message signal intelligently (for example taking the

JPEG quantization tables into a

ount) in the DCT domain 
an insure robustness

to JPEG. Similarly, one 
ould design wavelet based methods robust to EZW / SPIHT


ompression. It is no surprise that most wavelet based methods are very robust to

EZW or SPIHT 
ompression [59℄, but are not very robust to JPEG. Similarly, DCT

based methods are robust to JPEG, but not to EZW / SPIHT. Of 
ourse, one


annot expe
t robustness of these methods to other forms of 
ompression / signal

pro
essing. Though it is true that most images are very likely to go through Wavelet

/ DCT based 
ompression, the situation is di�erent for video frames. For most video

frames the major sour
e of `information' is the motion ve
tors. So it is diÆ
ult to

intelligently devise DCT / Wavelet based methods for data hiding in video frames.

It is of great interest therefore, to devise robust data hiding methods given that

no knowledge of the 
ompression te
hnique to be employed, is available. Now the

question to be answered is, what is underlying de
omposition that should be used?

In this 
hapter, we attempt to answer that question. We provide an information

18
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theoreti
 approa
h to estimate the a
hievable 
apa
ities for di�erent orthonormal

de
ompositions like DCT, subband, DFT, Hadamard and Hartley transforms.

Several authors, [73, 74, 75℄ have proposed information theoreti
 approa
hes to


hara
terize or evaluate the performan
e of the data hiding 
hannel. In [73℄, Smith

et al. model the image as a Gaussian noise sour
e of varian
e given by the average

noise (image) power. The data hiding 
apa
ity is then 
al
ulated as the 
apa
ity of

the Gaussian 
hannel. In [74℄ Servetto et al. obtain the 
apa
ity of the data hiding


hannel where the sour
e of noise is intentional jamming. However, it is assumed

that the original image is available at the re
eiver. The work of Hernandez et al [75℄

is a more thorough model, whi
h analyses the performan
e of a proposed method for

data hiding. In this model, L orthogonal sequen
es are used for the signature. The

image is broken down into 
hannels 
orresponding to its proje
tions onto ea
h of the

orthogonal signatures. The 
apa
ity of the 
hannels are analyzed for unpro
essed

images and images after linear �ltering operations.

3.2 Problem Statement

Let I be the original (
over) image, to whi
h a message S (a representation for

embedded information bits) is added, su
h that

^

I = I+ S. The modi�ed image

^

I, is

visually indistinguishable from I and may typi
ally be subje
ted to lossy 
ompression,

like JPEG,

~

I = C(

^

I), where C(:) denotes the 
ompression / de
ompression operation.

The embedded bits in image I are to be extra
ted from

~

I. We would like to know the

maximum number of bits that 
an be hidden and re
overed from the image with an

arbitrarily low probability of error, namely, the 
apa
ity of the data-hiding 
hannel,

for a given 
ompression s
enario.

A blo
k diagram of the data-hiding 
hannel is shown in Figure 3.1. S is the

message (signature) to be transmitted through the 
hannel. The 
hannel has two

sour
es of noise; I, the noise due to the (original) 
over image, and P, the noise
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S

P

S
~

I

Figure 3.1 The data hiding 
hannel


omponent due to pro
essing (
ompression / de
ompression).

~

S is the \
orrupted"

message. Note that for the 
over image es
row methods, there is only one sour
e

of noise - due to pro
essing. The image noise 
an be subtra
ted from the re
eived

image

~

I. One 
an expe
t su
h methods to have higher 
apa
ity than the oblivious

dete
tion methods.

Figure 3.2 displays the blo
k diagram of a typi
al data-hiding method. The

forward transform blo
k de
omposes the image I into its 
oeÆ
ients of L bands. A


omponent of the signature / message signal is added to ea
h band. The inverse

transform blo
k re
onstru
ts the modi�ed image

^

I.

I

S

I
^Inverse

Transform Transform

Compressor/

Decompressor

I
~

S
~

Forward

Forward

TransformExtractor

Figure 3.2 Generalized s
hemati
 of data hiding / retrieval

The image

^

I then undergoes some pro
essing (lossy 
ompression) to yield the

image

~

I. The hidden message signal / signature is to extra
ted from

~

I. The image

~

I is

de
omposed into L bands by the same forward transform blo
k and ea
h 
omponent

of the signature is extra
ted separately. In this 
hapter, we assume the system of

Figure 3.2 and estimate the 
apa
ity of data-hiding 
hannel for di�erent de
ompo-

sitions (di�erent forward and inverse transform blo
ks).
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3.3 Capa
ity of Additive Noise Channels

Prior to 
onsidering the data-hiding 
hannel of Figure 3.1, we 
onsider the simpler


hannel displayed in Figure 3.3(a). X � [f

X

(x); �

2

x

℄ is the message signal to be

transmitted, Z � [f

Z

(z); �

2

z

℄ is the additive noise in the 
hannel, andY � [f

Y

(y); �

2

y

℄

is the re
eived signal at the output of the 
hannel.

X

Z

Y

Z

Z

X Y

g

Information

Processor

(a) (b)

Figure 3.3 (a) A simple additive noise 
hannel. (b) The 
hannel of (a) modi�ed to

obtain equivalent additive Gaussian noise.

We also assume that X and Z are independent, implying that �

2

y

= �

2

x

+ �

2

z

.

Therefore, the 
hannel 
apa
ity is given by [76℄

C = max

f

X

(x)

I

M

(X;Y) = max

f

X

(x)

h(Y)� h(YjX) = max

f

X

(x)

h(Y)� h(Z) bits: (3.1)

where I

M

(X;Y), is the mutual information between X and Y. For a given noise

statisti
s f

Z

(z) and input varian
e �

2

x

, one 
an maximize the entropy of the output

Y,

h(Y) = �

Z

f

Y

(y) log

2

(f

Y

(y))dy bits; (3.2)

by 
hoosing a suitable distribution f

X

(x) for the input message X. For a given

varian
e �

2

y

, the maximum entropy value of h(Y) =

1

2

log

2

(2�e�

2

y

) bits is a
hieved

when Y has a normal distribution. For instan
e, the maximum entropy value is

a
hievable if both pdfs f

Z

(z) and f

X

(x) are normally distributed. However, for an

arbitrary distribution f

Z

(z), and a �xed �

2

x

, the maximum a
hievable entropy value

is not immediately obvious. To 
al
ulate that, we pass the noise Z through an

ideal information pro
essor, (see Figure 3.3(b)) whi
h does not alter the amount of
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information in Z, but 
hanges its statisti
s to a Gaussian distribution for its output

Z

g

. (The information pro
essor 
an be 
onsidered as an ideal data 
ompressor,

where `
ompression' is measured in terms of signal energy. The information pro
essor

translates the data to a form whi
h has minimum energy while maintaining the

information 
ontent or entropy). Sin
e the output of the information pro
essor has

the same entropy as the input, the varian
e of the output, �

2

zg

, 
an be obtained by

solving

h(Z

g

) = h(Z) =

1

2

log

2

(2�e�

2

zg

) bits: (3.3)

It is well known that the Gaussian distribution has the highest entropy for a given

varian
e [76℄. Alternately, the Gaussian distribution has the least varian
e for a given

entropy. Thus it is always true that �

2

zg

� �

2

z

. We 
all �

2

zg

the entropy equivalent

Gaussian varian
e. The maximum value of h(Y) is therefore obtained as

max

f

X

(x)

h(Y) = max

f

X

(x)

h(X+ Z

g

) =

1

2

log

2

(2�e(�

2

zg

+ �

2

x

)) bits: (3.4)

In order to 
al
ulate the 
hannel 
apa
ity, we 
an now repla
e f

Z

(z) by N [0; �

2

zg

℄.

C = max

f

X

(x)

h(Y)� h(Z

g

) =

1

2

log

2

(1 +

�

2

x

�

2

zg

) bits: (3.5)

Note that if pro
essing noise is Gaussian and independent of the image noise,

the two 
hannel noise sour
es in Figure 3.1 
an be repla
ed by a single Gaussian

noise sour
e of varian
e �

2

ig

+ �

2

p

, where �

2

ig

is the equivalent Gaussian varian
e for

the image noise I, and �

2

p

is the varian
e of the pro
essing noise. If �

2

s

is the message

signal energy, the 
apa
ity of the data-hiding 
hannel 
an be expressed as

C

h

=

1

2

log

2

(1 +

�

2

s

�

2

ig

+ �

2

p

) bits: (3.6)

As a �rst approa
h to 
al
ulate the 
apa
ity of the data-hiding 
hannel, the

image noise I (the original image pixels) is assumed to be uniformly distributed

random variables i taking values between 0 and 255 with varian
e �

2

i

. Let �

2

p

be the
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varian
e of the noise (per pixel) introdu
ed due to pro
essing, (e.g. 
ompression).

As we shall see later, the pro
essing noise is an estimate of the varian
e of an

equivalent additive noise whi
h substitutes the a
tual non-linear pro
essing noise

sour
es (mainly quantization for the 
ase of lossy 
ompression). Sin
e we do not

know anything about the distribution of the equivalent pro
essing noise, we assume

the worst - Gaussian distribution. Finally, let �

2

s

be the average energy per pixel

allowed for the message signal. If MN is the number of pixels in an image, then the

energy (or varian
e if zero-mean) of the message signal is 
al
ulated as

�

2

s

=

P

MN

i=1

S

2

i

MN

; (3.7)

where, S

i

is the message signal added to the i

th

pixel. The (di�erential) entropies,

h(g), of a Gaussian random variable g, with varian
e of �

2

g

, and h(u), that of a

uniformly distributed random variable u with varian
e �

2

u

are expressed as [76℄

h(g) =

1

2

log

2

(2�e�

2

g

) bits h(u) =

1

2

log

2

(12�

2

u

) bits:

From Eq. (3.8), the entropy equivalent Gaussian noise (or the Gaussian random

variable that has the same entropy as the uniform random variable u of varian
e �

2

i

),

has a varian
e given by

�

2

ig

=

12

2�e

�

2

i

: (3.8)

Although we would expe
t the varian
e of u, the pixel values, to be given by �

2

i

=

255

2

12

(or �

i

= 73:6), statisti
s from many test images (see Se
tion 4 for the details of the

test images used) show that �

i

= 55. Therefore, we assume that u has a uniform

distribution with �

i

= 55. From Eq. (3.8) it is 
al
ulated that �

ig

= 55(

12

2�e

)

0:5

� 46.

If we allow a degradation of the image after the addition of a message to a PSNR of 40

dB, then the message energy is 
al
ulated to be �

2

s

= 6:5. Furthermore, if the image

goes through JPEG 
ompression at 50% quality, then it is measured for test images

that the pro
essing noise has a standard deviation of �

p

� 6:7 (the a
tual pro
edure
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for estimating pro
essing noise is des
ribed in Se
tion 3.4.2). This would yield a


apa
ity C

h

value of 0.0022 bits/pixel (140 bits for a 256� 256 image). Even if the

message-embedded image undergoes some other pro
essing whi
h results in a barely

re
ognizable image 
orresponding to �

p

� 20, the 
apa
ity C

h

would still be 0.0019

bits per pixel (about 124 bits for a 256 � 256 image). Therefore, one 
an see that

hiding the message in the image domain 
an be very robust. However, in most 
ases,

we do not require su
h robustness. Sin
e most data-hiding appli
ations aim to prote
t

and as
ertain 
opyright or 
ontrol a

ess, it is unlikely in su
h a s
enario that anyone

would want to 
laim ownership or 
ontrol a

ess of an image of no 
ommer
ial value

(an image whi
h has been signi�
antly degraded in per
eptual quality). Typi
ally,

it is suÆ
ient if the message survives well-known image 
ompression/ de
ompression

operations with a

eptable quality.

Given that we are satis�ed with less robustness than the above mentioned

method o�ers, 
ould we do better than this? In our �rst approa
h, what we have

done is very similar to the method reported in [73℄ (the only di�eren
e being that

we have also introdu
ed pro
essing noise in the 
hannel). By assuming a Gaussian


hannel, we assume that the image pixels have a 
at spe
trum. However, it is well

known that the spatial frequen
y 
hara
teristi
s of a typi
al image is far from 
at

(white). Most of the image energy is 
on
entrated in the low-frequen
y bands. It

is therefore intuitive that a de
omposition of the image into its di�erent frequen
y

bands might help. We expe
t the low frequen
y bands of the de
omposition to

very noisy due to the high energy 
ontent of the image. On the other hand, high

frequen
y 
omponents would be very vulnerable to pro
essing, as most 
ompressors

would dis
ard them at low bit-rates. At mid-frequen
y bands, however, we 
ould

strike a 
ompromise. A typi
al distribution of image and pro
essing noise in various

bands of a de
omposition is shown in Figure 3.4.
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Figure 3.4 A Typi
al Distribution of Image and Pro
essing Noise Among Di�erent

Bands

In Figure 3.5, the 
hannel of Figure 3.1 is de
omposed into its multiple sub-


hannels. The de
omposition is performed by the Forward and Inverse Transform

blo
ks of Figure 3.2. The de
omposition of an image into its L sub-bands results in L

parallel sub-
hannels with two noise sour
es in ea
h sub-
hannel. Let �

2

i

j

; j = 1 � � �L,

be the varian
es of the 
oeÆ
ients for ea
h sub-band (or the varian
es of the image

noise in ea
h sub-
hannel) of the de
omposition. Similarly, let their 
orresponding

equivalent Gaussian varian
es be �

2

ig

j

. If �

2

p

j

is the varian
e of the pro
essing noise

(Gaussian) in the j

th

sub-
hannel, then, the total 
apa
ity of the L parallel sub-


hannels is given by

C

h

=

MN

2L

L

X

j=1

log

2

(1 +

v

2

j

�

2

ig

j

+ �

2

p

j

) bits (3.9)

for an image of size MN pixels. In Eq. (3.9), v

j

is the visual threshold of band

j. In other words, v

2

j

is the maximum message signal energy permitted in band j

based on its per
eptual quality e�e
ts. Note that if the 
hannel was a purely energy


onstrained 
hannel (or if the 
onstraint is on the total signature energy with no
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Figure 3.5 De
omposition of the data hiding 
hannel into parallel 
hannels

regard to how the signature energy is distributed among di�erent bands), then the

best solution would be to use the water-�lling approa
h [76℄ to 
al
ulate the 
hannel


apa
ity. However in this 
ase, the maximum signal energy permitted in a 
hannel

is 
onstrained by the visual threshold of the band. Ideally, we would like to utilize

all 
hannels to the fullest extent possible.

In the following se
tions, we evaluate the 
apa
ity of the data-hiding 
hannel

for DCT, DFT, Hadamard, and uniform subband de
omposition based embedding

methods. We use well-known 
ompression methods like JPEG and SPIHT to model

the pro
essing (
ompression) noise in ea
h sub-band of the de
omposition.

3.4 Modeling Channel Noise

In order to model the 
hannel noise (the two noise sour
es I and P in Figure 3.1),

we measure their statisti
s from 15 mono
hrome test images of size 256 � 256, and

their JPEG and SPIHT 
ompressed versions at various quality fa
tors / bit rates.

The 15 test are shown in Figure 3.6.

3.4.1 Modeling Image Noise

The 
over images are de
omposed into L sub-bands using an orthonormal transform.

Let f

I

j

(i

j

) be the distribution of the j

th

sub-band with varian
e �

2

i

j

. (The image
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Figure 3.6 The 15 256� 256 test images used

noise I is split into its 
omponents in L sub-
hannels, whi
h are modeled as random

variables f

I

j

(i

j

) with varian
es �

2

i

j

; j = 1 � � �L.)

Having obtained the varian
es of the image noise in ea
h sub-
hannel, the next

step is to obtain their entropy equivalent Gaussian varian
es. This is a
hieved by

plotting a histogram of the 
oeÆ
ients for ea
h band, and 
al
ulating the entropy.

If �x is the width of the n bins of the histogram g

j

(m); m = 1 � � �n, and p is the

total number of 
oeÆ
ients in band j, the entropy H

j

and the equivalent Gaussian

varian
e �

2

ig

j

of the sub-band are obtained as

H

j

= �

P

n

i=1

g

j

(i)

p�x

log

2

(

g(i)

p�x

)�x; bits �

2

ig

j

=

2

2H

j

2�e

:

Thus, the image noise in sub-
hannel (band) j 
an be substituted by a Gaussian

noise of varian
e �

2

ig

j

. In our simulations, the image noise is estimated for ea
h image

individually for �ve di�erent transforms.
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3.4.2 Modeling Pro
essing Noise

At the outset, one should note that Pro
essing noise is introdu
ed due to quantization

of transform domain parameters. While one 
ould a

urately estimate the type

of quantization noise that is introdu
ed by JPEG on the DCT 
oeÆ
ients of the

image (assuming that the quantization table is known), the same 
annot be done,

for instan
e, for the Hadamard transform 
oeÆ
ients of the image. The quantization

of one DCT 
oeÆ
ient would a�e
t many Hadamard 
oeÆ
ients. More importantly,

for the reasons explained earlier, viz. we wish to make the model of the pro
essing

noise more general. The only reason we restri
t ourselves to JPEG and SPIHT for

pro
essing noise sour
es is their widespread availability. We de�ne pro
essing noise as

the equivalent additive noise whi
h a

ounts for the redu
tion in 
orrelation between

the transform 
oeÆ
ients of the original image and the transform 
oeÆ
ients of the

image obtained after lossy 
ompression. Note that while this estimate provides us

with the varian
e of the equivalent additive noise, it does not tell us anything about

the nature of the noise (like its distribution). We therefore assume the worst -

Gaussian distribution for the pro
essing noise.

Let the pro
essing noise in ea
h sub-
hannel be �

2

p

j

; j = 1 � � �L. The steps to

obtain the pro
essing noise varian
e are:

� Apply lossy 
ompression / de
ompression (JPEG / SPIHT at various quality

fa
tors / bit rates) to n

i

test images.

� De
ompose the n

i

test images using some transform.

� Obtain

MNn

i

L

samples for ea
h sub-band. Let i

j

k

; k = 1; : : : ;

MNn

i

L

, be the


oeÆ
ients of band j.

� De
ompose the n

i

re
onstru
ted images using the same transform.

� Let

~

i

j

k

; k = 1; : : : ;

MNn

i

L

be the 
orresponding 
oeÆ
ients of the images

subje
ted to lossy 
ompression
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� De�ne the intra-band 
orrelation as

hi

j

;

~

i

j

i

ji

j

jj

~

i

j

j

=

hi

j

; (i

j

+ n

j

)i

ji

j

jji

j

+ n

j

j

= �

j

; (3.10)

where n

j

is a ve
tor of random variables, un
orrelated with i

j

.

� �

2

n

j

= jn

j

j

2

is the varian
e of the equivalent additive noise due to 
ompression

(or �

p

j

= �

n

j

).

� Sin
e hi

j

;n

j

i = 0, Eq. (3.10) 
an be simpli�ed to obtain

�

2

p

j

= jn

j

j

2

= (

1

�

2

j

� 1)ji

j

j

2

(3.11)

It 
an be easily seen that the pro
essing noise in ea
h sub-band 
an not be

obtained as

~

i

j

k

� i

j

k

. Consider a s
enario, where DCT is used for the de
omposition,

and low quality JPEG for pro
essing. Let us assume that a high frequen
y sub-band

is 
ompletely removed due to 
ompression (

~

i

j

k

= 0 8 k for some j). This implies that

all information buried in that sub-
hannel (sub-band) is lost. In other words, the

pro
essing noise in that sub-
hannel has in�nite varian
e (and not) the varian
e of

~

i

j

. This is be
ause no 
orrelation exists between

~

i

j

k

and i

j

k

. Note that in Eq. (3.11)

when �

j

! 0, �

p

j

!1.

Also, note that while the image noise is estimated individually for ea
h image,

the pro
essing noise is not. There are two reasons for this:

� As the equivalent image noise is estimated by 
orrelation, the result is likely

to be more a

urate if more samples are used. If we 
al
ulate pro
essing noise

for ea
h image separately, (for 256� 256 images using some 64 band de
ompo-

sition), we have only 1024 
oeÆ
ients in ea
h band. However, using 15 images

yields 1024� 15 
oeÆ
ients per band.

� The se
ond reason is that this method of estimating the pro
essing noise would

yield unrealisti
 (very low) estimates of pro
essing noise for low entropy images.
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The original and 
ompressed versions of low entropy images are bound to be

very `
lose', leading to high 
orrelation in most bands. This would 
ause an

overestimate of 
apa
ity for smooth images. To mitigate this e�e
t we average

pro
essing noise over many images.

3.5 Visual Threshold

The value of the visual threshold for sub-
hannel j, v

j

in Eq. (3.9) however, is highly

subje
tive. Sin
e the amount of message signal energy permitted in any sub-band

is determined by the visual threshold, di�erent models for visual thresholds would

yield di�erent estimates of a
hievable 
apa
ity. The visual threshold depends not

only on the band, but also on the magnitude of the parti
ular 
oeÆ
ient. Within

the same band, a 
oeÆ
ient with high magnitude 
an be altered to a larger extent

than a 
oeÆ
ient with small magnitude. Additionally, the visual threshold may also

depend on the magnitudes of 
oeÆ
ients of other bands 
orresponding to the same

blo
k / spatial lo
ation.

