
Contents

Acknowledgements i

Abstract vii

1 Introduction 1

1.1 Mathematical Foundation . 2

1.2 Organization of the Thesis . 6

2 Review of IFS Image Coding 8

2.1 Jacquin's method . 8

2.1.1 Complexity of the coder . 11

2.2 Higher Order IFS . 11

2.3 Inner Product Space Approach . 13

2.4 Complexity Reduction Methods in Fractal Image Compression 13

2.4.1 Domain Pool Restriction . 14

2.4.2 Block Classi�cation . 14

2.4.3 Adaptive Clustering . 15

2.4.4 1-D Functional Methods . 15

2.4.5 Feature Vectors . 16

2.4.6 Transform Domain Block Matching 16

2.5 Issues in Decoding . 16

2.6 Wavelet-Fractal Coders . 19

3 A Fast Method for Block Matching 21

3.1 Introduction . 21

3.2 Block Matching by Inner Product . 22

ii

3.3 Limiting Scale Factor . 23

3.4 Quantization of Scale Factor . 24

4 FFT Based Block Matching 25

4.1 The Method . 25

4.1.1 Implementation . 26

4.2 Complexity of FFT-Based Block Matching 28

4.3 Faster Suboptimal Alternative . 29

4.4 Application of FFT-Based Block Matching for Encoding Errors 31

5 A Class of Feature Highlighting Transforms 35

5.1 Introduction . 35

5.2 Feature Highlighting Transforms . 36

5.3 Construction of Basis Vectors for FHT . 38

5.4 Implementation of FHT and IFHT . 41

5.5 Extension to Higher Dimensions . 41

5.6 Use of FHT in Image Compression . 42

5.7 A Variant of the FHT . 43

6 Interpolation of Images 48

6.1 Fractal Interpolation . 48

6.1.1 Convergence of the IFS . 51

6.1.2 Results . 51

6.1.3 Interpolation as a Route to Low Bit Rate Fractal Coding 52

6.1.4 Feature Highlighting Transforms for Interpolation 52

6.2 Comparison with Other Interpolation Schemes 54

6.2.1 Interpolation Using DCT . 54

6.2.2 Interpolation Using Subband Decomposition 54

7 Conclusions 58

A Original Images Used 61

Bibliography 64

iii

List of Figures

2.1 Mapping of domain to range blocks. 9

2.2 Partitioning of a square A by the IFS w

1

,w

2

,w

3

and w

4

. 12

2.3 The 3 major classes of Fisher's classi�cation scheme. 15

2.4 Subband decomposition of an image. 20

4.1 Hilbert curve scanning of a 4� 4 block. 27

4.2 The decoded `Lena' image with (a) (top left) FFT-based block matching -

Hilbert scan, (b) (top right) normal scan, and (c) (bottom) Jacquin's method. 30

4.3 (a) (Top) `Lena' image at compression ratio of 95, and (b) (bottom) after

error coding (compression ratio 19.5, SNR 31.25 dB). 34

5.1 FHT for highlighting the feature of �gure (ii). The `desired feature', shown

in (ii), occurs at four instances in (i) corresponding to the four leading

transform coe�cients in (iv); (iii) is the closest all-pass impulse response

to the feature vector of (ii) and hence the basis vector used for the trans-

formation. 40

5.2 An example of 2-dimensional feature and basis vectors. 42

5.3 (a) (Top) decompressed `Lena' image at compression ratio of 95 with FHT,

(b) (bottom) without FHT. 44

5.4 Blowup of face and tip-of-hat of `Lena'. Top row- with FHT. Middle row-

without FHT. Bottom row- original `Lena'. 45

5.5 An example demonstrating tradeo�s between temporal resolution and the

closeness of the basis vector to the feature vector. 47

iv

6.1 (a) (Top left) interpolated `Elephants' image (512 � 512). The original

128� 128 image was coded using 2� 2 range blocks.(b) (Top right) coded

using 4 � 4 range blocks. (c) (Bottom left) 4 � 4 range blocks with n of

(6.4) equal to 8. (d) (Bottom right) n = 8. 50

6.2 (a) (Top left) 512� 512 interpolated `Squirrels' image for n = 4. (b) (Top

right) `Cheetah' (c) (bottom left) and (d) (bottom right) `Girl'. (a), (b)

and (c) are results of interpolation with range block size of 4�4 and n = 4.

