
Proxy Aided Key Pre-distribution Schemes for
Sensor Networks

Mahalingam Ramkumar
Department of Computer Science and Engineering

Mississippi State University, Mississippi State, MS 39762
Ph: 662-325-8435, Email: ramkumar@cse.msstate.edu

Abstract— Classical sensor network applications involve
deployments of a large number of resource constrained
wireless sensors in conjunction with a few “more capable”
proxy devices. Many key distribution schemes employing
only symmetric cryptographic primitives have been pro-
posed for establishing pairwise secrets between sensors.
At one end of the spectrum are Kerberos-like approaches
where proxy devices are trusted with secrets of sensors, and
mediate establishment of pairwise secrets between sensors.
At the other end of the spectrum are many collusion
susceptible key pre-distribution schemes that do not rely
on the proxy devices for establishment of pairwise secrets.
In this paper we propose a third approach where while the
proxies aid the sensors in the process of establishment of
pairwise secrets, the proxy devices are not trusted with the
secrets of the sensors.

I. INTRODUCTION

Ad hoc networks of spatially distributed battery pow-
ered wireless sensors will be useful for many application
scenarios involving monitoring of environmental con-
ditions like temperature, pressure, humidity, pollution
levels, etc. Such networks are typically constituted by
many inexpensive wireless sensors with limited battery
resources and limited transmission range (to reduce their
battery consumption) [1]. Sensors will relay measure-
ments over multiple hops to one (or more) more capable
proxy devices. The proxies may have intermittent access
to satellite channels for relaying measurements to a
remote location. ∝ Typically a large number sensors
and a small number of proxies may be aerially dropped
over a region to be monitored. The sensors and proxy
devices may then engage in protocols to facilitate i) geo-
graphic localization of sensors [2] and ii) determination
of optimal paths for relaying measurements to the closest
proxy. In some application scenarios proxies may also
be directed (from a remote location) to send specific
queries to specific sensors. Sensors may also exchange
measurements amongst themselves, possibly for more
efficient relaying of sensed measurements.

A. Key Distribution

One important requirement for securing interactions be-
tween sensors is the ability to establish pairwise secrets
between sensors. There are many compelling reasons to

limit key distribution schemes for this purpose to only
symmetric cryptographic primitives.

At one end of the spectrum of such schemes are
Kerberos-like scheme where proxies mediate estab-
lishment of pairwise secrets between sensors [5]. At
the other end of the spectrum are key predistribution
schemes (KPS) that facilitate ad hoc establishment (with-
out the need for a mediator) of pairwise secrets between
sensors [6]-[9]. KPSs can be broadly classified into non-
scalable and scalable schemes. For a network size of N
nonscalable schemes require every node to store O(N)
values. Scalable schemes which can support unlimited
network size are however susceptible to collusions. Most
n-secure scalable KPSs (which can resist collusions of
up to n nodes) require every node to store O(n) values.

Due to the modest storage abilities of sensors,
1) nonscalable KPSs can only support limited net-

work size; and
2) scalable KPSs (which can support unlimited net-

work sizes) can only offer low levels of collusion
resistance.

B. Contributions

In this paper we propose a third approach where while
the proxies aid the process of establishing pairwise
secrets, the proxies are not trusted with the secrets of
the sensors. We propose two key predistribution schemes
where the sensors can make effective use of the richer
but untrusted resources of proxy devices to establish
pairwise secrets. Consequently,

1) the first nonscalable scheme can realize “reason-
ably large” network sizes without the problem of
susceptibility to collusions

2) the second scheme can support unlimited network
size while achieving large collusion resistance.

In Section II we provide a brief overview of key
predistribution schemes. The network model and as-
sumptions made are enumerated. Current approaches
for key distribution in classical sensor networks and
their limitations are also described. In Section III we
argue that proxies can aid the process of establishing
shared secrets between sensors and describe some of the



desirable properties of key distribution schemes for this
purpose. The two proposed schemes are also described
in Section III. Conclusions are offered in Section IV.

The following notations are used in this paper
• h() : cryptographic hash function like SHA-1.
• Zu : the finite set of non-negative integers
{0, 1, . . . u− 1}.