However, what we desire is an estimate of the average energy of the message

signal that 
an be added to a parti
ular band. Sin
e it is well known that the human

visual system is more sensitive to the lower frequen
ies than the higher frequen
ies,

the signal-to-noise-ratio (message signal to image noise) should be smaller for lower

frequen
y sub-bands. In general lower frequen
y sub-bands have higher varian
es.

Hen
e, a reasonable model for the visual threshold v

j


ould be

v

2

j

= K�

2�

i

j

(3.12)

where 0 < � < 1, and K << �

i

j

8j, is a 
onstant. When � = 0, the message signal

energy is distributed equally among all sub-bands regardless of their varian
es. On

the other hand, when � = 1 the message signal energy is distributed in the ratio of

the band varian
es.
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From Eqs. (3.9) and (3.12), for the 
ase of no pro
essing noise, if we assume

that all sub-
hannels have the same pdf type (su
h that K�

i

j

= K

1

�

ig

j

), the 
hannel


apa
ity 
an be 
al
ulated as

C

h

=

MN

2L

L

X

j=1

log

2

(1 +

K

1

�

2�

ig

j

�

2

ig

j

) �

MN

2L

log

2

(1 +

L

X

j=1

K

1

�

2(1��)

ig

j

); (3.13)

In the above equation, the approximation is justi�ed be
ause

K

1

�

2�

ig

j

�

2

ig

j

<< 1 8j. Note

that for the 
ase of � = 1, the de
omposition does not have any e�e
t on the 
apa
ity.

However, for � < 1, C

h


an be in
reased by 
hoosing a suitable transform, as shown

in the next se
tion. Thus, the in
rease in 
apa
ity is due to the fa
t that one 
an add

relatively more message signal energy to bands of lower varian
es (or high frequen
y

bands).

However, in Eq. (3.12) there seems to be no rationale for �xing the value of

� apart from a
tual simulations. We therefore adopt a di�erent model for visual

threshold. To derive the model, we argue that JPEG, at a reasonably good quality

fa
tor is well tuned visually in distributing the quantization errors amongst the bands,

at least with respe
t to preserving the visual �delity of the 
ompressed image. More

advan
ed methods like SPIHT tend to optimize the mean square error rather than

visual �delity (in general, the visual quality of a JPEG 
ompressed image at a 
ertain

PSNR is mu
h better than that of a SPIHT 
ompressed image at the same PSNR).

Let i

j

k

be the 
oeÆ
ients of the original images, and

~

i

j

k

the 
oeÆ
ients of the same

images that have gone through JPEG-75 (quality fa
tor 75) 
ompression and de
om-

pression. Let �

2

q

j

be the varian
e of the quantization error, e

q

j

=

~

i

j

� i

j

, for sub-band

j. If quantization error (due to JPEG-75) of varian
e �

2

q

j

in sub-band j, results in

an image that is visually satisfa
tory, we 
an argue that addition of message signal

with energy �

2

q

j

in sub-band j, would still render the image

^

I with an a

eptable

visual quality. However, in order to maintain the PSNR of

^

I in the range of 40-50

dB (so that the

^

I is visually indistinguishable from I), we 
hoose the sub-band visual
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thresholds as

v

2

j

= K

2

�

2

q

j

(3.14)

where K

2

< 1. (The average PSNR of JPEG-75 images is only about 35 dB. Hen
e

a 
hoi
e of K

2

= 1 would yield images

^

I of PSNR 35 dB. This might not be an

a

eptable quality. For our simulations we use K

2

= 0:25.)

3.6 Channel Capa
ity vs Choi
e of Transform

It should be noted that both Eqs. (3.9) and (3.13), are subje
t to the following


onstraints

P

L

j=1

�

2

i

j

= L�

2

i

P

L

j=1

�

2

ig

j

= L�

2

ig

I =

1

2

log

2

(2�e�

2

ig

)

where �

2

i

is the varian
e of images, �

2

ig

is the entropy equivalent Gaussian varian
e for

�

2

i

, and I is the average entropy of image pixels. The �rst equation states that unitary

transforms (the transforms used for the embedding de
ompositions) preserve energy.

The se
ond and third equations state that the transforms also preserve entropy. With

the above 
onstraints, it 
an be shown that the minimum 
hannel 
apa
ity (for the


ase of no pro
essing noise or Eq.(3.13)) is a
hieved for �

ig

j

= � 8j, or when no

de
omposition (spatial embedding) is used.

Note that a transform with good energy 
ompa
tion or higher Transform

Coding Gain (GTC) [77℄ would result in more imbalan
e of the 
oeÆ
ient varian
es.

This would enhan
e the term

P

L

j=1

K

1

�

2(1��)

ig

j

in Eq. (3.13), and therefore in
rease the


apa
ity (when the pro
essing noise is small). Therefore, good energy 
ompa
tion

transforms like DCT and subband transforms are good embedding de
ompositions

for low pro
essing noise s
enarios.

However, the relationship between pro
essing noise and the 
hoi
e of transform

is not immediately obvious. For example if we use JPEG at low quality fa
tor

for 
ompression and DCT as the embedding de
omposition, it is very easy to see
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that the pro
essing noise will approa
h in�nity for many high frequen
y bands

as they are bound to be 
ompletely eliminated. On the other hand, the high

frequen
y 
oeÆ
ients of say Hadamard transform will have 
omponents in many

DCT 
oeÆ
ients. So it is not very likely that any Hadamard transform band is


ompletely eliminated. In fa
t, even if the pro
essing the image undergoes is SPIHT,

it is still more likely to a�e
t the high frequen
y DCT 
oeÆ
ients more than the

high frequen
y Hadamard transform 
oeÆ
ients. Any eÆ
ient 
ompression method

would a�e
t the low varian
e (high frequen
y) bands of the transforms suitable for


ompression (or high GTC transforms).
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Figure 3.7 Comparison of standard deviations of pro
essing noise for DCT and

Hadamard de
ompositions. The sour
e of pro
essing noise is SPIHT 
ompression at

1 bpp and 0.35 bpp.

To illustrate this point Figure 3.7 shows the distribution of the pro
essing

noise for DCT and Hadamard transform bands for pro
essing noise due to SPIHT

at 1 bpp and 0.35 bpp. While the pro
essing noise for the two de
ompositions are


omparable for SPIHT at 1 bpp, it is seen that pro
essing noise in
reases drasti
ally

for high frequen
y DCT bands for SPIHT at 0.35 bpp. The high frequen
y bands of

Hadamard transform, however, are relatively immune to pro
essing noise. Similarly
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low quality JPEG a�e
ts the high frequen
y bands of subband de
omposition (using

8-tap Daube
hies �lter) to a mu
h larger extent than the high frequen
y Hadamard

bands. We already know that low frequen
y bands are not eÆ
ient 
hannels due

to the presen
e of high image noise. If the high frequen
y bands are also a�e
ted

by pro
essing, it leaves a small number useful of mid-frequen
y bands. Transforms

with lower GTC have many more of this useful `mid-frequen
y' bands than the high

GTC transforms, at higher pro
essing noise s
enarios. Therefore, de
ompositions

unsuitable for 
ompression would in general be more immune to pro
essing noise

than de
ompositions with high GTC. Also, re
all that in Se
tion 2 embedding in the

image domain (or using identity transform for the transform blo
ks in Figure 3.2),

was found to be very robust to pro
essing noise. The identity transform, whi
h has

the lowest GTC has the highest robustness to pro
essing noise. It is relevant to point

out here that the term `robustness', is a measure of the 
hange in overall 
apa
ity

with a 
hange in the pro
essing noise (or pro
essing s
enario). More robust the

de
omposition, less is the redu
tion in 
apa
ity for a s
enario of in
reased pro
essing

noise (or lower quality 
ompression). One should note that the robustness of the

low frequen
y bands of say the DCT de
omposition will be mu
h higher than the

robustness of the single band 
oeÆ
ients (pixels) in the image domain. However

the low frequen
y bands of the DCT have very little 
apa
ity due to high image

noise. The redu
ed `robustness' of DCT is due to the drasti
 redu
tion in the overall


apa
ity due to the drasti
 in
rease of pro
essing noise in the high frequen
y bands.

The next question that arises is the 
hoi
e of the number of bands for the

de
omposition. From Eq. (3.13) we see that a de
omposition will not hurt. At

worst, it may 
ause no improvement. Therefore de
omposing ea
h sub-
hannel of

say a 16 band de
omposition further into four sub-
hannels 
an only improve the


apa
ity of data hiding, at least when pro
essing noise is low.
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3.7 Results

The estimated 
apa
ities for di�erent 64 band de
ompositions (for 256�256 images,

or 65536 pixels) like DFT, DCT, subband, Hartley and Hadamard transformations,

are shown in Figure 3.8. The 
apa
ities were estimated for 5 di�erent transforms for

8 di�erent pro
essing s
enarios and averaged over 15 images. Figures 3.9 and 3.10

show the individual 
apa
ities of 4 di�erent images (Baboon, Barbara and Lena,

Bridge).

Figure 3.11 shows the average 
hannel 
apa
ities of ea
h video frame of 3 video

sequen
es (Table Tennis, Football and Garden) averaged over 90 frames per sequen
e.

The sour
e of pro
essing for the video sequen
es is MPEG-2 
ompression (30 frames/

se
, 15 frames in GOP and I/P frame distan
e of 3), at various bit-rates. In Figure

3.11, the left 
olumn is the estimates of 
apa
ity of I-Frames and the right 
olumn

for P/B-Frames.
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Figure 3.8 Average 
apa
ity estimates for 15 256�256 images. The indi
es for JPEG


ompression 
orrespond to di�erent JPEG quality fa
tors. (1 - lossless 
ompression,

2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indi
es for SPIHT 
ompression 
orrespond

to di�erent bit rates (1 - lossless , 2 - 1 bpp, 3 - 0.75 bpp, 4 - 0.5 bpp, 5 - 0.35 bpp).

For the subband de
omposition we use the 8-tap Daube
hies �lter (though

it would be better idea to use the linear phase 9-7 �lters used more 
ommonly
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Figure 3.9 Capa
ity estimates for 256 � 256 Baboon and Barbara images. The

indi
es for JPEG 
ompression 
orrespond to di�erent JPEG quality fa
tors. (1 -

lossless 
ompression, 2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indi
es for SPIHT


ompression 
orrespond to di�erent bit rates (1 - lossless , 2 - 1 bpp, 3 - 0.75 bpp, 4

- 0.5 bpp, 5 - 0.35 bpp).
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Figure 3.10 Capa
ity estimates for 256� 256 Lena and Bridge images. The indi
es

for JPEG 
ompression 
orrespond to di�erent JPEG quality fa
tors. (1 - lossless


ompression, 2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indi
es for SPIHT 
ompression


orrespond to di�erent bit rates (1 - lossless , 2 - 1 bpp, 3 - 0.75 bpp, 4 - 0.5 bpp, 5

- 0.35 bpp).
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Figure 3.11 Channel 
apa
ities of di�erent de
ompositions for Football and

Tabletennis Sequen
es. The pro
essing s
enarios 1-5 
orrespond to lossless


ompression, and 
ompression ratios of 10, 25, 50 and 100 (MPEG-2) respe
tively.

for subband or wavelet image 
ompression, the biorthogonality of the �lters would


ompli
ate the analysis). More spe
i�
ally, we use uniform subband de
omposition.

For the DFT de
omposition we use only the magnitude of the DFT 
oeÆ
ients. The

phase is ignored. (In other words, the message signal added would 
hange only

the magnitude of the DFT 
oeÆ
ients. The phase is left inta
t. As no message

signal information is available in the phase, the phase is ignored during dete
tion

of the message signal). The 2-D DFT of a 8 � 8 real matrix has 4 real, and 60


omplex (out of whi
h only 30 are unique) 
oeÆ
ients. Note that this 
auses a

redu
tion in the number of available 
hannels from 64 to 34, as only 34 magnitude


oeÆ
ients are unique (the magnitudes of 30 
omplex and 4 real 
oeÆ
ients). In

addition, this also redu
es the message energy available to ea
h 
hannel by a fa
tor

of (approximately) half { only half the message signal energy distributed among the

60 
omplex 
oeÆ
ients is available for dete
tion. Half the message signal energy is

added just for the purpose of maintaining the symmetry properties of the DFT of a

real signal. But by sa
ri�
ing some 
hannels, (or by redu
ing the degrees of freedom),
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we obtain smaller noise varian
es in ea
h 
hannel. As an example, 
onsider N iid

random variables (N degrees of freedom) with varian
e �

2

. If we 
onstru
t N=2

random variables from the N original variables by averaging every two of them, the

varian
e of the resultant N=2 random variables will be iid with varian
es equal to

�

2

=2. Therefore, we redu
e the varian
e of noise in the 
hannels by redu
ing the

degrees of freedom (from N to N=2).

From the plots in Figures 3.8 - 3.11, we see that 
apa
ities for all de
ompositions

fall with in
reased pro
essing noise as expe
ted. DCT and subband de
ompositions

are better than Hartley and Hadamard de
ompositions for dete
tion of the message

when pro
essing noise is low. It is also seen that de
ompositions unfavorable for


ompression (DFT, Hartley and Hadamard) are more immune to pro
essing noise

than de
ompositions suitable for 
ompression (DCT, subband).

What is surprising, is that magnitude DFT de
omposition o�ers more 
apa
ity

than better energy 
ompa
tion transforms even when there is no pro
essing noise.

In this 
ase a redu
tion in the entropy of the image noise is a
hieved by ignoring the

phase of the DFT 
oeÆ
ients. The redu
tion in entropy is pre
isely the information


ontent in the DFT phase. Apparently, this redu
tion in entropy more than o�sets

the redu
ed signal energy available for dete
tion (again, only half the signal energy

is available for dete
tion as the added signal power is divided between 64 
oeÆ
ients

while only 34 of them are available for dete
tion). Yet magnitude DFT performs

better than other transforms be
ause DFT phase 
ontains disproportionately more

information than the DFT magnitude!. Note that in Figures 9 and 10 the the 
apa
ity

of magnitude DFT de
omposition for Baboon and Bridge images is mu
h higher than

that of the high GTC transforms even for no pro
essing noise s
enario. On the other

hand the 
apa
ity of magnitude DFT is 
omparable to or even less than high GTC

transforms for smoother images like Lena and Barbara. This 
an be due to the

following reasons:
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� High GTC transforms suitable for most images are not very well suited for

these high a
tivity images.

� The disparity between information 
ontent in the phase and magnitude is even

more pronoun
ed for these high-a
tivity images.

In addition, being a relatively low GTC transform, DFT is also robust to

pro
essing noise like Hadamard and Hartley transforms.

Another surprising result, is that we �nd embedding in DCT domain is slightly

more resistant to Subband 
ompression methods than JPEG. Similarly embedding

in the Subband domain is slightly more resistant to JPEG than SPIHT. This

may appear to 
ontradi
t the idea of \mat
hing" embedding transforms with the


ompression method. But one should note that the mat
hing is useful only if we

design the methods `intelligently'. So designing a DCT based data hiding method

with no idea of say, the quantization matrix used, may not be more robust to JPEG

than a wavelet based data hiding method.

As an indi
ator of the performan
e of these de
ompositions for other possible


ompression methods, we look at the 
apa
ities of the de
ompositions when an image

has to survive JPEG or SPIHT. We group the four di�erent pro
essing s
enarios of

JPEG and SPIHT into four pairs - (JPEG-75, SPIHT 1 bpp), (JPEG-50, SPIHT 0.75

bpp), (JPEG-35, SPIHT 0.5 bpp) and (JPEG-25, SPIHT 0.35 bpp). For example,

to 
al
ulate the 
apa
ity when the message signal has to survive JPEG-50 or SPIHT

0.75 bpp we 
hoose the worst pro
essing noise in ea
h sub-band (from the estimates

of pro
essing noise for SPIHT 0.75 bpp and JPEG-50). The 
apa
ities so obtained

are plotted in Figure 3.12. Note that the estimates of the 
apa
ity still follow the

same trend.

We 
an de�ne a �gure of merit, for ea
h of the L (

L

2

+ 2 for magnitude DFT)

sub-
hannels for the various de
ompositions. The �gure of merit is given as the ratio

of the 
apa
ity of ea
h sub-
hannel to the logarithm of the power of the message signal
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Figure 3.12 Average 
apa
ity estimates for 15 images when the message signal has

to survive SPIHT or JPEG. The 
ompression indi
es 1 - 5 
orrespond to 1 - lossless


ompression, 2 - (JPEG - 75, SPIHT 1 bpp), 3 - (JPEG - 50, SPIHT 0.75 bpp), 4 -

(JPEG - 35, SPIHT 0.5 bpp), 5 - (JPEG - 25, SPIHT 0.35 bpp).

in that sub-
hannel. The approximate (rounded) values of the �gure of merit for the


hannels of di�erent de
ompositions (when the message has to survive SPIHT 0.5

bpp or JPEG-35), are listed in Table 3.1 for various 64-band de
ompositions. These

�gures indi
ate the relative performan
e of ea
h sub-
hannel, and would therefore

be useful in designing hidden 
ommuni
ation methods to make optimal trade-o�s

between the visual quality of the image and the number of bits that 
an be embedded.

As the �gure of merit is normalized with respe
t to the message signal energy in ea
h

band, it is independent of the model used for the visual threshold. The high �gures

of merit for the 
hannels of the magnitude DFT de
omposition show that it would

perform better than other de
ompositions for any message signal energy assignment

method (model for visual threshold).

Figure 3.13 shows the average 
apa
ities for 15 images for 256 band de
ompo-

sitions. As expe
ted, we see an in
rease in the estimate of the 
apa
ity. The in
rease

is more substantial for low pro
essing noise s
enarios.
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Table 3.1 Figure of merit of the bands of di�erent de
ompositions when the image

has to survive SPIHT 0.5 bpp. (a) magnitude DFT, (b) DCT, (
) uniform subband

and (d) Hadamard.

(a)-DFT (b)-DCT

0 27 49 69 83 0 0 0 0 8 19 29 37 42 29 23

27 53 72 70 87 0 0 0 8 17 28 34 41 28 10 28

49 72 69 38 51 0 0 0 19 28 36 40 35 15 7 22

69 70 38 18 32 0 0 0 29 34 40 40 23 8 2 22

83 87 51 32 43 0 0 0 37 41 35 23 15 2 11 2

0 69 46 33 0 0 0 0 42 28 15 8 2 0 0 0

0 71 69 46 0 0 0 0 29 10 7 2 11 0 0 6

0 54 71 69 0 0 0 0 23 28 22 22 2 0 6 14

(
)-Subband (d)-Hadamard

0 9 29 37 43 41 37 33 0 23 11 22 5 22 10 22

9 18 19 26 37 43 32 18 23 34 30 12 38 24 34 22

29 19 30 37 29 23 30 16 11 30 31 24 22 29 28 26

37 26 37 28 44 43 10 8 22 12 24 13 28 21 27 13

43 37 29 44 11 19 2 7 5 38 22 28 11 32 17 30

41 43 23 43 19 39 6 9 22 24 29 21 32 22 33 24

37 32 30 10 2 6 2 12 10 34 28 27 17 33 24 30

33 18 16 8 7 9 12 11 22 22 26 13 30 24 30 17
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Figure 3.13 Average 
apa
ity estimates for 15 256�256 images for 256 band de
om-

position. The indi
es for JPEG 
ompression 
orrespond to di�erent JPEG quality

fa
tors. (1 - lossless 
ompression, 2 - 75%, 3 - 50%, 4 - 35%, 5 - 25%) The indi
es

for SPIHT 
ompression 
orrespond to di�erent bit rates (1 - lossless , 2 - 1 bpp, 3 -

0.75 bpp, 4 - 0.5 bpp, 5 - 0.35 bpp).
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Finally, note that we evaluate pro
essing noise by measuring the 
orrelation

between the image 
omponents before and after 
ompression. By this, we impli
itly

assume that the message signal (signature) is a�e
ted to the same extent as the image


oeÆ
ients themselves by the 
ompressor / de
ompresser. In a pra
ti
al method, this

may not be true. In fa
t, as pointed out in Chapter 1, an ideal 
ompression method

would 
ompletely suppress any extra information added to the image 
oeÆ
ients

(no data hiding would be possible with an ideal 
ompression method). But pra
ti
al


ompression methods 
an probably be tri
ked into believing that the embedded infor-

mation is an integral part of the image if the embedded message signals are 
hosen

intelligently. However, 
hoosing the signature S intelligently may imply redu
ed

degrees of freedom for its 
hoi
e, translating into redu
ed 
apa
ity.

