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Abstract—Many secure MANET routing protocols have been
proposed in the literature which employ non repudiable crypto-
graphic authentication. However, they have not been explicitly
designed to provide non repudiable proof of active attacks
(NPAA). For example, Ariadne with digital signatures (ADS) is a
secure extension of DSR which requires every node forwarding a
route request to append a digital signature. Such signatures are
carried forward all the way to the destination node to facilitate
the destination to detect active attacks. However, ADS is not well-
suited for providing NPAA due to the need for accused nodes
to provide affirmative defense. We propose a secure DSR based
protocol, APALLS, designed explicitly to provide NPAA. Apart
from the eliminating the need for affirmative defense, another
advantage of APALLS is that it does not require digital signatures
to be carried over.

I. INTRODUCTION

Routing protocols for mobile ad hoc networks (MANET)
are rules to be followed by every node to co-operatively
discover optimal paths and route packets between end-points
(source and destination nodes). The presence of nodes that
do not adhere to the rules, either deliberately, or due to
malfunctioning, can have a deleterious effect on other nodes.

The types of attacks that can be inflicted by misbehaving
nodes can be broadly classified into passive and active attacks.
Passive attacks may involve non-participation or selective
(selfish) participation. Active attacks involve illegal modifi-
cations to routing packets. Secure MANET routing protocols
include explicit measures to address such attacks.

Cryptographic authentication is necessary to address both
forms of attacks. Mechanisms for addressing passive attacks
require monitoring of neighbors; for this purpose, a node pro-
cessing a packet needs to know who sent that packet - which
is made possible through a cryptographic authentication token
accompanying the packet. Strategies for addressing active
attacks typically require verification of multiple cryptographic
tokens created by multiple of nodes.

Specific authentication strategies required to detect active
attacks are however intricately tied to the nature of the
underlying routing protocol. In this paper we restrict ourselves
to the dynamic source routing (DSR) protocol. In DSR paths
between a pair of nodes (source and destination) is established
by flooding a route request (RREQ) packet originating from
the source, in response to which the destination, or a node
which is aware of a path to the destination, invokes a route-
response (RREP) packet indicating the path between the end-
points. The focus of this paper is on issues in obtaining

non repudiable proof of active attacks on the dynamic source
routing (DSR) protocol [1].

A. Contributions

Arguably, the most effective deterrent for active attacks is
an ability to obtain non repudiable proof of active attacks
(NPAA), which could lead to revocation of the attacker from
the network. An obvious prerequisite for NPAA is the use
of a non repudiable cryptographic authentication strategy, like
digital signatures. This is not withstanding some unfortunate
side effects of employing digital signatures, like substantial
computational and bandwidth overhead for battery operated
mobile devices, and increased susceptibility to simple denial
of service (DoS) attacks. Specifically, compared to message
authentication codes based on symmetric secrets, digital sig-
natures impose 2 orders of magnitude higher computational
burden. By sending random bits in place of signatures attackers
can force receiving nodes to suffer the overhead for verifying
the signature.

The primary contribution of this paper is an efficient pro-
tocol, APALLS - Ariadne with pairwise authentication and
link-layer signatures - for NPAA in DSR. We argue that some
of the pitfalls of Ariadne with digital signatures (ADS) include

1) the need for accused nodes to provide affirmative de-
fense1, due to which nodes could be accidentally penal-
ized; and

2) the need for carrying over digital signatures (and public
key certificates required to verify signatures) appended
by every node in the path till the end of the path (the
destination node).

In APALLS, link-layer (one-hop) signatures are not carried
forward. Nevertheless, a signed packet from a node includes all
the contextual information required to determine if a node did
(or did not) engage in an active attack. Consequently, APALLS
eliminates the need for accused nodes to provide additional
affirmative defenses, while simultaneously reducing overhead.

The rest of this paper is organized as follows. In Section
II is i) an overview of DSR, ii) the open-managed network
model [7] for MANETs, and iii) key distribution schemes for
facilitating cryptographic authentication.

