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Abstract— Any key pre-distribution (KPD) scheme is inher-
ently a trade-off between complexity and security. By sacrificing
some security (KPD schemes need some assurance of the ability
to limit sizes of attacker coalitions), KPD schemes gain many
advantages. We argue that random KPD schemes, in general,
perform an “advantageous” trade-off which renders them more
suitable for practical large scale deployments of resource con-
strained nodes. We introduce a novel random KPD scheme,
HAshed Random Preloaded Subsets (HARPS), which turns out
to be a generalization of two other random KPD schemes -
random preloaded subsets (RPS), and a scheme proposed by
Leighton and Micali (LM). All three schemes have probabilistic
measures for the “merit” of the system. We analyze and compare
the performance of the three schemes. We show that HARPS has
significant advantages over other KPD schemes, and in particular,
over RPS and LM.

I. INTRODUCTION

In many evolving applications involving distributed, loosely
controlled, resource constrained nodes, it is imperative to
have efficient means of developing “trust” between nodes. For
example, nodes forming Mobile Ad hoc NETworks (MANET)
have to perform authenticated exchanges for building a routing
table, or relaying messages between other nodes. In addition
it is also necessary to ensure privacy of inter-nodal exchanges.
The two basic requirements, authentication and privacy, could
be provided by a key distribution scheme (KDS).

However, for applications involving autonomous resource
constrained nodes, the KDS may have many constraints. For
instance, the nodes need to operate without active involve-
ment of a trusted authority (TA). The KDS should scale
well (support large network sizes). Further, addition of new
nodes should not require any kind of reconfiguration of the
system. Additionally, the KDS should not introduce significant
overheads - both in terms of computational complexity and
bandwidth.

The need for ad hoc interaction of nodes, and the resource
constraints make traditional KDS solutions like Kerberos and
public key infrasructure (PKI) impractical. A third option is
key pre-distribution. A key pre-distribution (KPD) scheme,
consists of N nodes with unique IDs, and a TA. The TA
chooses P secrets (or keys). Each node is preloaded with &
secrets, such that any two nodes A and B (with unique IDs
ID, and IDpg respectively) can “discover” a shared secret
K 4p independently, by just exchanging their IDs, and without
subsequent interaction with the TA. The shared secret K4p
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could be used for ensuring privacy of communications between
nodes A and B. As the shared secret is generally a function
of the node IDs, simultaneous (mutual) authentication of the
node IDs is also achieved. A KPD may also enable arbitrary
groups of nodes to arrive at a shared group secret (privy only
to the members of the group).

For the most basic form of KPD, shared secrets for each
possible group a node may be a member of, may be preloaded
in each node. However, this would imply an unreasonably
large amount of storage requirement in each node, especially
if the network size (the total number of nodes in the system)
N is large. Fortunately, it is possible for KPD schemes to
perform trade-offs between complexity and security.

Key pre-distribution schemes can be classified broadly into
deterministic and random KPD schemes. The contribution of
this paper is a novel random KPD scheme, HARPS. In Section
Il we present formal introduction to random KPD schemes,
followed by a description of HARPS. Section 1l presents an
analysis of the performance of HARPS, and a comparison of
HARPS with two other random KPD schemes (RPS [1] and
LM [2], which turn out to be special cases of HARPS). It is
shown that HARPS performs significantly better than RPS and
LM.

While any KPD scheme is inherently a trade-off between
security and complexity, the specific nature of the trade-off
employed results in KPD schemes assuming drastically dif-
ferent forms. In Section 1V various deterministic and random
KPD schemes are compared based on the security-complexity
trade-offs they employ. The advantageous trade-offs performed
by random KPD schemes are elucidated. Conclusions are
presented in Section V.

Il. RANDOM KEY PRE-DISTRIBUTION

A (r,n,p) (or r-conference, n-secure with probability 1—p)
KPD scheme [1], is a systematic method for generation of
symmetric keys or secrets. In an (r,n,p) scheme, k secrets
are preloaded in each node in such a way that

1) Any set of (up to) r nodes {u,...,u,} = G, can dis-
cover a group secret K¢ independently, with probability
Pa-

2) The probability that the group secret can also be dis-
covered by a coalition of n nodes a; ---a,, ¢ G is p (or
less).

