IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.5, NO. 1,

JANUARY-MARCH 2008 49

Trustworthy Computing under Resource
Constraints with the DOWN Policy

Mahalingam Ramkumar, Member, IEEE

Abstract—Trustworthy computing modules like secure coprocessors (ScP) are already in extensive use today, albeit limited
predominantly to scenarios where constraints on cost is not a serious limiting factor. However, inexpensive trustworthy computers are
required for many evolving application scenarios. The problem of realizing inexpensive ScPs for large-scale networks consisting of low-
complexity devices have not received adequate consideration thus far. We introduce two strategies toward realizing low-cost ScPs. The
first is the decrypt only when necessary (DOWN) policy, which can substantially improve the ability of low-cost ScPs to protect their
secrets. The DOWN policy relies on the ability to operate with fractional parts of secrets. Taking full advantage of the DOWN policy
requires consideration of the nature of computations performed with secrets and even the mechanisms employed for distribution of
secrets. We discuss the feasibility of extending the DOWN policy to various asymmetric and symmetric cryptographic primitives. The
second is cryptographic authentication strategies which employ only symmetric cryptographic primitives, based on novel ID-based key
predistribution schemes that demand very low complexity of operations to be performed by the ScP and can take good advantage of the

DOWN policy.

Index Terms—Trustworthy computing, read-proofing, key predistribution.

1 INTRODUCTION

ANY emerging applications will rely on extensive

mutual co-operation among a highly interconnected
network of computers [1]. A group of computers working
together may decide the setting of a thermostat based on
weather forecasts received directly from computers in the
local weather station. Computers in a car, interacting with
computers in cars nearby may decide the best course of
action to avoid an impending collision. Sensors monitoring
vital internal organ functions of a person on the road may
relay early warning signs over multihop ad hoc networks to
the nearest hospital to facilitate timely responses.

In such applications, each device is expected to perform
some tasks for the overall good of the network. An obvious
requirement in such scenarios is the ability to trust the
devices. It does not take much imagination to see the
consequences of an attacker’s ability to impersonate a sensor
to send a false alarm or a malicious course correction.

Realizing widespread adoption of such applications
mandates sufficiently trustworthy computers that can be
realized at low cost. Apart from facilitating deployment of
futuristic applications, the ability to realize trustworthy
computers at low cost can also address many of the security
issues that plague our existing network infrastructure.

Trustworthy computers [2] provide assurances against
1) tampering of the software executed by such devices and
2) exposure of secrets used for authentication of the devices.
Trustworthy computing modules like cryptographic copro-
cessors or more generally secure coprocessors (ScP) have seen

o The author is with the Department of Computer Science and Engineering,
Mississippi State University, Box 9637, Starkville, MS 39762.
E-mail: ramkumar@cse.msstate.edu.

Manuscript received 3 Aug. 2006; revised 8 June 2007; accepted 21 Aug.
2007; published online 31 Aug. 2007.

For information on obtaining reprints of this article, please send e-mail to:
tdsc@computer.org, and reference IEEECS Log Number TDSC-0114-0806.
Digital Object Identifier no. 10.1109/TDSC.2007.70227.

1545-5971/08/$25.00 © 2008 IEEE

widespread use in a variety of military and civilian applica-
tion scenarios. Low-end ScPs have been used in ATMs since
the early 1980s and in various smart cards and set-top boxes
(like cable and satellite TV receivers) since the early 1990s [3].
Higher end ScPs (like IBM 4758 /4764) have found extensive
use in securing servers that cannot be afforded proper
physical protection. Although the assurances provided by
the high-end ScPs (which can range from few hundreds to
many thousands of dollars) are considered acceptable, the
assurances provided by low-end solutions thus far have been
far from satisfactory [4].

Providing assurances of trustworthiness entails provid-
ing assurances of reliability and effective shielding of
components inside a “trusted boundary” from intrusions
(aimed at modifying software or exposing secrets). For this
purpose, ScPs include passive and active shields and
complex circuitry to trigger zeroisation (or deletion of all
secrets) when intrusions are suspected.

Although, at first sight, “inexpensive” and “trustworthy”
may seem mutually exclusive, a possible strategy is to reduce
the complexity of the components inside the trusted bound-
ary. The often heard statement that “complexity is the enemy
of security” is far from dogmatic. For one, lower complexity
implies better verifiability of compliance. Furthermore,
keeping the complexity inside the trust boundary at low
levels can obviate the need for proactive measures for heat
dissipation. Strategies constrained to simultaneously facilitate
shielding and heat dissipation tend to be expensive [5]. On
the other hand, unconstrained shielding strategies can be
reliable and inexpensive to facilitate.

1.1 Specific Contributions

Reducing the complexity of ScPs, particularly the complexity
inside the trusted boundary, can thus lead to lowered cost and
improved reliability of ScPs. In the rest of this paper, we do not
try to justify this assumption any further. We propose two
strategies for lowering the complexity of ScPs.

Published by the IEEE Computer Society

50 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.5, NO. 1,

The first is the decrypt only when necessary (DOWN)
policy, which reduces the complexity of circuitry for tamper
responsiveness and simultaneously provides improved
assurances against compromise of secrets. The second is
low-complexity mutual authentication strategies suitable
even for very large-scale deployments of trustworthy
computers. The authentication strategies demand very
low-computational overheads inside the trusted boundary.

1.1.1 The DOWN Policy

The DOWN policy is motivated by the fact that any counter-
measure (against intrusions) that requires multiple steps is
expensive and inherently vulnerable. One line of possible
attacks that can exploit this weakness is a result of the
property of remnance in volatile memory. Existing counter-
measures against this attack are 1) expensive, 2) vulnerable,
and 3) especially ill-suited for low complexity ScPs. The
DOWN policy eliminates the need for multistep counter-
measures and, in this process, obviates the need for complex
circuitry required for facilitating (inherently vulnerable)
multistep countermeasures. Although implementation of
the DOWN policy relies on the ability to perform computa-
tions with fractional parts of secrets, most asymmetric
cryptographic primitives meet this requirement. The DOWN
policy imposes very low overheads and is thus well suited for
use even in low-end ScPs.

1.1.2 Low Complexity Authentication Strategies
Although restricting ScPs to perform only symmetric cipher
operations can significantly reduce the complexity and,
hence, the cost of realizing ScPs, they do not, in general,
scale as well as asymmetric schemes. Specifically, scalable
authentication strategies that employ only symmetric
cryptographic primitives require a trusted server for
mediation (Kerberos-like schemes based on the symmetric
Needham-Schroeder [6] protocol) or require guarantees that
collusions of more than a certain number of nodes (say, n) is
infeasible (key predistribution schemes).

Although the computational complexity inside the trust
boundary needs to be lowered to the extent possible,
reliance on storage (especially storage outside the ScP) does
not in any way affect the cost of ScPs. Furthermore, storage
is an increasingly abundant and inexpensive resource for
almost any conceivable application scenario. Some of the
desirable properties of the KPS presented in this paper,
namely, multiple basic key distribution (MBK) and hashed
MBK (HMBK), are that they

1. take good advantage of inexpensive external storage;

lend themselves well to the DOWN policy;

3. Dbenefit substantially from the assurances provided

by the DOWN policy; and

4. demand very low-computational complexity inside

the ScP (only a few tens of symmetric block-cipher
operations are mandated).

Thus, although KPSs are inherently susceptible to collu-
sions, we show why the ability of MBK and HMBK to take
advantage of external storage resources together with the
assurances provided by the DOWN policy render this issue
irrelevant in practice. For example, with 8 Mbytes of storage
per ScP (which could be outside the ScP—for example, in a
flash storage card or even storage accessed over an insecure
network) HMBK can resist collusions of 8,000 nodes (an

JANUARY-MARCH 2008

attacker has to expose all secrets from 8,000 of the deployed
nodes, irrespective of the total number of nodes that are
deployed). However, in conjunction with the assurances
provided by the DOWN policy, the collusion resistance of
HMBK can be increased to 8 billion nodes. If 128 Mbytes of
storage is feasible, the attainable collusion resistance is over
2 trillion with the DOWN policy in effect.

The implication is that mutual authentication of very large
scale networks are feasible using only low complexity
symmetric cryptographic primitives, as long as an attacker
cannot compromise secrets from billions or trillions of nodes!

1.1.3 Organization

In Section 2, we provide a brief overview of some of the
salient features of practical approaches for realization of
ScPs. In Section 3, the DOWN policy is investigated, and its
suitability is explored for various conventional certificates
based asymmetric schemes like RSA, El Gamal, and elliptic
curve (ECC) schemes. In Section 4, we investigate the
suitability of DOWN for identity-based encryption (IBE)
and signature (IBS) schemes. We then motivate the need for
low complexity ID-based authentication schemes for ScPs
for evolving application scenarios. Section 4 includes an
overview of some existing low-complexity ID-based KPS. In
Section 5, we outline MBK and HMBK. Conclusions are
offered in Section 6.

2 SECURE COPROCESSORS

Practical realization of ScPs calls for two fundamental
assurances: read proofing of secrets and tamper proofing of
software. Tamper proofing (or write proofing) of software
ensures that the software controlling the functions of ScP
cannot be modified by unauthorized entities. Read proofing
is necessary to ensure that secrets protected by a ScP, which
will be used for authentication of the ScP, cannot be exposed.