In Section III we begin with an overview of Ariadne
[2], a popular secure extension of DSR. In particular, we

1As we shall see later in this paper a falsely accused node will require to
store and provide a per-hop hash reported by an upstream node to demonstrate
that it did not engage in an active attack.



review Ariadne with digital signatures (ADS), and issues
in obtaining NPAA using ADS. We argue that the main
reason that ADS is ill-suited for providing NPAA is that
even while a signed RREQ packet broadcast by a node C
in a path (. . . , A,B,C, . . .) includes the signatures of all
upstream nodes (. . . , A,B), the signed packet from C still
does not include all necessary information to determine if
C had engaged in an active attack. This is rectified in the
APALLS protocol proposed in this paper. Conclusions are
offered in Section III-F.

II. BACKGROUND

MANET routing protocols can be broadly classified into
proactive protocols which strive to maintain consistent topol-
ogy information of the subnet at all times, and reactive (or on-
demand) protocols which attempt to discover routes only when
necessary. In this paper we restrict ourselves to the popular
on-demand dynamic source routing protocol (DSR) [1].

A. DSR

In DSR a node S desiring to find a path to a node T
broadcasts a route-request (RREQ) packet Q = [S, q, T, nh],
indicating the source S, source sequence number q, destination
T , and a hop-limit nh. RREQ packets are flooded. In general,
every node in the connected subnet will receive one RREQ
from each neighbor, as each node will re-broadcast the RREQ
once (usually the first RREQ received by the node). Every
node rebroadcasting an RREQ inserts its identity.

For example, an RREQ initiated by S for a destina-
tion T , traversing through a path (A,B,C, . . .) is of the
form [(S, q, T, nh), (A,B,C, . . .)]. When the RREQ packet
reaches the destination2 a route-response (RREP) packet is
created by the destination, and relayed along the reverse path
(. . . , C,B,A) to S. The source and destination may in general
discover multiple paths as the destination T may receive one
RREQ from every neighbor (of T ).

1) Attacks on DSR: Attacks on DSR can be broadly clas-
sified into passive and active attacks. Passive attackers may
perform eavesdropping on application data packets exchanged
between nodes, or take selective part in the network. For
example, a selfish node C may simply overhear all packets
without announcing its presence (and thus not participate in
routing) until it has the need to communicate with an other
node, or over-hears an RREQ addressed to C.

Active attackers modify routing packets in violation of
the protocol: for example, by inserting nonexistent nodes in
the path, or deleting nodes that are actually in the path, or
modifying the values inserted in the RREQ by the source
(like source identity, hop count, sequence number, destination
identity) and/or other upstream nodes. In this paper we restrict
ourselves to addressing active attacks on DSR.

Several secure extensions of DSR [2] - [6] have been
proposed in the literature which permit the source and/or

2While in the original DSR even intermediate nodes with the knowledge of
a path to the destination can invoke an RREP, in most secure DSR extensions
only the destination is allowed to do so.

destination to verify the cryptographic integrity of the path
indicated in the RREP/RREQ, and thereby, detect inconsisten-
cies in the advertised path. In [5] the authors argue that even
strategies for detection in many popular protocols have severe
issues in the face of collusion amongst attackers. On the other
hand, in [6] it was argued that a perfect detection strategy has
little practical utility as a mechanism for improving resiliency,
and that strategies to identify malicious nodes responsible for
the detected inconsistency, in order to keep them out of paths,
lead to increased resilience.

B. Managed Open MANET Model

A MANET network is a collection nodes which agree on
a network (routing) protocol. A subset of nodes belonging
to a MANET network, which accidentally (or otherwise) find
themselves in some geographical region, can come together
to create a MANET subnet, and relay packets amongst each
other. Thus, any node in a MANET subnet with access to a
wide area network (like the Internet) can extend this service
to all other nodes in the subnet. While a MANET network
may include millions of nodes, most MANET subnets may
not scale beyond a few hundred nodes.

The most important advantage of MANETs stems from
their reduced dependence3 on communication infrastructure.
This feature makes them useful in scenarios where it may be
impractical to set up expensive infrastructure, and in disaster
scenarios involving failure of infrastructure.