The set of & keys in each node is collectively referred to

as the node’s “key-ring.” The parameter & is then the size



of the key-ring. The probability p, = 1 — pg (which is the
probability that » nodes cannot discover a shared secret),
is referred to as the outage probability. Pairwise, or unicast
communications, can be considered as a special case of r-
conferences where » = 2. For coalitions of more than n nodes,
say ai,...,any; ¢ G,1 > 0, the probability of obtaining
the group secret is typically greater than p. We refer to the
probability p as the eavesdropping probability.

For a KPD scheme to be “secure” even when an attacker
has exposed secrets from n nodes, the outage probability p,
and the eavesdropping probability p should be “very close” to
0. Obviously, if the group of » nodes cannot discover a shared
secret (which happens with a probability p,) an attacker can
compromise exchanges between such nodes even if he has
not compromised any other node (or n = 0). In other words,
p > p, includes the outage probabilityl. More specifically,
p=p, forn=0, and p > p, for n > 0.

A. HARPS

HARPS is a random KPD scheme defined by 3 parameters?
(P,k,L), and two public functions h() and F(). In other
words,

1) P - number of secrets stored by the TA

2) k - number of preloaded secrets in each node, £ < P.

3) L - Maximum hash depth

4) h(), a cryptographic hash (one-way) function, and

5) F(), a public-key-generation function.

Each node is assigned a unique ID. The TA chooses P secrets
(or root keys) [M; --- Mp]. From each root key one can get
up to L “derived keys” by repeated application of the one-
way function (). The j** derived key of the it" root key M;
is represented by K7 = hi(M;) (M; is repeatedly hashed j
times - or j is the hash “depth” of K7), where 1 < i < P,
1 < j < L. The parameter L is the maximum hash depth.
For a node A with ID ID 4

{(Al,al),(Az,(lz),...(Ak,ak)}:F(IDA). (1)

The first coordinate of the ordered pairs, viz. (Ay --- Ag), is
a partial random permutation® of integers between 1 and P,
1< A4; <PV1I<j<kandA; # A;,i # j. The second
coordinate {a; ---ax} is a sequence of uniformly distributed
numbers between 1 and L. Each node is preloaded with &
secrets. The preloaded secrets in any node depends on the
node’s public key. The keys preloaded in node A for instance,
are

(K, - K4 = [* (Ma,) - -- h** (Ma,)]- @

In other words, the first coordinate of F(ID) of a node,
represents the indexes of the root keys that are chosen to be
preloaded in the node. The second coordinate represents the

IWhich is the reason why p, (or pg4) is not explicitly included in the notion
of an (r,n,p) KPD

2These parameters do not represent the parameters (r,m,p) used to
describe a general KPD!

3the sequence (Aj --- Ayg), for instance, can be considered as the first k
numbers in a random permutation of numbers 1. .- P.

number of times each chosen key is hashed before they are
actually preloaded in the node.

1) Calculating Group Secrets: Let [(By,by) - - (By,br)] =
F(IDg). With the knowledge of the node IDs, the two nodes
A and B can independently arrive at the indexes of the shared
root keys as [s1 - - - s,,] by application of the (public) function
F() (on their 1Ds). Corresponding to these shared root keys,
denote the m derived keys in node A as [K$!--- K¢m], and
in node B, [K% ---K!m]. Let dy = max(ay,by)---dp =
max(a,, by,). The session key (or the group secret) K4p is
then obtained as

Kap = h(h® (My,)|h® (Ms,)| -+ - |h* (M) ©)

Note that the group secret can calculated independently by
both nodes. Without loss of generality, let us assume that d; =
max(az,b1) = by. This implies that node A would arrive at
the term h% (M,,) = K& in Eq (3) by hashing its key K&,
(b1 —ay) times. As one of B’s preloaded key is K'* = K¢ =
h%1(Ms,), B does not have to hash forward for this particular
key. For each shared key however, at most one of the nodes
has to hash forward to reach a common hash depth. Thus each
shared key is first brought to same depth by both nodes. All
such keys, hashed together, serve as the shared key between
the nodes A and B as shown in Eq (3).

HARPS is actually a generalization of both LM [2] and RPS
[1]. RPS is a special case of HARPS for L = 0 - the keys are
not hashed before they are preloaded in the nodes. LM is a
special case of HARPS for P = k - each node has a hashed
version of all root keys.