3.8 The Ideal De
omposition

For a moment, if we ignore the magnitude DFT de
omposition, the performan
e of

a de
omposition depends roughly on its position in the GTC S
ale. In Figure 3.14,

a few transforms are marked in the GTC S
ale. To the extreme left is the identity

transform whi
h has no energy 
ompa
tion. In the extreme right is the KLT [77℄.

Transforms to the right would yield high 
apa
ities for low pro
essing noise s
enarios.

As the pro
essing noise in
reases, we should move towards the left to 
hoose a

transform. The question is, given a pro
essing noise s
enario, what would be the

ideal de
omposition?

KLTDCT

HAD

HARIDENTITY

WAVELET

LOW GTC HIGH GTC

Figure 3.14 The GTC S
ale
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Figure 3.15 The ideal de
omposition

For example, if � = 0:5 in Eq. (3.12), the 
apa
ity of ea
h sub-
hannel of a

de
omposition is given by

C

h

j

= log

2

(1 +

K�

ig

j

�

2

ig

j

+ �

2

p

j

) (3.15)

In order to maximize C

h

j

it is enough to maximize t =

�

ig

j

�

2

ig

j

+�

2

p

j

. It 
an be easily

seen, that t (and hen
e C

h

j

) is maximized when �

2

ig

j

= �

2

p

j

. The ideal de
omposition

would be the one whi
h results in image noise varian
es 
lose to the pro
essing noise

varian
es in the maximum number of sub-bands. Typi
ally for high GTC de
ompo-

sitions, (Figure 3.15 (a)) �

i

>> �

p

in the low frequen
y bands and �

p

>> �

i

in the

high frequen
y bands. For lower GTC transforms, the dis
repan
y is redu
ed (Figure

3.15 (b)). On the other hand, for identity transform �

i

>> �

p

in the single band

(Figure3.15 (
)). Therefore, for the ideal de
omposition, the image and pro
essing

noise varian
es should be distributed as shown in Figure 3.15 (d). For the ideal

de
omposition, the image and pro
essing noise varian
es should be distributed as

shown in Figure 3.15. It should also be noted, that a de
omposition so obtained

would perform as expe
ted only if we are able to assume the same model for the
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relationship between the 
oeÆ
ient varian
e and the visual threshold. Therefore,

the sear
h for su
h a de
omposition may not be simple.

3.9 Fa
tors In
uen
ing Choi
e of Transform

The superiority of the magnitude DFT de
omposition, among the de
ompositions


ompared, lies in an advantageous trade-o�, where we redu
e the degrees of freedom

to redu
e the entropy of the image. Simulations show that the magnitude DFT

de
omposition yields uniformly superior performan
e (over other de
ompositions)

for both low and high pro
essing noise s
enarios.

The �nal 
hoi
e of the de
omposition should depend on the end appli
ation.

While some data hiding appli
ations, like watermarking, may need robustness to

intentional tampering, some appli
ations like 
aptioning may not. The performan
e

of magnitude DFT de
omposition is superior to others be
ause of its low information


ontent. For the very same reason the magnitude of DFT 
oeÆ
ients 
an be altered

signi�
antly without a�e
ting the visual quality of the image. This makes the DFT


oeÆ
ients very vulnerable to intentional tampering. Thus, the magnitude DFT

de
omposition may not be suitable 
hoi
e for watermarking appli
ations. However,

standard image 
ompression methods do not seem to a�e
t the magnitude DFT


oeÆ
ients drasti
ally. This `hole' in standard 
ompression methods 
an be put

to use advantageously. So for appli
ations where intentional tampering is not an

issue, magnitude DFT may be a good 
hoi
e for both low and high pro
essing noise

s
enarios.

For robustness to `
ommer
ial quality' 
ompression methods (better than

JPEG-50 or SPIHT 1 bpp), high GTC transforms like DCT and Wavelets (subband)

perform better than low GTC transforms. Further, being transforms espe
ially

used for image 
ompression appli
ations, they would leave very little room for

intentional tampering without signi�
ant degradation of the image. This property
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would make them very suitable for watermarking appli
ations. For other data hiding

methods, with perhaps redu
ed resistan
e to intentional tampering but in
reased

resistan
e to pro
essing noise (lower quality 
ompression), transforms like Hadamard

or Hartley transform would probably be more useful. For example, an average video

frame is likely to su�er more pro
essing noise than an average still image. So low

GTC transforms may be good 
hoi
es for data hiding in video frames. Further,

though lower GTC transforms are bound to have redu
ed resistan
e to intentional

tampering (
ompared to DCT or wavelets) if the transform employed is known, the


ase is di�erent if the transform used is not known. There exists a high degree

of freedom for the 
hoi
e of the low GTC embedding transforms. This enhan
ed

degree of freedom for the 
hoi
e of the embedding transform 
ould result in very

high robustness to intentional tampering. In the next se
tion we outline a method

for obtaining low GTC subband transforms, from random seeds.

3.10 Fast Transforms Generated from Random Seeds

In this se
tion we outline 3 ways of generating low GTC subband transforms from

random seeds:

� perturbation of high GTC subband �lters

� random sear
h

� generating 
y
li
 subband �lters in the DFT domain

The �rst and se
ond methods generate non-
y
li
 subband �lters of �nite support,

while the third method generates 
y
li
 subband �lters. The di�eren
es between

subband �lters with �nite support and 
y
li
 subband �lters, and fast implementation

of these transforms using FFT, are outlined in Appendix A.
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3.10.1 Perturbation of High GTC Subband Filters

It is well known [78℄ that a degree k, 2-band paraunitary system E(z) 
an be obtained

from k + 1 unit norm ve
tors, v

1

� � �v

k

and u of size 2� 1, as

E(z) = V

1

(z)V

2

(z) � � �V

k

(z)U (3.16)

where

V

i

(z) = I� v

i

v

T

i

+ z

�1

v

i

v

T

i

; (3.17)

where I is an identity matrix of size 2� 2 and

U = I� 2uu

T

(3.18)

In other words, for every 
hoi
e of the unit norm ve
tors v

1

� � �v

k

and u, there exists

a unique paraunitary system.

To generate paraunitary systems from random seeds, we 
ould start with the

unit norm ve
tors v

1

� � �v

k

and u 
orresponding to some high GTC known �lter

(say 20 tap Daube
hies �lter) and perturb those ve
tors randomly to obtain their


orresponding lower GTC �lters.

3.10.2 Random Sear
h

In this method, the key from whi
h the �lters are generated has two parts. The �rst

part of the key is used as a seed to generate a random sequen
e of seeds. Ea
h seed in

turn is used to generate the unit norm ve
tors randomly. From the generated ve
tors

the 
hara
teristi
s of the 
orresponding �lter is obtained. The sear
h is stopped when

a `satisfa
tory' �lter is obtained. The se
ond part of the key now be
omes the index

number of the random seed that generates a satisfa
tory �lter. This method however,

may not be a

eptable for watermarking appli
ations (we shall see in Chapter 7 that

watermarking proto
ols should have very limited degree of freedom for 
hoosing the

signature or the de
omposition).
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3.10.3 Cy
li
 Subband Filters in the DFT Domain

The 
hara
teristi
s of 
y
li
 subband �lters [79℄ is outlined in Appendix A. If h$ H,

and h 2 <

N

, then h satis�es the 
onditions for a 2 - band 
y
li
 subband �lter if

jH(l)j

2

+ jH(l +

N

2

)j

2

= 2 for l = 0; � � � ;

N

2

� 1: (3.19)

A relatively low GTC 
y
li
 subband �lter 
an be generated in the DFT domain by

�xing the magnitude response jH(l)j for l = 0; : : : ;

N

2

� 1 and 
hoosing the phase

6

H(l) for l = 0; : : : ;

N

2

� 1 randomly.



CHAPTER 4

OPTIMAL SIGNALING FOR MULTIMEDIA STEGANOGRAPHY

Conventional 
ommuni
ation methods employ a wide variety of signaling te
hniques

whi
h essentially map a bit sequen
e to a real valued sequen
e. The real valued

sequen
e is in turn transmitted over a 
hannel. However, 
ommuni
ation te
hniques

for the purpose of multimedia steganography or data hiding have to transmit the

real valued sequen
e 
orresponding to the signal 
onstellation superimposed on the

original 
ontent (without a�e
ting the �delity of the original 
ontent noti
eably). In

Chapter 3 we explored the possibility of super-positioning the signature sequen
e

onto the 
ontent. However, there exists other options for embedding the signature

in the 
ontent.

In this 
hapter, we explore pra
ti
al solutions for signaling methods for

multimedia steganography. Data hiding is seen as a sophisti
ated signaling te
hnique

using a 
oating signal 
onstellation. We propose su
h a signaling method and present

both theoreti
al and simulated evaluations of its performan
e in an additive noise

s
enario. The problem of optimal 
hoi
e of the parameters of the proposed te
hnique

is also explored, and solutions are presented.

4.1 Problem Statement

The pro
ess of data hiding in images 
onsists of an embedder E, and a dete
tor D.

If I is the original or 
over image, and b is a sequen
e of bits to be embedded in the

image, the stego image

^

I (the image with the embedded data) is obtained as

^

I = E(I;b;K) (4.1)

where K is a key. We expe
t the image

^

I to undergo some modi�
ation (like

lossy 
ompression) before it rea
hes the re
eiver (dete
tor D), where the hidden

bit sequen
e is extra
ted. Let

~

I =

^

I+N be the re
eived image.

48
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Depending on whether the method is es
row or oblivious, the dete
tor takes

the form

~

b =

(

D(

~

I;K; I) es
row

D(

~

I;K) oblivious

(4.2)

In most data hiding methods, the bit sequen
e to be embedded, viz. b, is 
onverted

to a form suitable for embedding in the 
over image. Let s = S(b). In other words,

the signaling method for the steganographi
 
ommuni
ation, viz. S, 
onverts the

bit sequen
e b to a signature sequen
e s. Most often, the signature sequen
e s is

embedded in some transform domain. Let T represent a unitary transformation

employed, and C = T (I). For an M � N image I, C is M � N dimensional. The

overall embedding and dete
tion operations now take the following form:

C = T (I) s = S(b)

^

C = E(C; s)

^

I = T

�1

(

^

C)

~

I =

^

I+N

~

C = T (

~

I)
~
s = D(

~

C)

~

b = S

�1

(
~
s)

(4.3)

From a signal pro
essing perspe
tive, data hiding methods 
an be 
lassi�ed into two


ategories, depending on the type of embedding and dete
ting operators. In the �rst


ategory [9, 12℄ lies methods where the E adds the signature sequen
e linearly to

C, as in Chapter 3, and D dete
ts
~
s from

~

C by 
orrelative pro
essing. For linear

methods, if the original image is not available at the re
eiver, (or if C is not known),

then the original image itself (or its transform 
oeÆ
ients C) is noise, for the purpose

of dete
tion of the hidden bit sequen
e b. Alternately, linear data hiding methods

employ \
onventional" signaling te
hniques for data hiding. In the se
ond 
ategory E

and D are non-linear. One of the important 
hara
teristi
s of the non-linear methods

is their ability to suppress the noise due to the original image (or self-noise), even

though the original image is not available at the re
eiver.

For linear data hiding methods (or Type I methods), the purpose of the de
om-

position is to obtain a favorable distribution of the image and pro
essing noise in the

di�erent bands. However we shall see that even with ideal redistribution of the two

noise sour
es, linear or Type I data hiding 
an never be optimal.
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4.2 Non linear Data Hiding

The non-linear methods are 
apable of utilizing the robust low frequen
y bands

even though the original image is not available at the dete
tor. In one of our prior

arts [15℄ the signature is introdu
ed in 8 low frequen
y DCT 
oeÆ
ients (of ea
h

8 � 8 blo
k). The ve
tor x of the low-frequen
y DCT 
oeÆ
ients is s
rambled by

means of an (invertible) 
y
li
 all-pass �lter F with pseudo random 
oeÆ
ients. Let

y = F(x). The signature is added and dete
ted in the s
rambled `domain' y. To

embed the bit we modify the signs of many small amplitude 
oeÆ
ients of y so that

the resulting sequen
e has more positive than negative 
oeÆ
ients. CoeÆ
ients with

large amplitudes in the s
rambled domain y are untou
hed. Altering (by 
ipping

signs) only the small magnitude 
oeÆ
ients guarantees that the distortion introdu
ed

is tolerable. The modi�ed sequen
e
^
y is uns
rambled to obtain the modi�ed (DCT)


oeÆ
ients
^
x = F

�1

(
^
y). For dete
ting the buried bit, the re
eived ve
tor

~
x is

s
rambled by the �lter F to obtain
~
y. The ex
ess number of positive 
oeÆ
ients

is 
ounted. Note that by treating both high and low magnitude 
oeÆ
ients of
~
y

with equal weight (only the sign of the 
oeÆ
ient is 
onsidered), suppression of

image noise is a
hieved. Unlike linear dete
tion methods using 
orrelative pro
essing

(whi
h would atta
h more signi�
an
e to the high amplitude 
oeÆ
ients), in this


ase, large magnitude 
oeÆ
ients a�e
t the result of the dete
tion pro
ess in the

same way as the small magnitude 
oeÆ
ients.

In the data hiding s
heme by Wang et. al. [59℄, the signi�
ant wavelet 
oeÆ-


ients are altered. The 
oeÆ
ients are modi�ed so that they quantize to an even or

odd value depending on the bit to be embedded. In [54℄ Wu et. al. introdu
e a

similar s
heme based on JPEG quantizers. The signature is introdu
ed in the DCT

domain. Chen et. al [80℄ provide a more formal treatment of data hiding te
hniques,

that use the quantization index to embed bits (methods whi
h for
e the quantized

indi
es to take a desired value depending on the information signal to be embedded).
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In fa
t the earliest data hiding methods [38, 39℄, whi
h modi�ed only 1 or 2 LSBs

of images were also non-linear. For example, a method whi
h modi�es only 2 LSBs

may be 
onsidered as a form of quantization index modulation where the step size

of quantizer used is 4. In re
ent data hiding literature, the data hiding methods

[54, 59, 80℄ employing quantization are referred to as Type II methods. In the next

se
tion we provide a generalization of Type II methods. The generalization is based

on the observation that quantization a
hieves self-noise suppression be
ause of its

periodi
 nature. This implies that other periodi
 fun
tions are also (probably better)


andidates for this purpose.

4.3 Data Hiding as a Signaling Te
hnique

Consider a (metri
) spa
e I of ve
tors C (ea
h point in the metri
 spa
e may


orrespond to the transform 
oeÆ
ients of some image). Let C represent the

transform 
oeÆ
ients 
orresponding to the original (
over) image. To embed a bit

sequen
e b of length n

b

, we should be able to de�ne a 
onstellation with a minimum

of 2

n

b

points in I. The problem now is the 
hoi
e of a signaling set or a signal


onstellation, su
h that any point in I 
an be relo
ated to a point in the 
onstel-

lation 
orresponding to the arbitrary bit sequen
e to be hidden, without per
eptual

distortion. The new point to whi
h the image (or C) is moved is then the stego

image, (or its transform 
oeÆ
ients

^

C). If the spa
e I is tiled by the 
onstellation,

reasonably low amounts of distortion 
an be a
hieved. On the other hand, we also

need the hidden bits to survive some distortion that the stego image is expe
ted

to undergo before it rea
hes the dete
tor. Therefore we need the points of the


onstellation to be \well separated".
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4.3.1 Signaling for Data Hiding

Given a sequen
e of bits b of length K, and 
oeÆ
ients C 2 <

MN

(transform 
oeÆ-


ients of M � N images), where typi
ally K << M � N , we need to map the bit

sequen
e to a new \state"

^

C. Let � = T (N), be the e�e
t of the additive noise N in

the 
hannel on the transform 
oeÆ
ients

^

C. Or,

~

C =

^

C+�. However, we would like

to minimize the 
hannel noise �. We know that most of the noise would be 
on
en-

trated in the high frequen
y 
omponents of the image (a 
ompression method like

JPEG quantizes the high frequen
y 
oeÆ
ients very 
oarsely). Therefore a signi�
ant

portion of the noise 
an be eliminated if the data is embedded in the transform

domain, and high frequen
y 
oeÆ
ients are ignored (not used for data hiding). We


ould use a subset (low-to-medium frequen
ies) 
 2 <

D

of the 
oeÆ
ients C 2 <

MN

for data hiding.

We 
an now 
onsider any image as a point in D dimensional metri
 spa
e (of

D-dimensional ve
tors 
). Therefore, the over-all embedding and dete
ting sequen
es

now take the form

s = S(b)
^

 = E(s; 
) Embedding

~
s = D(

~

)

~

b = S

�1

(
~
s) Dete
tion

: (4.4)

The over all signaling method has now been split into two parts - a part (E and D)

whi
h depends on 
, and the part S and S

�1

whi
h are independent of 
. Moreover,

s represents a point in a signal 
onstellation with known origin. We shall see that E

and D 
an be implemented as simple periodi
 fun
tions, and of 
ourse, a wealth of

knowledge exists for the 
hoi
e of the 
onventional signaling part S.

4.3.2 Self-Noise Suppression

Figure 4.1 is an illustration of the fun
tion of E and D. In the �gure, for purposes

of illustration we have D = 2 (typi
ally, for images D may be of the order of tens of

thousands). A bit sequen
e b is mapped by S to a point s in the bold re
tangular

region near the origin. The �lled box represents the position of s in D-dimensional
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Figure 4.1 The SNS operators E and D
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Figure 4.3 (a) Linear 
over image es
row data hiding. (b) Equivalent additive noise


hannel. (
) Non-linear oblivious dete
tion data hiding. (d) Equivalent additive

noise 
hannel.

spa
e. The �lled 
ir
les represent the position of 


1

and 


2

(transform 
oeÆ
ients

of 2 images). E maps 


1

to the point
^



1

and 


2

to
^



2

. D, on the other hand, would

map both
^



1

and
^



2

to s. We 
all the pair (E , D) as the self-noise suppression

(SNS) method. As explained earlier, for linear oblivious data hiding te
hniques, for

the purpose of dete
tion of the hidden bits in an image, the image itself is noise.

The SNS operators \suppress" the original image 
omponent in
~

 and extra
t the


omponent
~
s whi
h is needed for obtaining b. The SNS method, whi
h obtains

the origin of the signal 
onstellation, is 
hara
terized by step sizes �

i

; i = 1 � � �D


orresponding to ea
h of the D dimensions. The SNS method uses periodi
 fun
tions

in ea
h of the D dimensions to translate the point s in the 
onstellation with known

referen
e (the origin), to points like
^



1

or
^



2

depending on the position of the original


oeÆ
ients (


1

or 


2

) su
h that the distortion introdu
ed (d(


1

;
^



1

) or d(


2

;
^



2

)) is

minimal.

4.3.3 Correlation and Equivalent Noise

Before we explore spe
i�
 SNS te
hniques, 
onsider the linear 
over image es
row

data hiding method of Figure 4.3 (a). Let � � [f

�

(�); �

2

�

℄ be additive noise in the


hannel.

^

 = 
+ s

~

 =

^

+ �

~
s

+

=
~

� 


~
s

+

= s + �

(4.5)
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Let the signature be a binary sequen
e (s(k) = �t

k

; k = 1 � � �D). For simpli
ity we

further assume that t

k

= t 8 k. This is equivalent to the s
enario in Figure 4.3 (b),

of transmitting s over a 
hannel with additive noise varian
e �

2

�

.

In su
h a s
enario, the normalized inner produ
t of the s and
~
s

+

(for suÆ
iently

large D) 
an be written as

�

+

=

s

T

~
s

+

jsjj
~
s

+

j

=

R

1

�1

t(t + �)f

�

(�)d�

q

R

1

�1

t

2

(t+ �)

2

f

�

(�)d�

: (4.6)

If the pdf f

�

(�) is even, then it 
an be easily seen that

�

2

+

=

t

2

t

2

+�

2

�

or �

2

�

=

t

2

(1��

2

+

)

�

2

+

(4.7)

Now 
onsider the Type II data hiding s
enario in Figure 4.3 (
). To di�erentiate

between the the re
overed signature sequen
es
~
s in Type I and Type II methods, we

use di�erent subs
ripts - + and E. Let �

E

be the normalized inner-produ
t of s and

~
s

E

. We 
ould represent Figure 4.3 (
) by Figure 4.3 (d) where, similar to Eq. (4.7),

�

E

=

s

T

~
s

E

jsjj
~
s

E

j

�

2

�

e

=

t

2

(1��

2

E

)

�

2

E

: (4.8)

Even though the additive noise in the 
hannel is the same as the previous (linear

es
row te
hnique of (a)) 
ase, typi
ally, �

2

�

e

> �

2

�

(or �

E

< �

+

). We may 
onsider �

2

�

e

as the varian
e of the equivalent additive noise. The di�eren
e �

2

�

e

� �

2

�

may then be


onsidered as the penalty paid for having to \guess" the origin of the signal 
onstel-

lation. We shall see later that for the proposed SNS te
hnique, analyti
al evaluation

of �

E

is possible (similar to Eq. (4.6)). From the value of �

E

, the equivalent additive

noise varian
e (�

2

�

e

) 
an be evaluated.