The most common of MANET models is a managed-open
model [7], where an off-line authority, which requires very
little investment in infrastructure to manage the MANET
network, performs the following basic functions:

1) promulgating the rules to be followed by every node;
2) inducting nodes into the network by acting as a key

distribution center and providing nodes with secrets necessary
to take part in the network; more specifically, such secrets
permit inductees (nodes) to authenticate themselves to other
nodes, by appending verifiable cryptographic authentication
tokens like message authentication codes (MACs), or digital
signatures; and

3) ejecting nodes from the network (revocation) - perhaps
by circulating revocation lists.

In the rest of this section we outline a possible approach for
an off-line trusted authority (TA) of a managed-open MANET
to accomplish its tasks. This example is also used later as the
basis for the scheme proposed in Section III.

1) Key Distribution for Induction: 1) The TA generates an
asymmetric key pair (RT , UT ), which is used to sign public
keys of inductees;

2) the TA chooses a master secret Kµ which is used to
bootstrap an efficient scheme [8] for establishing pairwise
secrets between inductees; and chooses a strong preimage
resistant pseudo-random function h() (for example SHA-1).

3Unlike conventional networks which require an infrastructure of dedicated
routers to route packets between hosts, in MANETs every node is simultane-
ously a network host and a router.



The TA is now ready to issue secrets to nodes. Every
inductee is issued a unique identity. Without any loss of
generality, we shall assume that the identity is a unique
sequence number (incremented sequentially with every new
node inducted into the network). A node assigned a sequence
number q receives i) a secret Kq = h(Kµ, q); and ii) an
asymmetric key pair (Rq, Uq), with a signed certificate Cq
linking the public key with the sequence number q.

In addition, the TA provides a URL from where node q can
download q − 1 public values of the form

Pqi = h(Kq, i)⊕ h(Ki, q)∀i < q (1)

Two nodes X and Y compute a common secret

KXY =

{
h(KX , Y ) X > Y
h(KY , X) Y > X

(2)

For example, if X > Y , node Y (which does not have access
KX ) computes KXY = h(KX , Y ) as

KXY = h(KY , X)⊕ PXY
= h(KY , X)⊕ (h(KX , Y )⊕ h(KY , X))

X can authenticate any message M to Y by appending a
message authentication code (MAC) mXY = h(M,KXY )
computed using the pairwise secret KXY . In practice, the mas-
ter secret Kµ could be a 512-bits. Secrets like KA assigned to
nodes, could be 160-bits long. The values like PAX (and con-
sequently, pairwise secrets like KAX ) could be 80-bit values,
obtained by retaining only 80 LSBs of h(KA, X)⊕h(KX , A).
The millionth inductee into the network will need about 10
MB of storage (for 1 million 10-byte public values) in the
mobile computer. The ten millionth node will require 100 MB
of storage.

To authenticate a message M such that any node can verify
the authentication, the source X appends a digital signature

ΣX = 〈M,RX〉 = fsign(M,RX). (3)

The signature can be verified by any node which has a genuine
copy of the public key UX of X , as

fver(M,UX ,ΣX) = TRUE. (4)

The public key UX , included in the certificate CX issued by
the TA, can be included along with the signature, or needs to
be conveyed to all potential verifiers through other means.

2) Revocation: The TA periodically posts signed revocation
lists, consisting of identities of nodes who have been revoked
from the network. As in general nodes do not have access to
the TA while they are operating in a MANET subnet, nodes
may periodically visit a website operated by the TA to obtain
the latest revocation list.

A revoked node is one that is ejected from the network
before expiry of its subscription. This can happen if the TA
has obtained incontrovertible proof of misbehavior of the node.
For example, the contents of a signed packet transmitted by a
node C at some t may have been provided to the TA by some
node at some time ts > t (whenever the submitter has access

to the TA). This packet may enable the TA to unambiguously
determine if C did (or did not) perform an active attack. If
C did engage in an active attack, the TA can add the identity
C to subsequent revocation lists. The possibility of revocation
can be an effective deterrent for nodes desiring to engage in
such attacks.