(d) is obtained from range block size of 8� 8 with n = 16. 53

6.3 (a) (Top) interpolated `Lena' image with FHT. (Figure 4.3-(a) shows the

the interpolated `Lena' image without FHT). (b) (Bottom) interpolated

`Squirrel' image with FHT. 55

6.4 (a) (Top left) DCT interpolation of 128�128 `Elephants' image to 512�512

image. (b) (Top right) linear interpolation. (c) (Bottom left) subband in-

terpolation of `Elephants' image. (d) (Bottom right) subband interpolation

of `Cheetah' image. 56

6.5 Subband interpolation of images. h is the low pass Quadrature Mirror Filter. 57

A.1 128� 128 images. `Elephants', `Squirrels', `Girl', and `Cheetah'. 62

A.2 512� 512 images. `Lena', `Peppers',`Boats' and `Baboon'. 63

v

List of Tables

4.1 Comparison of SNR of decoded images for Jacquin's method (JM), FFT-

based block matching - normal scan (FFT-NS) and Hilbert scan (FFT-HS). 29

4.2 SNR of reconstructed images for various choices of the number k of best

matching domain blocks retained. NS:normal scan, HS: Hilbert scan. . . . 31

4.3 SNR of reconstructed images of the multistage compression scheme for

various choices of the number k of best matching domain blocks retained. . 33

vi

Abstract

Fractal image compression based on the use of iterated function systems (IFS), is

a class of image compression techniques which o�er the advantages of high compression

ratio and fast decoding. In this thesis we present several new techniques to increase the

e�cacy of fractal image compression.

Fractal image compression requires high encoding times due to the requirement

of search for the best �tting domain block for each range block. We show that matching

of domain and range blocks can be more e�ciently done by an inner product of range

and domain blocks, than by the traditional least squares regression. We then introduce

a new FFT-based block matching technique, which can considerably increase the speed

of the encoding process. We also present a hybrid scheme of image compression wherein

the �rst stage of compression is a conventional low-bit-rate fractal coding followed by a

method of encoding errors by FFT-based block matching.

We introduce a new family of Feature Highlighting Transforms (FHT) which

are a class of unitary transforms in which the basis vectors are chosen to highlight a desired

feature of the signal. The FHT is then used to highlight the edges in images before they

are encoded using a low-bit-rate fractal coding scheme. Coding in conjunction with FHT

results in a much better reproduction of edges than coding without FHT. Extensions of

the FHT which permit a trade-o� between resolution and �delity are also brie
y explored.

We then explore the well known property of size invariance of the IFS code

which permits use of IFS coding for image interpolation. It is observed that IFS codes

with larger range blocks are better suited for interpolation than codes with small range

blocks. However, increasing the size of the range blocks results in a reduction in the

peak signal to noise ratio (PSNR). We therefore introduce a new IFS coding scheme in

which multiple domain blocks are used to approximate each range block and thus an

improvement in PSNR is achieved without reducing the size of the range blocks. We also

vii

study the usefulness of the FHT used in conjunction with IFS coding for interpolation of

images. Finally we make a comparative study of interpolation using IFS with DCT and

Subband interpolation.

viii

Chapter 1

Introduction

Image Data Compression [1] has become an important issue for the purpose of

storage and transmission of images or sequences of images, due to their large memory

requirements. Most of the methods in use can be classi�ed under the head of `lossy'

compression. This implies that the reconstructed image is always an approximation of

the original image. Thus to be e�ective, one should take the human visual system into

account before designing the compression scheme.

The most popular among these methods is the discrete cosine transform(DCT)

[2], which is known to be the closest to the ideal energy compaction transform, the

Karhunen-Louve Transform (KLT), for images [1]. The DCT is also the JPEG stan-

dard [3] for still image compression. However in the recent past some new methods have

been investigated which perform as well or better than the DCT in most cases. No-

table among them are the wavelet transform, [4, 5] (which is closely related to subband

coding [6] and pyramid decomposition [7]), and iterated function systems (IFS) image

compression [8, 9, 10, 11], more commonly referred to as fractal image compression.

IFS image compression was �rst suggested by Barnsley [11] in 1988. However

the �rst automated compression scheme for real world images using IFS was developed by

Jacquin [8, 9] in 1990. During the last six years immense research activity has taken place

in this �eld. As a result, currently, IFS image compression is considered to be comparable

to the existing methods at high and moderate bit rates (.5 to 1 bpp) and superior to most

methods at low bit rates (< 0:25 bpp). The main disadvantage of the IFS scheme is that

the encoding process is computationally very intensive. However decoding is simple and

fast. This method is thus ideally suited for browsing archives where encoding is done only

1

once, while decoding is done often.

1.1 Mathematical Foundation

There are four main mathematical concepts [12] underlying IFS image compression:

metric spaces, contractive maps, the contractive mapping �xed point theorem, and the

collage theorem.

De�nition 1.1 : A metric space (X ; d) is a set X with a real-valued distance measure

(metric) d : X � X ! <, de�ned with the following properties:

1. d(a; b) � 0 8 a; b 2 X .

2. d(a; b) = 0 i� a = b 8 a; b 2 X .

3. d(a; b) = d(b; a) 8 a; b 2 X .

4. d(a; c) � d(a; b) + d(b; c) 8 a; b; c 2 X . (Triangle Inequality)

In most of our applications the metric space (X ; d) is the space of M � N matrices

whose elements correspond to pixel values of images. For the metric d we use the squared

error. For example if A = ha

ij

i;B = hb

ij

i 2 X then

d(A;B) =

M

X

i=1

N

X

j=1

(a

ij

� b

ij

)

2

: (1.1)

De�nition 1.2: A sequence of points fx

n

g in a metric space is called a Cauchy se-

quence if for every � > 0 there exists an integer N such that

d(x

m

; x

n

) < � 8 n;m > N: (1.2)

De�nition 1.3: A metric space X is complete if every Cauchy sequence in X converges

to a limit point in X .