4.3.4 Periodi
 Fun
tions for SNS

As mentioned in the previous se
tion, what we need is a periodi
 fun
tion for tiling

the spa
e of 
 with a 
onstellation de�ned by a 
onventional signaling s
heme (with

known origin). Classi
 Type II methods, whi
h embed a zero or one by for
ing
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the quantization index to be odd or even in e�e
t, use a periodi
 fun
tion of square

waves (O/E M) in Figure 4.2. The �gure also shows other possible periodi
 fun
tions.

Dither Modulation (DM), proposed by Chen et. al in [80℄ may 
an be 
onsidered as

using the saw-tooth periodi
 fun
tion in Figure 4.2. In Ref. [81℄, we introdu
ed a


ontinuous periodi
 fun
tion (CM) for self-noise suppression. Another possibility is

a Sine / Cosine periodi
 fun
tion (CsM).

4.3.4.1 Dither Modulation In this method

^

 = E(
; s) = Q(
 + s)� s

~
s = D(

~

) = Q(

~

)�

~

 (4.9)

where, Q represents a uniform quantizer with step size �.

Figure 4.4 illustrates the simulated performan
e of this SNS te
hnique for

uniformly distributed and binary sequen
es s(k). The simulations were obtained

for Gaussian sequen
es 
 (�




= 200) of length 4096 for � = 30. The normalized


orrelation � was obtained by averaging over many realizations of additive Gaussian

noise �.

Note that embedding any signature sequen
e s (even a sequen
e of zeroes!)

results in a mean square distortion of

�

2

12

. The SNR in the x-axis therefore represents

the ratio of the power of the distortion introdu
ed to embed the signature, viz,

�

2

12

,

to the varian
e of the additive noise �

2

�

- SNR = 10 log

10

�

2

12�

2

�

. It is 
lear from Figure

4.4 that the best performan
e is obtained for binary �

�

4

sequen
es. This is due to

the fa
t that as long as ��=4 � s(k) � �=4, 
orresponding points in neighboring

quantization 
ells are maximally separated.
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Figure 4.4 Performan
e of dither modulation for uniformly distributed and binary

signature sequen
es

4.3.4.2 Continuous Periodi
 SNS The algorithm for D(
~

) of the CM-SNS is as

follows:

q(k) = rem(

j~
(k)j

�

); k = 1 � � �D

~s(k) = (q(k) �

�

2

) ? (

3�

4

� q(k)) : (q(k)�

�

4

)

In the above equation x = (Condition) ? x

1

: x

2

stands for \If Condition is

true x = x

1

, else, x = x

2

", in the spirit of the C language. The operation rem(:)

stands for \reminder".

Let p = D(
). To introdu
e the signature s, we need to modify 
 to obtain

^

 su
h that s = D(

^

). To a
hieve this, the distortion e(k) introdu
ed in 
oeÆ
ient


(k); k = 1 � � �D is equal to je(k)j = j
̂(k)� 
(k)j = js(k)� p(k)j. The algorithm for

embedding the sequen
e s in 
 is as follows

e(k) = s(k)� p(k)
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Figure 4.5 Comparison of DM (QIM), CM-SNS and 
osine modulated SNS

te
hniques

e(k) = (rem

 


(k)

�

!

>

�

2

) ? � e(k) : e(k)


̂(k) = (
(k) � 0) ? 
(k) + e(k) : 
(k)� e(k)

Figure 4.5 
ompares the performan
e of the CM-SNS te
hnique with that of the

dither modulation (DM) te
hnique for s(k) = �

�

4

. The better performan
e of the

proposed te
hnique (CM) is not surprising, 
onsidering the periodi
 fun
tion used by

CM is 
ontinuous, as opposed to the DM method. For instan
e, for the DM method

(employing signature sequen
es �

�

4

) noise greater than

�

4


an 
hange an originally

�

4

signal to �

�

4

, due to the dis
ontinuity. Figure 4.5 also illustrates the performan
e of

another 
ontinuous periodi
 fun
tion - a 
osine fun
tion (CsM) whi
h performs even

better than CM (espe
ially for high SNRs). For the 
osine periodi
 SNS te
hnique,

the dete
tor 
an be represented as

s = D(
^

) =

�

4


os(

^



2��

): (4.10)
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However, due to reasons of analyti
al tra
tability, we restri
t ourselves to CM-SNS.

Additionally, note that at low SNRs, the di�eren
e between CsM and CM-SNS is

negligible. Typi
ally, data hiding appli
ations operate at low SNR levels (the ratio

of permitted distortion to additive noise in the 
hannel).

4.3.5 Analysis of CM-SNS

We shall now analyti
ally evaluate the equivalent noise for the CM-SNS s
heme,

when the additive noise in the 
hannel is � (Figure 4.3 (
)). Let � � [f

�

(�); �

2

�

℄, and

s(k)�

�

4

. The expe
ted value of the normalized 
orrelation between s and
~
s, similar

to Eq. (4.6), 
an be obtained as

�

n

=

2

P

1

i=0

R

(i+1)�

2

i�

2

(�1)

i

(

(2i+1)�

4

� �)f

�

(�)d�

s

2

P

1

i=0

R

(i+1)�

2

i�

2

(

(2i+1)�

4

� �)

2

f

�

(�)d�

(4.11)

The main di�eren
e between Eqs. (4.6) and (4.11) is that in the latter, the integrals

are split into segments of length

�

2

to a

ount for the periodi
ity. For Gaussian

f

�

(�), ea
h term (both of the numerator and denominator) of the above integral 
an

be solved and expressed in terms of the Gaussian error fun
tion, erf(t) =

2

�

R

t

0

e

�y

2

2

dy

The varian
e of the equivalent additive noise �

2

�

e


an then be obtained as

�

2

�

e

=

�

2

12

(1� �

2

n

)

�

2

n

(4.12)

Note that even though the signature (�

�

4

binary sequen
e) energy is

�

2

16

in Eq.

(4.12) we use the energy of the distortion introdu
ed for embedding the signature ,viz.

�

2

12

, instead. Its bears repeating, that the \signal" for data hiding is the distortion

introdu
ed in the 
ontent. In the rest of this 
hapter, the term SNR represents the

ratio of the energy of the \signal" (whi
h is the distortion introdu
ed), to the energy

of noise in the 
hannel.

Figure 4.6 is a plot of the normalized 
orrelation vs the standard deviation of

additive Gaussian noise for various values of the quantizer step size �, obtained from
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Figure 4.6 E�e
t of additive Gaussian noise. The lines represent values obtained

from simulations. The �s represent the values 
al
ulated from Eq. (4.11).

simulations. The stars (�) represent the 
orresponding values 
al
ulated by solving

Eq. (4.11). The ex
ellent agreement between simulation and the values obtained

from analysis 
on�rm the validity of Eq. (4.11). Figure 4.7 is a plot of �

2

�

e

vs �

2

�

for

various values of �. Note that the equivalent noise varian
e �

2

�

e


an be 
onsiderably

greater than �

2

�

, the varian
e of the additive noise in the 
hannel.

As mentioned earlier, the 
hoi
e of � di
tates the distortion introdu
ed by the

embedding fun
tion D. The distortion introdu
ed for embedding a �

�

4

sequen
e, is

uniformly distributed between �

�

2

. Therefore, as mentioned earlier, the a varian
e of

the distortion introdu
ed is

�

2

12

. If the permitted distortion has a varian
e 


2

, then we

need to 
hoose � =

q

(12


2

) This implies that � is 
hosen without any 
onsideration

of the expe
ted noise varian
e �

2

�

! Obviously, this 
an not be an optimal solution.

This problem 
an be over
ome by introdu
ing thresholding in the SNS method.
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4.4 CM-SNS with Thresholding

Let 


2

be the varian
e of permitted distortion due to data embedding. Let �

2

0

= 12


2

.

The question we are fa
ed with now is that given 
 and some additive noise �

2

�

, what

is the optimal 
hoi
e of � for the SNS method?

We de�ne a modi�ed embedding fun
tion E

t

with the same dete
ting fun
tion

D. Let p = D(
). In the modi�ed embedding method, the distortion je(k)j

introdu
ed in 
oeÆ
ient 
(k), is hard limited to �

�

2

< e(k) <

�

2

, where � < �

0

< �.

The algorithm for embedding the sequen
e s in 
 is therefore

e(k) = s(k)� p(k)

e(k) = (e(k) >

�

2

) ? sign(e(k))

�

2

: e(k)

e(k) = (rem

 


(k)

�

!

>

�

2

) ? � e(k) : e(k)


̂(k) = (
(k) � 0) ? 
(k) + e(k) : 
(k)� e(k)
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Figure 4.8 (a) The re
tangular fun
tion. (b) and (
) Probability distributions of

f

E

(e) - distortion introdu
ed by the modi�ed embedding fun
tion, and f

S

t

(s

t

) - noise

introdu
ed due to modi�ed embedding fun
tion.

The distortion e introdu
ed by the modi�ed embedding fun
tion E

t

has a proba-

bility distribution and varian
e given by

f

E

(e) =

1

�

re
t(�) +

�� �

2�

 

Æ(e�

�

2

) + Æ(e+

�

2

)

!

�

2

e

=

�

2

12�

(3�� 2�) (4.13)

Therefore, we 
an 
hoose � > �

0

, and � < �

0

, su
h that the distortion

introdu
ed is equal to 


2

= �

2

0

=12 if




2

= �

2

0

=12 =

�

2

12�

(3�� 2�) (4.14)

Note that, with the modi�ed embedding fun
tion, if
^

 = E

t

(
; s), then D(
̂) 6= s.

The di�eren
e s

t

= s�D(
̂) has a probability distribution and varian
e given by

f

S

t

(s

t

) =

�

�

Æ(s

t

) +

1

�

re
t(�� �)

�

2

s

t

=

(�� �)

3

12�

(4.15)

Alternately, we 
ould assume that a distortion of varian
e �

2

=12 (
orresponding to

s) was introdu
ed in 
 by the embedding s
heme, along with a noise of varian
e �

2

s

t

,

given by Eq. (4.15).

On
e again, the equivalent additive noise due to thresholding 
an be obtained

by a measure of 
orrelation. Let

�

t

=

�

�

�

4

+

2

�

R

���

2

0

(

�

4

� x)dx

r

�

�

�

2

16

+

2

�

R

���

2

0

(

�

4

� x)

2

dx

=

p

3�(2�� �)

�

q

6�

3

�

4�

3

�

+�

3

:
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Figure 4.9 Plot of standard deviation of thresholding noise (�
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deviation of equivalent noise due to thresholding, (�
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The equivalent additive noise, is therefore

�

2

s

t

e

=

�

2

(1� �

2

t

)

12�

2

t

(4.16)

The plot of �

s

t

vs �

s

t

e

for di�erent values of � is shown in Figure 4.9.

4.4.1 Combined E�e
t of Channel Noise and Thresholding Noise

Let the additive noise in the 
hannel is Gaussian with varian
e �

2

�

. The thresholding

noise has a probability distribution given by Eq. (4.15). The probability distribution

of the total noise, z = � + s

t

, viz f

Z

(z) is obtained as

f

Z

(z) =

Z

1

�1

f

�

(x)f

S

t

(z � x)dx: (4.17)

If f

�

(�) is Gaussian,

f

Z

(z) =

�

�

f

�

(z) +

1

2�

(

erf

 

z +

���

2

p

2�

�

!

� erf

 

z �

���

2

p

2�

�

!)

(4.18)
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The normalized 
orrelation �

nt

, and hen
e the equivalent additive noise 
an then be

obtained by solving

�

nt

=

2

P

1

i=0

R

(i+1)�

2

i�

2

(�1)

i

(

(2i+1)�

4

� z)f

Z

(z)dz

s

2

P

1

i=0

R

(i+1)�

2

i�

2

(

(2i+1)�

4

� z)

2

f

Z

(z)dz

(4.19)

On
e again, the solution for the above integral 
an be obtained in terms of the

Gaussian error fun
tion, and the equivalent noise varian
e �

2

nt

is obtained from

�

2

nt

=

�

2

(1� �

2

nt

)

12�

2

nt

: (4.20)

Figure 4.10 is a plot of the normalized 
orrelation �

nt

versus the SNR for values

of k = �=�

0

ranging from 1 to 1.6. The k = 1 
ase 
orresponds to no thresholding

(or �

0

= � = �). For all four plots, �

0

= 30. This implies that the distortion

introdu
ed to embed the signature is the same for all the four 
ases. The plots have

been obtained from simulations. The �'s represent the 
orresponding values obtained

from 
al
ulating the normalized 
orrelation from Eq. (4.19).

Note that as the 
hannel noise in
reases, we need to in
rease the size of �

for the optimal SNS s
heme. This 
an be explained as follows. Let the value of

an arbitrary 
oeÆ
ient of
~

 be, say, 350. Further, it is known that the 
oeÆ
ient


ould not have undergone drasti
 modi�
ation in the 
hannel (for example, we know

that the 
ontent 
ould have only undergone lossy 
ompression of reasonably good

quality). We 
an now say with a high degree of 
ertainty that the 
orresponding


oeÆ
ient in the original 
ontent had a value between 350� Æ and 350 + Æ (Æ = 30,

for example). For Type I methods, the self-noise of the image is dire
tly related

to the varian
e of the image 
oeÆ
ients. It should be appre
iated however, that

`noise' is a
tually a measure of the la
k of information. In other words, the entropy

of the self-noise is equal to the entropy of the original 
oeÆ
ient, given the re
eived


oeÆ
ient. Mathemati
ally, H, the entropy of the self-noise, is given by

H = h(
 j
~

) (4.21)
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Figure 4.10 Plot of 
orrelation vs SNR for k = 1; 1:2; 1:4 and 1:6

bits, where h(:) denotes the entropy [76℄. Self noise suppression s
hemes utilize the

fa
t that the self-noise entropy H is substantially smaller than h(
). Type II methods

therefore employ some sort of predi
tion of 
 from the re
eived signal
~

. The period �


an be 
onsidered as a degree of 
on�den
e or tightness of the predi
tion. Obviously,

if the 
hannel noise is low � 
an be small. On the other hand, if 
hannel noise is high

we need to 
hoose larger values of �. However, in traditional Type II SNS methods,

the 
hoi
e of � was de
ided solely by the permitted distortion. The introdu
tion of

thresholding to Type II, goes a long way in over
oming that limitation.

We shall refer to the modi�ed SNS s
heme (SNS with thresholding) as a Type

III method. It is interesting to note that as �! �, Type III be
omes Type II. What

is more interesting is that as � ! 1 (and � is �nite), Type III systems be
ome

Type I! As � approa
hes 1 every 
oeÆ
ient of 
 will be \perturbed" by ��. This

is exa
tly the same as adding a binary ( ��) sequen
e to 
!
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Table 4.1 Optimal values of k =

�

�

0

for di�erent SNRs (SNR = 10 log

10

(




2

�

2

�

))

SNR k SNR k SNR k

0.00 1.87 3.01 2.57 4.77 3.14

6.02 3.59 6.99 4.04 7.78 4.40

8.45 4.78 9.03 5.11 9.54 5.41

10.00 5.71 13.01 8.10 14.77 9.95

16.02 11.51 16.99 12.85 17.78 14.10

18.45 15.20 19.03 16.25 19.54 17.30

20.00 18.20 20.97 20.40 21.76 22.30

Also note that from the trend in Figure 4.10 neither Type I nor Type II 
an

perform as well as Type III methods. For high SNRs the \optimal" Type III method

is \
lose" to Type II. However, as the SNR redu
es, the \optimal" Type III method

approa
hes Type I. The steps to obtain the optimal parameters for the Type III

CM-SNS, for a given permitted distortion 


2

and additive noise varian
e �

2

�

, 
an be

summarized as follows:

� Obtain �

2

0

= 16


2

.

� Let k > 1 su
h that � = k�

0

.

� Evaluate � under the 
onstraint of Eq. (4.14).

� Choose k to maximize �

nt

(Eq. (4.19)).

Table 4.1 shows the optimal values of k =

�

�

0

, where �

2

0

= 12


2

, for di�erent signal to

noise ratios (SNR=10 log

10

(




2

�

2

�

). Figure 4.11 depi
ts the maximum value of � and

the 
orresponding theoreti
al 
apa
ities (assuming that the 
onventional signaling

part that follows the SNS approa
hes theoreti
al 
apa
ity) for di�erent SNRs, for

es
row, Type III and Type II systems. The relationship between � and 
apa
ity is

obtained by using Eq. (4.12) to obtain the varian
e �

2

�

e

of the equivalent additive

noise, and then using the Gaussian 
apa
ity equation [76℄

C =

1

2

log

2

 

1 +




2

�

2

�

e

!

: (4.22)
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Figure 4.11 The maximum value of normalized 
orrelation � (left) and 
orre-

sponding 
apa
ities (right) a
hievable by es
row, Type III and Type II methods

Note that Type III methods 
an signi�
antly outperform Type II methods (for typi
al

SNRs of interest), and a
hieve about half the 
apa
ity of es
row methods.

4.4.2 Sub-optimality of Type III Methods

Even though Type III methods outperform Type I (oblivious) and Type II methods

by a 
onsiderable margin, they are still not the best possible solution. To see why,


onsider the power 
onstrained 
ommuni
ation s
heme modeled as

~

 = 
+w + �; (4.23)

where 
;w; � 2 <

N

, and 
(i) � N [0; �

2

℄; w(i) � N [0; 


2

℄ and �(i) � N [0; �

2

�

℄ 8 i

are i.i.d. Further 
; w; and � are independent. In the above model w is power


onstrained (varian
e 


2

), and � is the noise in the 
hannel.
~

 is the signal re
eived

at the re
eiver, whi
h does not have a

ess to 
. This problem is exa
tly similar

to the oblivious data hiding, where 
 is the 
ontent, � is the additive noise in the
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hannel, and w =
^

� 
. It is obvious, that if 
 is available at the re
eiver, one 
ould

theoreti
ally a
hieve a 
apa
ity of

C

0

=

1

2

log

2

 

1 +




2

�

2

�

!

(4.24)

bits per 
oeÆ
ient. Costa [82℄, however, argued that one 
ould a
hieve 
apa
ity C

0

even if 
 is not available at the de
oder. Unfortunately, this would require the use of


odebooks of size 2

N(C

0

+L)

where

L =

1

2

log

2

 

1 +




2

(


2

+ �

2

+ �

2

�

)

�

2

�

(�

2

�

+ 


2

)

!

: (4.25)

On the other hand, the maximum 
odebook size used for Type III methods (employed

by the signaling s
heme (S;S

�1

) whi
h will be des
ribed in the next 
hapter) is 2

NC

0

.

To get a 
learer pi
ture of the di�eren
e in 
omplexity between the two approa
hes,

let us 
onsider a spe
i�
 
ase of data hiding in 256� 256 images. Some reasonable


hoi
es of N = 8192 (8192 transform 
oeÆ
ients used for data embedding), �

2

=

12000 (varian
e of the low frequen
y 
oeÆ
ients used for data hiding), 


2

= 32

(distortion of the host signal), and �

2

�

= 320 imply L � 40C

0

. In other words, the

Type III method 
an a
hieve 
apa
ities of approximately

C

0

2

(as shown in Figure 4.11)

while their 
omplexity is 2

40

times less than methods whi
h 
an approa
h 
apa
ity C

0

.

However, this does not rule out the possibility, that there may exist other suboptimal

alternatives whi
h 
an do better than Type III methods while maintaining reasonable

signaling 
omplexity. However, as we have already seen, other periodi
 fun
tions for

(E ;D) may perform better than the triangular fun
tion proposed and analyzed in

this paper.

On
e the optimal values of � and � have been 
hosen, for a given additive noise

varian
e �

2

�

and given distortion toleran
e 


2

, the next step is to 
hoose the optimal

\
onventional" signaling method for the equivalent noise �

2

�

e

(or 
orrelation �

nt

). In

the next 
hapter, we explore options for the 
hoi
e of the 
onventional signaling

method.



CHAPTER 5

FFT-BASED SIGNALING

5.1 Conventional Signaling

The 
onventional signaling part, viz. the pair (S;S

�1

), addresses the problem of

mapping a K length bit sequen
e b to a possibly real valued sequen
e s of length D,

where D >> K. As a simple approa
h we have

s = [s

1

s

2

� � � s

K

℄; (5.1)

where s

i

= sign(b(i))�; i = 1 � � �K, and � is random ve
tor (obtained from a random

seed or the private key K), of length

D

K

. On the other hand, we 
ould generate

2

K

sequen
es s

i

; i = 1 � � �2

K

of length D, su
h that the sequen
es s

k

are maximally

separable. Geometri
ally, the sequen
es s

k


an be represented by a set of 2

K

points

in a D-dimensional hypersphere. In other words, the minimum distan
e between

any two of 2

K

points should be as high as possible, under the given 
onstraint of

the hypersphere radius. The binary sequen
e [b

1

b

2

� � � b

K

℄ 
an be interpreted as a

de
imal number between 0 to 2

K

� 1. To transmit a parti
ular sequen
e of bits,

whose de
imal equivalent is say d, we 
hoose s = s

d

.