III. NON-REPUDIABLE PROOF OF ACTIVE ATTACKS

In DSR active attacks can be performed by a node in the
course of i) propagating an RREQ or ii) relaying an RREP
or iii) relaying a route error (RERR) packet. In the course
of propagating an RREQ, an active attack may take the form
of i) inserting non existent nodes in the path; ii) modifying
the values inserted by upstream nodes; and iii) deleting values
inserted by upstream nodes. In this paper we shall restrict
ourselves to active attacks on RREQ propagation as attackers
have very little reason to engage in active attacks on RREP and
RERR packets (as passively dropping RREP/RERR packets
will have the same effect). Furthermore, that RREQ messages
need to be modified at every hop (unlike RREP/RERR) renders
providing NPAA of active attacks on RREQ more challenging.

A. Ariadne

Ariadne is a secure extension of DSR in which a secret
shared between end-points is used to address node-deletion
attacks through a per-hop hashing strategy. Ariadne suggests
three different options to address node insertion attacks: i)
Ariadne-TESLA, using TESLA [9]; ii) Ariadne-PA (APA) em-
ploying pairwise authentication facilitated by pairwise secrets
between every pair of nodes; or iii) Ariadne-DS (ADS) using
digital signatures. In this paper we shall restrict ourselves APA
and ADS.

In all forms of Ariadne the RREQ relayed by a node in-
cludes an authentication token appended by the node. In APA
the authentication token MA appended by an intermediate
node A is a MAC computed using the pairwise secret KAT

shared between A and the RREQ destination T . In ADS the
authentication token is a digital signature ΣA which can be
verified by all neighbors of A, and the destination T . In
addition, in all three flavors of Ariadne the RREQ transmitted
by every node includes a per-hop hash value which is intended
only for neighbors.

For an RREQ initiated by S with a sequence number q,
destined for T over a path A,B,C, . . . the sequence of steps
in ADS are as shown in the left column in Table I (the
sequence of steps in APALLS are depicted in the right column
of Table I).

ADS assumes that the source S and the destination T share a
K̄ST . This secret is used to seed a “per-hop hashing” strategy
with a value βS = h(K̄ST ,Q), where Q = [S, Sq, T, nh].
Every intermediate node inserts its identity and a digital sig-
nature, which are carried forward all the way to the destination.
In addition, the broadcast by every node includes the per-hop
hash value: the value βA from A is made available only to
neighbors of A; the value βB is made privy only to neighbors
of B.



Every intermediate node forwarding the RREQ verifies the
signature appended by the previous hop. Note that even though
the RREQ received by C includes signatures of S, A, and B,
node C cannot verify the signature ΣA appended by A as
ΣA is computed over a value βA which is not privy to C.
Thus, only neighbors of node A (who have access to βA), and
the destination (who can compute βA), can verify the digital
signature.

When the destination receives the RREQ QEq ‖ βE , say
through a path (A,B,C,D,E), where

QEq = (S ‖ q ‖ T ‖ nh ‖ ΣS) ‖ (A ‖ ΣA) ‖ (B ‖ ΣB) ‖
(C ‖ ΣC) ‖ (D ‖ ΣD) ‖ (E ‖ ΣE), (5)

the destination i) computes the per-hop hash seed βS ; ii) recur-
sively computes βA · · ·βE , assuming that the path indicated is
correct; iii) verifies that the computed βE matches the value
submitted by E; iv) using the computed values βA · · ·βE ,
verifies the signature appended by intermediate nodes (it is
assumed that some additional mechanism exists to provide the
destination with the public key certificates of all intermediate
nodes).

If the RREQ passes all these tests, and if it is reasonable to
assume that only entity X has access to the secrets of X , the
verifiable signatures assures the destination of the authenticity
of the nodes in the path. Note that the signature of any node
(say) C demonstrates that C did indeed have access to βB ;
this convinces the destination that C is a neighbor of B. Thus,
it is not possible for an intermediate node to delete nodes
(along with their signatures) before forwarding the RREQ.
More specifically, C can delete B from the path only if it has
access to the value4 βA (which is privy only to neighbors of
A, and C is not one). The destination invokes an RREP which
includes the entire path. Unlike the RREQ where every node
inserts some fields, all fields of the RREP are immutable. The
destination can simply sign the RREP indicating the entire path
and relay the RREP over the reverse path (this is the reason
we do not address active attacks on RREP in this paper).