• fu() : {0, 1}∗ → Zu : pseudo random function
(PRF) which maps a bit string of any length to an
integer in Zu.

• A,B,C : IDs of nodes;
• I : Space of IDs. If all IDs are 64 bits long I = Z264 .
• KAB : pairwise secret between A and B.

II. KEY DISTRIBUTION

A network is a collection of nodes with unique labels
(or identities). A key distribution scheme for a network
consists of a key distribution center (KDC) which pro-
vides every node with secrets. Using its secrets a node
can a) prove its identity to, and b) establish a private
channel with, any node in the network.

A. Key Predistribution Schemes

Key predistribution schemes consist of
1) nodes with unique IDs belonging to the set I, and
2) a key distribution center (KDC).

The KDC chooses a set of P secrets S. A node assigned
an ID A ∈ I is provided with a key-ring SA with k
secrets by the KDC. Using its key-ring SA, node A can
compute any KAI = KIA for all I ∈ I. Similarly, node
B can use its key-ring SB to compute any KBI = KIB

for all I ∈ I. Thus both A and B can independently
compute a common secret KAB = KBA. This secret
can be used for mutual authentication of nodes and for
establishing a private channel between the nodes.

1) Scalable and Nonscalable KPSs: KPSs can
be broadly classified into nonscalable and scalable
schemes. For nonscalable schemes the size of the set
I is limited to some value Nns. One example of a
nonscalable KPS is the “basic” KPS, where the KDC
generates

(
Nns

2

)
pairwise secrets, and provides each node

with k = Nns − 1 secrets.
For scalable KPSs the set I is unlimited (or network

size N is unlimited). Nevertheless, the key-ring size is
a constant k which is independent of the network size
N . However, by pooling together the key-rings of (say)
n nodes in a set A ⊂ I, the attacker may be able to
illegitimately compute1 KXY even when {X,Y } ∩A =
∅. Thus scalable KPSs achieve unrestricted scalability by
sacrificing resistance to collusions.

1Note that for schemes which are not susceptible to collusions such
an attacker can only compute secrets of the form KXY if X ∈ A or
Y ∈ A.

2) Deterministic and Probabilistic KPSs: Scalable
KPSs can be classified into n-secure deterministic
schemes [10] and (n, p)-secure probabilistic schemes
[13], [11], [12]. For the former, an attacker with ac-
cess to secrets of n or less nodes cannot determine
any illegitimate2 shared secret. However, with access to
secrets of more than n nodes, the attacker can discover
all pairwise secrets. Such n-secure deterministic KPSs
require k = O(n) to achieve n-security.

For an (n, p)-secure probabilistic KPS (P-KPS) an
attacker with access to secrets of n randomly chosen
nodes can compute any illegitimate pairwise secret with
a probability p. In other words, such an attacker can
compute a fraction p of all illegitimate pairwise secrets.
For P-KPSs p(n) is a smooth and monotonically increas-
ing function of n. P-KPSs require k = O(n log(1/p)) to
achieve (n, p)-security [12].

B. Assumptions and Network Model

The nodes (with unique IDs) of the network are sensors
and proxies manufactured by one or more vendors. Every
sensor is equipped with

1) modest hardware for performing symmetric cryp-
tographic computations (block encryption, hashing
etc.), and

2) a few tens of kilobytes of storage for keys and
software.

The proxy devices are assumed to be comparable in
capability to a modern mobile phone / PDA. More
specifically, proxy devices can support several Gigabytes
of storage using flash storage cards.

The KDC is an entity who

1) verifies the integrity of sensors and proxies;
2) assigns credentials and unique IDs to them, and
3) secrets corresponding to the ID,

before sensors/proxies reach consumers who deploy sen-
sor networks.

As an example, a deployer may acquire tens of thou-
sands of sensors and a few tens of proxies and aerially
drop thousands of sensors along with one or more
proxies in different locations. We shall assume that the
specific sensors and proxies acquired by the deployer are
randomly chosen from the large number N of devices
that have been manufactured.