De�nition 1.4: Let (X ; d) be a metric space. A map w : X ! X is Lipschitz with

Lipschitz factor s if there exists a positive real number s such that

d(w(A); w(B)) � sd(A;B) 8 A;B 2 X : (1.3)

If the Lipschitz factor s < 1, then w is said to be contractive with contractivity s.

Theorem 1.1: (The Contraction Mapping Fixed Point Theorem) Let X be a

2

complete metric space and w : X ! X be a contractive mapping. Then there exists a

unique �xed point F 2 X such that for any point P 2 X

F = w(F) = lim

n!1

w

�n

(P): (1.4)

Such a point is called a �xed point or the attractor of w.

De�nition 1.5: A collection w

1

; w

2

; � � � ; w

n

of contractive maps on a metric space (X ; d)

is called iterated function system (IFS).

Armed with the above mathematical concepts we are ready to investigate how

IFS can be used to encode images. Consider an image matrix A 2 X . Further let

^

A = w(

^

A) = lim

n!1

w

�n

(P) 8 P 2X; (1.5)

where w is a contractive transformation, and d(A;

^

A) is `small'. Thus if w can be de-

termined and represented by fewer bits than A we have achieved compression. This is

due to the fact that we can arrive at

^

A iteratively by applying w to any arbitrary point

(image) P 2 X .

Unfortunately, these theorems do not provide us with a method of arriving at

the map w. This problem is simpli�ed to a large extent by the collage theorem.

Theorem 1.2 (Collage Theorem): Let (X ; d) be a metric space and w : X ! X be

a contractive mapping with contractivity s. Let

^

A be the �xed point of w. Then

d(A;

^

A) �

1

1� s

d(A; w(A)): (1.6)

What the collage theorem implies is the following. Let A 2 X be an image.

Let w : X ! X be such that d(w(A);A) < �. Then d(

^

A;A) is also bounded. Therefore

the problem of �nding the fractal code w for an image A can be restated as follows:

Find w such that d(A; w(A)) is `small'.

Usually w is of the form

w =

N

[

i=1

w

i

; (1.7)

where each w

i

is a contractive mapping. However, this is not strictly required. It is

su�cient if w is eventually contractive.

3

De�nition 1.6: Let (X ; d) be a metric space and w : X ! X be a Lipschitz function

such that w

�n

is contractive, then w is eventually contractive. It follows that for any

P 2X

^

A = w(

^

A) = lim

k!1

w

�k

(P): (1.8)

The integer n is called the exponent of eventual contractivity.

For eventually contractive mappings, the collage theorem is slightly modi�ed.

Theorem 1.3 (Collage Theorem for Eventually Contractive Mappings): Let w

be an eventually contractive mapping with exponent n. Let

^

A be the �xed point of w.

Then

d(A;

^

A) =

1

1� s

1� �

n

1� �

d(A; w(A)); (1.9)

where s is the contractivity of w

�n

and � is the Lipschitz factor of w [12].

Now we will see how the collage theorem helps in simplifying the job of �nding

the mapping w for an arbitrary image. Let us assume, without any loss of generality, that

the region of support of the image is the unit square I

2

= [0; 1]� [0; 1] and the dynamic

range of the grey level of the image is scaled to the interval I = [0; 1]. The parametric

form of the transformations w

i

: I

3

! I

3

; i = 1 � � �N

r

is chosen as

w

i

0

B

B

B

@

x

y

z

1

C

C

C

A

=

0

B

B

B

@

a

i

b

i

0

c

i

d

i

0

0 0 s

i

1

C

C

C

A

0

B

B

B

@

x

y

z

1

C

C

C

A

+

0

B

B

B

@

e

i

f

i

o

i

1

C

C

C

A

; (1.10)

where (x; y) denotes the coordinates of a point in I

2

and z = g(x; y) denotes the intensity

or grey level at (x; y). Each transformation w

i

can be split into two transformations

L

i

: I

2

! I

2

and T

i

: I ! I, de�ned as

L

i

0

@

x

y

1

A

=

0

@

a

i

b

i

c

i

d

i

1

A

0

@

x

y

1

A

+

0

@

e

i

f

i

1

A

; (1.11)

and

T

i

(z) = s

i

z + o

i

: (1.12)

4

Associated with each w

i

is a range block R

i

2 I

2

and a domain block D

i

2 I

2

. The

N

r

range blocks which may or may not be of equal size, are non-overlapping and tile the

unit square I

2

completely. The transformations L

i

and T

i

and the domain blocks D

i

are

chosen to satisfy the following conditions:

� L

i

maps D

i

into R

i

,

� the size of eachD

i

is larger than that of the correspondingR

i

to ensure contractivity,

and,

� The collage error, given by

"

i

=

Z

R

i

Z

[g(x; y)� T

i

(g(L

�1

i

(x; y)))]

2

dxdy (1.13)

is minimum.