B. Proof of Active Attacks

If any node introduces illegal modifications (that violate the
prescribed protocol), we desire that a signed packet broadcast
by the node will constitute incontrovertible proof of such
illegal behavior. Specifically, when such a signed packet is
provided to the TA, the TA should be able to determine that
the node did engage in an active attack. More specifically, any
signed packet broadcast by any node should permit the TA to
unambiguously determine if the node did (or did not) engage
in an active attack.

As a more concrete example, consider a node C in a
path (A,B,C, . . .) between the source S and the destina-
tion T , where a node C receives [QBq , βB ] (where QBq =

4The only way a node who is not physically a neighbor of A can obtain
the value A is by colluding with a neighbor of A. Ariadne was not designed
to address attacks by colluding nodes.

TABLE I
RREQ (FROM SOURCE S TO DESTINATION T , SEQUENCE NUMBER q)

PROPAGATION IN ARIADNE (LEFT) AND APALLS (RIGHT) OVER A PATH
(A,B,C,D, . . .).

S : Qq = [S, q, T, nh] Qq = [S, t, T, nh]
S : βS = h(QS

q , K̄ST ) βS = h(Qq ,KST )
S : ΣS = 〈Qq , βS , RS〉 ΣS = 〈Qq , βS , RS〉
S : QS

q = [Qq ,ΣS ] QS
q = [Qq ]

S → ∗ QS
q , {βS} QS

q , {βS ,ΣS , NULL,NULL}

A : βA = h(βS , A) βA = h(βS , A)
A : νSA = KAT (βS)
A : ΣA = 〈QS

q , A, βA, RA〉 MA = h(QS
q , ν

S
A, βA,KAT )

A : QA
q = [QS

q , (A,ΣA)] QA
q = [QS

q , (A, ν
S
A,MA)]

A : σS = h(ΣS), vA = h(σS , NULL)
A : ΣA = 〈QA

q , βA, vA, RA〉
A→ ∗ QA

q , {βA} QA
q , {βA,ΣA, σS , NULL}

B : βB = h(βA, B) βB = h(βA, B)
B : νAB = KBT (βA)
B : ΣB = 〈QA

q , B, βB , RB〉 MB = h(QA
q , ν

A
B , βB ,KBT )

B : QB
q = [QA

q , (B,ΣB)] QB
q = [QA

q , (B, ν
A
B ,MB)]

B : σA = h(ΣA), vB = h(σA, vA)
B : ΣB = 〈QB

q , βB , vB , RB〉
B → ∗ QB

q , {βB} QB
q , {βB ,ΣB , σA, vA}

C : βC = h(βB , C) βC = h(βB , C)
C : νBC = KCT (βB)
C : ΣC = 〈QB

q , C, βC , RC〉 MC = h(QB
q , ν

B
C , βC ,KCT )

C : QC
q = [QB

q , (C,ΣC)] QC
(q,S)

= [QB
q , (C, ν

B
C ,MC)]

C : σB = h(ΣB), vC = h(σB , vB)
C : ΣC = 〈QC

q , βC , vC , RC〉
C → ∗ QC

q , {βC} QC
q , {βC ,ΣC , σB , vB}

[QAq , (B,ΣB)]) from its upstream node B. In response assume
that C broadcasts [QCq , βC ] where

QCq = [QBq
′
, (C,ΣC)] (6)

Assume that the signed RREQ from C is made available to
the TA.

Now C is said to have engaged in an active attack if
1) QBq

′ 6= QBq (if any field inserted by any upstream node
is modified by C), or

2) if βC 6= h(βB ‖ C) (illegal choice of per-hop hash), or
3) the signature of the upstream node B (ΣB) is incon-

sistent with QBq and βB (in which case C should have
ignored the RREQ from B).

To determine if C had engaged in an active attack the TA
requires access to the value βB - both to verify that βC is
consistent with βB , and to verify that ΣB is consistent with
QBq
′.

It is important to note that it is possible for the TA to
determine the per-hop values employed by intermediate nodes
only if all nodes had acted in a consistent manner. However, if
any node upstream of C (or C itself) had illegally modified the
per-hop hash value, or introduced/deleted a node in the path,
this synchronization is lost. As the TA cannot compute βB
from βC (as the hash function h() is pre-image resistant), the
only practical option for the TA is to demand that C produce
the value βB that is consistent with the signature ΣB in QBq

′,



and also satisfies βC = h(βB , C) (βC is included in the signed
packet from C).