Dete
tion of the hidden bit sequen
e, or equivalently the number d 
an be

a

omplished as

~

d = argmax

i=0���2

K

�1

h
~
s; s

i

i.

While it is assured that the latter s
heme, will approa
h the 
hannel 
apa
ity


loser than the former, in pra
ti
e, implementation of the se
ond s
heme may be

prohibitively expensive, espe
ially for large K and/or D. A reasonable 
ompromise

might be to 
hoose an alphabet size between 2 of the former (bit-by-bit signaling)

te
hnique , and 2

K

of the latter. For example, if the alphabet size is 
hosen as 2

K

k

,

then a single member of the alphabet is dete
ted from ea
h of the k sequen
es of

length

D

k

.
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An FFT-based signaling method proposed in the next se
tion o�ers an eÆ
ient

way to in
rease the alphabet size used for signaling, while keeping the 
omputa-

tional 
omplexity at manageable levels. Furthermore, the maximally separable signal


onstellation itself is generated from random seeds.

5.2 FFT Based Signaling

In the FFT-based signaling te
hnique, the maximally separable sequen
es are


onstrained to be orthogonal. Let s

k

2 <

L

k

; L

k

= 2

p

k

�1

. Maximally separable

signature sequen
es s

l

k

; l = 1 � � �2

p

k

, 
orresponding to p

k

bits, are obtained as L

k

orthogonal sequen
es and their negatives. Random signature spa
es are generated

from a seed. This is a
hieved by 
onstraining the signatures to be 
y
li
 all-pass

sequen
es.

5.2.1 Cy
li
 All-Pass Sequen
es

Let h 2 <

N

and H = F(h) where, F(:) stands for the Dis
rete Fourier Transform

(DFT). Further, let h be su
h that

j H(n) j= 1 for n = 0; 1; � � � ; N � 1 (5.2)

Hen
e

(H:H

�

) = [1; 1; � � � ; 1℄: (5.3)

Taking the IDFT of both sides of Eq. (5.3) we get

F

�1

(H:H

�

) = [1; 0; 0; � � � ; 0℄: (5.4)

As F

�1

(H:H

�

) is the 
ir
ular auto
orrelation of the ve
tor h, it follows that all


ir
ular shifts of h are mutually orthogonal [79℄. As the phases �

n

; n = 0; 1; : : : ; N�1

of the elements of H 
an be arbitrary, we have in�nitely many 
hoi
es for the ve
tor

h with mutually orthogonal 
ir
ular shifts. For real h we have

N

2

� 1 phase values
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whi
h 
an be arbitrarily 
hosen. Thus a pseudo-random all pass sequen
e of length

N 
an be generated from a pseudo-random (uniformly distributed between � and

��) sequen
e of length

N

2

� 1. If

�

k

=

8

>

<

>

:

0 or � k = 0; k =

N

2

�

k

k = 0 � � �

N

2

� 1

��

N�k

k =

N

2

+ 1 � � �N � 1

H(k) = 
os(�

k

) + i sin(�

k

); k = 0 � � �N � 1; (5.5)

where �

k

; k = 1 � � �

N

2

� 1 are randomly distributed between � and ��, i =

p

�1,

then h = F

�1

(H), is a 
y
li
 all-pass sequen
e.

Alternately, a pseudo-random binary sequen
e is generated from a seed. Then,

the unique all-pass sequen
e \
losest" (in the mean-square sense) to the binary

sequen
e is obtained (this guarantees that the signature energy will not 
on
entrated

in few 
oeÆ
ients).

Let f = [f(0) f(1) � � � f(N � 1)℄ be a random binary sequen
e. We need to

�nd the all-pass sequen
e that is 
losest to f . In other words, we need to �nd the

ve
tor h = [h(0) h(1) � � �h(N � 1)℄

T

that minimizes the error " de�ned as

" =

N�1

X

n=0

j h(n)� f(n) j

2

; (5.6)

subje
t to the 
onstraint that h is a 
y
li
 all-pass sequen
e. Sin
e the DFT of a

(
y
li
) all-pass sequen
e 
an be written as H = [e

j�

0

e

j�

1

� � � e

j�

N�1

℄, let

h(n) =

P

N�1

k=0

e

j(

2�kn

N

+�

k

)

f(n) =

P

N�1

k=0

a

k

e

j(

2�kn

N

+�

k

)

for n = 0 � � �N � 1. It 
an be easily shown (see Appendix) that the error " is given

by

" = N

h

N � 2

N�1

X

k=0

a

k


os(�

k

� �

k

) +

N�1

X

k=0

a

2

k

i

: (5.7)

The error is minimized if we 
hoose �

k

= �

k

for k = 0; 1; � � � ; N � 1. In other words,

we 
hoose H to have the same phase as F, while the magnitude of all 
oeÆ
ients of

H are set to unity.
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5.2.2 Signal Constellation

The pro
edure employed for generating the maximally separable sequen
es is as

follows.

1. From a random seed, generate a binary (�1) sequen
e e

k

of length L = 2

p

k

�1

.

2. Obtain the length-L

k

DFT E

k

of the binary sequen
e.

3. Obtain S

k

from E

k

su
h that jS

k

(l)j = 1; l = 1 � � �L

k

and

6

S

k

(l) =

6

E

k

(l); l =

1 � � �L

k

.

4. Take the length-L

k

IDFT of S

k

to obtain s

k

. s

k

is a 
y
li
 all-pass fun
tion.

All L

k

= 2

p�1


y
li
 shifts of s

k

are orthogonal.

5. s

k

and the other L

k

� 1 
y
li
 shifts of s

k

, and their negatives are the 2

p

k

maximally separable sequen
es.

Note that the inner produ
t of the sequen
e s

k

of length L

k

with ea
h of the 2L

k

= 2

p

k

maximally separable sequen
es 
an be obtained by one length-L

k


y
li
 
orrelation

eÆ
iently implemented using the FFT. The index of the maximum absolute value

of the 
y
li
 
orrelation 
oeÆ
ients gives then dete
ted sequen
e of p bits. Let

0 � d

k

� 2

p

k

� 1 be the de
imal representation of s

d

k

.

s

d

k

=

(

�C(s

k

; d

k

) if d

k

< 2

p�1

��C(s

k

; d

k

� 2

p�1

) if d

k

� 2

p�1

(5.8)

where C(x; q) stands for 
y
li
 shift of the ve
tor x by q (
ounter-
lo
kwise) positions,

and � is a s
aling fa
tor that depends on � of the SNS te
hnique. For dete
tion,

R

k

= F(s

k

)F(
~
s

k

) r

k

= F

�1

(R

k

)
(5.9)

where F denotes the DFT, and,

~

d

k

=

(

arg max

i=0���L

k

�1

jr

k

(i)j if r

k

(i) > 0

arg max

i=0���L

k

�1

jr

k

(i)j+ L

k

if r

k

(i) � 0:
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An easier way of generating 
y
li
 all-pass sequen
es s

k

would be to generate them in

the DFT domain by 
hoosing unit magnitudes for DFT 
oeÆ
ients, but 
hoosing the

phases randomly. However, we need binary sequen
es of length

�

4

for the optimality

of the self-noise suppression method employed to �nd the origin of the 
oating signal


onstellation. Steps 1-4 ensure that the generated signature sequen
es s

k

is an all-

pass sequen
e 
losest in the mean- square sense to the binary random sequen
e e

k

.

The 
hoi
e of the length L

k

of ea
h segment (whi
h in-turn de
ides the alphabet

size) will depend mainly on the 
orrelation �

n

t

for the parti
ular 
hoi
e of � and �.

Typi
ally, lower the value of �

n

t

, higher will be the value of L

k

. Obviously, other

fa
tors like 
omputational 
omplexity may also in
uen
e the 
hoi
e of L

k

.

As the segment lengths are restri
ted to be powers of 2 for eÆ
ient implemen-

tation of the FFT, smooth trade-o�s between bit-rate and the probability of error 
an

only be a
hieved by redundant signaling. In the next se
tion we propose a suitable

and pra
ti
al redundant signaling te
hnique for improving the over-all eÆ
ien
y of

the signaling method.

5.2.3 Redundant Signaling

For the proposed FFT-based signaling te
hnique, we propose a 
ombination of Reed-

Solomon 
oding [83℄ and introdu
tion of parity for error 
orre
tion. A sequen
e of

d-bit symbols D

1

to D

n

is en
oded using Reed-Solomon en
oding over GF(2

d

), with

blo
k size of 2

d

� 1 (if n < 2

d

� 1, the \shortened" 
ode 
an be easily implemented

by zero-padding D

1

� � �D

n

to length 2

d

�1, and 
onsidering the non-existent symbols

as \erasures" at the de
oder). The RS en
oded sequen
e of d-bit symbols is then

\appended" with q-parity bits to produ
e a p-bit symbol sequen
e, where p = d+ q.

Signaling with parity 
an be done eÆ
iently for the FFT-based te
hnique. To

introdu
e one parity bit (or redu
e the valid points in the 
onstellation by a fa
tor

of 2) we 
hoose only odd values D between 0 and 2

p�1

and only even values between
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2

p�1

and 2

p

. This would 
orrespond to 
hoosing the largest from the even-indexed


oeÆ
ients of r

k

in Eq. (5.9). If L

k

= 2

p�1

is the length of r

k

, the even indexed


oeÆ
ients r

e

k

of r

k


an be obtained as (proof in Appendix)

R

2

k

(l) = R

k

(l) +R

k

(l + L

K

=2); l = 0 � � �

L

k

2

� 1

r

e

k

= F

�1

L

k

=2

(0:5R

2

k

): (5.10)

In the above equation, F

�1

L

k

=2

(:) is a

L

k

2

- point IDFT (the fa
tor 0:5 is irrelevant as our

intention is only to pi
k the 
oeÆ
ient with the highest magnitude). For introdu
ing

q parity bits, (in the segment L

k

representing p bits, where p = q + d) valid points

in the 
onstellation are given by

D =

(

m2

q

� 1 D < L

k

� 1

m2

q

L

k

� D < 2L

k

m = 0; 1; : : : ;

L

k

2

q

(5.11)

In this 
ase, only 
oeÆ
ients of r

k

, with indi
es whi
h are multiples of 2

q

are needed.

For l = 0 � � �

L

k

2

q

� 1,

R

q

k

(l) =

P

2

q

�1

i=0

R

k

(l + i

L

k

2

q

) r

q

k

= F

�1

L

k

=2

q

(R

q

k

):

Signaling with parity is espe
ially useful for very low SNR data hiding (if �

n

t

in Eq.

(4.19) is very small - whi
h results in large p or L

k

).

For example, let 
 2 <

8192

. For a low-noise s
enario we may use segment

lengths of L

k

= 64 for ea
h p = 7 bit symbol (L

k

= 2

p�1

). Under su
h a s
enario,

we may use for example two blo
ks of RS 
ode (127,111) over GF(2

7

= 128), whi
h


an 
orre
t up to 8 errors in ea
h blo
k of length 127 (number of sour
e bits =

2blo
ks � 111symbols per blo
k � 7bits per symbol = 1554). However, if the SNR

is low, and we use say segment sizes of L

k

= 1024 (p = 11). If we do not employ

parity bits, we need to use an RS 
ode, say (2047, 2045). The maximum blo
k size

possible is however, 8192=1024 = 8. We need a shortened 
ode. We may start with

a sour
e of 6 11-bit symbols (66 bits), zero-padded to length 2045, and then perform

(2047,2045) RS en
oding, whi
h 
an 
orre
t 1 error out of the 8 transmitted symbols.
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Obviously this is 
omputationally expensive. An alternative is to use L

k

= 512 and

p = 10, and also have say q = 5 parity bits. We may now start with 14 5-bit sour
e

symbols (70 bits), and zero-pad it to a length 29 symbol blo
k. This is followed by

a 
omputationally simple RS en
oding (31,29). The �rst 16 5-bit symbols obtained

after RS en
oding are then made into 10-bit symbols by introdu
ing 5 parity bits

(whi
h is done eÆ
iently in the FFT-based method). For dete
tion, the parity bits

are stripped �rst to obtain a 16 symbol sequen
e of 5 bit symbols. This may be

zero-padded to length 31 and RS de
oded.

For data hiding appli
ations where 
omputational 
omplexity of dete
tion is

not a serious limitation, or if 
hannel noise is low (implying small p), signaling with

parity would be sub-optimal. However, if p is large, and q = 0 (or d = p), then RS

en
oding / de
oding may be
ome prohibitively expensive.



CHAPTER 6

OPTIMAL DESIGN OF DATA HIDING METHODS

In this 
hapter, we explore the intri
a
ies of the duality of data hiding and data


ompression to help develop optimal data hiding te
hniques for images, that 
an

reasonably resist lossy 
ompression. The problem of eÆ
ient data hiding is split into

two sub-problems First is to maximize the resour
e - whi
h is the permitted distortion

of images. The se
ond is the eÆ
ient use of the resour
e by means of sophisti
ated

signaling te
hniques presented in the earlier 
hapters.

6.1 Introdu
tion

Growing 
on
erns over prote
tion of intelle
tual property rights of digital multimedia,

has resulted in an explosive growth of the �eld of data hiding, or multimedia

steganography. Appli
ations of data hiding 
an be 
lassi�ed in many ways. One


lassi�
ation of data hiding may be based on the key required to extra
t the hidden

data. For example \hidden" 
aptions in multimedia data may be a

essed through

a publi
 key (though there is no reason to \hide" something that 
an be read by

anybody, using data hiding for embedding 
aptions assures that the 
aption stays

with the data irrespe
tive of format 
onversions). On the other hand private key

steganography is the basis for appli
ations like invisible watermarking and se
ret


ommuni
ations. Another 
lassi�
ation may be based on the robustness requirements

of the data hiding appli
ation. For instan
e, appli
ations like watermarking typi
ally

require robustness to intentional tampering. On the other hand, some appli
ations

may need robustness only to unintentional atta
ks (atta
ks not espe
ially dire
ted

at removing the hidden data) like lossy 
ompression. Yet another 
lassi�
ation

may be depending on the restri
tions to be pla
ed on data-hiding. For example,

invisible watermarking is expe
ted to resolve rightful ownership of the multimedia

76
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ontent, unambiguously, in a 
ourt of law. For this purpose many restri
tions may

have to be imposed [26, 23, 22, 29℄ on data hiding for watermarking. On the other

hand virtually no restri
tions are pla
ed on appli
ations like se
ret 
ommuni
ations,

(
ommuni
ation between two private parties through a subliminal 
hannel fa
ilitated

by data hiding).

We fo
us on data hiding appli
ations and methods for images and video.

We also restri
t ourselves to appli
ations that only require robustness to lossy


ompression. In the next se
tion, we suggest possible appli
ations [21℄ where only

robustness to lossy 
ompression is an issue, espe
ially for se
ure multimedia delivery.

We then investigate the inverse relationship between eÆ
ien
y of lossy 
ompression

and eÆ
ien
y of data hiding. In fa
t, data hiding would be impossible if lossy


ompressors were ideal. Therefore eÆ
ient data hiding should utilize holes in the


ompression methods. We explain and illustrate why, while it is very easy to develop

eÆ
ient data hiding te
hniques if the type of 
ompression the multimedia data is

likely to undergo is known in advan
e, it may be very diÆ
ult to design te
hniques

robust to any type of 
ompression [21℄. In Se
tion IV we point out a hole 
ommon to

all known 
ompression s
hemes, and suggest methods to utilize that hole for eÆ
ient

data hiding.

6.2 Data Hiding For Se
ure Multimedia Delivery

Data Hiding is expe
ted to be a boon for multimedia 
ontent providers. Content

providers 
an expe
t to 
ommuni
ate with 
ompliant multimedia players through

the subliminal 
hannel provided by data hiding. This 
ommuni
ation 
ould 
ontrol

a

ess, provide 
ustomized delivery, and provide solutions for pay-per-view imple-

mentations [7℄. A 
ompliant multimedia player would honor an agreed upon proto
ol

for extra
ting (and abiding by) the hidden 
ontrol information.
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Figure 6.1 Blo
k diagram of a multimedia distribution system. Though the generi


multimedia players may support only a limited number of 
ompression formats, all

the players follow the same proto
ol for extra
ting the hidden 
ontrol information.

Player 3 supports 3 di�erent formats while Player 5 supports only the proprietary


ompression format.

Figure 6.1 is a blo
k diagram of a possible multimedia delivery system. Content

providers (the 
reators of multimedia 
ontent) 
an hide pertinent 
ontrol information

for the multimedia players and make it available for distribution. The distributors

may 
ompress the 
ontent using some standard or proprietary 
ompression method

before it rea
hes the end users (or their multimedia players). The 
ontent may be

distributed by several distributors in di�erent formats, understandable by di�erent

players. However, as long as all su
h players follow an established proto
ol for

extra
ting the hidden information, and the hidden data is able to survive all

lossy 
ompression s
hemes the distributors may employ, the 
ontent providers


an indire
tly 
ontrol 
ompliant players through the hidden information. Hiding

the information in the raw multimedia data ensures that the hidden data stays

embedded forever in the 
ontent.
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Unless the hidden data is extra
ted with a \reasonable degree of 
ertainty",

the 
ompliant multimedia players may refuse to play the 
ontent. Thus intentional

tampering for the purpose of removing the hidden information only serves to make

that parti
ular 
opy of the 
ontent unusable. On the other hand, the motivation to

make it robust to all 
ompression methods is to fa
ilitate more eÆ
ient distribution

of the 
ontent. Failure of the hidden data to survive a \good" 
ompression method,

makes that 
ompression method unusable for distributing that 
ontent.

6.3 Compression and Data Hiding

Multimedia 
ompression tries to 
onvey the information of a multimedia 
ontent as

eÆ
iently as possible - with the fewest number of bits. Data hiding on the other hand

tries to sneak in additional bits of information into the 
ontent. As the \additional

information" does nothing to improve the quality of the 
ontent, an ideal 
ompressor

would 
ompletely suppress the hidden information.

Let I represent the spa
e of M � N images of b bits per pixel (2

MNb

possible

images). Alternately, every point in I is anM�N image. As the image is represented

by fewer bits in the 
ompressed domain, many original image points are mapped by

the 
ompressor to one image point after (lossy) 
ompression and de
ompression. As

an example, in Figure 6.2, all points in the range R are mapped to a single point D.

Consider an image A (represented by +) in the region R. Let us say we want

to hide one bit of information in the image A that would survive 
ompression. The

spa
e I is 
ompletely tiled by two regions that represent 0 or 1. For example, if the

image A is lo
ated in a region representing 0, it 
ould be left inta
t if the bit to be

hidden is 0. To hide a bit 1 however, A has to be moved to a point B (represented

by �) whi
h simultaneously belongs to region 1 and lies outside the range R, so that

after 
ompression (and de
ompression), the image is mapped to a di�erent point B

1

.
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*R D

Space of Uncompressed Images Space of Compressed Images

+

*

A

B

*B1

Figure 6.2 A lossy 
ompression - de
ompression sequen
e maps all points in the

range R to a single point in the domain D

To hide n

b

bits in an image whi
h 
an survive 
ompression, the image has to be

distorted su
h that after de
ompression the image is mapped to any of 2

n

b

possible

points. In other words, the spa
e of images has to be tiled by 2

n

b

regions.

Now it is easy to see that no data hiding would be possible with an ideal


ompressor. If Æ

t

is the visual distortion permitted (Æ

t

may not be a measure of the

mean square error), then there exists a �nite number of points to whi
h the original

image may be \moved". However, an ideal 
ompressor with the same threshold

Æ




= Æ

t

would map all su
h points to a single point in the spa
e of de
ompressed

images! So unless we employ di�erent standards (a measure of Æ) for the quality

of the image after data hiding and that for the de
ompressed image, (or unless

Æ




> Æ

t

), no data hiding would be possible with ideal 
ompressors. However, pra
ti
al


ompression te
hniques are not ideal. Therefore, eÆ
ient design of data hiding should

utilize the holes in 
ompression te
hniques.

6.3.1 Data Hiding With Known Compression

When the 
ompression method the image is likely to undergo is known in advan
e, it

is easier to design eÆ
ient data hiding methods. For example, let us assume that it is
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Figure 6.3 Data hiding 
apa
ities (number of DCT 
oeÆ
ients that quantize to a

non-zero value with quantization matrix Q) of 11 256� 256 test images

Table 6.1 The DCT quantization matrix Q

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99
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known in advan
e that the images will only undergo DCT based JPEG 
ompression

with the default quantization matrix. Let us also assume that image is not expe
ted

to undergo 
ompression more severe than quality fa
tor 50%. The best data hiding

method, for su
h a situation would be the following [20℄:

� Obtain the 8� 8 2-D DCT of the image blo
ks of an M �N image.