The two requirements are however not independent.
With the ability to modify software at will, an attacker can
force the ScP to reveal its secrets (for example, by inserting a
set of commands to write the secret bytes out to the serial
port). On the other hand, secrets that are protected can be
used to authenticate software that will be executed by the
computer, using (for example) key-based hashed message
authentication codes (HMAC). Without the knowledge of
the secret used for computing the HMAC, the attacker
cannot modify the software.

In practice, read proofing is seen as a stepping stone to
the more elusive goal of tamper proofing of software.
Attacks aimed at modifying software to reveal secrets can be
prevented by ensuring that the software does not have
access to at least some of the secrets that are protected.
Some secrets may be generated, stored, and used by dedicated
hardware [5], [7]. However, authenticating software with
the secrets provides a boot-strapping problem [8]. After all,
some software should be loaded (typically the BIOS), which
includes instructions to load the secret and perform the
authentication. Recently, Gennaro et al. [9] have argued that
providing assurances that software cannot be modified
entails assurances of read proofing and the additional
assurance of a write protected nonvolatile counter.

RAMKUMAR: TRUSTWORTHY COMPUTING UNDER RESOURCE CONSTRAINTS WITH THE DOWN POLICY 51

2.1 Secure Coprocessor Design

The problem of practical realization of ScPs has received
significant attention over the last two decades especially since
the development of the ABYSS coprocessor [10] in the late
eighties. Even with substantial changes in semiconductor
technology and the capabilities of tools that can be utilized by
attackers, the core principles behind possible attacks and
countermeasures have not changed significantly.

Most solutions for tamper responsive ScPs like ABYSS
[10], Citadel [11], Dyad [12], IBM 4758 [5], and Cerium [13]
consist of a tamper-resistant package that includes the CPU,
DRAM, battery-backed RAM (BBRAM), and flash ROM.
Tamper attempts will result in zeroizing or erasure of secrets
stored. In almost all approaches, a secure public-private key
pair is generated inside the device, and only the public key
is exported. The private key (typically a private RSA
exponent) is stored in BBRAM and is protected at all
times—even when the CPU is off.

Most ScPs will also generate a private symmetric master
secret that can be used to encrypt all other secrets that need
to be protected. The master secret can be used to encrypt
even the private key (say RSA decryption exponent) when
the CPU is off. The encrypted private RSA exponent can
then be stored in nonvolatile memory (NVM) that is not
afforded any protection. Thus, only the master secret stored
in BBRAM needs to be protected when the device is off.
However, when the device is in the on state, other physical
areas of the ScP (like DRAM, special cache memories, etc.)
are also extended protection. Such protection measures take
the form of active and passive shields and circuitry that
execute countermeasures for zeroizing when active sensors
are triggered by intrusions.

2.2 Active and Passive Shields

Passive shields block inbound and outbound electromag-
netic radiations. Outbound radiations (emanating from
inside the chip) can be used to reveal some information
about the secrets used. Inbound radiations can be used for
inducing faults, which can in turn lead to compromise of
cryptographic keys [14], [15]. For example, differential
power analysis (DPA) [16] can be used for gaining clues
about secrets based on instantaneous power consumption
by the processor. Countermeasures against DPA include
introducing redundant steps in cryptographic computa-
tions [17] and the use of self-timed circuits [18].

Active shields strive to identify intrusions and activate
circuitry for zeroizing. Thus, active shields are also sensors
that can trigger various countermeasures. For instance,
sophisticated attacks involving focused ion beam (FIB)
techniques [19] can permit an attacker to drill fine holes and
establish connections with the computer buses. With such
taps, the attacker can gain access to the bits that pass
through the buses when the CPU is functioning. The active
shields used as countermeasures typically take the form of a
mesh (or many layers of meshes) of nonintersecting
conductors [5], [12]. They can prevent microprobes and
picoprobes [3] from gaining line-of-sight access to the buses.
Even if one line of the mesh is cut, the resulting open circuit
will trigger circuitry for zeroisation. Even if we can ensure
that only a fraction of the lines can be tapped, it may be
possible to use private circuits [20] to ensure that the attacker
gains no knowledge (by tapping a few lines).

2.3 State Transitions, Trust Boundaries, and
Remnance
Any trusted computer defines a clear trust boundary. For
example, for a single chip ScP all components inside the
chip may fall under such a trust boundary. Enforcing the
trust boundary is by proactive measures for protection of
components within the boundary. However, the regions
inside a trust boundary that are physically protected can
change dynamically, depending on the state of the ScP. As
discussed earlier in Section 2.1, when the CPU is off, there is
no need to extend protection to all regions. However, when
the CPU is on, the scope of protection will need to be wider.
Even when the CPU is on, the scope of protection may be
restricted to very small regions inside the ScP. For example,
operations involving secrets may be permitted only in a
concealed execution mode [21], during which many buses may
be disconnected from the processor. Even buses to a general
purpose RAM can be disconnected. Only some special
cache memory regions may be used as work benches for
cryptographic computations. Other data/code may be
encrypted /authenticated and paged to areas [7] that may
not be extended protection.'

2.3.1 Remnance

One of the hidden problems associated with the dynamic
scope of countermeasures takes the form of remmnance in
volatile memory [22], [23]. Bits stored in volatile memory
(especially for extended periods) can leave “footprints” that
can be “scavenged” even after the power supply is removed. The
ability of the attacker to scavenge bits from footprints can be
improved by cooling the chip (say, by immersing it in liquid
nitrogen). Safe deletion [22] of contents in magnetic and solid
state memory may require many repeated overwriting opera-
tions. Thus, even after volatile memory regions like cache/
RAM have been powered off (in the off state, where only the
BBRAM is extended protection), secrets that were stored in
RAM/ cacheregions (while the device was on) canbe exposed.

The countermeasures against attacks that can exploit this
weakness include:

1. clean erasure (by repeated overwriting) of contents
of volatile memory (like RAM/cache memory,
except contents of BBRAM) before turning the
power off, and as part of zeroisation;

2. ensuring that secrets are not stored for long
durations in RAM;

3. the use of special sensors that respond to sudden
changes in temperature and trigger clean erasure
[12] of volatile memory regions;

4. increasing the mass of the modules to inhibit rapid
cooling [12] to provide an adequate response time to
execute countermeasures; and

5. periodic ones-complementing of some highly sensi-
tive secrets [5], [22], (for example, contents of the
BBRAM) with dedicated circuitry for this purpose,
so that when the power supply is removed, no
footprints are left behind.

1. As mentioned in Section 1, the need for limiting the scope of
countermeasures to the smallest possible extent lies at the heart of every
trusted computing effort. Tangible reasons include reducing complexity (of)
and reducing heat dissipated (by) the components within the scope of
countermeasures.

52 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.5, NO. 1,

3 THeE DOWN PoLicy

For many of the application scenarios that is of interest to
us, increasing the mass of ScPs may simply not be a viable
option. Furthermore, although periodic ones-complement-
ing may be possible for a limited number of secrets (for
example, contents of the BBRAM), extending such protec-
tion to all volatile memory regions like cache memory and
RAM, where the values stored may be actively used in
computations, may not be practical.

At first sight, it may seem that such issues are of no
concern as long as secrets are not stored in the same location
for long periods. Unfortunately, even storing secrets for
fleeting durations in RAM can be risky, as very simple
attacks are possible by inducing faults in memory [23] that
could cause the CPU to hang. Even with good shielding to
ensure that the risks of such attacks are minimal, there may
be numerous other reasons, including hardware/software
bugs, which may result in the CPU hanging. If the CPU
hangs while a sensitive secret is stored in the RAM, an
attacker can wait for some duration to ensure that the secret
leaves a deep footprint before plunging it in liquid nitrogen.

Although sensors that can detect rapid changes in
temperature (which obviously should work independent
of the CPU and are well protected by active shields) can
erase contents of the RAM, the repeated overwriting
operations mandated for clean erasure of all sensitive
information in the RAM may not be possible. Even repeated
overwriting may not be a satisfactory solution for DRAMs
[22] for which the only option may be to ensure that
sensitive values are not stored for extended durations®
(even a few tens of seconds).

3.1 Vulnerability of Multistep Countermeasures

Countermeasures that involve more than a single step to be
effective are inherently vulnerable. With complete knowledge
of the layout of the components (which attackers can easily
determine by tampering with a few chips/modules [3]),
attackers can “force their way in” using FIBs to cut-off
circuitry (or power supply) thatis responsible for undertaking
the countermeasures. Even with good shielding and assur-
ances that it is not possible for intrusive attempts to evade
active shields, with such attacks, the attacker does not have to
worry about triggering active shields (which leads to erasure
of master secret). As long as the circuitry for taking additional
countermeasures (like clean erasure of contents of RAM) can
be cut-off, the attacker can still scavenge bits from RAM.

3.1.1 The Snapshot

The end result of such attacks is that it is possible for an
attacker to get a snapshot of all contents of all volatile
memory regions (except the BBRAM) at any instant of time.
However, the attacker is limited to a single snapshot as the
ScP is irrevocably destroyed in this process, and the master
secret used for encrypting all other secrets is erased.
Nevertheless, the attacker gains knowledge of secrets/data
that may have been stored unencrypted in RAM, even
temporarily, when the attack was carried out.