If every node stores the upstream per-hop hash received
from the previous hop for every RREQ broadcast by the node
in the past, we can expect C to produce this value. This is
obviously an unrealistic expectation. Another option may be
that when the destination detects an inconsistency, it sends
a message to all nodes to store the upstream per-hop hash
corresponding to the specific RREQ. However, if an innocent
node D, which did receive a value βC consistent with the
signature ΣC , had suffered a crash (and lost the value βC),
then D is likely to be construed as an active attacker due to its
inability to defend itself by providing the value βC . It is also
possible that the destination T could collude with the attacker5

C to frame D.

C. APALLS - Eliminating Affirmative Defense

The need for affirmative defense can be eliminated if the
values inserted in the RREQ by every node includes an
additional value - the per-hop hash submitted by its upstream
node. As the packet sent by D also includes the per-hop
hash submitted by C, D will not need to provide his value
to the TA or the destination when challenged later. The TA
can immediately verify that D did indeed act in a consistent
manner.

However, for the security of the per-hop hash mechanism,
this value needs to be protected from downstream nodes. This
can be achieved if intermediate nodes share a secret with the
destination, and this secret is used to encrypt the upstream per-
hop hash inserted into the RREQ packet. Compared to ADS,
the first modification in APALLS is the introduction of the
encrypted-upstream per-hop hash as one of the fields inserted
by every intermediate node. More specifically, if C receives
the hash βB from its upstream node, C, which shares secret
KCT with the destination T , inserts an additional value

νBC = KCT [βB ] (7)

in the RREQ, where the notation Y = K[X] represents
encryption of the value X using a key K using some standard
block-cipher. We also use the notation X = K−1[Y ] to denote
decryption using the block-cipher.

1) One-hop Signatures: In ADS the signature appended by
a node serve three purposes:

a) for verification by neighbors (an RREQ packet relayed
by a node “claiming to be A” will not be honored by
its neighbors unless the neighbors are able to verify the
signature of A;

b) verification by destination to prevent node insertion
attacks; and

c) non-repudiability (A cannot refute that a packet signed
by A was not sent by A)

5In a path A,B,C,D,E between S and T , C engages in an active attack
and the destination simply ignores it. After storing the value βC for some
duration, D may erase it as there is no apparent need for this value. Later,
if T submits the packet to the TA, node D will not be able to provide the
deleted value to defend itself.

If signatures are not carried forward, then the signature
could potentially serve two of the three purposes (first and
third). It is only for verification by the destination that we need
to carry over all signatures in ADS. However, if every node
shares a secret with the destination (which is necessary in any
case to encrypt the upstream per-hop-hash) then intermediate
nodes can simply append a MAC (as in Ariadne with pairwise
authentication (APA)) instead of a signature. Thus in APALLS,
as in APA, every intermediate node appends a MAC instead
of a signature: the values inserted in the RREQ by a node
C, consists of three values C ‖ MC ‖ νBC . For purposes of
non repudiation, and for one-hop authentication, intermediate
nodes append a “link-layer” signature (which is not carried
forward).

By signing the values included in the RREQ broadcast by
C, viz., QC = QBq ‖ C ‖MC ‖ νBC , and ΣB , node C claims
that i) the values QBq and βB = K−1CT [νBC ] was broadcast by
B; and ii) B’s signature was verified by C. If such a packet
from C is submitted to the TA, the TA should be able to verify
the veracity of this claim, by verifying B’s signature.

Just as C’s signature was computed over the signature of its
previous hop B (to support C’s claim that it did indeed verify
B’s signature), node B’s signature will be computed over the
signature of B’s previous hop, A (or ΣA is required to verify
B’s signature). Thus, to verify if C did (or did not) engage in
an active attack, the TA needs the signatures of C, and its two
previous hops, B and A. However, carrying over signatures to
two hops is wasteful of bandwidth, especially since the nodes
themselves can only verify the signature of the previous hop.
APALLS addresses this issue by using a novel construct to
carry over digests of signatures efficiently.