Network Size: For most KPD schemes, there is practically
no limit on the network size. For HARPS, the number of
possible unique key-rings is (£)L*. As the keys (and hence
key-rings) are chosen randomly, in order to avoid “collision”
(taking “birthday paradox” into account) we could restrict the

size of the network, N,,u. tO ,/(’,:)Lk. For example, for
P = 2560, k = 256 and L = 64, Nyuep ~ 1.3 x 10%41L,
In practice the limitation on the size of the network would
be based on the number of bits allocated for representing the
(unique) ID of each node. For a system with 32 bit IDs for
instance, the network size would be limited to about 4 billion.

I1l. ANALYSIS OF HARPS

An analysis of HARPS involves calculation of the eaves-
dropping probability p (more specifically p(n,r)), that an
attacker who controls a coalition* of n nodes, can discover
the shared secret of a group of r nodes.

To analyze®

“Typically, due to the need to limit attacker coalition sizes, KPD schemes
would involve some form of tamper-resistance of the nodes preloaded with
keys. Thus “ownership” of a node alone is not a sufficient condition for a
node to considered as a part of an “attacker’s coalition.” In order to be part
of the coalition, the attacker must have been able to tamper with and expose
all secrets buried in a tamper-resistant node.

5The analysis presented in this section is motivated in part by Dyer et al.
[9], for calculating the probability that an intersection of r sets is contained
in an union of n sets.



Consider an arbitrary key (say index ¢) from the pool of P
keys. Let &;; represent the probability that the ith key 1 <4 <
P, is chosen as a candidate for node j, 1 < j < N. As each
key is chosen with the same probability, and as any node is
equally likely choose any key as a candidate, we have

&y == ovij. @

In order for the key ¢ to be “safe”, the following conditions
should be met

1) The r nodes trying to establish a shared secret, should
have chosen the i the key.

2) None of the n attacker’s nodes should have chosen the
ith key, or if some of the attackers have the ith key,
all such keys should have hash depths higher than the
maximum hash depth of the r nodes.

Now the probability that the ith key is safe, is

n

e=Y P&rnuQL,ru)

u=0

®)

where P (£, r,n,u), is the probability that » nodes and 0 <
u < n out of n compromised nodes in the attacker’s coalition
pick the ith key from the key pool, or
n —u

P(§7 TN, U) = ‘Sr ’ (u> gu(l - §)n 3 (6)
and, Q(L,r,u) is the probability that the minimum of « real-
izations of a uniform distribution is greater than the maximum
of r realizations. In other words,
Q(LTU):Pr{ﬂ>a}=z L) )

P Pt LT L )

where 1 < u < n. Further, Q(L,r,u = 0) = 1 and Q(L =
0,7,u) = 0.

Therefore the probability that a coalition of n attackers can
successfully arrive at the r-group secret is

pnr) = (1 -0 = {a-ot} ©

For the special cases of RPS (L = 0) and LM (¢ = 1), the
expressions for e are respectively

(- {mPenno == 1
"\ e =9Q(L,m,n) 0 -

Note that the expression for ¢ in Eq (5) for HARPS has
n 4+ 1 terms corresponding to w = 0---n. For LM (£ = 1),
only the term corresponding to u = n is non zero. For RPS,
only the term corresponding to « = 0 is non-zero. For the
same value of £ obviously eg < e. Or for the same P, k, the
eavesdropping probability for HARPS (L > 0) is less, or at
worst equal, to that of RPS (with L = 0). Or as L increases,
the eavesdropping probability decreases.

Now let us consider the expression for eavesdropping prob-
ability for RPS, for » = 2 (pairwise communications). Also,

L —i— 1)

L=0,¢#
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Fig. 1. Plot of % vs n for HARPS, RPS and LM for p = 1020,

by choosing ¢ = ;S, where 0 < C' < 2, and replacing P

with % = % we have
(1-&a-9m*

kC(n+2—C)"
exp (——(nn+ 2) (D) ) ,  (10)

which readily indicates that for RPS, for any desired proba-
bility of eavesdropping, as n increases, we have to increase k
in a linear proportion. In other words, k£ % O(n). Obviously,
for HARPS too, as for the same &, ¢ > eg, k ¥ O(n). It
is perhaps pertinent to point out here that Blundo et. al [4],
with information theoretic arguments, have shown that it is
not possible for any KPD to do better than (", ") preloaded
keys per node (for an n-secure r-conference KPD), which for
r = 2 (or pairwise key establishement) translates to n + 1 or
O(n).