A solution to minimize the damages is to make sure that
such snapshots reveal as little useful information as possible

2. For clean erasure of contents stored for long durations in DRAM, the
only option (apart from heating) may be to store some random value for a
long duration to “dilute the stress” [22] imposed on the oxide layer by the
old data.

JANUARY-MARCH 2008

for the attackers. The DOWN policy is motivated by the
realization that many cryptographic operations can be
performed with fractional parts of secrets. At any point in
time, only a small part of a secret may be necessary for
cryptographic computations. Thus, while multistep coun-
termeasures require extensive circuitry to (strive to) ensure
that such snapshots will reveal no information, the DOWN
policy obviates the need for such measures by ensuring that
there is very little useful information to be gained from a
snapshot in the first place.

For example, without the DOWN policy, if the attack was
carried out when the ScP was computing an RSA signature,
the entire private key can be exposed from RAM. With the
DOWN policy however (as we shall see), the attacker will be
limited to exposing no more than one bit of the RSA private key.

3.2 DOWN Enabled Trust Modules

For DOWN enabled ScPs, the master secret K, is generated
spontaneously inside the ScP. The master secret is the only
key that is directly protected by the ScP. The master secret is
stored in a special volatile register (a BBRAM). The CPU
also has exclusive access to a hardware block cipher. The
BBRAM and the hardware block cipher are hidden from the
OS kernel [21]. The processor exposes dedicated CPU
instructions for using the hardware cipher in conjunction
with the master secret K, for encrypting/decrypting
secondary secrets that are indirectly protected by the ScP
(for example, an RSA private exponent).

The ScP draws power from external devices for its
operation. Even when the CPU is off, battery backups power
the BBRAM and minimal active circuitry required for
protecting the master secret. The active circuits include
mechanisms for periodically ones complementing the master
key so that even if the battery backups are cut-off, no
decipherable footprints of the master secret are left behind.
The battery or power lines from the battery do not need to be
protected. For any countermeasure, the only step is the erasure of
the master secret by removing power supply to the BBRAM.

Observing the DOWN policy requires the ability to
perform computations using fractional parts of secrets. Let

1. Kj; be the master secret of an ScP;
2. K(X) denote encryption of a value X using the
secret K, employing a block cipher;
3. M, --- M, where (say) M; = K(i) represent ¢ secrets
derived from the master secret; and
4. S be a secret indirectly protected by the ScP (for
example, RSA private key).
The secret S is split into ¢ fractional parts S;---5;. The
secrets are stored encrypted as M;(S) - - - M(S;), possibly
outside the ScP. Computations that employ the secret S are
broken down into ¢ “elementary DOWN operations.” In the
ith DOWN operation,

1. the elementary secret M;(S;) is fetched, decrypted
(using a special CPU instruction) to obtain S;, and S;
is used in computations; and

2. the memory location where S; was stored is flushed
clear by repeated overwriting before the next
fractional part of the secret (or S;;1)) is fetched and
decrypted. Alternately, the secret S;; may be used
to overwrite S; to avoid overheads required for
“flushing clean” the footprints left behind by S;.

RAMKUMAR: TRUSTWORTHY COMPUTING UNDER RESOURCE CONSTRAINTS WITH THE DOWN POLICY 53

Thus, at no point in time, will a snapshot reveal more than
one fraction S; of the secret S.

3.3 Protecting Private Keys with Down

We shall now see how the DOWN policy can be applied for
protecting the private keys of various asymmetric schemes.

3.3.1 Down with RSA

In RSA, two large secret primes p and ¢ are chosen, and the
RSA domain Z, = {0,1,...,n — 1} is computed as n = pq.
A value e, 3<e<®(n)=(p—1)(¢g—1) is chosen as the
public exponent subject to the constraint that e and ®(n) are
relatively prime. The inverse d of e in the modular domain
of ®(n), or d=e"! mod ®(n) is the private exponent. The
values p, ¢ and ®(n) are then destroyed.

For encryption, the ciphertext C' € Z,, corresponding a
plain text P € Z, is computed as C = P°modn. The
decryption of C is performed as P = C? mod n. Similarly,
signing a hash H of a message is performed as S = H? mod n,
and verification of the signature S is achieved by computing
H = S°modn.

The intent of the DOWN policy is to protect the private
exponent d from being scavenged from memory. Thus,
computations performed for encryption and verification of
signatures (which do not use the private key) are not
influenced by the DOWN policy. The private exponent d is
used for decryption and signing. More specifically, the
private exponent needs to be stored in RAM for performing
computations like P = C%modn (decryption) and S =
H?mod n (signing).

Modular exponentiation is often performed using the
square-and-multiply ([24, Chapter 5]) algorithm. Let the
binary representation of d be 6102+, (or 6;,i =1<4i<b
are the b bits of d, where 6; represents the MSB and ¢, the
LSB). The evaluation of P = C% mod n with the square-and-
multiply algorithm proceeds in b steps:

- 22 modn if& =0 (1)
", Cmodn ifé =1,

with z initialized to 1. The value 2, = P is the output of the
last step. Note that in each step (loop), only one bit of the
private key d is required.

Thus, the private exponent d can be stored as b indepen-
dent encryptions of each bit. For each step in the evaluation of
the square-and-multiply algorithm, one encrypted bit is
fetched, decrypted, and used in modular computations.
Thus, no snapshot will reveal more than one bit of the private
key. Recall that without the DOWN policy, the entire private
key could be exposed by a snapshot.

3.3.2 DOWN with Other Asymmetric Schemes

The effectiveness of the DOWN policy is intricately tied to the
nature of cryptographic computations that have to be
performed using the private key. Such computations may
involve different types of finite field (or ring or group)
operations like exponentiation, multiplication, and computa-
tion of multiplicative inverses. As seen earlier, modular
exponentiation (where the exponent is a secret to be
protected) is naturally facilitated. Modular multiplication of
two quantities (one of which is a secret to be protected) can
also be facilitated in the same way. Just as exponentiation
involves “squaring” or “squaring and multiplication” in
every loop (depending on whether the particular bit of the

private keyis a0 or a 1), for multiplication, each loop involves
“doubling” (left shift) or “doubling and addition,” (left shift
followed by addition) depending on the particular bit of the
private key.

3.3.3 DOWN with Exponential Ciphers

For example, in the El Gamal cryptosystem ([24], Section 6)
over Z,, using a primitive element g € Z,, private key a €
Z, and public key o = ¢ mod p, encryption of a message
using the public key and decryption using the private key
are carried out as follows:

= ¢" mod
EK(mak)—(l/hyz),{yl g P

Yo = zao® mod p (2)
di(y1,y2) =2 = yo({y}) " mod p,

where k € Z,,_; is randomly chosen by the entity encrypting
the message. The scope of the DOWN policy in this case is
to ensure that no more than a small fraction of the private
key a is decrypted and stored in RAM at any point in time
during the computation of y{. As in the case of RSA,
exponentiation with a requires only one bit of a in each loop
of the square and multiply algorithm.

In the El Gamal signature scheme ([24, Section 7.3]),
{p, 9,a,a} over Z,, where g € Z, is a primitive element, and
a € Z, is the private key of the signer, and o = ¢ mod p is
the corresponding public key, the signature sig(z, k) for a
value v € Z,, and a random k € Z,_, is

—
sigte.)= 0.0, {2007 ey 1 O
The operation performed with the secret a (during signing of
a message) is evaluation of a~y. Multiplication with a can also
be trivially performed using only one bit of a in each loop.
The popular Diffie-Helman (DH) key exchange algo-
rithm also lends itself readily to DOWN. In the DH key
exchange algorithm, two nodes A and B agree on some
prime p and ¢Z,, choose secrets a and b, respectively, and
make public a = ¢ mod p and 3 = ¢’ mod p, respectively, to
establish a shared secret K 5 = o’ = 5%

3.3.4 Elliptic Curves

DOWN also readily extends itself to protecting the private
keys of ECC (ECC, [24, Section 6.5])-based systems. ECCs
form an additive group G € Z, x Z, defined over a finite
field Z,. For example, if points like P = (zp,yp),Q =
(zg,yq) € G (Where z,, yp, xq, Yo € Z,) lie on the elliptic
curve, then points like P+ P, P+ (@, P — @ also lie on
the curve (see Appendix A.2).

For ECC schemes, the private key is a randomly chosen
value a € Z,. The security of ECC schemes rely on the
assumption that if P’ = aP, where P, P’ € G, even with the
knowledge of P and P, it is infeasible to evaluate a. The
operation performed with the secret (private key) ain all ECC
schemes involves computation of a value aP. Multiplication
of a point P € G by a value a € Z, is carried out as log,(a)
doubling/“doubling and addition” group operations, where
only one bit of a need to be used at any time. Thus, ECC
schemesalso easily lend themselves well to the DOWN policy.

54 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.5, NO. 1,

3.3.5 Generation of Private Keys

A strict implementation of the DOWN policy mandates that
the DOWN policy should be observed throughout the life
cycle of the ScP. Although for most public key schemes
observing the DOWN policy for using the secrets is trivial,
for RSA, it may be very difficult to observe the DOWN
policy during the generation of primes p and ¢. Furthermore,
many of the optimizations employed for speeding up
exponentiation [25] in RSA can render observing the
DOWN policy even for using® the private key difficult.