In APALLS the one-hop values that accompany C’s include
the per-hop hash βC (as in ADS), and three additional values
to facilitate NPAA:

i) the signature ΣC ;
ii) σB - a commitment for the signature of the upstream

node B; and
iii) vB a value required by the TA to verify the signature of

the upstream node B.

Neighbors of C first compute vC = h(σB , vB) to verify the
signature of C. After verifying the signature, a downstream
neighbor of C (say D) sends two additional values - the hash
of the verified signature σC = h(ΣC), and the value vC . Note
that vC is essentially a one-way function of the signatures of
all nodes upstream of B; vB is a one way function of all nodes
upstream of A (which is a single node, S); vA is NULL as
there is no node upstream of its immediate upstream node S.

2) RREP and RERR: While RREQ packets modified at
every hop by nodes that forward the packets, RREP and
RERR packets are relayed unmodified from the source of
the RREP/RERR packets. Such packets can be signed by
the creator to ensure that any modification en route will be
detected. As intermediate nodes do not need to modify the
packets it is unnecessary to require the forwarding nodes to
sign such packets.



D. Revocation Process

The process of revocation has three steps. The first is for
some node to suspect that a packet sent by a node (a neighbor)
may not be consistent. If D has reasons to believe that a packet
sent by C was questionable, it simply stores the packet for
submission to the TA at a later (convenient) time. The second
step in this process is for the TA to verify if the signed packet
by C is proof of an active attack. The final step is for the TA
to add the offender to the next revocation list, and broadcast
the list (for example, through a web-page).

1) Triggering Suspicions: The reasons for suspecting the
packet from a neighbor could be many fold: some examples
of when a node D observing a neighbor C could suspect C
include:
• C’s RREQ claims to have a node X upstream of C; and
D has not had the opportunity to confirm that a neighbor
X of C does exist;

• D overhears two RREQs with the same source / sequence
number but with different immutable fields (like hop-
count or destination)

Apart from suspicions resulting from monitoring, nodes may
also be informed by the destination if an RREQ packet was
detected to be inconsistent. When the destination T receives
the an RREQ over a path (say, (A,B,C,D,E)) it computes
βS = h(Qq,KST ) in the same manner computed by the
RREQ source. The destination then proceeds to check the
consistency of every node in the path. The values appended
by an intermediate node C, viz., MC and νBC are deemed
self-consistent by the destination T if

MC = h(QBq , (C, νBC ), h(K−1CT [νBC ], C),KCT ). (8)

A self-consistent node C, with an upstream node B is deemed
consistent only if the per-hop hash C claims to have received
from B, viz, h(K−1CT [νBC ]), matches what B claims to have
broadcast, viz., h(K−1BT [νAB ], B). Verifying the consistency of
C is possible only if its upstream node B is found to be self-
consistent, or MB = h(QAq , (B, νAB), h(K−1BT [νAB ], B),KBT ).
If any inconsistency is observed the destination informs all
nodes to store the RREQ received from their upstream nodes
(and submit the RREQs to the TA whenever it is possible to
do so).

2) Verification by TA: When a signed RREQ from C is
submitted to the TA, the TA takes the following steps:
©1 Verify that ΣC is consistent with QCq , βC , and vc =

h(σB , vB);
©2 “Obtain” ΣB

′ for the values QBq and βB = K−1CT [νBC ]
and vB (which according to C, were broadcast by B);
©3 Verify if h(ΣS

′) = σB . If so, C’s claim is correct, and
C is not an active attacker. If not C is an active attacker as
it did not either verify B’s signature, or illegally modified the
value provided by B.

If the TA has access to the private keys of all nodes the TA
can “obtain” ΣB

′ by simply computing ΣB
′. If private keys

are not escrowed by the TA, the TA can (off-line) demand B
to sign the values QBq and βB = KCT [νBC ] and vB . Thus, even

in scenarios where the private keys are not escrowed by the
TA, unlike ADS, nodes will only need access to their private
key to avoid being penalized (revoked) accidentally. Any node
which claims to not have access to its private key should be
revoked in any case.

An advantage of escrowing private keys by the TA is that
the verification of proof of attacks can be performed as soon
as a packet is submitted to the TA. This is especially useful
in scenarios where access to the TA is available (for example,
if at least one node in the subnet has Internet access), as the
revocation message (signed by the TA) can be immediately
distributed within the subnet to deliver “swift justice.”