� Let Q(m;n); m = 1 � � �8; n = 1 � � �8 be the quantization matrix for JPEG at

50 % quality. The matrix is tabulated in Table 6.1.

� Fix a parti
ular s
an order for the

M

8

�

N

8

image blo
ks.

� Fix a s
an order for the 8� 8 
oeÆ
ients of ea
h blo
k.

� Let K be the total number of 
oeÆ
ients (among the M�N DCT 
oeÆ
ients)

that quantize to a non-zero value when the quantization matrix Q is used. We

shall hide one bit in ea
h of those non-zero 
oeÆ
ients. (A signi�
ant amount

of 
ompression is a
hieved by JPEG 
ompression due to eÆ
ient run-length


oding of the 
oeÆ
ients that quantize to zero. So 
hanging 
oeÆ
ients that

quantize to zero would a�e
t the 
ompression ratio of the image with embedded

data). Let 
 be the ve
tor of the non-zero 
oeÆ
ients.

� Let b

s

be a bit sequen
e of length K to be hidden in the image.

� For i = 1 � � �K, if b

s

(i) = 0 then for
e the 
oeÆ
ient 
(i) to quantize to an odd

number. Otherwise for
e it to quantize to an even number. If the values are

for
ed to the mid points of the quantizers, then the hidden data would survive

JPEG 
ompression of any quality as long as it is better than 50 % (if they are

not for
ed to the midpoints of the quantizer steps, the hidden data will survive

JPEG-50 but may not survive any higher quality 
ompression, like JPEG-75!).
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Figure 6.4 Known 
ompression s
heme

� For extra
ting the hidden information, the DCT of the image blo
ks (of the

re
eived image) are obtained. The DCT 
oeÆ
ients are quantized using the

quantization matrix Q. All 
oeÆ
ients quantizing to zero are ignored. All

other 
oeÆ
ients are arranged in the pres
ribed order. If the quantized result

is odd, the hidden bit is a zero. Otherwise the hidden bit is a 1.

Figure 6.3 depi
ts the a
hievable data hiding 
apa
ities for 11 standard test images

using this simple data hiding te
hnique. However, the hidden data is very unlikely

to survive other forms of lossy 
ompression, or even if DCT based JPEG is used with

a di�erent quantization matrix.

6.3.2 Simultaneous Robustness to Multiple Compression Te
hniques

Consider the spa
e I of original images. When the 
ompression method is known,

(as in the previous se
tion), we make use of the fa
t that points (or \states") R

1

to

R

n

are mapped to the same points R

1

to R

n

in the spa
e of de
ompressed images.

Therefore, the number of valid \states" of the 
ompression method that lie within

an envelope of \unnoti
eable visual distortion" is a dire
t measure of the number

of bits that 
an be hidden in an image (in the example above, it is the number

of valid JPEG-50 
ompressed images within the envelope of \unnoti
eable visual

distortion").
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Figure 6.5 Data hiding with robustness to di�erent 
ompression s
hemes

The problem be
omes more 
ompli
ated if the hidden data has to survive

multiple 
ompression methods. To see how the requirement of robustness to

di�erent 
ompression s
hemes (simultaneously) 
an drasti
ally redu
e the data

hiding 
apa
ity, 
onsider 3 
ompression s
hemes C

1

, C

2

, and C

3

. In Figure 6.5 the

`+'s denote points in I whi
h are permissible C

1

-
ompressed (and de
ompressed)

images. Similarly �lled `o's and `*'s stand for C

2

and C

3


ompressed images. Let A

be the original image R an envelope of the possible points A 
ould be moved to,

without noti
eable visual distortion. If the data hiding s
heme has to survive only

one of the 3 
ompression s
hemes, one 
an see that there are roughly 9 points to

whi
h the image 
an be moved in ea
h 
ase. However, if the hidden data has to

survive any 
ompression s
heme, then the number of possible states (2

p

, where p is

the number of bits that 
an be hidden) is limited to the number of non-interse
ting

regions (marked by dotted 
ir
les) where at least one of the valid points of di�erent


ompression s
hemes 
an be found.
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6.3.3 Robustness to Unknown Compression Methods

However if the exa
t e�e
t of 
ompression is not known (the valid states are not

know a priori), the job of designing eÆ
ient data hiding methods warrants a totally

di�erent approa
h. As one has no idea of the \valid" 
ompression points (or valid


ompressed images for that parti
ular 
ompression method), the 
enters of the non-

interse
ting regions have to be 
onsiderably well separated to ensure that at least

one valid 
ompression point of all 
ompression methods lies in ea
h hyper-sphere.

However, the following questions arise:

� Large distan
e between the 
enters of the hyper-spheres implies that it may be

ne
essary to introdu
e a signi�
ant amount of distortion to move the image to

a desired \state". Is it possible to do that without a�e
ting the visual �delity

of the image?

� Assuming that it is possible to to introdu
e a signi�
ant amount of distortion

without a�e
ting the visual �delity to move the image A to a new point

^

A,

why should a good 
ompressor map two visually identi
al images A and

^

A to

di�erent points in the 
ompressed domain?

The answer to the se
ond question is the following.

� All known 
ompression methods try to minimize the mean square error

between the original and the 
ompressed image. In fa
t, the new generation of


ompression methods (like EZW, SPIHT and IFS (fra
tal) image 
ompression)

even more so than the DCT based JPEG. This is a hole 
ommon to all


ompression methods and 
an be used e�e
tively for data hiding, if satis-

fa
tory answers to the �rst question exist.

In the next se
tion we explore solutions to the �rst question.
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6.4 Utilizing the Hole in Compression Te
hniques

As stated in the previous se
tion, if the images 
an be modi�ed 
onsiderably in the

mean square sense without a�e
ting the visual �delity of the image, then one 
ould

a
hieve large separation between \states" 
orresponding to di�erent bit sequen
es,

and thus a
hieve robust data hiding.

One solution to this problem (of trying to introdu
e as mu
h distortion as

possible without a�e
ting the visual �delity) is to use good models of \visual

thresholds" (for example, see Ref. [53, 84℄) to embed the hidden bits. Many data

hiding methods [85℄ that utilize these models have been proposed. However, a main

draw ba
k of these methods is that well de�ned visual threshold models (say in the

DCT or wavelet domain) also suggest the 
ompression te
hniques means to improve

their performan
e. Thus when one uses these models to add signi�
ant amount of

signature energy to 
ertain 
oeÆ
ients of the image, a better 
ompression te
hnique

whi
h may evolve in the future may also make use of these visual thresholds to

perhaps quantize those 
oeÆ
ients more 
oarsely. In other words utilizing these

visual threshold models indire
tly amounts to utilizing holes that 
an be easily

\plugged" in the future. One of the main advantages of data hiding is that the

hidden data stays with the 
ontent forever. As 
ompression te
hniques improve in

the future, 
ontent distribution be
omes more eÆ
ient. But if the hidden data is not

able to survive those 
ompression methods, the 
ontent loses its value. Therefore,

more useful data hiding te
hniques should utilize holes whi
h are very diÆ
ult to

plug.

Figure 6.6 depi
ts the original 256�256 Goldhill image, its histogram reshaped

version, and image after StirMark [37℄ (StirMark is a watermark atta
k software that

introdu
es imper
eptible geometri
 distortions in the image). Though the se
ond and

third images are very 
lose to the original in visual �delity, their PSNRs are 20 and 19

dB respe
tively! It is 
lear that signi�
ant amounts of distortion (in the MSE sense)
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After Histogram Modification After StirMarkOriginal Image

Figure 6.6 Left : original Goldhill image. Center: Goldhill image obtained by

modifying the histogram. Though both images look similar, and are of good visual

quality, the di�eren
e between the two images in terms of PSNR is 20 dB. Right:

Image obtained after StirMark.The di�eren
e between the two images in terms of

PSNR is 19 dB.


an be tolerated as long as the introdu
ed distortion only modi�es the histogram or

introdu
es small geometri
 distortions, or perhaps, both. So if we are able to embed

the hidden data by introdu
ing geometri
 distortions / histogram modi�
ation, a

large separation between di�erent \states" 
an be obtained.

However, things may not be as simple as it seems at �rst glan
e. Let H(I) be

a fun
tion of the histogram of the pixels of an image I. If we try to embed data

by spe
ifying H(I) [86℄, the hidden data will not be robust to 
ompression. Even

small modi�
ations in the MSE (like what may typi
ally be introdu
ed by lossy


ompression) 
an 
hange the histogram signi�
antly. Similarly, if G(I) is a fun
tion of

some geometri
 features of the image I, and d(:; :) is some metri
, d(G(I);G(I

1

)) may

be large even if d(I; I

1

) is small. Just as introdu
tion of small geometri
 distortions


an 
ause a signi�
ant 
hange in the MSE, introdu
tion of small distortions in the

MSE may 
ause signi�
ant 
hanges to G(:). This is the reason that the watermarking

te
hnique proposed by Rongen et. al [87℄ is robust to StirMark, but not very robust

to JPEG 
ompression. To a
hieve robustness to 
ompression, the well separated



88

Figure 6.7 Left : original Boats image. Center: Boats image obtained by retaining

the DFT phases of the original image and 
hoosing random magnitudes (PSNR

14.1 dB). Right: image obtained by retaining DFT magnitudes of the original and


hoosing random DFT phases (PSNR 15.6 dB).

\states" (
orresponding to the bit sequen
e to be embedded) have to be spe
i�ed �rst.

Then geometri
 distortions and / or histogram modi�
ations have to be introdu
ed

to move the image 
lose to the spe
i�ed state. However, there may not be a simple or

even methodi
al way to do this. But if su
h a method 
an be found and implemented

with reasonable degree of 
omputational 
omplexity,

1

it promises to be an ex
ellent

solution to the problem of robust data hiding.

A pra
ti
al solution to introdu
e a large amount of distortion in the image

without a�e
ting its visual �delity, is to modify the DFT magnitudes. Figure 6.7

(left) shows the original 256� 256 Boats image. The se
ond image (
enter, 14.1 dB

PSNR) was derived by retaining the DFT phases of the original image and 
hoosing

random magnitudes. In spite of the very low PSNR of the image, we see that a

signi�
ant amount of \information" about the original image is preserved. The third

image (right, 15.6 dB PSNR) was derived by retaining the magnitudes of the DFT


oeÆ
ients of the original image but 
hoosing the DFT phases randomly. Even

though the PSNR of the third image is 1.5 dB better than that of the se
ond, the

1

Computational 
omplexity of the data embedding algorithm is not a serious limitation

for the appli
ations proposed in Se
tion II. Data embedding is done only on
e.
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resulting image 
onveys almost no information about the original. This illustrates

the well known fa
t that the human visual system (HVS) is mu
h more sensitive to

DFT phase than DFT magnitudes [88℄.

Thus if the data embedding is done in the magnitude DFT domain (the \states"

are spe
i�ed by their magnitude DFT 
oeÆ
ients - embedding the data 
hanges the

magnitudes of the DFT 
oeÆ
ients of the original image, but leaves the phase inta
t)

a signi�
ant amount of distortion (in the MSE sense) 
an be introdu
ed without

a�e
ting the visual �delity of the image. In addition, unlike the use of well de�ned

visual threshold models, this is not a hole that is 
apable of being easily \plugged" in

the future (
ompression te
hniques that utilize the DFT and quantize the magnitudes


oarsely and the phases �nely have been proposed earlier, but have not been e�e
tive

[89, 90℄).

Introdu
ing the distortion to the magnitude DFT 
oeÆ
ients (for embedding

information bits) 
an be a
hieved as follows. Let I be the original M � N image.

Let

I

F

() I (6.1)

where

F

() stands for 2-D DFT pairs. I has 4 real 
oeÆ
ients and MN � 4 
omplex


oeÆ
ients. Only half (D

0

=

MN�4

2

) 
oeÆ
ients however, have unique magnitudes.

Let C 2 <

D

0

be a ve
tor of the unique magnitudes of the 
omplex DFT 
oeÆ
ients

of I. Every image 
an be represented as a point in D

0

-dimensional spa
e. The

D

0

magnitude DFT 
oeÆ
ients serve as the 
arriers for the subliminal 
ommuni-


ation. However, as high frequen
y DFT 
oeÆ
ients may not be able to survive

lossy 
ompression, we shall use only a subset 
 2 <

D

of C for data hiding.
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Figure 6.8 Blo
k diagram of data embedding
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Figure 6.9 Blo
k diagram of data dete
tion
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6.5 The Data Hiding S
heme

Figures 6.8 and 6.9 show the blo
k diagrams of data embedding and the data

dete
tion s
hemes. The �gures are self explanatory, ex
ept for the additional \Key

Based Transform" blo
ks. A truly se
ure data hiding s
heme, should be diÆ
ult to


ra
k even if every step of the algorithm for data hiding is publi
. In this 
ase, the

only `se
ret' should be the key K (though it is possible to have � as part of the key,

as its 
hoi
e is demanded by design 
riteria, one would not have very mu
h freedom

in 
hoosing �). So if the transform employed (DFT) and the value of � is publi
,

then the signature 
an be easily `read', espe
ially if binary signatures are used. While

erasing hidden data may not be a very serious issue for multimedia delivery, modifying

it may have disastrous 
onsequen
es. The se
urity 
an be vastly improved by using

a key based transform before data embedding (and therefore before dete
ting). In

the proposed s
heme, we use a simple key based transform based on 
y
li
 all-pass

�lters.

Let h

F

 ! H where h 2 <

N

is 
y
li
 all-pass (or jH(k)j = 1 8k). As all


y
li
 shifts of h are orthogonal, they form a basis for <

N

. The basis fun
tions are

generated from the key as in Eq. (5.5). A transform employing the h and all its


y
li
 shifts as its basis 
an be easily implemented by 
y
li
 
orrelation. If x 2 <

N

is

a ve
tor of 
oeÆ
ients, the 
orresponding transform 
oeÆ
ients X 
an be obtained

as

X = F

�1

(F(x):F(h)) (6.2)

and the inverse transform 
an be obtained as

x = F

�1

(F(X):F(h)

�

) (6.3)

Figure 6.10 shows the performan
e of the data hiding s
heme for several test

images undergoing JPEG (at various quality fa
tors), and SPIHT 
ompression (at

di�erent bit-rates). From applying JPEG at quality fa
tors of 75, 65, 55 and 50
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Figure 6.10 Plots of a
hieved data hiding 
apa
ities for JPEG (Left) and SPIHT

(Right) 
ompression for 5 256�256 test images (Lena, Barbara, Boats, Goldhill and

Girl). JPEG 
ompression s
enarios 1 - 5 
orrespond to quality fa
tors 75, 65, 55,

50 and 40 respe
tively. SPIHT 
ompression s
enarios 1 - 5 
orrespond to 1.35, 1.25,

1.15, 1.10 and 1.0 bpp respe
tively.

respe
tively, it was found that the resulting images on an average were 
ompressed

to 1.35, 1.25, 1.15 1.10 and 1.0 bpp respe
tively. So in the �gure, the X-axis for both

plots (JPEG and SPIHT) is an indi
ation of the bit-rate of the 
ompression method

employed.

For all 
ases, we used 8192 low frequen
y magnitude DFT 
oeÆ
ients. By

subje
ting various images to bitrate-N 
ompression (N = 1 � � �5, the x-axis) s
hemes,

the average noise varian
es �

�

were estimated. The permitted distortion 
, was


hosen depending on the overall \a
tivity" of the image. The measure of a
tivity

used was the MSE of the image after SPIHT 
ompression at 1-bpp. The estimates

of 
 and �

�

was used to obtain optimal values of � and � for ea
h s
enario.



CHAPTER 7

A ROBUST PROTOCOL FOR PROVING OWNERSHIP OF STILL

IMAGES

In this 
hapter, we explore the problem of proving ownership or origin of digital

images through watermarking. The need for watermarking arises out of the unsuit-

ability of present 
opyright laws for 
laiming ownership of digital 
ontent. Water-

marking s
hemes, however, are threatened by 
ounterfeit atta
ks, whi
h primarily

use the freedom available in 
hoi
e of signature or 
hoi
e of the watermarking

method. A restri
tive proto
ol for watermarking 
ould go a long way in rendering


ounterfeit atta
ks extremely diÆ
ult. We suggest a 
omprehensive proto
ol that

makes it possible for the true owner to 
laim ownership unambiguously, while

making it pra
ti
ally impossible for a pirate to do so. A robust watermarking

method, 
ompliant to the proto
ol, is also proposed.

7.1 Introdu
tion

Digital watermarking is a means of prote
ting multimedia data from intelle
tual

pira
y. It is a
hieved by imper
eptibly modifying the original data to insert a

\signature". The signature is extra
ted when ne
essary to show proof of ownership.

In this 
hapter, we restri
t ourselves to watermarking digital images.

Let I be the original (
over) image. A watermark embedding fun
tion E inserts

a watermark S in the image I to generate the watermarked image

^

I = E(I; S). The

existen
e of the watermark S in an image

~

I is 
he
ked by a dete
tor fun
tion D.

Watermark dete
tors 
an be broadly 
lassi�ed into two 
ategories. Cover image

es
row dete
tors need the original image I to 
he
k for the presen
e of the signature

S in

~

I. On the other hand, oblivious dete
tion methods do not require the original

93
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image. We shall term the output of the dete
tor fun
tion,

s

d

=

(

D(

~

I; S; I) 
over image es
row

D(

~

I; S) oblivious dete
tion

(7.1)

as the dete
tion statisti
. The dete
tion statisti
 is an indi
ation of the degree of


ertainty with whi
h the signature S is dete
ted in the image

~

I.

Establishing ownership of 
reations like books or blueprints, have traditionally

been done by obtaining 
opyright on that 
ontent, perhaps from the 
opyright

oÆ
e. However, the nature of digital 
ontent makes traditional 
opyright me
hanisms

unsuitable for establishing ownership. Figure 7.1 depi
ts two typi
al s
enarios, where

existing 
opyright me
hanisms may be unsuitable for se
uring 
opyright of say, digital

images. In s
enario I, A and B represent two distin
t but identi
al photographs


reated by Ali
e and Bob respe
tively (both photographs may have been shot from

the same pla
e at di�erent instan
es of time). Ali
e is responsible for 
ir
ulating


opies of her art as A

1

. Meanwhile, Bob 
ir
ulates his 
reation as B

2

. Both Ali
e

and Bob register their 
ontents A and B with the Copyright OÆ
e

1

. If both A

and B (and hen
e A

1

s and B

2

s) look identi
al, Bob 
an 
laim that A and all A

1

s

are violations of his 
opyright while Ali
e 
an 
laim that B and B

2

are violations of

her 
opyright. Obviously, this is not a desirable situation. In a se
ond s
enario, the

photograph was 
reated by Ali
e who is not interested in obtaining a 
opyright. Bob

may have re
eived a 
opy of A (whi
h Ali
e may have made freely available on her

web-site), for whi
h he promptly obtains a 
opyright, and then 
ir
ulates it as A

2

.

While it may still be a

eptable for Bob to 
laim ownership of all A

2

s (
ir
ulated by

Bob) it is de�nitely unethi
al to let the 
opyright law enable Bob to 
laim ownership

of the original A 
reated by Ali
e. The key issue here (whi
h 
annot be determined

by traditional 
opyright me
hanisms) is to determine 
opies whi
h originate from a

parti
ular sour
e. Watermarking the sour
e 
an e�e
tively address this problem.

1

to register a work of visual art a 
ompleted appli
ation form, a non-refundable �ling

fee of $30 and a non-returnable deposit of the material to be registered are to be mailed

to the Copyright OÆ
e. See http://www.lo
.gov/
opyright/reg.html for more details
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A1 A1 A1

A1 A1 A1

A

A2 A2 A2

A

A

B2 B2 B2

B

Alice Bob

Scenario II

Scenario I

Figure 7.1 S
enarios where existing 
opyright laws may be Inadequate for resolving

ownership. Top - s
enario I: A and B are two similar photographs 
reated by di�erent

individuals. Bottom - s
enario II : 
reator Of A does not want to obtain 
opyright.

7.2 Counterfeit Atta
ks on Watermarks

One of the primary problems to be addressed by watermarking methods is their

ability to make a 
ounter-
laim pra
ti
ally impossible. A 
ounter-
laim arises from

situations where a pirate 
an use the inadequa
ies of watermarking proto
ols to

\demonstrate" the presen
e of a his / her \watermark" (fake watermark or signature)

in the a
tual original 
ontent. Time stamping [91, 2℄ has been proposed as an

enhan
ement to the se
urity provided by watermarking to over
ome the problems

asso
iated with 
ounter-
laims in watermarks. In addition to watermarking, the


reator 
an obtain a time stamp from a time stamping servi
e (TSS). If the time

stamp is obtained before the 
ontent is released to the publi
, (before the pirate 
an

obtain a time stamp on the 
ontent) nobody else 
an 
laim legitimate ownership

of the 
ontent. However, time-stamping have the disadvantage of requiring ongoing

involvement of a third party. Moreover, there are some situations for whi
h it does

not provide a

eptable solutions:

� Time-stamping, does not prote
t people who do not want to obtain time stamp

and/or watermark their 
ontent, like Ali
e in S
enario II. If Bob is able to show

a 
ounterfeit signature in A 
reated by Ali
e, and if Ali
e has not obtained a
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time-stamp, then Bob will be able to 
laim ownership of 
ontent 
reated by

Ali
e. Clearly, time stamping does not help in situations like this.