However, generation of secrets is not an issue for E1 Gamal
(and variants) and ECC schemes, where the private key can
be randomly chosen from Z,. Thus, for such schemes, it is
possible to generate, encrypt, and store each bit of the private
key a independently.

3.4 DOWN Assurance and Complexity

The DOWN assurance provides a guarantee that an attacker
can expose no more than one elementary fraction of the
secret (private key) by tampering with an ScP, if the master
secret cannot be compromised. In other words, the DOWN
assurance relies only on the first-step countermeasure
(erasing the master secret by removing power supply to
the BBRAM). By simply tolerating the fact that the attacker
cannot expose more than one bit (or fraction) of the private
key, the DOWN policy eliminates the need for the
expensive and inherently vulnerable multistep measures.

Without the DOWN policy, we saw that several additional
countermeasures are mandated to address the problem of
remnance. Specifically, such countermeasures mandated
1) sensors for detecting rapid changes in temperature,
2) exclusive circuitry for erasing footprints (when active
shields or temperature sensors are triggered), and 3) in-
creasing the mass of ScPs. Furthermore, such expensive
countermeasures are still vulnerable as an attacker with
complete knowledge of the layout of an ScP can still expose
an entire private key from RAM. With the DOWN policy, the
attacker is restricted to exposing at most one bit of the
private key.

The complexity imposed by DOWN depends on the
number of elementary DOWN operations into which the
process of decryption/signing is split. For 1,024-bit d, the
DOWN complexity is 1,024 DOWN operations. However, for
protecting the 1,024-bit RSA private exponent, we do not need
to employ 1,024 DOWN operations. If we employ only two
(where, in each DOWN operation, 512 bits of the private key
are decrypted), no more than 512 bits of the private key can be
revealed by a snapshot. In practice, if the block cipher used by
the ScP employs 128-bit block sizes it may be more efficient to
store the private key in 128-bit chunks. Each DOWN
operation can call for kernel mode switching if the dedicated
CPU instruction for encrypting/decrypting secrets is per-
mitted only in a special secure kernel mode [7] (or a concealed
execution mode [21]).

The DOWN policy readily lends itself to asymmetric
schemes as long as the operations that employ the private
key is restricted to modular exponentiation (RSA, DH key
exchange, and El Gamal encryption schemes) or multi-
plication (El Gamal signature scheme and variants and
ECC). However, the DOWN policy is better suited for El

3. Most such optimizations involve exponentiating with the private key
in Z, and Z,, where n = pq is the RSA modulus. Thus, both the exponent
and the modulus (p and g) have to be protected—which may not be feasible.

JANUARY-MARCH 2008

Gamal and ECC schemes, where there are no restrictions on the
choice of the private key (unlike RSA where it is required to
verify that the private keys p and ¢ are indeed primes).

4 |ID-BASED SCHEMES

Key distribution schemes can be broadly classified into
certificates-based and ID-based schemes. In the more
conventional certificates-based schemes each entity is
associated with 1) an ID, 2) public key, and 3) private key.
Each entity is free to choose their own private key and
compute the corresponding public key. An entity A can
choose a private key R, and derive a public key* U,.

As the public key U, provides no information about the
identity A, a trusted third party has to securely specify a
binding between the identity and the public key of every
entity. This binding is usually specified through a certificate.
For mutual authentication of entities A and B, they need to
exchange their respective public-key certificates and per-
form some computations.

For ID-based schemes, the ID of an entity itself doubles as
the public key, obviating the very need for certificates. In
ID-based schemes, a key distribution center (KDC) chooses
public parameters of the system and one or more master
secrets. Using the secrets, the KDC can compute the private
key(s) corresponding to any public key (ID). The private keys
for a node with identity A are thus assigned by the KDC to the
node A.

ID-based schemes are increasingly seen as preferable over
certificates-based schemes for large-scale networks, and
especially for many emerging application scenarios like ad
hoc networks. In typical client-server interactions in existing
networks, the client and server exchange public key
certificates for mutual authentication, at the end of which, a
shared secret is established. This secret can be used for
authentication and encryption of a large number of packets
exchanged between them subsequently. Thus, the overheads
(exchange of certificates and their verification) incurred for
establishing a shared secret can be leveraged for securing
large amounts of data.

However, in ad hoc networks, a node will typically
exchange small packets with many nodes. Thus, the over-
heads for exchanging certificates with each node may be
prohibitive. The overheads may become especially high for
very large-scale networks where chains of certificates [26]
will need to be exchanged. With ID-based schemes, two
entities A and B can independently compute a shared secret
K 4p without exchanging certificates for this purpose.

Another desirable feature of ID-based schemes, espe-
cially for their use in conjunction with tamper responsive
devices, comes from the fact that the keys are implicitly
escrowed (by the KDC). In tamper-responsive devices,
false-alarms leading to unintended zeroisation can never be
ruled out. Without key escrow, an unfortunate end-user
may be locked out of all data encrypted using a secret
protected by the ScP. With escrowed ID-based schemes,
such devices can be easily reinstated.

4. For RSA, the secret primes p and ¢ are chosen before the public value
n = p x q can be evaluated. For El Gamal, the secret a is chosen before the
public value g” mod p is evaluated.

RAMKUMAR: TRUSTWORTHY COMPUTING UNDER RESOURCE CONSTRAINTS WITH THE DOWN POLICY 55

4.1 IBS and IBE Schemes with DOWN

The first identity-based signature (IBS) scheme was pro-
posed by Shamir [27].

4.1.1 Shamir’'s IBS Scheme

In this scheme, the KDC chooses 1) two large primes p and
q, where n=pq, 2) e € Z, relatively prime to ®(n)=
(p—1)(¢—1) (and e is preferably a large prime), and 3) a
one-way function f().

The KDC makes n, ¢, and f() public. A node with ID ID;
is provided with a secret g;, where ¢ = I.D; mod n—or g; is
an eth root of ID; in Z, (which can be easily computed by
the KDC as the KDC knows the factors of n). To sign a
message M, the signer 1) chooses a random r € Z,,
2) computes ¢ = 7° mod n, and 3) computes o = /). The
signature for a message M is (s,t), where

s = {¢g;a} mod n. 4)

The verification condition is s¢ = ID;#/M) mod n.

Note that the operations with the secret g; by the signer
only involve multiplication ({g;a}), which poses no pro-
blems with DOWN implementations.

4.1.2 Pairing-Based Schemes

Shamir’s identity-based scheme does not support encryp-
tion. Boneh and Franklin [28] responded to Shamir’s
challenge to develop the first ID-based scheme that could
support both encryption and signatures. Such ID-based
encryption (IBE) and signature (IBS) schemes [28], [29] rely
on a bilinear mapping e: Gy x G; — G, where §; is an
additive group, and G, is a multiplicative group. Typically,
G is a special ECC, and the mapping e represents a class of
Weil pairings [28]. For pairing-based IBE/IBS schemes, the
private key assigned to each node is a point in the ECC §;.

The pairing operation requires group additions involving
a secret in G;, which in turn calls for a computation of
multiplicative inverses using the secret. Computation of
multiplicative inverses, say, b= a~' modm, where only
one part of the secret a can be revealed at any time, does
not appear to be trivial.

Although ECC schemes call for group addition (which
requires computation of multiplicative inverses—see Ap-
pendix A.2), the operation is performed on points on the
ECC, which do not reveal any information about the private key.
For ECC scheme points on the elliptic curve may be
publicly known generators or intermediate values of
computations. For pairing-based IBE schemes on the other
hand, the private key is itself a point on the elliptic curve. Thus,
the more versatile pairing-based IBE/IBS schemes do not
(yet) have simple DOWN implementations.

4.2 Low-Complexity ID-Based Encryption Schemes
Although IBE/IBS schemes are very much desirable
(especially for use in conjunction with tamper-responsive
devices), we saw that encryption schemes (IBE) may not
lend themselves to simple DOWN implementations.
Furthermore, they demand high complexity inside the ScP
(perhaps computationally more expensive than conven-
tional public key schemes for the same level of security).
What we ideally desire are ID-based schemes that demand
very low computational complexity inside the ScP. Thus,
limiting ScPs to perform only symmetric cryptographic computa-
tions can be a good strategy.

4.2.1 Scalability

Scalable networks should cater for practically unlimited
number of entities and permit such entities to join the
network at any time. One of the compelling advantages of
asymmetric schemes is that they scale very well (ID-based
schemes require less overheads than certificates-based
schemes in this respect). Note that any number of entities
can be assigned private keys (for ID-based schemes) or can
receive certificates from the certificate authority (for certifi-
cates-based schemes) and can receive the private key/public
key certificate at any time.

Authentication strategies for scalable networks based
purely on symmetric cryptographic primitives either require
a trusted server for mediation (Kerberos-like schemes based
on the symmetric Needham-Schroeder protocol [6]) or are
susceptible to collusions. The former is unacceptable for
many application scenarios. The latter is facilitated by KPS.

In the rest of this section, we provide an overview of
different KPSs. In Section 5, we introduce some novel KPSs
that can provide such high levels of collusion resistance
with very low overheads, wherein their susceptibility to
collusions is of very little practical consequence.