Additionally, the condition s

i

< 1 must be satis�ed for contractivity, but it is not a

necessary condition for eventual contractivity. The parameters a

i

; b

i

; c

i

and d

i

, determine

the spatial contraction factor and the isometric operation performed on the block, i.e.,

rearrangement of pixels within a domain block. The parameters e

i

and f

i

give the physical

distance or the address of the domain block with reference to the range block. The

parameters s

i

and o

i

are respectively the intensity scaling factor and the o�set.

Note that in (1.13) we call upon the collage theorem to optimize the parameters

of the mapping for each w

i

separately. Without the collage theorem we would have to do

a simultaneous optimization for all the mappings, which would be impractical. Though

the w arrived at through the collage theorem is suboptimal, the collage theorem is what

has made IFS image compression a practical scheme.

The parameters of the transformation for each range block R

i

become the

IFS code for the image. If the IFS is contractive, and if it is applied iteratively on any

arbitrary initial image (say an image of all zeros), the image converges to the �xed point,

which is an approximation of the encoded image. It should be noted here that the IFS are

constituted by a�ne transformations. (If the transformations are linear then an image of

all zeros is a �xed point and can be the only �xed point).

The decoded image

^

A = lim

n!1

w

�n

(P) (1.14)

5

is guaranteed to be `close' to the original image if " is `small', (by the collage theorem),

where " = d(A; w(A)). In practice, for images, convergence is achieved in 6 to 8 iterations.

The `closeness' of the reconstructed image to the original image is usually represented by

the peak signal to noise ratio (PSNR) of the decoded image. The PSNR of

^

A, the

approximation of A, is given by

PSNR = 10 log

10

(2

b

� 1)

2

MN

d(A;

^

A)

(1.15)

where b is the number of bits used to code the pixel values of A and the metric d is the

squared error de�ned in (1.1).

1.2 Organization of the Thesis

The remainder of the thesis is organized as follows: The second Chapter is a

review of the current state of the art of IFS or fractal image compression. In the third

Chapter we propose a method to reduce the encoding complexity of the IFS scheme. In

this method, least squares regression, which is normally used for determining the scaling

parameter s is replaced by a simpler scalar product of range and domain blocks. In

Chapter 4 we introduce a FFT-based block matching procedure which further speeds up

the block matching process. We make use of the fact that correlation of two vectors of

length N has a computational complexity of N

2

, but if implemented through the FFT

has a complexity of the order of N log

2

N . We therefore use all possible circular shifts of a

domain block (after spatial contraction) as the permitted isometric transformations. Still

more reduction is encoding complexity can be achieved if we make a suboptimal choice

of the domain blocks by comparing the magnitude Fourier coe�cients before correlation

is attempted. In Chapter 4 we also propose a hybrid scheme where the image is �rst

coded by a low-bit-rate fractal compression scheme, and the FFT-based block matching

technique is used for coding residual errors. In Chapter 5 we introduce a new class of

unitary, feature highlighting transforms (FHT) which have impulse responses of all-pass

�lters as basis vectors. The FHT is used to pre-emphasize the edges before the image is

coded using IFS. Upon reconstruction the inverse FHT is applied. We show that images

coded in this way have signi�cantly better reproduction of edges than the images that are

coded using IFS alone. Other variants of the FHT are also brie
y explored. Chapter 6 is a

6

study of interpolation of images using the IFS code. We show how choice of di�erent range

block sizes a�ect the quality of interpolation. We introduce a new form of IFS where each

range block is coded with multiple domain blocks. We also compare IFS interpolation

with DCT and subband interpolation. A summary of results and conclusions is presented

in Chapter 7.

7

Chapter 2

Review of IFS Image Coding

In this Chapter we review the state of the art techniques in IFS image compression.

2.1 Jacquin's method

The method proposed by Jacquin in 1990 [8, 9] and subsequently re�ned by Fisher

[13, 14, 15] is as follows. Unlike the method described in Chapter 1, not all possible

domain blocks are searched. The domain pool is restricted to [D

k

]; k = 1 � � �N

d

. The

spatial contraction factor is also �xed at 2. And only eight isometric operations are

permitted (four re
ections and four rotations). The isometric operations thus in e�ect

expand the pool of domain blocks by eight. The expanded pool of domain blocks is

also called the codebook library (following the terminology used in vector quantization of

images). The mapping of a domain block to a range block is illustrated in Figure 2.1.

With these restrictions it becomes simpler to ignore the matrix form of the IFS

given by (1.11) and consider the following scenario:

� The image is discretized to an M � N matrix of pixels. For simplicity, we will

assume M = N .

� The image is segmented into N

r

non-overlapping range blocks of size r� r and the

range blocks tile the entire image. The range blocks are denoted by R

i

; i = 1 � � �N

r

.

� The domain pool consists of N

d

domain blocks of size d�d. We will further assume

that d = 2r. The domain blocks are denoted by D

k

; k = 1 � � �N

d

.