� Time stamping simply is not a solution for time sensitive appli
ations. The


reator may not want to wait till he/she obtains a time stamp from the TSS.

Obviously, time stamping 
annot be used for se
uring live broad
asts as well.

However, we shall demonstrate, that with a suitable proto
ol, whi
h would lay some

(very reasonable) restri
tions on watermarking algorithms, the above mentioned

problems 
an be e�e
tively addressed.

7.2.1 Freedom in Choi
e

Let Ali
e be the 
reator of the original image I. She embeds her signature S

A

in

I to obtain the watermarked image

^

I

A

= E

A

(I; S

A

). The presen
e of her signature

S

A

in

^

I

A

or any image

~

I

A

derived from

^

I

A

(

~

I

A

=

^

I

A

+ N) 
an be demonstrated

with a reasonably good degree of 
ertainty, by obtaining a suÆ
iently high dete
tion

statisti


s

d

A

= D

A

(

~

I

A

; S

A

; < I >) (7.2)

In the above equation < I > denotes that I may or may not be used by the dete
tor.

The job of Bob, an aspiring pirate, is to demonstrate the presen
e of his (arbitrary)

signature S

B

in Ali
e's original image I. In other words

s

d

B

= D

B

(I; S

B

; < I

1

>) (7.3)

where I

1

may be Bob's fake original image. Note that Bob is at liberty to 
hoose his

own watermarking s
heme (E

B

;D

B

). If Bob has freedom in 
hoosing his signature

S

B

, he 
ould �x some (E

B

;D

B

), and \
onstru
t" a signature S

B

that yields a high

dete
tion statisti
 s

d

B

. Note that even though Bob does not possess a 
opy of I

(whi
h is never released to the publi
 by Ali
e), he does have

^

I

A

, whi
h is \very
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lose" to I. If Bob does not have freedom in 
hoosing his signature (say, if the

signature is assigned to him by a Watermarking Authority), he 
ould still try to

tweak the watermarking s
heme (E

B

;D

B

) to obtain a high dete
tion statisti
. It is

obvious therefore, that a good proto
ol for watermarking should lay some restri
tions

both on the 
hoi
e of signature and 
hoi
e of the embedding and dete
ting fun
tions

(or the watermarking algorithm).

7.2.2 Dete
tion Statisti


The dete
tion statisti
 s

d

, is a measure of degree of 
ertainty with whi
h the signature

is dete
ted. Typi
ally, the signature S takes the form of a Gaussian or binary pseudo

random sequen
e s (say of length N) generated from a key K. The watermark

embedding and dete
tion operations 
an therefore be written as

^

I = E(I; s)
~
s = D(

~

I; < I >) s

d

=

s

T

~
s

jsjj
~
sj

(7.4)

In other words, the dete
tion statisti
 is a measure of (normalized) inner produ
t of

the embedded and the dete
ted signature sequen
e.

The inner produ
t of randomly generated signature sequen
es will also be

random. More spe
i�
ally, for large N , the distribution of the inner produ
t will

be Gaussian N [0;

1

N

℄. If the 
reator (or pirate) has absolutely no freedom in 
hoosing

the signature, and if the dete
tion statisti
 s

d

obtained is say 6 times the standard

deviation (if s

d

= 6

1

p

N

), then we 
ould say that the signature is dete
ted with a

probability of error of less than Q(6) � 1 � 10

�9

. This is due to the fa
t that on

an average only 1 out of 1 � 10

9

signatures 
hosen randomly 
an yield su
h a high


orrelation.

Any judge would be more than willing to rule in favor of dete
tion of the

signature, say if the probability of him/her making a wrong de
ision is one in a

million. In this 
ase, s

d

= 5

1

p

N

is more than a

eptable. However, if the pirate 
an

�nd a loop hole in the watermarking proto
ol that enables him / her to sear
h for



98

a suitable signature, then he / she has to sear
h for one million signatures (on an

average) before he / she 
an obtain one that yields satisfa
tory dete
tion statisti
.

One way to over
ome this problem is to insist that the dete
tion statisti
 be

of the order of say 9

1

p

N

. This would imply that the pirate has to sear
h for about

1� 10

19

signatures before he 
an obtain one whi
h yields satisfa
tory 
orrelation. If

a pirate 
an sear
h for say 1�10

8

signatures in a se
ond then he/she would still need

over 300 years to 
ome up with a satisfa
tory signature! However, this restri
tion

may make it 
onsiderably simpler for the pirate to remove the watermark by 
arefully

planned atta
ks. After su
h atta
ks, the real owner may not be able to extra
t the

signature with su
h a high degree of 
on�den
e (obtain high dete
tion statisti
).

7.2.3 Fake Originals

Even if the watermarking s
heme and the 
hoi
e of signature is �xed, it may still

be possible for a pirate to engineer a 
ounterfeit atta
k, if the dete
tion s
heme is


over image es
row. This would permit the pirate to 
reate a fake original (
over)

image, for whi
h there are no restri
tions! This problem 
an be solved to a 
ertain

extent if the dete
tion method is oblivious. But some geometri
 atta
ks on images

like StirMark

2

may be extremely diÆ
ult to over
ome unless it is permitted to

use the original image to undo the geometri
 distortions. Under this 
ondition, the

pirate may gain some freedom in 
hoosing an algorithm for undoing the geometri


distortions. A good watermarking proto
ol should also therefore, �x the algorithm

to be used. However, the pirate still has freedom in 
hoosing the fake original whi
h

will be used by the �xed algorithm for undoing geometri
 distortions. In other words,

the pirate (Bob) 
an engineer a (fake) original whi
h when used in 
onjun
tion with

the �xed algorithm, 
an \undo the distortion" in Ali
e's original image I (Bob would


laim that the fake original he has 
reated to be the original, and Ali
e's image I,

2

Free software available for download from http://www.
l.
am.a
.uk
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to be an image derived from his original) to show the presen
e of his watermark.

Again, to engineer the atta
k, he has the image

^

I whi
h is \very 
lose" to I.

7.3 Watermarking Algorithms

To gain a better idea of the e�e
t of 
ounterfeit atta
ks on watermarking algorithms,

we need to take a 
loser look at the model of the watermarking s
heme used. Usually,

the watermark is inserted in some transform domain. Let C = T (I). More generally,

only a subset of 
 2 <

N

ofCmay be modi�ed to embed the watermark. LetC = 
[
�

,

where 
 \
�

 = �. The overall embedding and dete
ting operation may be expressed

as

C = T (I) C = 
 [
�



^

 = E(
; s)

^

C =
^

 [

�



^

I = T

�1

(

^

C)

~

I =

^

I +N

~

C = T (

~

I)

~

C =
~

 [

�

~



~
s = D(

~

) s

d

=

s

T

~
s

jsjj
~
sj

(7.5)

The watermarking algorithms that �t into the general model of Eq. (7.5) 
an further

be 
lassi�ed into 3 types, Types I, II and III as in Chapter 4, depending on the

embedding and dete
ting operators (E ;D). For Type I methods, (E ;D), take the

form of linear addition. Mathemati
ally,
^

 = 
 + s. Type I methods 
an further be


lassi�ed as es
row methods, where D(
~

) �

~

� 
 (for example, the method in [47℄),

and oblivious methods (for example, [28℄), where D(
~

) �

~

 (no operation). Type II

and Type III methods on the other hand utilize periodi
 fun
tions for embedding /

dete
ting. We also saw that optimal methods should be Type III, using 
ontinuous

periodi
 fun
tions. The embedder E , 
hara
terized by a period � and threshold � is

as follows:

p = D(
) (7.6)

e(k) = s(k)� p(k)

e(k) = (je(k)j >

�

2

) ? sign(e(k))

�

2

: e(k)
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e(k) = (rem

 


(k)

�

!

>

�

2

) ? � e(k) : e(k)


̂(k) = (
(k) � 0) ? 
(k) + e(k) : 
(k)� e(k)

The algorithm for D(
~

) is as follows:

q(k) = rem(

j~
(k)j

�

k

); k = 1 � � �D (7.7)

~s(k) = (q(k) �

�

2

) ? (

3�

4

� q(k)) : (q(k)�

�

4

)

For high SNR's the optimal method will be a Type III whi
h is 
lose to Type II (�


lose to �). On the other hand, for low SNRs the optimal Type III method will be


loser to Type I (large � and small �). As we expe
t the watermarks to undergo

signi�
ant atta
ks, we would like to design the watermarking s
heme for low SNRs.

As an example, if one-eighth of the 
oeÆ
ients of some unitary transform of the

image are used for watermarking, and if the permitted distortion of the image after

addition of the watermark is restri
ted to have a peak SNR of 42 dB, then 


2

� 33,

implying �

0

� 20. The expe
ted atta
ks (�

2

�

) is typi
ally expe
ted to be mu
h larger

than 


2

. So a reasonable 
hoi
e may be k = 5 (or � = 100) and � = 12. As the

de
oder does not need to know the value of �, the value of � may be 
hosen depending

on the nature of the image. Small values of � may be 
hosen for very smooth images,

and larger values for highly textured images. A better approa
h might be to 
hoose

a high value of � and obtain the watermarked image

^

I

1

. The distortion introdu
ed

due to watermarking, viz.

^

I

1

� I may then be thresholded using a reasonable visual

threshold model to obtain the �nal watermarked image

^

I.

7.4 Aids to Over
oming Atta
ks on Watermarks

Conventional watermarking methods rely on the assumption that if the image is

altered signi�
antly in the mean-square error (MSE) sense, then the quality of the

resultant image would be so poor that it would not warrant a ownership 
laim.
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Therefore, most atta
ks on watermarks would rely on 
hanging the image signi�-


antly in the MSE sense, without visually distorting the image. There are many

ways to a

omplish this - for example, s
aling of pixel intensities, modifying the

histogram, introdu
ing small geometri
 distortions et
..

Figure 7.2 (left) shows the original Goldhill image. Figure 7.2 (
enter) shows the

modi�ed Goldhill image obtained by reshaping the histogram. Though both images

are very similar and are of good visual quality, the di�eren
e in terms of PSNR

between the two images is 20 dB! Figure 7.2 (right) shows the Goldhill image after

appli
ation of StirMark whi
h introdu
es imper
eptible geometri
 distortions to the

image. Appli
ation of StirMark on 15 256�256 test images yielded resulting images,

of reasonably good per
eptive quality, though the di�eren
e in PSNR between the

original and the modi�ed image was around 19 to 20 dB on an average.

One way to survive geometri
 atta
ks like StirMark would be to 
ause the

watermarking method to introdu
e geometri
 distortions [87℄. Let G(I) be a fun
tion

of some geometri
 features of the image I. The watermark is 
an be introdu
ed

by spe
ifying G(

^

I). However, we 
annot expe
t su
h methods to be robust to


ompression. Just as small geometri
 distortions 
an modify the MSE signi�-


antly, small 
hanges in MSE (su
h as those that might be introdu
ed due to lossy


ompression) 
an 
hange G(I) signi�
antly. In this light it is not surprising that the

watermarking method proposed by Rongen et. al [87℄ is robust to StirMark, but not

robust to 
ompression. Similarly methods that spe
ify the histogram [86℄ too, are

not very resistant to 
ompression. One 
ould still use 
onventional watermarking

methods e�e
tively if the primary ways by whi
h the fake original 
an be moved

away from the original in the MSE sense 
an be identi�ed, and suitable algorithms

to undo the 
hanges 
an be employed. For example, against atta
ks that modify

the histogram, we 
ould permit reshaping the histogram of the image in question to

mat
h the histogram of the original image before dete
ting the signature. Similarly
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After Histogram Modification After StirMarkOriginal Image

Figure 7.2 Left : original Goldhill image. Center: Goldhill image obtained by

modifying the histogram. Though both images look similar, and are of good visual

quality, the di�eren
e between the two images in terms of PSNR is 20 dB. Right:

Image obtained after StirMark.The di�eren
e between the two images in terms of

PSNR is 19 dB.

a good algorithm for dete
ting salient points of the original image and those of

the image in question may be used to re-warp the image so that the salient points

mat
h, before the signature is dete
ted. Similar algorithms 
ould also be used to

over
ome pixel s
aling atta
ks. However, only \permitted" algorithms may be used

for reshaping the histogram / identifying the salient points to re-warp the image,

or for res
aling the pixel values. As mentioned in Se
tion II C, permitting freedom

in 
hoi
e of these algorithms would provide the pirate with additional degrees of

freedom to engineer 
ounterfeit atta
ks.

7.5 Restri
tions on Choi
e of Signature

The type of restri
tions for 
hoi
e of signature, proposed in watermarking literature,


an be 
lassi�ed into 3 types -

1. issued by a Watermarking Authority (S
heme I).

2. derived from a meaningful string [28℄ (S
heme II).
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3. derived from the 
over image [26℄ (S
heme III).

S
heme I has a major disadvantage of needing a Watermarking Authority in

possession of all \se
rets". The disadvantage of the S
heme II is the following;

if the method of obtaining the signature from the meaningful string is �xed (as it

should be - otherwise the whole purpose is defeated), then it may be possible for

pirates to \guess" the meaningful string used by Ali
e, thus redu
ing se
urity). In

addition, both S
hemes I and II su�er from the fake original problems illustrated in

Se
tion 3.4.

In Ref. [26℄, Craver et. al suggested a novel idea (S
heme III) to solve the fake

original problem, whi
h at one stroke solves the fake original problem and the need

for an agen
y to issue signatures. They suggested that the signature be obtained

from the original image itself. The original image is hashed by a �xed hash fun
tion.

The output is used as a seed for a �xed random sequen
e generator to generate the

signature. Tying up the signature to the original image in an inextri
able way goes

a long way in restri
ting the freedom available for the pirate to engineer 
ounterfeit

atta
ks. The signature is obtained as s

A

= H(I). More importantly, H(I) 6= H(

^

I).

The watermarking s
heme is 
over image es
row des
ribed by Eq. (7.8).

s

A

= H(I)
^

 = 
+ s

A

~
s

A

=
~

� 
 s

d

=

s

T

A

~
s

A

js

A

jj
~
s

A

j

(7.8)

However, S
heme III too is not entirely foolproof. At least, to be foolproof Ali
e

should obtain very high dete
tion statisti
s in Bob's image, whi
h may not be possible

in some 
ases. The atta
k for this method rests on the fa
t that Bob 
an still sear
h

for a 
ombination of a fake original and its 
orresponding signature. Bob, who has in

his possession

^

I (or equivalently
^

), 
ould 
hange

^

I signi�
antly, in the mean-square-

error sense while maintaining the \visual similarity" between the original

^

I and the

resulting (modi�ed) image

^

I

m

.
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Let I

d

be the di�eren
e image

I

d

=

^

I

m

�

^

I 


d

=
^



m

� 
 (7.9)

Even though the algorithms for undoing geometri
 distortions / histogram modi�-


ations / pixel res
aling would not permit Bob to move very far away from

^

I, he

should be able to introdu
e distortions su
h that the total power of I

d

(


d

) is mu
h

larger than that of the signature S

A

(s

A

) added by Ali
e. Mathemati
ally,

N

X

i=1




2

d

(k) >>

N

X

i=1

(
(i)� 
̂(i))

2

(7.10)

Therefore




d

=
^



m

�
^

 �

^



m

� 
 (7.11)

The next step for Bob is to derive his \original" (fake original) image from

^

I

m

. Before

we see how he 
an do that, note that the hash fun
tion H maps di�erent images to

(possibly) di�erent seeds. For example if all the images in the world were of size

256� 256 and restri
ted to 8 bits per pixel, there are still 2

256�256�8

possible images.

ThoughH would map the spa
e of images to a (
omparatively) very restri
ted `spa
e'

of seeds, the spa
e of seeds should still be large enough to ensure that the probability

that di�erent signatures are 
orrelated is very small. Two `obviously' di�erent images

having the same signature is not likely to 
reate a problem. The problem only arises

when images are `similar'. So it is important that the (�xed) hash fun
tion generates

di�erent seeds espe
ially when the images are `similar'. So the hash fun
tion would

be required to \respond" to the LSBs of image more than to the MSBs. This works

to Bob's advantage.

Bob 
ould probably generate enough (di�erent) signature sequen
es from the

image

^

I

m

(or
^



m

) just by tweaking 1-2 LSBs of the image pixels. But when he

does that the resulting image is still very 
lose to

^

I

m

. So he would 
orrelate every

signature sequen
e obtained frommodi�ed versions of

^

I

m

with the �xed 


d

. Whenever
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a parti
ular \tweaking" of the bits results in a signature sequen
e with satisfa
tory


orrelation with 


d

, he stops. He 
alls the resultant image I

m

�

^

I

m

as his \original"

image. If S

B

(or s

b

) is the signature generated from I

m

, and s

b

has a reasonable


orrelation with
^

� 


m

, then it 
an also be expe
ted to have high 
orrelation with


�


m

. So Bob 
an demonstrate the presen
e of his signature in I! Note that making

I

m

�

^

I large swamps out the di�eren
e between I and

^

I. Let

�

e

=

(
^

� 


m

)

T

(
� 


m

)

j(
^

� 


m

)jj(
� 


m

)j

(7.12)

It 
an be easily seen that to generate a random signature sequen
e whi
h yields a

dete
tion statisti
 s

d

with (
 � 


m

), Bob has to obtain a dete
tion statisti
 of

s

d

�

e

with (
^

 � 


m

). So, larger the MSE between 
 and 


m

, 
loser the value of �

e

in Eq.

7.12 to unity. As the signature energy is typi
ally very small, it would be very easy

for Bob to introdu
e a distortion of energy more than 10 times that of the energy

of the signature introdu
ed by Ali
e (this would imply �

e

> 0:95). After a series

of 
arefully planned atta
ks on Ali
e's watermark in I

m

, Ali
e, may not be able to

dete
t her signature in I

m

with a high degree of 
ertainty. Lets assume that Ali
e,

using a sophisti
ated watermarking method manages to dete
t her signature in I

m

with P

e

� 3� 10

�7

, (or s

d

= 5

1

p

N

). To obtain a 
omparable dete
tion statisti
 of his

signature in I, Bob has to sear
h roughly 3:3�10

6

sequen
es if �

e

= 1. For �

e

= 0:95

and �

e

= 0:90, Bob has to sear
h 1:5� 10

7

and 7:2� 10

7

signatures respe
tively (on

an average), before obtaining a suitable signature. This is 
ertainly 
omputationally

feasible.

7.6 Improving S
heme III

Ideally, we would like to redu
e the dete
tion threshold, to enable the 
ontent 
reators

to 
laim ownership even under substantial atta
ks by a pirate. As mentioned earlier,

if 
ounterfeit 
laims do not exist, any judge would de
ide in favor of dete
tion of the
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watermark, even if the probability of error is 1 in 10000. The problem with S
heme

III is that the 
omplexity of the atta
k would also be of the same order of the a

epted

threshold for signature dete
tion. With the following small modi�
ation to S
heme

III we shall see that we 
an substantially in
rease the 
omplexity of engineering a


ounterfeit atta
k:

� The watermark should be dete
ted without subtra
ting the original image. But

the original image is still ne
essary be
ause the seed is obtained from the

original image as in S
heme III.

� The signature should yield a high dete
tion statisti
 with the image in whi
h

the signature is to be dete
ted.

� The signature should yield a low dete
tion statisti
 (less than a threshold Æ)

with the original image.

To engineer a signature, Bob again starts with I

m

, obtained as earlier, and

^

I whi
h is

a good approximation of Ali
e's original I. Let ŝ

i

be the dete
tion statisti
 obtained

as the inner-produ
t of randomly generated signature sequen
es with the 
oeÆ
ients

D(
^

) of the the image

^

I (we shall assume that that E ;D are Type III with � � 100

and � � 12). Let s

i

be the statisti
s of the inner-produ
t of randomly generated

signature sequen
es with the 
oeÆ
ients D(
) 
orresponding to the true original I.

In order to show his signature in the image I with the same degree of 
ertainty as

in Method III (P

e

< 10

�7

), the signature should be 
hosen su
h that s

i

> 5

1

p

N

.

However, in addition, the same signature should also yield a low dete
tion statisti


with Bob's (fake) \original" image I

m

. Let s

i

m

be the statisti
 obtained as the

inner-produ
t of randomly generated signature sequen
es with the 
oeÆ
ients D(


m

).