4.2.2 Key Predistribution Schemes

A KPS consists of a KDC and N entities with unique IDs (say,
A, B,C,...). The KDC chooses a set of P secrets $. Each
entity receives k secrets. The set of k secrets $ 4 assigned to A
is a function of $ and the ID A. A and B can independently
discover a pairwise K p using (in general) m < k of their
k secrets.

The total number of entities N (or the maximum network
size) that can be assigned secrets is only limited by the
number of bits used for representing the IDs (IDs should be
unique). However, KPSs are susceptible to collusions. An
attacker who has physically compromised many entities and
gained access to their secrets may be able to compromise
pairwise secrets between entities that have not been physi-
cally compromised. An n-secure KPS can resist an attacker
who has pooled secrets from up to n entities. For most

n-secure KPSs k o< n, and P n2.

4.2.3 The “Basic” KPS

For the trivial “basic” KPS, for a network size of N, the KDC
chooses P = (1;[) secrets, and each entity is assigned k=
N — 1 secrets. Although such a scheme is not susceptible to
collusions, its scalability is severely restricted as each entity
needs to store @(N) values. With a limitation of @ (n) storage,
the “basic” KPS can support only a network size of n. Scalable
KPSs, on the other hand, (with the same limitation of k =
©(n) storage) can support unrestricted network sizes but can
only tolerate collusions of (up to) n entities.

4.2.4 SKGS

That security-complexity trade-offs are possible to support
unlimited network size was first realized by Blom [31] who
proposed the first KPS in the literature. In the SKGS
(symmetric key generation system) based on MDS (max-
imum distance separation) codes proposed by Blom [31], a
n-secure scheme requires k = n + 1 secrets to be assigned to
each node. For SKGS m = k, namely, all k secrets need to
used for evaluating any pairwise secret (see Appendix A.1).

56 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.5, NO. 1,

4.2.5 LM-KPS

Leighton and Micali [30] were the first to propose a KPS
(LM-KPS) with probabilistic (n, p)-secure assurances. For an
(n, p)-secure KPS, an attacker who has access to all secrets of
n entities can expose a fraction p of all pairwise secrets.
Unlike deterministic KPSs where the failure of the KPS
occurs catastrophically, (n,p)-secure PKPSs fail gracefully
with increasing n. In other words, p(n) increases gracefully
with increasing n. As long as p(n) is low (say, 27% for some
sufficiently large n), it is computationally infeasible for an
attacker who has exposed all secrets from n entities to even
determine which pairwise secrets can be compromised using
the pool of exposed secrets.

In LM-KPS defined by two parameters (k, L), the KDC
chooses a set of P = k secrets {K; - - - K}, and each entity is
provided with a set of k secrets. The k secrets are repeatedly
hashed versions (between 1 and L times) of the secrets
chosen by the KDC. Thus, A is provided with secrets

$4={K" K, ..

LK), 1<a <L, (5)

where K/ = h/(K;) represents the result of successive
hashing (j times) of K; using a secure hash function k(). The
parameter L is thus the “maximum hash depth.” For LM-
KPS, the upper bound for k for some desired (n, p)-security is
©(n?) [30]. For LM-KPS m = k (like SKGS), as all k secrets of a
node are used for evaluation of any pairwise secret.

4.2.6 Random Allocation of Subsets (RAS)

Many KPSs based on random allocation of a subset (RAS) of
kkeys to every entity from a pool of P keys chosen by the KDC
have been proposed. For ID-based RAS schemes, the indices
of the secrets assigned to A is tied to the ID A through a one-
way function [33], [34]. Extensions of RAS schemes with LM-
KPS [30] have also been proposed [35]. For ID-based RAS
schemes, a public function F'(A) determines the k of the
P indices of secrets assigned to A. For HARPS [35], F'(A)
generates k hash depths (between 1 and L) in addition to the
k indices. For all such schemes for (n, p)-security, we require
k « nlog(1/p)and P/k ~ n. As any two nodes will share only
k?/P = ©(log(1/p)) secrets (on the average), only m =
©(log(1/p)) of the k secrets need to be used for evaluation of
any pairwise secret. However, A and B have to compute
F(A) N F(B) to determine the m shared indices. The complex-
ity for evaluating F'(A) N F(B) is at least @ (k).

5 DOWN FRrIENDLY KEY PREDISTRIBUTION
SCHEMES

For all KPSs, every secret can be used by the entities and
delivered to the entities independently. Thus, strict imple-
mentation of the DOWN policy does not pose any major
hurdles. The DOWN assurance guarantees that 1o more than
one of the k secrets can be compromised from an entity (ScP) as
long as the first-step (and only step) countermeasure cannot
be bypassed.

With the DOWN assurance, an attacker has to expose
one secret from k ScPs in order to compromise an
“equivalent” of one ScP. It should be noted that the
equivalence of “one secret from k& ScP,” and “all k secrets
from one ScP” is a strict one only for deterministic KPSs. It is
actually a pessimistic estimate for (n,p)-secure KPSs. In such
schemes, although an attacker is guaranteed k independent

JANUARY-MARCH 2008

secrets by exposing “all k secrets from one ScP,” exposing
“one secret from k ScPs,” may result in less than k
independent secrets (as the same secret could be “compro-
mised” from different nodes). Thus, for such schemes, the
attacker has to expose one secret from at least k ScPs to
compromise an equivalent of one ScP.

An n-secure KPS with k secrets is rendered nk-secure with
the DOWN assurance. An (n,p)-secure KPS with k secrets
per entity is rendered at least (nk, p)-secure.

The k secrets assigned to any ScP do not have to be
stored inside the ScP. They will be encrypted with the
master secret and stored outside the ScP. For example,
encrypted secrets could be stored in pluggable flash storage
devices (SD cards supporting several Gbytes of storage are
already very common) or even storage locations that can be
readily accessible over (possibly insecure) networks. Even if
millions of secrets are assigned to each ScP, the storage
required is only a few megabytes. Thus, the storage
complexity for the secrets is not a serious issue in almost
every conceivable application scenario.

Also, note that, although k secrets need to be stored, in
general, only m < k need to be used for evaluation of a
pairwise secret. The value m is also the DOWN complexity
as only one secret can be exposed in RAM in an elementary
DOWN operation. The value m also influences bandwidth
overheads in scenarios where encrypted secrets have to be
fetched over a network. KPS schemes that are DOWN
friendly should ideally have the following properties 1) n o
k in order to take good advantage of the DOWN assurance,
2) low value of m, and 3) low-computational overheads.

For the two schemes (MBK and HMBK), we shall see that
1) the storage required is k o n, 2) the DOWN complexity m
can be made as small as we desire, and 3) the computational
complexity is also @(m). The security of such schemes is
therefore limited only by available (external) storage. Thus,
although even without the DOWN assurance, they can make
good use of storage to reduce their susceptibility to
collusions (as n o< the storage k) with the DOWN assurance
their collusion resistance increases as nk o k2.

5.1 MBK: Multiple “Basic” KDS

In the basic KDS, for a network of N entities, the KDC chooses
(1) secrets,and each entity is provided with N — 1secrets. The
primary problem with the basic KDS is that it does not scale
very well. A trivial scalable extension of basic KDS is to
employ several suchindependent “small-scale” deployments
of basic KDSs in parallel.

In the MBK, m such independent deployments, each
catering only for a network size of M are used. However,
together, the m systems cater for practically unrestricted
network sizes. We will assume that each entity is assigned a
b-bit ID (say, b = 128 or 160) to facilitate choice of IDs as a
secure one-way function of textual descriptors.

The KDC chooses m sets $' - - - 8™, each set consisting of
() + M = (M) secrets, where

$' = {Ki(ji,52)}, (6)

and K;(j1,72) = Ki(j2,j1). An entity with b-bit ID A is
assigned m “short-IDs,” in each of the m systems. Thus,
each short-ID is s-bit long, where s> log,(M) (for
M = 1024 = 2", each short-ID will be 10 bits long). More
specifically, a simple one-way function a; = f(A,4), 1 <i <
m is used to assign such short-IDs (m random integers

1<i<m, 1<41,52 <M,

RAMKUMAR: TRUSTWORTHY COMPUTING UNDER RESOURCE CONSTRAINTS WITH THE DOWN POLICY 57

between 1 and M) to A. The function f() could be a
pseudorandom bit stream generator, where each instance of
execution of f() calls for generation log, M bits.

Now, A is provided with M secrets from each of the
m systems—corresponding to the short-ID in each system.
Specifically, A with short IDs a; - - - a, is provided with k =
m X M secrets

S4 = {Ki(ai, 5)},

B,like wise, is provided with k= Mm secrets § 5 = {K;(b;,) }.

Aand Bcanindependently discover m shared secrets S; =
Ki(ai, b;) = K;(b;, a;) by evaluating f(A,) and f(B,i)m times
(for 1 < ¢ < m). Both A and B can determine their respective
short IDs {(a;, b;)} in all m schemes. In order to establish a
session secret Kg with B, A chooses Kg at random and
encrypts Kg successively with each of the m secrets
Si, 1 <4 < m. Thus, MBK calls for 1) m evaluations of f() to
determine the indices of m secrets to be fetched from storage
(where mM encrypted secrets are stored), 2) m DOWN
operations, and 3) m block cipher operations.