E. APALLS vs Other Ariadne Variants

As mentioned earlier in Section III-A Ariadne can em-
ploy TESLA [9] or pairwise secrets or digital signatures for
intermediate node authentication. It was argued in [6] that
Ariadne with pairwise secrets is substantially more efficient
compared to Ariadne with TESLA. Specifically, [6] argued that
the ability to establish private channels (as opposed to merely
authenticated channels if TESLA is used) has many beneficial
side-effects. While both Ariadne with TESLA and Ariadne
with pairwise secrets do not facilitate identification of active
attackers in the path, this can easily be rectified in the latter
by mandating every node forwarding the RREQ to append
an encrypted upstream per-hop hash value. This additional
upstream per-hop hash has a different purpose in APALLS;
as the upstream per-hop hash is included in the broadcast by
a node, this eliminates the need to provide affirmative defense.

APALLS has many desirable features. Firstly, even collud-
ing nodes which may include the source and/or destination
cannot frame an innocent node. The RREQ sent by a node X
(for a destination T ) is a deterministic function of the signed
RREQ received by X from its upstream node Y , and the
pairwise secret KXT . It is important to note that that even
knowledge of the pairwise secret is not sufficient to produce a
packet impersonating X as the private key RX is required to
compute the signature of X . The only way to force a node X
to behave in an apparently inconsistent manner is to modify
its symmetric secret KX or public values like PXT used for
computing the pairwise secret KXT . Nodes should ensure that
their public values are write-proof.

Secondly, an RREQ sent by any node provides the entire
contextual information required to determine if a node did act
in a consistent manner. This eliminates the need to provide
affirmative defense, and in turn ensures that good nodes will
not be accidentally penalized.

That signatures are not carried over results in savings in a
bandwidth overhead for signatures and public key certificates
(certificates need to be broadcast only to neighbors). When
carrying over signatures (as in ADS) we need to ensure that
the signatures are short, for example, using elliptic curve based
signatures instead of RSA. However the unfortunate side effect
of such an approach is significantly increased verification com-
plexity, and consequently, increased susceptibility to simple
denial of service (DoS) attacks. If signatures are restricted only



to one hop we can afford to use longer length RSA signatures
which require substantially lower verification complexity6, and
thus reduced susceptibility to simple denial of service attacks.

In summary, APALLS has the following properties:
• good nodes (which follow the protocol) will not be

accidentally penalized;
• good nodes cannot be framed by another node, or even

by a collusion of other nodes, and
• lower overhead as signatures and public key certificates

are not carried forward.

F. Conclusions

We have outlined a secure DSR protocol, APALLS, which
is an extension of Ariadne [2]. To the extent of our knowledge,
APALLS is the only MANET protocol designed to cater for
non repudiable proof of active attacks (NPAA).

In general, any active attack involves violation of the
prescribed protocol. The protocol prescribes the steps that a
node (say) C should take in response to a packet sent from a
neighbor (say) B. For example, in distance vector protocols, if
a node B announces a distance of 5 to a node S, the neighbor
C downstream of B is expected to announce a distance 6. In
a scenario where C advertises a distance 7, proving that C did
(or did not) violate the protocol requires several other pieces
contextual information like (for example) i) if B was indeed
a neighbor of C at that time; ii) the distance advertised by
B at that time ; iii) if C did indeed process the information
advertised by B (the packet broadcast by B did not suffer
collision), etc..

While necessary, non repudiable authentication is not suf-
ficient for providing NPAA. Specifically, while some ad hoc
routing protocols like ARAN [7] and ADS employ non repu-
diable authentication, they do not address the issue of how a
packet sent from a node can be used as a proof of an active
attack.

APALLS eliminates two of the main shortcomings of ADS.
Firstly, it removes the need to provide affirmative defense.
Secondly it eliminates the need to carry over signatures by
employing a novel construct where two values - a commitment
to the signature of the previous hop, and a one-way function
of all signatures of upstream nodes need to be provided only
to neighboring nodes.

One of our current research focus is investigation of NPAA
strategies for other MANET routing protocols like AODV,
TORA, etc.
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