8

Figure 2.1: Mapping of domain to range blocks.

� S is a spatially contractive operator, which operates on domain blocks of d�d pixels

to yield blocks of r�r pixels. S may be a simple sub-sampler, which means that pixel

values in each transformed block are assigned by sub-sampling the corresponding

domain block. More usually, the pixel values of 4 adjacent pixels in a domain

block are averaged to obtain the value of the corresponding pixel in the transformed

block. Pixel values in the transformed block may also be obtained by low-pass

�ltering followed by sub-sampling.

� The transformations T , are a set of t isometric operations (re-arranging of pixels

within a block) performed on the spatially contracted domain blocks.

Thus each domain block is spatially contracted and acted upon by the transfor-

mations T resulting in t codebook blocks per domain block. The codebook blocks are

denoted by C

j

; j = 1 � � �N

d

t.

C

j

= T

q

(S(D

k

)); j = 1 � � �N

d

t; k = 1 � � �N

d

; q = 1 � � � t: (2.1)

9

Now the objective is to �nd a codebook block C

j

from the available pool, for each R

i

,

such that the error

" = d(R

i

; s

i

C

j

+ o

i

) =

p

X

l=1

(s

i

c

jl

+ o

i

� r

il

)

2

(2.2)

is minimum. In (2.2), p = r

2

is the number of pixels in each range block, and r

il

and c

jl

are the values of the l

th

pixels in R

i

and C

j

respectively. The values s

i

and o

i

are found

using least squares regression (LSR) [16] as follows. Setting the partial derivatives of ",

viz.,

@"

@s

and

@"

@o

, to zero, we get the error minimizing values of s and o as

s

j

i

=

p(

P

p

l=1

c

jl

r

il

)� (

P

p

l=1

c

jl

)(

P

p

l=1

r

il

)

p

P

p

l=1

c

2

jl

� (

P

p

l=1

c

jl

)

2

; (2.3)

and

o

j

i

=

1

p

�

p

X

l=1

r

il

� s

j

i

p

X

l=1

c

lj

�

: (2.4)

Hence the minimum error for a given (i,j) pair is given by

"

j

i

=

p

X

l=1

(s

j

i

c

jl

+ o

j

i

� r

il

)

2

; i = 1; � � � ; N

r

; j = 1; � � � ; N

d

t: (2.5)

For each range block R

i

, the codebook block C

j

that gives the least error is chosen:

a

i

= argmin

j

"

j

i

; (2.6)

where a

i

is the address of the codebook block. Now

s

i

= s

a

i

i

; o

i

= o

a

i

i

(2.7)

are the corresponding scaling and o�set parameters. The values of a

i

; s

i

; and o

i

form the

fractal/IFS code for the range block R

i

10

2.1.1 Complexity of the coder

The complexity of the coder described above can be seen with an example. Consider

a 256 � 256 image segmented into range blocks of size 8 � 8 and domain blocks of size

16 � 16. This would result in 1024 range blocks and typically 961 domain blocks (The

domain blocks are chosen to tile the entire image with each domain block overlapping

half of each adjacent domain block), or 7688 codebook blocks. So the coding involves

1024� 7688 LSRs of blocks of 64 pixels. Each LSR, best implemented, (as per (2.3) to

(2.5)) requires approximately 2N = 2� 64 multiplications. Thus the total complexity of

the encoder is roughly 1024� 7688� 128 multiplications.

However decoding complexity is linear in the number of pixels. We start with

any arbitrary image and each range blockR

i

is replaced by s

i

C

a

i

+o

i

during each iteration.

The maximum value of s

i

is restricted to s

max

(Normally 1.2 to 1.5). Convergence occurs

in 6 to 8 iterations.

2.2 Higher Order IFS

A more general IFS of the form

w =

n

[

i=1

w

i

(2.8)

where

w

i

(A) = w

i

0

B

B

B

@

x

y

f(x; y)

1

C

C

C

A

= a

i

x + b

i

y + s

i

f(x; y) + o

i

(2.9)

and f(x; y) is the grey scale function of the block that is coded, was suggested by Munro

and Dudbridge [17, 18]. In Jacquin's scheme the grey scale function of a block, given by

(1.12), is only a function of the grey scale of the corresponding location of the domain

block. It is therefore an a�ne transform of order zero (polynomial of degree zero in x

and y co-ordinates). However, in (2.9) the grey scale function is also a function of x and

y co-ordinates, which makes (2.9) an IFS of order one.

In the implementation carried out by Munro and Dudbridge, n is chosen as 4.

11

w

1

(A) w

2

(A)

w

3

(A) w

4

(A)

Figure 2.2: Partitioning of a square A by the IFS w

1

,w

2

,w

3

and w

4

.

The function w

i

(i = 1; 2; 3; 4) maps a square A to its i

th

quadrant as shown in Figure 2.2.