1<i<m, 1<j<M. (7)

5.2 MBK Performance

MBK provides probabilistic assurances. First note that there
is a finite probability that two entities with different b-bit
“long” IDs may be assigned the same set of m short IDs
(logy M-bits each). The probability of this event however is
very low—the same as the probability of collision in a
mlogy M-bit hash function. For example, for m =64,
M = 1,024, this probability is a miniscule 2-64%10/2 = 2-320,

What is of greater concern is the ability of an attacker who
has managed to extract all mM secrets from n entities.
Although with the DOWN assurance, an attacker cannot
extract more than one secret from each entity, we shall (for
now)ignore the assurance provided by the DOWN policy. Let
p(n) represent the probability that an attacker who has pooled
together all secrets from n entities (that does not include
A and B) can determine K4p. It can be shown (see
Appendix A.3) that p(n) and the parameters M and m are
related as

p(n) ~ (1 —)™, (8)

5.2.1 Choice of Parameters m and M

The choice of m and M that minimizes k = mM (and thus
storage for the secrets) for a desired p(n) is (see Appendix A.3)

_ 2nlog(1/p) . (9)

m* = log(1/p)/log(2) }=>k* M
log? 2

M* = 2n/log(2)

If storage is not an issue, it is indeed preferable to minimize
m, as the value m is simultaneously 1) the number of
elementary DOWN operations, 2) the complexity of the
public function, and 3) the bandwidth overhead in
scenarios where the secrets are fetched over a network.

For some desired p(n), if we desire to reduce m by a
factor a (to m = m*/a), we need to increase M and k = Mm,
where k > k*. It can be shown (see Appendix A.3) that

k. mM log(1 —1/2)

i =) 10
kB m*M* alog(l—1/2%) (10)

For example, fora = 2, k/k* = 1.204. For a = 3, k/k* = 1.730.

TABLE 1
Comparison of SKGS, RAS, and MBK
KPS Storage (k) m CPF Coll. Resist.
WoD WD
SKGS | n+1 n+1 None | n n(n+1)
RAS e 1og(11/p) ?logl(l/p) Ok) [(n,p) | (nk,p)
MBK nl;)ggg(2 P) Olgcfg 2p) @(m) (nvp) (nk7p)

Numerical example. MBK with parameters M = 2,048,
m =64 is (n =710, p = 27%)-secure (or p(710) = 27%4). The
storage required for each entity is 1 Mbyte (formM = 131,072
64-bit secrets). With the DOWN assurance, an attacker has to
compromise one secret each from over nk ScPs (about
93 million ScPs). The same p(n) can also be achieved by
choosing m = 24 and M = 8,192 for which k = mM is higher
by a factor 1.5. However, with the DOWN assurance the latter
can resist compromise of one secret from over 140 million
ScPs (as nk is also higher by a factor 1.5).

5.2.2 Down and MBK Synergy

Itis interesting to note the synergy between DOWN and MBK
facilitated by inexpensive storage resources. Although redu-
cing m renders k = mM > k* (increase in storage required)
for the same p(n), it is really not so terrible a disadvantage in
conjunction with the DOWN policy. When the number of
secrets assigned to each ScP is increased, the “utility” of each
secret is low—both for the possessor of the secret and the
attacker. With the DOWN assurance, the extent of “informa-
tion” that can be retrieved by tampering with any ScP is
diluted when a large number of secrets are assigned to each
ScP. The DOWN assurance thus has this very desirable
property of converting what is conventionally seen as
(storage) inefficiency of a KPS into better security! The fact that
storage is the least expensive of resources bodes very well for
KPSs that can take advantage of this resource.

Increasing the storage complexity (beyond k*) can further
reduce the already low ©(m) computational complexity.
Recall that the DOWN assurance relies on the assumption
that the master secret cannot be compromised. The lower the
computational complexity inside the trust boundary, the
lower the restrictions on possible shielding techniques, and
the higher the reliability of the single-step countermeasure for
protecting the master secret. Thus, increased availability of
storage indirectly improves the basis of the DOWN assurance
and leads to better collusion resistance.

5.2.3 MBK versus RAS Schemes

It is pertinent to point out that random subset allocation
schemes require less storage (by a factor 1.53—see Appen-
dix A.4) compared to MBK to achieve the same p(n).
However, for such schemes, the computational complexity
for determining the shared indices is @ (k). For MBK, it is
just @(m). Furthermore, unlike MBK, where it is possible to
reduce m (by increasing k) for RAS schemes m cannot be
reduced below log(1/p) to achieve (n,p)-security (see
Appendix A.4).

Table 1 provides a ready comparison of different KPSs in
terms of the relationships between

1. total storage (k);
2. number of DOWN operations (m);
3. complexity of public functions (CPF);

58 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.5, NO.1, JANUARY-MARCH 2008
25000 T T T T 160000 T T T T T
p=10
140000 [7
oo - MBKm=64 |/ | MBK, m=64
B HMBK, m=64 . L e HMBK, m=64 |
3 ——— MBK, m=32 . 120000 —— MBK, m=32 “10”
g HMBK, m=32 g HMBK, m=32 p=
832 p=10 07 L '
2 €15000 [2 4 100000 !
3% d
é g 20 9~ s0000 F (.
) p=10 .- < I/
£ 10000 - -1 b !
gz -7 P e 60000 [T
1§ - ~ =
== ==
g = 40000 [7
£ 5000 =-7 B 7
P
20000 [~ T
¥ 1] | 1 1 1
0 0
-100 -90 -80 -70 -60 -50 —40 -30 -20 35 30 25 20 15 -10 -5 0
logzp log p

Fig. 1. Comparison of MBK and HMBK for the same storage complexity—k = m.M = 220 (one million keys) for two different values of m (the DOWN
complexity), m = 64 (M = 24) and m = 32 (M = 2%). For HMBK, L = 64. The y-axis is n—the number of compromised nodes (without the DOWN
assurance. For performance, in conjunction with the DOWN assurance, the y-axis should be read in millions (as k = mM = 2% for all schemes). The
x-axis is log,(p). For convenience, the plot is divided into two, one for p < 10~ and one for p > 1077).

4. collusion resistance without DOWN assurance
(WoD); and
5. collusion resistance with (WD) DOWN assurance.

5.3 Hashed MBK

A simple extension of the MBK scheme, the HMBK can
improve the performance of MBK for the same M and m.
Specifically, HMBK realizes improvements over MBK by
realizing an increase in n for the same p(n). HMBK is actually
a combination of MBK and the KPS with probabilistic
assurances proposed by Leighton and Micali, LM-KPS [30],
defined by two parameters (k, L) (see Section 4.2.5).

HMBK is defined by three parameters (M, m,L). As in
MBK, the KDC chooses m sets of secrets®$' - - - §™, where each
set consists of (') secrets. All such secrets could also be
generated from a single master secret M; chosen by the KDC.

However, the public function f() now produces two
values—a log, M-bit value and a log, L-bit value, where L is
the maximum hash depth of the keys. For example, for M =
1,024 and L =64, f(A,i) = [a;]|a;] returns a 16 bit inte-
ger—the first 10 bits determines the short-ID 1 < a; < M,
and the last six bits determine the hash depth, 1 <a; < L.
The secrets assigned to node A are now

S4 ={K(a;,j)}
K{(a;,) = h"(K;i(a;, 7)),

where

(11)

for 1 <i<m, 1< j< M. In other words, a secret (K;(a;, j)
is repeatedly hashed a; times before it is assigned to A as
h (K,L-(ai, _]))

As in MBK, any two entities can determine m shared
secrets. In MBK, for A and B (with f(A4,i) =a; and
f(B,i) = b;), the secret corresponding to index i is K;(a;, b;) =

K;(bi, a;). For HMBK, however, A has the secret K/ (a;, b;),
and Bhas the secret Kf" (a;,b;) (where f(B,i) = b;||b;). Thus, if
a; > b;, Bhas to repeatedly hash its secret K (a;, b;), (@; — b;)
times to determine a common secret S; = K (a;,b;). Like-
wise, if b; > a;, A will have to hash its secret K (a;,b;), (b; —
a;) times. For each of the m indexes, the shared secret between

A and Bis at a hash depth max(a;, b;)—or

5. Or m KDCs choose one set of secrets each.

Sy’, _ K;nax(&,;,l;;)(ai’ b7)
The probability p(n) for HMBK (see Appendix A.5) is then

é(n) = EL:QZL_Q ! (1 - lg)n (13)

=1

(12)

p(n) = (1—=€(n)",

As a first-order approximation, it can also be shown that
€(n) = €(3n/2), implying that HMBK can tolerate 3/2 times
as many compromised nodes as MBK for the same value of
m and k= mM.

5.3.1 HMBK Performance

Fig. 1 depicts plots of n versus log,(p) for MBK and HMBK
for (m =25, M = 2), (m = 25, M = 2'). Note that for both
cases, k =mM = 2%. L = 64 for HMBK. The choice of k ~
one million is primarily for convenience as the collusion
resistance with DOWN assurance (nk=nmM) can be
readily calculated by scaling the value of n (y-axis) by a
million. For example, HMBK with m = 64, M = 16,384, L =
64 is (n =8,484,p = 1072)-secure without the DOWN
assurance and is nk = 8,484 x 10%-secure or over 8 billion
secure with the DOWN assurance. HMBK with m = 64,
M =32,768, and L =64 is (n = 13,740,p = 107?)-secure
without the DOWN assurance and can resist exposure of
one secret each from about 14 billion ScPs. Note that when
k =mM is fixed, larger M implies that the KPS is optimized
for larger n (as the choice M ~ 2n/log2 minimizes p). Thus,
it is not surprising that lower m (m = 32) performs better
for larger n (for the same k).