Once the sensors (along with proxies) are dropped
over some remote region, every sensor will be required
to establish a pairwise secret with all its “accidental
neighbors” who happen to fall close to them, and perhaps
a few other sensors / proxies depending on the nature of
the application. Note that even while in the field the
sensor A may have to establish shared secrets only with

2By pooling secrets of other nodes.



a small set of sensors (for example neighbors of A), no
information is available regarding the IDs of such nodes
at the time the sensor A was provided with secrets (in the
factory floor). Thus every sensor should have the ability
to establish a secret with any of the N sensors / proxies.

III. TAKING ADVANTAGE OF PROXIES

Existing symmetric-only key distribution schemes for
large scale sensor networks can be classified into two
categories: Kerberos-like schemes, and key predistribu-
tion schemes (KPS).

In a scenario where the total number of proxy devices
is small, it may be feasible to provide every sensor with
a secret it shares with every proxy. Sensors can then
use the closest proxy to mediate a session secret with
other sensors. The disadvantages of such an approach
are three-fold:

1) Proxies are trusted only for relaying measure-
ments: only the sensors are trusted for the mea-
surements reported by them. Thus keys assigned
to sensors for purposes of authentication of sensor
data (exchanged between sensors) should not be
privy to the proxies.

2) An attacker who has compromised a proxy device
will be able to impersonate a large number (or
even all) sensors. While an attacker who has
compromised a proxy device may be able to stop
the sensor network deployment (or a part of the
deployment) from being useful, it is not desirable
for the attacker to be able to impersonate sensors
to send misleading information: “no information”
is acceptable; deliberately misleading information
is not.

3) It is also desirable for sensors to be able to
authenticate themselves in scenarios where they
cannot gain access to the proxy device.

A second approach is the use of scalable KPSs which
provides the ability to establish pairwise secrets with-
out using a mediator. Due to limited storage ability
of sensors, such schemes cannot realize high collusion
resistance n.

A. Proxy Aided KPS

A third approach proposed in this paper is proxy-aided
key predistribution schemes (PA-KPS) where proxies
aid the sensors in establishing pairwise secrets, without
gaining clear access to the secrets of the sensors.

Every sensor stores a unique secret known only to
the KDC. Such a secret MA of sensor A is used for
encrypting and/or authenticating A’s PA-KPS key-ring.
The encrypted key-ring is however stored in a proxy
device. The proxies are not privy to the secret MA.
Thus sensors employ the proxy as an untrusted external

storage location. We shall also assume that each proxy
has a storage capacity of 32 GB (or 32 × 232 = 235

bytes). Let us also assume that the PA-KPS secrets are
10 bytes long, and thus the total S = 235/10 such values
can be stored by a proxy. The question now is what is
a good choice for such a PA-KPS?

For the desired application model where deployers
simply choose a random set of sensors and proxies to be
deployed over some region, every proxy would need to
store the key-rings of all N devices. Mandating large N
and large key-ring size k will render the storage S = kN
required for proxies unacceptable. Clearly, existing KPSs
are not very useful here, especially for large N .

We shall now present two KPSs that are good choices
for proxy aided KPSs. In both schemes sensors store one
or a small number of secrets. The proxies store public
values (which need not be encrypted). The first scheme is
not susceptible to collusions and can support reasonably
large network sizes N . The second scheme can support
unrestricted network size N and can offer high levels of
collusion resistance.

1) The Leighton-Micali Scheme: Both schemes are
variants of an elegant scheme proposed by Leighton
and Micali [13] as an alternative to Kerberos. We shall
refer to the scheme as LM-KDS (in [13] the authors
simply refer to it as “scheme III”). In LM-KDS, the
KDC chooses a master key K and a hash function
h(). An node with ID A is provided with the secret
KA = h(K,A). When A desires to establish a session
secret with B, A approaches an on-line KDC to receive
a public value PAB where

P (A,B) = h(KA, B)⊕ h(KB , A) = P (B,A). (1)

The shared secret between A and B is computed by A
as

KAB = h(KA, B)⊕ P (A,B) = h(KB , A). (2)

Note that B can also compute the shared secret KAB =
h(KB , A) directly using its secret KB (without using
the public value P (A,B)). The value PAB is public as
it reveals no information about the secrets of A or B or
KAB or KBA to entities other than A or B, and thus
need not be kept a secret.