A. Optimization of Parameters

Optimization of random KPDSs is about minimizing the
resource utilization in the nodes for a desired level of security.
As all three random KPDSs have easily achievable computa-
tional requirements, the optimization focuses on minimizing
k, the size of the key-ring, for a desired level of security (or
desired p(n,r)) - we are not too concerned about the size of
the key pool P. For a given value of k there are two parameters
under the control of the designer - P (or equivalently, &), and
the maximum hash depth L. Obviously, as value of the hash
depth L is increased, p reduces. However, for L > 64 the
pay-off is negligible.

(From Eq (8), it is readlily seen that for minimizing k£ we
need to minimize (1 — ¢)€. For the LM scheme there is no
scope for optimization as ¢ is fixed at one (k = P). For RPS
and HARPS on the other hand, an optimal choice of £ is very
crucial. It can be easily shown that for both (RPS and HARPS),
£ oL (¢én = 1.7 for HARPS and ¢n = 0.95 for RPS).

Figure 1 is a comparison of HARPS, RPS and LM in terms
of the number of preloaded keys (or the size of the key-ring k)

pR(”: 2)

IA



needed to achieve an eavesdropping probability of less than
10720 for various values of the size of attacker’s coalition
n. The plot of % vs n clearly depicts that ¥ > O(n?) for
LM and k£ ~ O(n) for RPS and HARPS. Specifically, for
HARPS k =~ 75n and for RPS k ~ 128n, for p < 10729 and
large n. Also, for the same &, an increase of & would result
in a corresponding exponential reduction of p. The relations
k=0(n), and £ = £ o 1, imply that P =~ O(n?) for RPS
(and HARPS)®. For p < 10729, this implies P ~ 42n? for
HARPS, and P ~ 135n? for RPS. However, the dependency
P = O(n?) for RPS and HARPS is not a serious limitation
- as P is the number of keys that the TA needs to store - not
the nodes.

For the plots in Figure 1, the value of & is calculated
by optimizing ¢ for each value of n. However, optimization
is performed before deployment. And compromises occur
after deployment. Thus for a deployment of any KPD it is
important to know how a system optimized for some value of
n behaves for larger values of n. Figure 2 is a plot of the
logarithm of the eavesdropping probability (log(p)) vs n for
HARPS, RPS and LM systems, all three designed to provide
a eavesdropping probability of p < 10720 for n = 20 (the
intersection of the 3 curves occurs at p ~ 10729 at n = 20).
In addition to the obvious advantage of needing the least value
of k£ to achieve this requirement, HARPS also has a slower
rate of *““degradation of security” with increasing n. For the
systems compared, to compromise inter-nodal exchanges with
a probability greater that 0.5, the attacker needs to compromise
220 nodes for HARPS (P = 19390, k£ = 1610, L = 64), and
only 106 nodes for RPS (P = 53840,k = 2565). Also note
that the comparison is not “fair” for HARPS (the comparison
is between LM with k£ = 12559, RPS with k£ = 2565 and
HARPS with k& = 1610).

Note that & = 1610 is the minimum value of k£ needed to
ensure an eavesdropping probability p < 10720 for n = 20
for HARPS. With a 10% increase in k£ and maximizing P
(resulting in P ~ 35,000) to ensure that p < 10720 for n <
20, the attacker would need to compromise 300 nodes before
he can achieve p = 0.5. For a 25% increase in k, the figure
goes up to 371 nodes (a 70% increase from 220).

The justification for fixing L = 64 can be seen from the
plot of the p vs n forP = 19390, k¥ = 1610 for various values
of L ranging from 32 to 512 in Figure 3. As expected the
eavesdropping probability p reduces as L increases. But the
improvement is only marginal. For instance, for HARPS with
P =19390,k = 1610, L = 64,the eavesdropping probability
p = 0.5 when n = 220 (220 nodes are compromised).
Increasing L to 512 provides only a marginal improvement
(to n = 233 for p = 0.5). The small improvement perhaps
does not warrant the increase in computational complexity that
would result by increasing L.

cpP

6This can also be readily seen from Eq (10) be replacing k with ¢P = iz
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IV. SECURITY - COMPLEXITY TRADE-OFFS IN KPD
SCHEMES

Apart from the broad classification of “deterministic” and
“random”, KPDs can be classified into many “categories”
based on the relationship between n (the size of attacker’s
coalition) and p (the eavesdropping probability).