Apart from being more efficient than MBK, HMBK also
boasts a more graceful degradation of security® with
increasing n. This property is unfortunately not evident in
the first-order approximation (€¢'(n) ~ €(3n/2)). The values
in the tables have been calculated using (13).

The additional overheads for HMBK (compared to MBK)
is that in each of the m DOWN operations, a few repeated
hash operations have to be performed. Note that for each of
the m shared secrets one of the two entities has to hash

6. This property has also been observed for HARPS [35], which is a
combination of random subset allocation and LM-KPS, just as HMBK is a
combination of MBK and LM-KPS.

RAMKUMAR: TRUSTWORTHY COMPUTING UNDER RESOURCE CONSTRAINTS WITH THE DOWN POLICY 59

forward L/3 times on the average (the expected value of the
difference between two randomly chosen hash depths
between1and Lis L/3). Thus, (on the average) L/6 additional
hash computations are required in each of the m DOWN
operations. It is important to note that the number of DOWN
operations is still the same. In practice, the number of DOWN
operations has a greater significance as each operation may
call for kernel mode switching.

For many application scenarios, even 128 Mbytes per ScP
(for example, ScPs plugged into PDAs that can use flash
storage also plugged into PDAs) may not be unreasonable.
For such scenarios, n can be increased from about 8,000 for
HMBK (for p < 1072°) to n = 128,000. The assurance in
conjunction with the DOWN policy, namely, nk, increases
from about 8 billion to 2 trillion. In other words, increasing
storage by a factor 16 (from 8 Mbytes to 128 Mbytes—or k from
1 million to 16 million) improves the collusion resistance with
DOWN assurance by a factor 162 = 256 (from 8 billion to
2 trillion). Note that with large storage MBK/HMBK can be
considered “reasonably secure” even without the DOWN
assurance.

6 CONCLUSIONS

This paper introduced the DOWN policy that can substan-
tially lower the complexity of circuitry required for counter-
measures and improve the assurances offered by trustworthy
computers like cryptographic coprocessors to protect their
secrets. This is achieved by eliminating dependence on
expensive and vulnerable multistep countermeasures. Thus,
the DOWN policy can simultaneously lower the cost and
improve reliability of cryptographic coprocessors. To achieve
this, DOWN takes advantage of the ability to perform
computations with fractional parts of secrets.

It was shown that many asymmetric cryptographic
primitives lend themselves readily to DOWN implementa-
tions. Specifically, asymmetric schemes for which computa-
tions using private keys are restricted to multiplications and
exponentiation lend themselves readily. Thus far, it appears
that the DOWN policy may not be as easily extended for
protecting private keys of pairing-based IBE schemes, or more
generally, schemes for which operations with private keys
include computation of modular multiplicative inverse.
Furthermore, schemes for which there are no constraints on
the choice of private keys (for example, ECC schemes, El
Gamal, and variants) are preferable for use in conjunction
with DOWN.

Even while the need to keep the complexity inside the
trusted boundary has been very well recognized in the
literature, it is implicitly assumed that ScPs should have the
ability to support asymmetric cryptography. All commer-
cially available secure coprocessors support various types
of asymmetric encryption and signatures schemes. In
emerging application scenarios, calling for very large scale
deployments of inexpensive devices bound to low complex-
ity ScPs, the use of asymmetric cryptographic primitives
may not be feasible. It was argued that low-complexity
ID-based schemes are very much desirable for many
emerging applications scenarios.

Two novel ID-based KPS were proposed, which were
explicitly designed to take a good advantage of the DOWN

policy and demand very low-computational complexity
inside the ScP. Furthermore, by making use of an increas-
ingly inexpensive and abundant storage, the security of the
proposed schemes can be increased to such extents that
their “susceptibility to collusions” is of no practical
consequence. The storage resources do not have to be
protected and could be an external pluggable storage or
even storage locations accessed over insecure networks. For
supporting the meager amount of computations required,
ScPs with a very low capability general purpose processor
(which however supports some additional dedicated in-
structions for operations using the master secret and/or the
hardware block cipher) and a dedicated AES block cipher,
is more than adequate.

Our ongoing work indicates that DOWN assurances can
also be employed to improve the security of the broadcast
authentication scheme by Canettietal. [36], where every node
appends a large number of HMACs and any verifier can
verify a subset of the appended HMACs. However, with
additional constraints on the bandwidth for the appended
HMACGs, such schemes can only (thus far) realize linear
improvements with storage (unlike schemes for pairwise
authentication that can realize quadratic gains with storage).
Some of our other ongoing work include 1) techniques for
extending the DOWN policy to IBE schemes based on pairing,
2) investigation of the applicability of the DOWN policy for
asymmetric schemes over Galois field GF(2"), and 3) inves-
tigation of the feasibility of an ID-based key predistribution
infrastructure (KPI) and employing DOWN friendly sym-
metric key distribution schemes as an alternative to the
certificates-based public key infrastructure (PKI) for securing
large-scale ubiquitous computing networks.

APPENDIX A

A.1 Blom’s SKGS

For a network size of N < ¢, SKGS employs a public (n + 1) x
N MDS generator matrix G = [g,g; - - - g~/ (g;s are column
vectors of length n + 1). The KDC chooses a (n + 1) x (n + 1)
symmetric matrix D with ("') independent values chosen
randomly from Z,, where ¢ > N. Node that A is provided
with k = n + 1 values (secrets) of the d* = Dg,. Two nodes
A and B (with secrets d* and d%, respectively) can calculate
Kap = (d*)Tgg = (d®)Tg,, which no other node can. As
long as an attacker has access to secrets from n or less nodes,
the attacker learns nothing about D.

A.2 Group Addition in Elliptic Curves

For an ECC defined by G = {(z,y)} : ¥* = 2 + apz + a; mod
paddition of two points P = (zp, yp), Q = (z¢, yg) € Gyields
P+ Q = R = (zg, yr), where z,, yp, ©9, Y, Tr, yr € %y, and

2r=\N—xzp— zQ
yr =Nzp — Xg) —yp
A { (vo =~ yr)(wp = 2q)™!
(32} + ap) (2yp)

P#Q)

P=Q.

A.3 MBK

Note that the secret K;(a;, b;) is not unique to nodes A and B.
There is a probability that some node C (in the attacker’s pool
of compromised nodes) may also have the secret K;(a;, ;), if

60 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL.5, NO. 1,

f(C,i) = ¢; € {ai,b;}. As the output of the one-way function
£() is uniformly distributed between 1 and M, the probability
that a node C has an access to K;(a;, b;) is
2M -1
M2
where the approximation holds for large M. The probability

Pr{c; € {a;,bi}} =~ = ~2/M, (15)

thatan attacker who has access to all secrets from nnodes (that
does not include A and B) cannot discover S; = K;(a;, b;) is

e(n) = (1—7)"
Thus, the probability p(n) that the attacker can compromise
all m such that the S;s shared by A and B (and, thus,
determine K 4p) is

p(n) = (1 — 6(%))7” = (1 _ (1 _ ,y)n)m

- ~ (1 _ efnv)m ~ (1 _ e%)m7

(16)

(17)

where the first approximation follows from the well-known
identity (1 — 1/x)* ~ ¢! for large .

A.3.1 Choice of MBK Parameters
We can reqwrite (17) as
2nlog(1/p)

2n
=——> " wherex =—.

—zlog(l —e™) (18)

Minimizing % calls for maximizing —xzlog(1 —e "), which

T

occurs when e * =1/2, or = =log(2). Now, substituting

=2n

e =1/2 in (17), we have p(n) =3, m =logy(1/p) =
log(1/p)/log(2), M = 2n/log(2), and

_ 2nlog(1/p)
(log(2))*
If we desire to reduce m by a factor a (to m’' =), we

need €7 =1 —1/2° to achieve the desired p(n). Thus, we

need to choose increase M’ = 2n/log(1 — 1/2%) and, thus,

log(1—1/2)

k=mM (19)

P
W=mM =k e (20)
A.4 MBK versus Subset Allocation Schemes
For subset allocation schemes [35]
p(n) = (1-£1 -8, ¢=k/P. (21)

The choice of £&* =1/(n+ 1) = 1/n (for large n) maximizes
&(1 —¢)" and thus minimizes the storage k. Making use of
the identities (14 1/x)" =~ e for large x and log(1l — y) = —y
for y < 1, we can easily see that k ~ nelog(1/p). Thus, to
achieve the same p(n), RAS schemes require k less by a
ﬁ ~ 1.53 compared to MBK (see (19)).

The value m can be reduced by k (and reducing £ by a

factor

larger factor) such that m = £k is reduced. It is easy to see
that m cannot be reduced below log(1/p) even if k — oo. For
very large k (and small m = &k), we have £ — 0. More
specifically, for large k, we have { < 1/n. As £(1 —¢&)" =
&(1—n&) = ¢ for € < 1/n, we can rewrite (21) as

JANUARY-MARCH 2008

pln) =(1—€1-8") =1-¢em*

~ ((1 — 5)1/5),”% e ™.