B. A Scheme for Limited N

If node A (with secret KA) has access to all public
values P (A, i) for all i ∈ I, then LM-KDS becomes
a key predistribution scheme, or LM-KPS, which facili-
tates A to compute any secret KAi. Unlike the basic KPS
for which every node is provided with N − 1 secrets,
in LM-KPS every node needs to store one secret and
N − 1 public values. Like the basic KPS the LM-KPS
is nonscalable. Alternately, LM-KPS can also be used in



conjunction with an untrusted public repository with the
ability to store

(
N
2

)
public values. Nodes will simply get

the necessary public values from the repository.
The proxies can play this role of untrusted repositories

by storing S =
(
N
2

)
public values. For S =

(
N
2

)
=

235/10, we have Nmax ≈ 83, 000. A node A with
neighbors (say) B,C,D can get the required public
values P (A,B), P (A,C), P (A,D) from closest proxy
and compute KAB ,KAC and KAD. On an average every
node will be required to get the public values of only half
its neighbors as only one of the two nodes at either ends
of a link need the public value. It is important to note
that access to the public values provides no information
about the secrets assigned to sensors.

Before sensors can send a neighbor list to the proxy,
sensors will need to identify their neighbors. It is desir-
able to have some initial neighbor authentication scheme
for this purpose to avoid unnecessary overheads3. For
example, a traditional KPS with low levels of collusion
resistance (as only a small key-ring is stored by every
sensor) can be used for this purpose.

The sensor A can authenticate its request (consist-
ing of a list of its neighbors) to a proxy R using a
secret h(KA, R) - which the proxy can compute as
h(KR, A) ⊕ P (A,R) (as the proxy has access to all
public values). For a sensor A with neighbors B,C,D
the proxy may send up to three public values in response
(P (A,B), P (A,C) and P (A,D)). This response will
also be authenticated using the shared secret h(KA, R).
While authentication is not strictly required to gain
access to the public values, mandating authentication can
prevent denial of service attacks. Without this an attacker
may be able to send numerous unwarranted requests to
the proxy device and thus waste precious bandwidth.
Authentication by the proxy can prevent unauthorized
modification of the values by an attacker between the
proxy and the sensor.

Using the public value P (A,B), A can now compute
the pairwise secret KBA = h(KA, B)⊕P (A,B), which
can be directly computed by B as KBA = h(KB , A).
Only one of the two neighbors require the public value
corresponding to the other. Thus, on an average, every
node requires half as many public values as the number
of its neighbors (to be sent by a proxy).

C. A Scheme for Unlimited N

The nonscalable LM-KPS can be further extended to a
scalable KPS by using many instances of LM-KPSs in
parallel. In the proposed parallel Leighton-Micali (PLM)
scheme for unlimited N , the KDC chooses m parallel

3For example, an attacker could cause nodes to send lists containing
nonexistent sensors. Only after the response from the proxy will
sensors realize that such nodes do not exist.

schemes, each with M distinct IDs.
The KDC chooses m master secrets, say K0 · · ·Km−1

and computes public m
(
M
2

)
values

Pi(j1, j2) = h(Ki,j1 , j2)⊕ h(Ki,j2 , j1), j1 6= j2, (3)

where {j1, j2} ∈ ZM and i ∈ Zm.
The KDC chooses a public pseudo-random function

(PRF) fM () : {0, 1}∗ → ZM which maps bit strings
of any length to an integer between 0 and M − 1 (for
example, a hash function with log2M -bit output). A sen-
sor with ID A is associated with m values a0 · · · am−1

where

ai = fM (A ‖ i), ai ∈ ZM∀i ∈ Zm (4)

Corresponding to the values a0 · · · am−1 the sensor A is
provided m secrets K0,a0 · · ·Km−1,am−1 where

Ki,ai = h(Ki, ai), (5)

Thus each sensor stores m secrets.
A proxy with ID R is provided secrets m secrets
Ki,ri

= h(Ki, ri = f(R, i)), 0 ≤ i ≤ m−1. In addition,
all S = m

(
M
2

)
public values are also provided to every

proxy device before they leave the factory floor.
1) Key Establishment: The sensor A relays the list of

its neighbors to the proxy R. This list can be authenti-
cated by A using the secret KAR where