The image is partitioned into non-overlapping domain blocks of size 2r � 2r, and range

blocks of size r � r. Each domain block is mapped on to the 4 range blocks contained

within itself by the transformations w

i

; i = 1; 2; 3; 4 (Compare this to Jacquin's method

where the domain block corresponding to a range block may be located anywhere in the

image). Hence this method generates a self a�ne system. No search is involved in the

determination of the best domain block. Also, each square block is coded independently

of other blocks. Each square block is coded with sixteen parameters (4 values - a

i

, b

i

, s

i

,

and o

i

for each w

i

or each quadrant). The parameters are obtained by solving a set of 16

linear equations

@d(A;

^

A)

@a

k

= 0; k = 1 � � � 4 (2.10)

and 12 other similar equations for b

k

,s

k

, and o

k

, k = 1 � � �4

Later extensions of IFS coding include higher order transforms with partial

search for domain blocks and isometric transformations, the Bath fractal transforms

(BFT) [19, 20]. In a recent paper [21] Woolley and Munro have compared the performance

of various types of the BFT and found that the best trade-o� (between compression ratio

and PSNR of decoded image) is achieved if second order polynomials with no search is

used. For increasing compression ratio, the block sizes can be increased. Zhang et al, [22]

modi�ed the BFT by replacing f(x; y) in (2.9) by mean subtracted f(x; y). Though this

does not modify the �xed point of the IFS, it results in a smaller spread in the values

of the scale factor, thereby resulting in a slightly higher compression ratio. Moreover,

decoder convergence is faster than in the original method.

12

2.3 Inner Product Space Approach

A fractal coder based on the inner product space approach was proposed by Oien

et al [23] in 1991. In this method, the transformation used to approximate the i

th

range

block is

^

R

i

= s

i

o

T (D) +

n

b

X

k=1

s

i

k

B

k

: (2.11)

Here B

k

; k = 1 � � �n

b

are a set of orthonormal �xed basis blocks (FBB). The coe�cients

s

i

k

; k = 1 � � �n

b

, are the projections of the i

th

range block R

i

on the FBBs. The coe�cient

s

i

0

is the projection of the component of R

i

that is orthogonal to all the FBB's onto the

transformed domain block T (D). The choice of the set of FBB's is arbitrary. Many

di�erent choices of FBB's have been proposed and explored by Vines et al [24]. Much

of the `smooth' information in the range blocks is covered by the FBBs, and the domain

blocks supply the �ner information. Therefore highly decimated domain blocks (8 to 16

times) are used. Jacquin's method can be considered to be a special case of this method

with only one FBB whose elements are equal to one another.

2.4 Complexity Reduction Methods in Fractal Image

Compression

Due to the unacceptably high complexity of encoding of the fractal image com-

pression scheme, a lot of work has been directed at reducing the encoding complexity [25].

The methods suggested may be classi�ed as

1. Domain Pool Restriction,

2. Block Classi�cation,

3. Adaptive Clustering,

4. 1-D Functional Methods,

5. Feature Vectors, and

6. Transform Domain Block Matching.

13

2.4.1 Domain Pool Restriction

The �rst step in the reduction of computational complexity of the encoding process

is to restrict the domain pool. Not all possible domain blocks are searched. Fisher [13]

suggested restriction of the domain pool to blocks twice the size of the range blocks, with

adjacent domain blocks overlapping one another by the size of the range blocks. Saupe

[26] suggested restriction of domain blocks to those with high variances. Barthel et al

[27] restricted the domain pool to the nearest neighbors, and search for the appropriate

domain block was carried out in a spiral path around the range block.

2.4.2 Block Classi�cation

Jacquin [8, 9] used a classi�cation scheme similar to the one proposed by Ra-

mamoorthi and Gersho [28] for vector quantization (VQ) of images. In this method, the

domain and range blocks are classi�ed as shade, edge and mixed blocks. Edge blocks are

further classi�ed as simple and mixed edge blocks. For a range block from any one of the

above categories, only domain blocks from the same category are searched.

A more elaborate classi�cation scheme was proposed by Fisher et al [13]. If

A

i

; i = 1 � � �4 are the mean pixel intensities of the four quadrants of a range or domain

block, then we can always orient the block (by
ipping or rotation) so that the block falls

into one of the following three major classes:

� Major Class 1: A

1

� A

2

� A

3

� A

4

� Major Class 2: A

1

� A

2

� A

4

� A

3

� Major Class 3: A

1

� A

4

� A

2

� A

3

The ordering of brightness of the quadrants for the three major classes are illustrated in

Figure 2.3. Further a block belonging to one particular major class can be classi�ed into

4! = 24 ways depending on the ordering of the variances of each quadrant. Thus there

are e�ectively 72 classes of blocks. For a range block belonging to one particular class,

only domain blocks of the same class are searched. (If the scale factor can take negative

values then two classes have to be searched).

Boss and Jacobs [29] developed an archetype classi�cation scheme. In this

scheme, the archetype form for a particular codebook block is given by the block that can

best cover all others having the same archetype, best in the least squares sense. Starting

14

Figure 2.3: The 3 major classes of Fisher's classi�cation scheme.

from an arbitrary classi�cation using codebook blocks from a library made from many

images, the classi�cation scheme is iterated till the best archetype form for each block

is determined. The iteration is stopped when there is no more change in the selection

of archetype blocks in further iterations. These archetype blocks, derived from training

images are used for classi�cation of the range and domain blocks of images.