In the first category of KPD schemes, is the basic KDS,
where each node is preloaded with all possible shared secrets
it might require for secure communication with other nodes.
For all possible ((g)) pairwise communications, each node
requires N — 1 keys. If we permit group sizes of up to r,
the total system secrets needed would be 7_,, (%) and each
node would need to store 27— 1 (V') secrets. While this
may be impractical for large scale networks, this is the most
secure of all KPD schemes. Irrespective of the number of
nodes that have been compromised, the nodes that have not
been compromised can continue to function securely. In other
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words for any n, the probability of eavesdropping is zero” (see
Figure 3).

For the second category of KPD schemes, which typically
use finite-field arithmetic techniques, the plot of p vs. n
takes the form of a step function. For such schemes, the
probability of eavesdropping is 0 as long as the size of the
attacker’s coalition n is not greater than some ny. For n > ny
however, the probability of eavesdropping is 1 - or the system
is completely compromised. The obvious disadvantage of such
schemes is the catastrophic onset of failure. Examples of such
schemes are the Blom’s KPD [3] (and its extension by Blundo
[4] for » > 2), and the schemes proposed by Matsumoto
et. al [5], and Stinson [10]. Another disadvantage of such
schemes are that they are usually computationally expensive.
For instance, for the scheme in [4], the nodes have to evaluate
a n degree polynomial in » — 1 variables, in a large prime
(¢) field Z,, to establish a shared group secret. The main
advantage is that they are in general very efficient in terms
of the size of the key-ring. Typically, £ =~ O(n). As the size
of the key ring is not a function of the network size IV, these
schemes scale extremely well.

The third category of KPDs, the subset intersection schemes
(SIS), address two major disadvantages of the second category
- catastrophic onset of failure, and computational complexity.
In SIS schemes, a pool of P keys (which constitute the system
secrets) are distributed in a deterministic fashion such that each
node gets k keys, k < P. The shared secret for a group of r
nodes is simply a function of all keys in the intersection of
the key-rings in the r nodes. For such a system resistant to
attacker’s coalition of n nodes, the keys are distributed such
that the intersection of keys in r nodes is not contained in the
union of any n nodes outside the group [6].

Thus, for the SIS schemes, the probability of eavesdropping

“The definition of p, excludes the n nodes from being part of any group.

is 0 as long as the size of the attacker’s coalition n < njy.
For n; < n < ny the probability of eavesdropping gradually
increases from 0 to 1. While this graceful degradation is a very
desirable property, this is achieved at the expense of scalability.
For example, for the matrix [7] scheme, k& ~ n+v/N. The
dependency of the key-ring size on the network size translates
into severe restrictions on scalability of the scheme.

Even though other SIS schemes exist [8] - [11] for which
k = O(nlog N) (and thus do not suffer as much in terms of
scalability), such schemes involve complex constructions (for
the deterministic allocation of keys). Thus for two nodes to es-
tablish their shared secret they might either need to execute the
computationally intensive construction algorithm to determine
their shared keys or exchange messages containing the indexes
of the keys they possess (this would imply exchanging of P-
bit messages). However, the option of exchanging indexes of
keys has another serious disadvantage. The inability of nodes
to ascribe a sequence of keys to an ID implies that mutual
authentication of the IDs is not implicitly achieved.

Random KPD schemes are characterized by the existence
of a finite eavesdropping probability for all n. At fist sight,
permitting a finite eavesdropping probability may seem like a
serious disadvantage. In practice, it is not. Even for a KPDs
for which p = 0 for some n, the final shared secret is a
(symmetric) key with a finite number of bits. For instance,
if the shared secret is a 64-bit key, there does exist a finite
probability (55 > 1072°) that an attacker can “pull the secret
out of a hat” (without the need to compromise any node).
Thus permitting a small eavesdropping probability is not a
disadvantage as long p is comparable to the security offered
by the key-length of the final shared key (say p ~ 1020 for
64 bit keys).