Obviously, the dete
tion statisti
s s

i

and s

i

m

are not independent. As I and I

m

are

still more \similar" than \not similar", we would expe
t a random sequen
e that

yields a high statisti
 s

i

to also yield a high statisti
 s

i

m

. This makes it extremely
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diÆ
ult for Bob to engineer a signature. Let

�

o

=

D(
^

)

T

D(


m

)

jD(
^

)jjD(


m

)j

�

h

=

D(
)

T

D(
^

)

jD(
)jjD(
^

)j

(7.13)

Eq. (7.13) states that �

o

� 100% of the subspa
es of D(
^

) and D(


m

) overlap. The

proje
tion of the engineered signature s

B

= H(I

m

) in the subspa
e shared by D(
^

)

and D(


m

) does not help Bob. Bob should therefore sear
h for signatures lying in

the disjoint subspa
e ((1 � �

o

) � 100%). At the same time the signature should

also lie in the subspa
e 
ommon to D(
) and D(
^

) (re
all that Bob does not have

the original I with him). Therefore, to obtain s

i

> 5

1

p

N

, and a small s

i

m

, or to

obtain s

i

� s

i

m

> 5

1

p

N

, is equivalent (in terms of 
omplexity of sear
h) obtaining

ŝ

i

>

5

(1��

o

)�

h

p

N

. Like �

e

in Eq. (7.12), the values of �

o

and �

h

would depend on

1. The MSE distortion Bob 
an introdu
e to move I

m

\away" from

^

I (and I), and

2. The MSE between I and

^

I, and

Let s

d

B

= (s

i

� s

i

m

)

B

, and s

d

A

= (s

i

m

� s

i

)

A

. The suÆxes A and B stand for

Ali
e's and Bob's signatures respe
tively. For instan
e s

d

A

is obtained by 
he
king

for the presen
e of Ali
e's signature s

A

in I

m

and I. To win a 
ounter
laim, Bob

has to obtain s

d

B

> s

d

A

. For the suggested Type III watermarking methods, our

simulations on many test images show that it may be extremely diÆ
ult to obtain

�

o

less than 0.5. Therefore, even if �

h

is 
lose to unity, Bob needs to sear
h over 10

23

signatures before he 
an be reasonably sure that he 
an obtain a dete
tion statisti


in Ali
e's original image higher than Ali
e 
an obtain in his fake original.

7.7 Proto
ol for Robust Watermarking

We suggest the following list of restri
tions to be pla
ed on watermarking methods, in

order to make them resolve rightful ownership unambiguously. The overall proto
ol

for watermark embedding and dete
tion are shown in Figure 7.3. All the unshaded
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Figure 7.3 Watermark embedding and dete
tion proto
ol

blo
ks in the �gure are �xed (or regulated from time to time by the Watermarking

Authority). Only the watermark embedding fun
tion and dete
ting fun
tion will

depend on the parti
ular watermarking algorithm.

1. A pres
ribed algorithm for equalizing histogram. The signature is added to the

original image after equalizing its histogram. The histogram of the image in

question is equalized (using the same equalizer) before performing dete
tion of

the signature.

2. A pres
ribed algorithm for determining signi�
ant points and re-warping the

image if ne
essary.

3. A pres
ribed algorithm for determining s
ale fa
tors of pixel values and re-

s
aling.

4. Fixed hash fun
tion H to be used. The hash fun
tion 
ould be made 
omputa-

tionally intensive to further dis
ourage engineering of digital signatures. The

hash fun
tion operates on the (histogram equalized) original image I to produ
e

the seed H

I

.

5. The seed H

I

is input to a �xed random sequen
e generator G to generate the

signature sequen
e S

I

.

S

d

N

= G(H

I

; N; d) (7.14)
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is the 
omplete set of sequen
es that 
ould be generated by G. For a �xed I, the

only parameters that 
an be 
hanged are N - the length of the sequen
e, and

d - the probability distribution. Probably d 
ould take two options - Gaussian

and Uniform. Another useful option for d might be to generate a list of integers

from 1 � � �N in a random order. This may be used for reordering the image


oeÆ
ients if the algorithm 
alls for it. No restri
tion is pla
ed on the length

N .

6. Any de
omposition of the original image 
an be used. If de
ompositions are

generated from random sequen
es only one from the set of possible sequen
es

S

d

N


an be used. If the watermarking algorithm 
alls for a random sequen
e

(say for re-ordering of 
oeÆ
ients), at any stage of the watermark embedding

/ extra
tion pro
ess, only random sequen
es S

d

N

are permitted.

7. Signature to be extra
ted from the image without subtra
ting the original

image.

8. High dete
tion statisti
 of the signature with the image in whi
h the existen
e

of the signature is 
he
ked, and low dete
tion statisti
 between the signature

and the original image. Equivalently, the dete
tion statisti
 may be 
onsidered

as the di�eren
e between the dete
tion statisti
s obtained from the image in

question and the original.

The proposal does not limit itself only to methods in whi
h the signature is dete
ted

by 
orrelative pro
essing. For example, in [16℄ some low frequen
y DCT 
oeÆ-


ients are s
rambled by a random 
y
li
 all-pass �lter. The dete
tion statisti
 is

obtained by 
ounting the di�eren
e between positive and negative 
oeÆ
ients. The

only restri
tion the proposal pla
es on the method above is how the seed is obtained

and the 
orresponding random sequen
e to be used to generate the all-pass �lter


oeÆ
ients. To our knowledge any existing oblivious dete
tion watermarking method
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(with the ex
eption of methods [87, 86℄ that introdu
e geometri
 distortions or modify

the histogram to introdu
e the watermark) 
an be modi�ed to meet the requirements

of the proposed proto
ol.

7.8 An Example Watermarking S
heme

This se
tion outlines a possible watermarking s
heme. The main purpose of this

se
tion, is to illustrate with an example, the in
uen
es of the proposed proto
ol in


hoosing parameters for the watermarking s
heme. However, the se
tion also brie
y

addresses other issues for in
reasing the se
urity and robustness of the watermarking

s
heme. The blo
k diagram of the s
heme (embedding and dete
ting) is shown in

Figure 7.4. This blo
k diagram may be 
onsidered as 
loser look at the shaded blo
ks

in Figure 7.3.

Perhaps, high GTC (Transform Coding Gain) [77℄ transforms like DCT or

wavelet transforms are the best suited for watermarking appli
ations. As high

GTC transforms provide the most 
ompa
t representation of the image, atta
king

DCT / wavelet 
oeÆ
ients for the purpose of watermark removal will most likely

destroy the image. From the 
omplete set of DCT / wavelet 
oeÆ
ients we 
hoose

a low to medium frequen
y subset for watermarking purposes. The sele
ted 
oeÆ-


ients undergo a key based transform (employing all-pass �lters, similar to the data

hiding s
heme suggested in Chapter 6) to obtain the 
oeÆ
ients 
 to be used for

embedding the signature. The signature sequen
e s to be embedded in 
 may be

obtained as a pseudo-random binary sequen
e using the pres
ribed random sequen
e

generator (RSG) trigerred by the key K (whi
h in turn is derived from hashing the

original image). The 
oeÆ
ients obtained after embedding, viz.
^

 then undergo

the inverse Key-based transform to obtain the modi�ed DCT / wavelet 
oeÆ
ients,

whi
h together with the unmodi�ed 
oeÆ
ients are inverted to obtain the water-

marked image or the stego-image.
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k diagram of the watermark embedding and dete
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For dete
tion, of the signature the same operations are performed on the

re
eived noisy image

~

I to get the 
orresponding 
oeÆ
ients
~

. The dete
tor fun
tion

is used to extra
t the noisy signature sequen
e
~
s whi
h is 
ompared with the ve
tor

s generated by the RSG at the re
eiver (using the original image I) to extra
t the

hidden bits.

Note that any permitted watermarking algorithm should have very little

freedom in 
hoosing arbitrarily de�ned parameters. For example in this 
ase, the

proto
ol may impose a 
ondition that all watermarking algorithms should use the

same � (whi
h should be 
hosen after a lot of thought). A less restri
tive (and

probably more reasonable) rule 
ould be that the value � be at least 5 signi�
ant

digits - while the �rst digit may be 
hosen based on the design 
riteria, the next 4

digits should be derived from the key K using the RSG.



CHAPTER 8

CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

This thesis is a 
omprehensive study of the issues involved in multimedia steganography,

and more spe
i�
ally for image and video steganography.

The thesis views the problem of data hiding as a 
ommuni
ation system where

the resour
e is the distortion that 
an be introdu
ed without 
hanging the original


ontent per
eivably. The distortion introdu
ed should be used eÆ
iently to 
ommu-

ni
ate information bits by using an appropriate signaling te
hnique.

The thesis �rst examines linear data hiding methods, whi
h are also referred

to as Type I methods. A 
omprehensive analysis of Type I methods is addressed in

Chapter 3. We then take a novel approa
h to the problem of signaling for multimedia

steganography and introdu
e the 
on
ept of 
oating signal 
onstellations. It is seen

that the new signaling method is a generalization of the so 
alled Type II methods,

based on quantization, widely used by many resear
hers. We further extend the Type

II methods by introdu
ing thresholding in Type II signaling methods. The extended

Type II (or Type III) methods is then shown to be a generalization of both Type I

and Type II methods. It is also seen that neither a (oblivious) Type I or a Type II

method 
an be optimal. For low SNR 
ommuni
ation 
hannels, the optimal Type

III is 
lose to Type I. On the other hand, for high SNR 
hannels, the optimal Type

III is 
loser to Type II.

The fundamental di�eren
e between the 
lassi
 Type II methods and the gener-

alization proposed in this thesis is a result of the realization that it is the periodi


nature of quantization that is useful for the signaling method, to a
hieve self-noise

suppression. The generalization permits use of other periodi
 fun
tions. We proposed

two su
h periodi
 fun
tions - a 
ontinuous triangular fun
tion (CM-SNS) and a

sinusoid (CsM). Though the superiority of the two over quantization was 
learly

shown, the problem of �nding the best periodi
 fun
tion is still open. The best

113
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periodi
 fun
tion would obviously depend on the nature of the additive noise in the


hannel. For both Type II and Type III methods, binary sequen
es seem to be the

best 
hoi
es for signaling. However, as pointed out in Chapter 5, the optimality

of the 
onventional signaling s
heme that follows SNS may demand use of non-

binary signatures. In this 
ase a joint optimization of the SNS and and 
onventional

signaling method is 
alled for. This is perhaps another area for future resear
h.

The thesis also points out that Type III methods are still sub-optimal. It is well

established that oblivious methods 
an approa
h the 
apa
ity of es
row methods.

However, to a
hieve that we might need to use very large 
odebooks, whi
h may not

be pra
ti
al. Other (probably sub-optimal) alternatives whi
h may perform better

than Type III methods is a dire
tion for future resear
h.

The thesis then addressed the problem of maximizing the resour
e - the

distortion that 
an be introdu
ed in the 
ontent. However, the problem has been

addressed only for images. We suggested a pra
ti
al option of introdu
ing the

distortion in the magnitude DFT domain. However, it appears that mu
h more

robust data hiding 
an be a
hieved if pra
ti
al solutions to the inverse problem of

moving an image to a spe
i�ed state or introdu
ing a distortion that is 
lose to a

desired distortion, by introdu
ing imper
eptible geometri
 distortions or histogram

modi�
ation, or both, 
an be found.

The thesis �nally addressed the problem of watermarking images for unambiguous

resolution of ownership. The thesis proposes a proto
ol to be followed for water-

marking, whi
h 
an drasti
ally in
rease the 
omplexity of engineering an e�e
tive


ounterfeit atta
k.



APPENDIX A

IMPLEMENTATION OF CYCLIC 2-BAND FILTERBANKS

Let h 2 <

N

and h$ H, where $ denotes a dis
rete Fourier transform (DFT) pair.

Let

h

e

(n) = h(2n); h

o

(n) = h(2n+ 1); n = 0; : : : ;

N

2

� 1: (A.1)

As h is orthogonal to alternate 
y
li
 shifts,

N

2

�1

X

n=0

fh

e

(n)h

e

(n� p) + h

o

(n)h

o

(n� p)g = Æ(p): (A.2)

Let H

e

$ h

e

and H

o

$ h

o

. Taking the DFT of both sides of Eq. (A.2),

H

e

:H

�

e

+H

o

:H

�

o

= [1 1 � � � 1℄ 2 <

N

2

(A.3)

where (; :; ) stands for the Hadamard produ
t (multipli
ation of 
orresponding

elements) of two ve
tors. It 
an be easily shown that the l

th

elements of H

e

and H

o

are given by

H

e

(l) =

N

2

�1

X

n=0

h(2n) exp

 

�j2�nl

N

2

!

=

H(l) +H(l +

N

2

)

2

H

o

(l) =

1

2

exp

 

j2�l

N

!

h

H(l)�H(l +

N

2

)

i

: (A.4)

Substituting Eqn. (A.4) into Eqn. (A.3) and simplifying,

jH(l)j

2

+ jH(l +

N

2

)j

2

= 2 for l = 0; � � � ;

N

2

� 1: (A.5)

Equation (A.5) is a ne
essary and suÆ
ient 
ondition for the ve
tor h to be

orthogonal to all its alternate 
ir
ular shifts. Note that in addition to the freedom in

sele
ting the DFT magnitudes of H, there is 
omplete freedom in the 
hoi
e of their

phases (ex
ept, of 
ourse if h has to be real, only

N

2

�1 phase values are independent).

Now

N

2

orthonormal basis ve
tors 
an be obtained from h. We now want to obtain

115



116

N

2


omplementary basis ve
tors, to 
omplete the basis for <

N

. Let g be a ve
tor

whi
h is also orthogonal to its alternate shifts. Then

jG(l)j

2

+ jG(l +

N

2

)j

2

= 2 for l = 0; � � � ;

N

2

� 1: (A.6)

Sin
e we desire g and its alternate 
y
li
 shifts to 
omplement the basis ve
tors

derived from h, g should further satisfy

N

2

�1

X

n=0

fh

e

(n)g

e

(n� p) + h

o

(n)g

o

(n� p)g = 0; (A.7)

where, g

e

(n) and g

o

(n) are respe
tively the even and odd indexed elements of g.

Taking the DFT of Eqn. (A.7),

H

e

(k)G

�

e

(k) +H

o

(k)G

�

o

(k) = 0 8 k: (A.8)

Using Eqn. (A.4), and similar relations for G

e

(l) and G

o

(l), Eqn. (A.8) 
an be

rewritten as

H(k)G

�

(k) = �H(k +

N

2

)G

�

(k +

N

2

): (A.9)

Equation (A.9) is satis�ed if we 
hoose

G(k) = H

�

(k +

N

2

) exp

 

j2�k

N

!

exp (j�) (A.10)

where � is an arbitrary phase angle. Choosing � = 0, we get

g(n) = (�1)

n�1

h(N � 1� n): (A.11)

A.1 Forward Transform

De�ne

y

h

(m) =

N�1

X

n=0

x(n)h(n�m); m = 0; � � � ; N � 1 (A.12)

and

y

g

(m) =

N�1

X

n=0

x(n)g(n�m); m = 0; � � � ; N � 1: (A.13)
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Let Y

h

$ y

h

and Y

g

$ y

g

. Taking the DFT of Eqs. (A.12) and (A.13),

Y

h

(k) = X(k)H

�

(k); and Y

g

(k) = X(k)G

�

(k): (A.14)

In view of Eqn. (A.15), we 
an obtain the transform 
oeÆ
ients x

h

(m) and x

g

(m) by

sub-sampling the IDFTs of Y

h

and Y

g

. Alternatively, from Eqs (A.12) and (A.13)

we have

x

h

(m) = y

h

(2m); x

g

(m) = y

g

(2m): (A.15)

Therefore,

x

h

(m) = y

h

(2m) =

1

N

N�1

X

k=0

Y

h

(k) exp

 

j4�mk

N

!

=

1

N

N

2

�1

X

k=0

Z

h

(k) exp

 

j4�mk

N

!

; (A.16)

where

Z

h

(k) = Y

h

(k) + Y

h

(k +

N

2

); k = 0; : : : ;

N

2

� 1: (A.17)

Similarly,

x

g

(m) =

1

N

N

2

�1

X

k=0

Z

g

(k) exp

 

j4�mk

N

!

: (A.18)

where

Z

g

(k) = Y

g

(k) + Y

g

(k +

N

2

); k = 0; : : : ;

N

2

� 1: (A.19)

Thus x

h

(m) and x

g

(m) 
an be determined by 
omputing the

N

2

-point IDFTs of

Z

h

and Z

g

, instead of 
omputing the N -point IDFTs of Y

h

and Y

g

and sub-sampling

them.

The implementation of the forward transform of x thus 
onsists of the following

steps

1. Obtain the DFT X of x.
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2. Compute the Hadamard produ
ts Y

h

= X:H

�

and Y

g

= X:G

�

.

3. Split the N -ve
tor Y

h

into two

N

2

-ve
tors and add them to obtain the

N

2

-ve
tor

Z

h

. Form the

N

2

-ve
tor Z

g

from the N -ve
tor Y

g

in a similar fashion.

4. Obtain x

h

and x

g

as the IDFTs of Z

h

and Z

g

respe
tively.

A.2 Inverse Transform

Let X

h

and X

g

denote the periodi
 extensions of the

N

2

-point DFTs of x

h

and x

g

respe
tively, i.e.,

X

h

(k) =

N

2

�1

X

m=0

x

h

(m) exp

 

�j4�km

N

!

; k = 0; : : : ; N � 1; (A.20)

X

g

(k) =

N

2

�1

X

m=0

x

g

(m) exp

 

�j4�km

N

!

; k = 0; : : : ; N � 1; (A.21)

It 
an be shown that (see Appendix B)

x(n) =

1

N

N�1

X

k=0

[X

h

(k)H(k) +X

g

(k)G(k)℄ exp

 

j2�nk

N

!

(A.22)

The implementation of the inverse transform therefore, 
onsists of the following steps:

1. Obtain the

N

2

length DFTs of x

h

and x

g

.

2. Make periodi
 extensions of these DFTs to length N to obtain X

h

and X

g

.

3. Compute the Hadamard produ
ts X

h

:H and X

g

:G.

4. Compute the IDFT of X

h

:H+X

g

:G to obtain x.



APPENDIX B

MATHEMATICAL PROOFS

B.1 Proof of Eq (5.7)

h(n) =

P

N�1

k=0

e

j(

2�kn

N

+�

k

)

f(n) =

P

N�1

k=0

a

k

e

j(

2�kn

N

+�

k

)

for n = 0 � � �N � 1. From Eq (5.6),
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N�1

X
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)
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: (B.1)

Using the identity

N�1

X

n=0

e

j(

2�(k�l)n

N

)

=

8

<

:

N for k = l

0 otherwise

; (B.2)

Eq (B.1) redu
es to

" = N

"

N � 2

N�1

X

k=0

a

k


os(�

k

� �

k

) +

N�1

X

k=0

a

2

k

#

: (B.3)

B.2 Proof of Eq (5.10)

Given that h 2 <

N

, H = F

N

(h), and h

e

(n) = h(2n) for n = 0; : : : ;

N

2

� 1, and

H

e

= F

N=2

(h

e

), we need to show

H

e

(l) =

H(l) +H(l +

N

2

)

2

; l = 0 � � �

N

2

� 1: (B.4)

H

e

(l) =

N
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�1

X
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�j2�nl
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(B.5)

=

N

2

�1

X

n=0

1
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X

k=0

H(k) exp
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!
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� 1:
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B.3 Proof of Eq. (A.22)

x(n) =

1

N

N�1

X

k=0

[X

h

(k)H(k) +X

g

(k)G(k)℄ exp

 

j2�nk

N

!

= T

1

(n) + T

2

(n): (B.6)

Consider the �rst term, T

1

(n) of (B.6),

T

1

(n) =

1

N

N�1

X

k=0

X

h

(k)H(k) exp

 

j2�nk
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(B.7)
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1
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(m) exp
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(B.8)

As x

h

(m) = y

h

(2m), and y

h

$ Y

h

, we have

x

h

(m) =

1

N

N�1

X

l=0

Y

h

(l) exp

 

j4�ml

N

!

(B.9)

Substituting for x

h

(m) from Eq. (B.9) into Eq. (B.8), we obtain
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For even n, i.e. n = 2q, we have h(n� 2m) = h

e

(q �m) (see Eq. (A.1)). Therefore,
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Substituting for H

e

(l) from Eq. (A.4) into Eq. (B.10),
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Similarly it 
an be easily shown that

T

1

(n) =

1

N

N�1

X

l=0

1

2

�

H(l)�H(l +

N

2

)

�

Y

h

(l) exp

 

j2�ln

N

!

for odd n: (B.12)

Similar expressions 
an be derived for T

2

(n) to obtain
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for even and odd n respe
tively.

In view of Eqs. (A.10) and (A.5)),
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jH(l)j

2

+ jG(l)j

2

= 2: (B.14)

Combining Eq. (A.14), viz.,

Y

h

(k) = X(k)H

�

(k); andY

g

(k) = X(k)G

�

(k);

with the equations for T

1

(n) and T
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(n), and using Eqs. (B.13) and (B.14),
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