2.4.3 Adaptive Clustering

In the three methods described earlier, the classi�cation scheme is decided upon

before it is applied to any image. On the other hand in the adaptive clustering scheme

proposed by Oien and Lepsoy, [30], the classi�cation is image dependent. In this method,

the range and codebook blocks (after removal of the FBB components from them) are

divided into disjoint sets around `cluster centers'. The cluster centers are iteratively

updated if any block does not �t into any particular cluster, at the same time satisfying

some conditions.

2.4.4 1-D Functional Methods

Bedford et al [31] proposed a method in which the range and domain blocks are

compared by projecting each of them on a common, �xed unit vector. A particular range

block is compared only with domain blocks whose result of comparison with the unit

vector is close to that of the result of comparison of the range block. This method has

further been extended by [25] to include more such vectors.

15

2.4.5 Feature Vectors

This method was �rst proposed by Saupe [26]. In this method, a small set of

d real-valued keys are assigned to each range and domain block, which make up the d-

dimensional feature vector. These keys are constructed such that searching in the domain

pool is restricted to a small neighborhood around the d-dimensional key corresponding to

a particular range block. Thus the sequential search of the domain block is substituted

by a nearest neighbor search.

Kominek [32] used a much simpler scheme for arriving at the feature vector,

but used the r-trees algorithm for searching. In this algorithm the d-dimensional space

of the feature vectors is divided into d-dimensional rectangles (the `r' in r-trees stand

for `rectangle'). For a range block with its feature vector located in one rectangle, only

domain blocks with feature vectors in the same rectangle are searched.

Frigaard et al [33] used two dimensional feature vectors- the grey scale stan-

dard deviation (a continuous feature) and the number of dominant grey levels (a discrete

feature) in each block. Bani-Eqbal [34] used 4-dimensional feature vectors.

2.4.6 Transform Domain Block Matching

Wohlberg et al [35] proposed a scheme where block matching is done in the DCT

domain. Here they make use of the well known energy compaction property of the DCT

to reduce the number of dimensions of the feature vector space, where a nearest neighbor

search is performed. Also the fact that the DCT of the transformed blocks (for the

usual transformations employed) can be obtained from the DCT of the original block

with just multiplication by �1 is put to use. In Chapter 4 we introduce a FFT-based

block matching procedure in combination with magnitude Fourier domain block matching,

which can substantially speed up the block matching process.

2.5 Issues in Decoding

There are two major issues concerning decoding of the IFS code.

� Is the IFS contractive? Or in other words, will it reach the �xed point?

� In how many iterations will it reach arbitrarily close to the �xed point?

16

One method of ensuring contractivity of the IFS is to restrict scale factors to be

strictly less than 1. But this adversely a�ects the quality of the approximation and hence

the reconstructed image [13, 36]. Though it has always been found that the IFS contracts

every time even when scale factors as high as 2 are chosen [13], one cannot guarantee

convergence. Lundheim [37] has given a good mathematical treatment for �nding the

Lipschitz factor (which should be less than 1 for convergence) of an IFS for eventual

contractivity. If D is the set of all domain blocks, r

D

the set of all range blocks whose

IFS code depend on the domain block D with s

i

; i 2 r

D

as scale factors and r the ratio of

size of the domain and range blocks, then for decimation of domain block by subsampling,

the IFS is eventually contractive if

max

D2D

X

i2r

D

(s

i

)

2

< r: (2.12)

For the case of decimation by averaging the IFS is eventually contractive if

max

D2D

1

d

X

i2r

D

(s

i

)

2

< r; (2.13)

where

1

d

is the averaging �lter weights.

Hurtgen et al [38] studied the convergence of fractal transforms by looking at

the spectral radius of the linear part of the transformation matrix (the other part being

the o�set). However, like Lundhiem's observations, the condition for contractivity derived

by Hurtgen, was only a su�cient condition (and not a necessary condition).

Kominek [36] and Domascincz et al [39] independently developed a new method

for determining the convergence of the IFS code. They used the technique of mapping

graphs, where the links between domain blocks are plotted in a graph, which has all the

domain blocks as its nodes. The nodes that form closed loops are identi�ed and studied

individually for contraction as they are independent of other loops.

Perhaps one of the most useful contributions came from Oien and Lepsoy [40],

where they show that a slight modi�cation of the usual IFS used, viz,

^

R = sC + o (2.14)

17

to

^

R = s(C �m

c

) +m

r

(2.15)

where m

c

is the mean of the codebook block and m

r

is the mean of the range block,

assures contraction of the IFS in a speci�c number of iterations, irrespective of the value

of the scale factor. It can be easily veri�ed that both (2.14) and (2.15) have the same

�xed point. Convergence is reached in a speci�c number of iterations depending on the

size of the range block and the decimation ratio. Further the decoding can be done in a

hierarchical manner - the �rst stage of decoding is done on an image in which each pixel

represents a range block, the next iteration on an image four times that size and so on.