The first random KPD was proposed by Leighton and Micali
(LM) [2]. For the LM scheme, for a desired probability
of eavesdropping when n nodes have been compromised,
we need O(n?) < k < O(n®). Further, as n increases
the eavesdropping probability increases gracefully. Thus by
“relaxing” the security requirement (even though the relaxation
has very little implication in practice if p is low enough) the
LM scheme is able to achieve what the subset intersection
schemes set out to achieve, without the disadvantage of the
dependency of k on the network size N. Further, the LM
scheme offers a great deal of flexibility for increasing group
size r by compromising some security. Additionally, unlike the
subset intersection schemes, only the 1Ds need to be exchanged
to establish shared secrets.

Several random KPD schemes, based on the same idea as
SIS schemes, with a twist that the allocation of subset of keys
to every node is done in a random or pseudo random fashion
(instead of the deterministic allocation in SIS schemes) have
been proposed in the recent past [1],[12]-[17]. We refer to
these schemes collectively as random preloaded subsets (RPS).

One of the major distinctions between [1], [16] and the
methods in [12], [13] and [17] is the way shared secrets
are discovered. In [12],[13] and [17] the shared secrets are
dicovered through an interactive process, while in [1] and [16]



it is achieved by just exchanging IDs - as the index of secrets
preloaded in each node is derived from a one way function
seeded by the ID. The approach of an interactive process
has two disadvantages - (1) the additional bandwidth required
and (2) implicit authentication of 1Ds is not achieved. Apart
from this minor distinction the basic technique employed are
however, similar. All use the concept of random preloaded
subsets, and hence collectively referred to as RPS.

Like LM, RPS and its extension HARPS, proposed in
this paper, also have a finite probability of eavesdropping p
when one or more nodes are compromised. However, RPS
and HARPS go even further by permitting a small outage
probability p, = (1 — pg) > 0.

This additional relaxation of security requirements (by
permitting a small outage probability) however goes a long
way in reducing the complexity of the KPD. It is ther outage
probability that gives RPS and HARPS the needed freedom to
obtain drastic improvements in efficiency - from k > O(n?)
for LM to k& # O(n). Once again, as long as the eavesdropping
probability (which includes the outage probability) is of the
same order as the security provided by the bit-length of the
shared key, this is not an issue. Figure 6 depicts the qualitative
progression of KPDs as a function of the probability of
eavesdropping and the number of compromised nodes, under
varying security assumptions.

It is pertinent to mention here that the methods in [15] and
[17] are a little different from other RPS based schemes. In
[15] and [17] (which are very similar methods), the authors
combine RPS with Blom’s [3] KPD.

While for a specific n (attacker coalition size), the schemes
in [15] and [17] can be substantially more efficient than RPS
(or even HARPS), their security of deteriorate at a more rapid
rate than RPS [18] (while the degradation of HARPS is more
graceful than RPS). This is not surprising considering that
a combination of two systems - one deteriorating gracefully
(RPS), with one that deteriorates catastrophically (Blom’s
scheme) would produce a system that deteriorates faster than
RPS - though not as catastrophically as Blom’s scheme.

V. CONCLUSIONS

HARPS, a novel random KPD scheme introduced in this
paper, significantly outperforms two previously proposed ran-
dom KPD schemes (which are also identified as special cases
of HARPS), and also has many advantages over other existing
KPD schemes. As HARPS needs only O(n) keys to be stored
in each node, it scales extremely well. There is practically no
limit on the network size N that HARPS can support.

Seemingly, the main disadvantage of HARPS (and RPS)
is the existence of an outage probability (which was also in-
cluded in the measure of eavesdropping probability). However,
in practice, it suffices to keep the eavesdropping probability
to low values. HARPS and RPS utilize this freedom to permit
an outage probability in order to achieve their high efficiency
(k = O(n)).

While the advantages of HARPS and RPS over LM is very
clear, (k = O(n) vs k = O(n®)), HARPS also has several

advantages over RPS. Firstly, it is more efficient in terms of
number of preloaded keys needed. Secondly, the deterioration
of performance of HARPS as more nodes are compromised
is slower than that of RPS. Thirdly, HARPS can be readily
extended to a tree hierarchical deployment. Each node by itself
could act as a TA and distribute a subset of it’s keys (hashed
further) to it child nodes. Even though a tree hierarchical
distribution is also possible in RPS, RPS does not provide
the much desired “seperation” between levels. In other words
in a tree hierarchical deployment of HARPS, compromise of
nodes in a lower level have no impact on the security of nodes
at a higher level (as long as the hash function is pre-image
resistant). However, this is not the case for RPS.
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