KAR = h(K1,a1 , r1)⊕ · · · ⊕ h(Km,am , rm). (6)

The proxy device can compute each of the m compo-
nents of KAR as

h(Ki,ai
, ri) = h(Ki,ri

, ai)⊕ P (ai, ri), (7)

and thus compute the shared secret KAR.
The proxy device relays s values to A - one corre-

sponding to each of A’s neighbor. More specifically,
corresponding to a neighbor B, A receives a value
Q(A,B) from the proxy where

QA,B = P1(a1, b1)⊕ · · · ⊕ Pm(am, bm) (8)

where ai = f(A, i), bi = f(B, i) for 1 ≤ i ≤ m. The
shared secret KAB is computed by A as

KAB = {h(K1,a1 , b1)⊕ · · · ⊕ h(Km,am
)} ⊕QA,B (9)

Sensor B on the other hand can simply compute KAB

as

KAB = h(K1,b1 , a1)⊕ · · · ⊕ h(Km,bm , am). (10)



D. Collusion Resistance

It is assumed that the attacker has access to all S =
m

(
M
2

)
public values. In addition the attacker has the

secrets of n sensors. An attacker who has secrets of a
sensor C may be able to compute h(Kj,aj

, bj) for some
j if

fM (C ‖ j) = cj ∈ {aj , bj}. (11)

More specifically, if cj = aj , C has access to the
secret Kj,aj

and can trivially compute h(Kj,aj
, bj). If

cj = bj , C has access to the secret Kj,bj he can
compute h(Kj,bj , aj) ⊕ Pj(aj , bj) = h(Kj,aj , bj). As
the PRF fM () produces uniformly distributed random
numbers between 0 and M − 1 the probability of such
an occurrence (fM (C ‖ i) = ci ∈ {ai, bi}) is

γ =
2(M − 1)
M2

≈ 2/M, (12)

for large M . The probability that a specific h(Ki,ai
, bi)

or h(Ki,bi
, ai) cannot be computed by a an attacker with

secrets of n nodes is thus (1 − γ)n ≈ e−γn. In order
to compute a pairwise secret KAB the attacker has to
compute h(Ki,ai , bi) or h(Ki,bi , ai) for all 0 ≤ i ≤
m−1. The probability p(n) that the attacker can compute
KAB is then

p(n) ≈ (1− e−2n/M)m (13)

1) Choice of Parameters m and M : From Eq 13 it
can be readily seen that by choosing m ∝ log(1/p)
and M ∝ n we can achieve any desired p(n). Thus the
storage complexity for the proxy for S = m

(
M
2

)
secrets

is O(n2 log(1/p)).
For S = m

(
M
2

)
< 235/10, some feasible choices of

parameters (m,M) are then (m = 2,M = 58617),
(m = 3,M = 47861), (4, 41449), (5, 37073),
(6, 33843), (4, 41449), (7, 31332), (8, 29309),
(12, 23930), (16, 20724), (24, 16921), (32, 14654),
(48, 11965), (m = 64,M = 10362), (m = 80,M =
9268), (m = 96,M = 8461), etc.

Table 1 depicts the number of sensors nj to be
compromised by an attacker to compromise a fraction
pj = p(nj) of all link secrets for various such val-
ues of m,M . For example, for m = 48 and M =
11965, the attacker has to compromise n1 = 3410
sensors for illegitimately compromising one in a tril-
lion links; the attacker has to compromise secrets from
n2 = 4580, n3 = 6440, n4 = 9990, n5 = 13830
and n6 = 19130 sensors for compromising one in a
billion, million, thousand, 512, and 4 links respectively
(or pj = p(nj) = {2−40, 2−30, 2−20, 2−10, 2−5, 2−2}
respectively).