In other words, even when k — oo, m = &k cannot be

(22)

reduced below log(1/p) to achieve (n,p)-security.

A.5 HMBK
In this case, for each of the m indices, the shared secrets S;,
1 <i<m between A and B is at a hash depth max(a;, 51)
Unlike MBK where it was sufficient for some node C with
f(C,i) = ¢; € {ai, b} to determine the secret corresponding
to index i, for HMBK, an additional condition has to be
satisfied. The condition is ¢ < max(a;, b;).

For any i, if we define p; = Pr{max(a;, b)) = I} =2,
1<1<L,and ¢ = Pr{c; <1} =1/L, the probability ¢ that

any S; = K™% (4, b,) is safe from an attacker (who has

exposed all mA secrets from n nodes) is

, L . L 21 —1 Z’Y n
= ml-an'=> —F(1-7). @3
i=1 '

J=1

compared to e(n) = (1 —~)" for MBK (see (16)). As a first-
order approximation, it is easy to see that the expected

value of 1 is [=2 Thus

é(n) ~ (1 - 2%) '~ (1= 7% = ¢(3n/2). (24)

REFERENCES

[1] M. Kwiatkowska and V. Sassone, “Science for Global Ubiquitous
Computing,” Grand Challenges in Computing (Research), T. Hoare
and R. Milner, eds., 2004.

[2] S.W. Smith, Trusted Computing Platforms: Design and Applications.
Springer, 2005.

[3] R. Anderson, M. Bond, J. Clulow, and S. Skorobogatov, “Crypto-
graphic Processors—A Survey,” Computer Laboratory Technical
Report UCAM-CL-TR-641, Univ. of Cambridge, Aug. 2005.

[4] R. Anderson and M. Kahn, “Tamper Resistance—A Cautionary
Note,” Proc. Second Usenix Workshop Electronic Commerce, pp. 1-11,
1996.

[5] SW. Smith and S. Weingart, “Building a High-Performance
Programmable Secure Coprocessor,” Computer Networks, vol. 31,
pp. 831-860, 1999.

[6] R. Needham and M. Schroeder, “Using Encryption for Authenti-
cation in Large Networks of Computers,” Comm. ACM, vol. 21,
no. 12, Dec. 1978.

[71 D. Lie, C.A. Thekkath, and M. Horowitz, “Implementing an
Untrusted Operating System on Trusted Hardware,” Proc. 19th
ACM Symp. Operating Systems Principles, pp. 178-192, Oct. 2003.

[8] P.C. van Oorschot, A. Somayaji, and G. Wurster, “Hardware-
Assisted Circumvention of Self-Hashing Software Tamper Resis-
tance,” IEEE Trans. Dependable and Secure Computing, Apr. 2005.

[9] R. Gennaro, A. Lysyanskaya, T. Malkin, S. Micali, and T. Rabin,
“Tamper Proof Security: Theoretical Foundations for Security
Against Hardware Tampering,” Proc. Theory of Cryptography Conf.,
Feb. 2004.

[10] S. Weingart, “Physical Security for the mABYSS System,” IEEE
Security and Privacy, pp. 38-51, 1987.

[11] S. White, S. Weingart, W. Arnold, and E. Palmer, “Introduction to
the Citadel Architecture: Security in Physically Exposed Environ-
ments,” Technical Report RC16672, IBM Thomas]. Watson
Research Center, Mar. 1991.

[12] J.D. Tygar and B. Yee, “Dyad: A System for Using Physically
Secure Coprocessors,” Technological Strategies for the Protection of
Intellectual Property in the Networked Multimedia Environment,
pp. 121-152, 1994.

RAMKUMAR: TRUSTWORTHY COMPUTING UNDER RESOURCE CONSTRAINTS WITH THE DOWN POLICY 61

(13]

[14]

[15]

[lo]

(7]

(18]

[19]

[20]

(21]

(22]

(23]

[24]

(23]

26]

B. Chen and R. Morris, “Certifying Program Execution with
Secure Processors,” Proc. Ninth Workshop Hot Topics in Operating
Systems, May 2003.

E. Biham and A. Shamir, “Differential Fault Analysis of Secret Key
Cryptosystems,” Lecture Notes in Computer Science, vol. 1294, 1997.
M.G. Karpovsky, K. Kulikowski, and A. Taubin, “Robust
Protection against Fault-Injection Attacks of Smart Cards Im-
plementing the Advanced Encryption Standard,” Proc. Int’l Conf.
Dependable Systems and Networks, July 2004.

P. Kocher, “Differential Power Analysis,” Advances in Cryptology
—Proc. Ann. Int’l Cryptology Conf., pp. 388-397, 1999.

C. Aumeller, P. Bier, W. Fischer, P. Hofreiter, and J.P. Seifert, “Fault
Attacks on RSA with CRT: Concrete Results and Practical Counter-
measures,” Cryptology ePrint Archive, http://eprint.iacr.org/
2002/073.pdf, 2002.

S. Moore, R. Anderson, P. Cunningham, R. Mullins, and G. Taylor,
“Improving Smart Card Security Using Self-timed Circuits,” Proc.
Eighth Int’l Symp. Advanced Research in Asynchronous Circuits and
Systems, 2002.

O. Kommerling and M. Kuhn, “Design Principles for Tamper-
Resistant Smart-Card Processors,” Proc. Usenix Workshop Smartcard
Technology, pp. 9-20, 1999.

Y. Ishai, A. Sahai, and D. Wagner, “Private Circuits: Securing
Hardware Against Probing Attacks,” Advances in Cryptology—
Proc. Ann. Int’l Cryptology Conf., Aug. 2003.

J.P. McGregor and R.B. Lee, “Protecting Cryptographic Keys and
Computations via Virtual Secure Coprocessing,” ACM SIGARCH
Computer Architecture News Archive, vol. 33, no. 1, Mar. 2005.

P. Gutman, “Secure Deletion of Data from Magnetic and Solid-
State Memory,” Proc. Sixth Usenix Security Symp., July 1996.

R. Anderson and M. Kuhn, “Low Cost Attacks on Tamper
Resistant Devices,” Proc. Int’l Workshop Security Protocols, Apr.
1997.

D.R. Stinson, Cryptography, Theory and Practice, second ed. Chap-
man and Hall CRC, 2002.

C. Couvreur and J.-J. Quisquater, “Fast Decipherment Algorithm
for RSA Public-Key Cryptosystem,” Electronics Letters, vol. 18,
no. 21, pp. 905-907, 1982.

D. Clarke, J.-E. Elien, M. Fredette, A. Marcos, and R.L. Rivest,
“Certificate Chain Discovery in SPKI/SDSI,” |. Computer Security,
vol. 9, no. 4, pp. 285-322, 2001.

(27]

(28]

(29]

[30]

(31]

(32]

[33]

(34]

(33]

[30]

A. Shamir, “Identity-Based Cryptosystems and Signature
Schemes,” Advances in Cryptology—Proc. Ann. Int'l Cryptology
Conf., vol. 196, pp. 47-53, 1984.

D. Boneh and M. Franklin, “Identity-Based Encryption from the
Weil Pairing,” Advances in Cryptology—Proc. Ann. Int’l Cryptology
Conf., pp. 213-229, 2001.

R. Dutta, R. Barua, and P. Sarkar, “Pairing-Based Cryptography: A
Survey,” Report 2004/064, Cryptology ePrint Archive, 2004.

T. Leighton and S. Micali, “Secret-Key Agreement without Public-
Key Cryptography,” Advances in Cryptology—Proc. Ann. Int’l
Cryptology Conf., pp. 456-479, 1994.

R. Blom, “An Optimal Class of Symmetric Key Generation
Systems,” Proc. Ann. Int’l Conf. Theory and Applications of
Cryptographic Techniques, Advances in Cryptology, pp. 335-338, 1984.
T. Matsumoto and H. Imai, “On the Key Predistribution System: A
Practical Solution to the Key Distribution Problem,” Proc. Ann.
Int’l Cryptology Conf., Advances in Cryptology, pp. 185-193, 1987.
R. Di Pietro, L.V. Mancini, and A. Mei, “Random Key Assignment
for Secure Wireless Sensor Networks,” Proc. ACM Workshop
Security of Ad Hoc and Sensor Networks, Oct. 2003.

M. Ramkumar, N. Memon, and R. Simha, “Pre-Loaded Key Based
Multicast and Broadcast Authentication in Mobile Ad-Hoc Net-
works,” Proc. Global Telecomm. Conf., 2003.

M. Ramkumar and N. Memon, “An Efficient Random Key Pre-
distribution Scheme for MANET Security,” IEEE]. Selected Areas of
Comm., Mar. 2005.

R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor, and B.
Pinkas, “Multicast Security: A Taxonomy and Some Efficient
Constructions,” Proc. INFOCOMM ’99, 1999.

Mahalingam Ramkumar received the PhD
degree in electrical engineering from the New
Jersey Institute of Technology in 2000. He has
been an assistant professor in the Department of
Computer Science and Engineering, Mississippi
State University, since August 2003. His re-
search interests include Cryptography, key
distribution, ad hoc network security, and data
hiding. He is a member of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