Note that for small m (and larger M as S = m
(
M
2

)
),

p(n) degrades more gracefully. The choice of larger m

TABLE I
COLLUSION RESISTANCE

PLM: unlimited network size N
m M n1 n2 n3 n4 n5 n6

12 23930 430 1020 2500 6820 12880 22420
16 20724 880 1720 3490 7940 13620 22180
24 16921 1770 2850 4820 9100 14130 21370
32 14654 2470 3640 5610 9630 14160 20540
48 11965 3410 4580 6440 9990 13830 19130
64 10362 3970 5090 6810 10010 13400 18030
80 9268 4320 5380 6990 9920 12990 17150
96 8461 4550 5560 7060 9780 12610 16420

KSSC for network size N = 85, 000
m′ M ′ n1 n2 n3 n4 n5 n6

20 2021 1400 1820 2480 3700 5030 6830

Subset allocation Scheme for network size N = 85, 000
t k n1 n2 n3 n4 n5 n6

536 40424 535 690 905 1278 1650 2140

(smaller M ) performs better for smaller n but degrades
faster. This is not surprising considering Eq 13, where
for some desired p(n), M ∝ n.

E. Other Probabilistic KPSs

All KPSs are essentially trade-offs between security
and complexity. The complexity of KPSs however has
three facets [3]: i) storage complexity for secrets; ii)
computational complexity (for computing pairwise se-
crets); and iii) memory-fetch complexity (the number
of secrets that need to fetched from the key ring and
used for computing any pairwise secret). For n-secure
deterministic schemes all three facets of complexity are
O(n).

For (n, p)-secure probabilistic KPSs (P-KPS) the stor-
age complexity is k = O(n log(1/p)). The compu-
tational complexity and memory-fetch complexity are
O(log(1/p)), which is independent of n [3].

For the well known schemes based on subset allocation,
defined by parameters (k, ξ) [11], [12] the KDC chooses
P = k/ξ secrets and provides k secrets to every node.
Any two node will share kξ secrets on an average. For
such schemes

p(n) = (1− ξ(1− ξ)n)k. (14)

Realizing a (n, p)-secure scheme calls for k ≥
2.72n log(1/p), and for the minimum value of k
we need to choose and ξ ≈ 1/n [12]. The KDC
chooses 2.72 log(1/p)n2 secrets and provides every node
with 2.72 log(1/p)n secrets. Any two nodes will share
2.72 log(1/p) secrets on an average.

For a more efficient P-KPS proposed recently - the key
subset and symmetric certificates (KSSC) scheme [14],
defined by two parameters m′ and M ′,

p(n) ≈
(
1− e−n/M′

)2m′

. (15)



The KDC chooses M ′m′ secrets and provides each node
with m′ secrets and m′M ′ symmetric certificates (which
are also treated by nodes as secrets). For (n, p)-secure
KSSC each node needs to store m′ = log2(1/p) secrets
and k = m′M ′ ≈ 1.04n log(1/p) symmetric certificates.

1) Advantages of P-KPSs: Some of the well rec-
ognized advantages of P-KPSs (over deterministic
schemes) are i) their low hardware complexity: only a
block-cipher or hashing is required; finite-field arithmetic
is not necessary; and ii) their security degrades gracefully
with increasing number of compromised nodes; and iii)
their ability to employ multi-path diversity to improve
their security [7].

Two other compelling advantages come from their i)
low memory-fetch complexity and ii) low complexity of
operations performed with secrets.

For deterministic KPSs where all k secrets are used
for computing any pairwise secret, we cannot afford to
store the sensor’s secrets in a proxy and “fetch them
when necessary.” P-KPSs can however utilize external
storage and fetch the small number of secrets required
when required.

Secondly, as deployments may be unmonitored, it is
necessary to consider the possibility of attackers who
may desire to impersonate genuine sensors for purposes
of sending misleading information. Thus, not withstand-
ing their low cost, sensors will need to be tamper-
responsive, and zeroise secrets under suspicions of in-
trusions. Due to the modest complexity of operations
(for P-KPSs) performed with secrets we can afford to
employ a low-complexity low-power chip to perform
such computations. Such chips can be afforded better
protection at low cost [3].

F. PLM vs Other P-KPSs

Even while P-KPSs have compelling advantages over
deterministic KPSs, existing P-KPSs are still not good
choices for PA-KPSs. The reason for this is that we
desire any sensor to be able to employ any proxy, as it
may be inconvenient to bind specific sensors to specific
proxies during the time the keys were provided to the
sensors and proxies. The implication then is that every
proxy should store the values assigned to every sensor.
Obviously for large N we cannot afford to assign a large
number of PA-KPS values (k) to every sensor as we
require kN ≤ S.

For a subset allocation scheme with parameters (k, ξ)
the KDC chooses P = k/ξ independent secrets. If
the proxy could just store the P secrets the acheivable
collusion resistance will be independent of the network
size N . Unfortunately, though one of the P secrets (say
Ki) may be assigned to Nξ nodes (as each node gets any
secret with a probability 0 ≤ ξ ≤ 1), the proxy needs to

store Nξ copies of the same secret - each copy encrypted
with a secret privy only to one node (as the proxies
should not gain clear access to the secrets assigned to
sensors).

Note that PLM can also be used a traditional P-KPS
if every sensor also stores k = mM public values (in
addition to m secrets). The storage complexity is thus
O(n log(1/p)). For computing KAB , A has i) compute
bi = f(B, i), 0 ≤ i ≤ m − 1, ii) fetch m public
values P (ai, bi), and iii) compute m hashes. Thus the
computational complexity and memory-fetch complexity
are independent of n.

However the primary advantage of PLM over other P-
KPSs (like subset allocation schemes and KSSC) stems
from the fact that for a network size of N the proxy need
not store Nk = NmM public values. The proxies need
to store only m

(
M
2

)
values - which is independent of

N . As public values need not be encrypted, one public
value can be used by multiple nodes. For example, a
public value Pi(a, b) can be used by any node for which
the ithshort ID is a or b. On an average, a specific public
value Pi(a, b) can be useful for 2N

mM nodes.
Thus for a give storage limitation S, for traditional

P-KPSs n ∝ 1/N . For PLM n ∝
√
S, which is

independent of N . Or

S =
{
kN ∝ nN Traditional P-KPSs
m

(
M
2

)
∝ n2 PLM

(16)

In the rest of this section we will show why for any
storage limitation S and for any network size N the
best choice is either the nonscalable LM-KPS or PLM.
To demonstrate this we shall show that this is indeed the
case for a fixed S, and then argue why this holds for any
S.

First let us consider the case where the storage capacity
for the proxy is S = 235/10. For the assumed storage
capacity, S = 235/10 values for each proxy, as long
as the network size is less than Nns = 85, 000, we
have no reason to choose a collusion susceptible KPSs.
Similarly for very large N PLM is obviously a good
choice. For unlimited N existing P-KPSs are not useful
as the acheivable collusion resistance n ∝ 1/N .

The question now is for N > Nns+ ε (which rules out
the use of LM-KPS), would a traditional P-KPS perform
better than PLM? If the performance of existing P-KPSs
(subset allocation schemes and KSSC) is inferior to PLM
even for N = Nns, obviously they will be inferior for
larger N as n ∝ 1/N (for a given S).

For a subset allocation scheme for a network size of
N = 85, 000 and S = kN = 235/10 we have k ≤
40424. For KSSC for a network size of N = 85, 000
we can choose m′ = 20 and M ′ = 2021. The storage
corresponding to each sensor is k = m′M ′ = 40420.



The achievable p(n) for a subset allocation scheme with
k = 40424, t = 536 and a KSSC scheme with m′ = 20
and M ′ = 2021, are also indicated in Table 1 for N =
85, 000.

Clearly, the performance of PLM is superior to KSSC
and subset allocation scheme for this particular choice of
proxy storage capability S = 235/10. However, it is easy
to see that this is true for any proxy storage capability.

If the storage capability of proxies increase by a factor
100

1) we can realize a ten-fold improvement in collusion
resistance n of PLM (as S ∝ n2);

2) a hundred fold increase in S also implies a ten-
fold increase in the network size Nns that can
be supported by the nonscalable LM-KPS (Nns
increases to 850,000);

3) as there is no reason to consider a scalable KPSs
for N < 850, 000, a 100 fold increase in S = kN
(for other P-KPSs) implies

a) a ten-fold increase in N , and
b) a ten-fold increase in k.

Thus the collusion resistance improves by a factor
10 (same as PLM).

In other words, for any storage capability of the prox-
ies, and for any network size, the best choice for PA-KPS
is

1) the nonscalable LM-KPS (if the network size N
is such that S ≥

(
N
2

)
, or

2) PLM, for large / unlimited network size.

IV. CONCLUSIONS

We proposed a novel key distribution scheme for sensor
network applications involving deployments of a large
number of resource constrained sensors along with few
more capable proxy devices. We argued that current
approaches for establishing pairwise secrets between
sensors either i) require sensors to trust the proxy device
with their secrets or ii) settle for low collusion resistance
due to the limited resources of sensors. In this paper
we presented a third approach where proxies serve as
untrusted storage resources for the sensors. The proxies
are not trusted with the secrets of the sensors. The
proposed two schemes which can take good advantage
of the storage resources of proxies.

The first scheme, LM-KPS is not susceptible to col-
lusions, and can achieve reasonable large network sizes
(many tens of thousands). The second scheme can realize
unlimited network sizes while providing high levels of
collusion resistance.

At the crux of both schemes is that the proxies need
to store only public values. For the nonscalable scheme
each public value can be used by a pair of nodes. For the

scalable PLM a public value Pi(j1, j2) can be used by
any node for which the ithshort ID is j1 or j2. In both
schemes a node with r neighbors will need to fetch r/2
public values from the closest proxy in order to establish
a secret with all neighbors.

REFERENCES

[1] C-Y Chong, Kumar, S.P., “Sensor networks: Evolution, opportu-
nities, and challenges,” Proc IEEE, August 2003.

[2] T. He, C. Huang, B. Blum, J. Stankovic, T. Abdelzaher. “Range-
Free Localization Schemes in Large Scale Sensor Networks,”
Mobile Computing and Networking (MobiCom2003), 2003.

[3] M. Ramkumar, “Trustworthy Computing Under Resource Con-
straints With the DOWN Policy,” IEEE Transactions on Secure
and Dependable Computing, Jan 2008.

[4] S.W. Smith, S. Weingart, “Building a High-Performance
Programmable Secure Coprocessor,” IBM Technical Report
RC21102, Feb 1998.

[5] A. Perrig, R. Szewczyk, J.D. Tygar, D. E. Culler, “SPINS:
Security Protocols for Sensor Networks,” Wireless Networks 8
521–534, 2002.

[6] L.Eschenauer, V.D.Gligor, “A Key-Management Scheme for Dis-
tributed Sensor Networks,” Proceedings of 9th ACM Conference
on Computer and Communications Security, Washington DC, pp.
41-47, Nov 2002.

[7] H.Chan, A.Perrig, D.Song, “Random Key Predistribution
Schemes for Sensor Networks, ” IEEE Symposium on Security
and Privacy, Berkeley, California, May 2003.

[8] Di Pietro, R., Mancini, L. V., and Mei, A., “Random key assign-
ment for secure wireless sensor networks,” Proc. ACM Workshop
on Security of Ad Hoc and Sensor Networks (SASN’03), Fairfax,
VA, USA, 62–71, 2003.

[9] D. Liu, P.Ning, “Establishing Pairwise Keys in Distributed Sensor
Networks,” Proceedings of the 10th ACM Conference on Com-
puter and Communication Security, Washington DC, 2003.

[10] R. Blom, “An Optimal Class of Symmetric Key Generation Sys-
tems,” Advances in Cryptology: Proc. of Eurocrypt 84, Lecture
Notes in Computer Science, 209, Springer-Verlag, Berlin, pp.
335-338, 1984.

[11] M.Dyer,T.Fenner,A.Frieze and A.Thomason, On Key Storage in
Secure Networks, Journal of Cryptology, 8, 189-200, 1995.

[12] M. Ramkumar, N. Memon, “An Efficient Random Key Pre-
distribution Scheme for MANET Security,” IEEE Journal on
Selected Areas of Communication, March 2005.

[13] T. Leighton, S. Micali, “Secret-key Agreement without Public-
Key Cryptography,”Advances in Cryptology - CRYPTO 1993, pp
456-479, 1994.

[14] M. Ramkumar, “Efficient Key Distribution Schemes for Large
Scale Mobile Computing Applications,” Cryptology ePrint
Archive, 2008/332, http://eprint.iacr.org/2008/332.pdf.