The conditions to be satis�ed for this method to work are:

� Decimation should be by averaging.

� The domain blocks should be made up of an integral square number of range blocks.

Therefore, if the domain block edges are twice that of the range block, we can choose

domain blocks which do not overlap, or overlap by the size of range block. The latter

is the normal choice.

� Though not mentioned by Oien et al in [40] the isometric transformations employed

cannot be arbitrary. However this method works for the normal choice of the isomet-

ric transformations (four re
ections and four rotations). The condition is that the

isometric transformations should not `mix up' di�erent range blocks that constitute

a domain block.

As this method converges in a speci�c number of iterations, this can be also be looked

upon as a systematic procedure for solving the equation

^

A = w(

^

A) (2.16)

for the �xed point

^

A.

Baharav et al [41] proposed a coder in which no isometric transformations are

allowed. Domain blocks should always be twice the size of the range blocks and they

should always overlap by the size of the range blocks. For such a coder, the iteration can

be performed on an initial image where each pixel represents a range block, till convergence

18

is achieved. The �nal image can then be obtained by a non-iterative expansion algorithm.

However the limitation that no isometric transformations are permitted is a very serious

one.

2.6 Wavelet-Fractal Coders

Wavelets and fractals have very intimate links. A strictly fractal object is similar

at di�erent scales, and the wavelet transform is a tool for analyzing objects at di�erent

scales. Thus under a proper choice of scales, the wavelet transform of a strictly fractal

object will have a lot of redundancy. Bogdan [42] showed that the IFS representation of a

function and the wavelet representation are very similar. A wavelet function f(x) satis�es

a two-scale equation

f(x) =

X

k

c

k

f(2x� b

k

) (2.17)

while the IFS representation of a function f(x) is of the form

f(x) =

X

k

c

k

w(x� k)f(2x� b

k

) (2.18)

where w(x� k) is a window function. (In the case of images it is the `cut' operator which

cuts out part of the image to form the domain block). Bogdan proposed a coder where

(2.18) is solved for various levels of the pyramidal decomposition [7] of an image.

Krupnik [43] and Rinaldo [44] independently proposed a coder that worked on

the subband decomposition (or wavelet decomposition) of the image [45]. In this method

the image is decomposed, at every level, into four subbands, by column wise �ltering

followed row wise �ltering by the low-pass and high-pass �lters of a pair of quadrature

mirror �lters (QMF), followed by decimation. A pictorial representation of the decompo-

sition into various subbands is given in Figure 2.4. The four subbands thus obtained, viz.,

LL,LH,HL and HH, are each one fourth the size of the original image. The LL subband is

subjected to further decomposition to obtain LL1,LH1,HL1 and HH1. At the r+1

th

level

of decomposition we get LLr,LHr,HLr and HHr. If n levels of decomposition are used,

(typically for 512 � 512 images n = 5) then LL4 is coded directly. The other blocks of

this level are predicted from LL4 and the prediction error is coded. The blocks of lower

19

Figure 2.4: Subband decomposition of an image.

levels (larger blocks) are split into range blocks. The block with the same orientation at

a higher level supplies domain blocks (of the same size as the range blocks) for coding

the range blocks. Normally all possible domain blocks are tested. If no suitable domain

block is found, then either the range block is subdivided into four or the range block is

coded by other means.

20

Chapter 3

A Fast Method for Block Matching

3.1 Introduction

IFS image compression, as we have seen in the previous Chapters, involves �nding

the best domain block and its isometric transformation for each range block. In other

words we desire to �nd the best codebook block for each range block. This method requires

a least squares regression (LSR) for each comparison to determine the scale factor and

the o�set, followed by determining the error of the approximation, and then choosing the

codebook block that yields the minimum error. In this Chapter we present a modi�ed

method, wherein the best �t codebook block can be determined in only one inner product

of two vectors of length N (where N is the number of pixels in each range and codebook

blocks) for each comparison.

Normally, the range blocks R

i

and the domain blocks D

k

are square matrices

of pixel values, of size r � r and nr � nr respectively, where n is an integer greater than

or equal to 2. Contraction of a domain block is achieved by partitioning it into r

2

sub-

blocks of size n � n and assigning a single pixel value to each sub-block equal to the

average of the pixel values within it. A set of t blocks is generated from each contracted

domain block through isometric transformations. Normally 8 isometric transformations

(t = 8) consisting of 4 re
ections and 4 rotations are chosen [8]. Thus an enlarged pool of

transformed blocks, called codebook blocksC

j

; j = 1 � � �N

d

t is generated from the original

pool of domain blocks D

k

; k = 1 � � �N

d

. Each range block R

i

is then approximated by an

21

a�ne transformation of a codebook block

^

R

i

= s

i

C

j

+ o

i

; i = 1; � � � ; N

r

; (3.1)

the choice of the matching codebook block C

j

and the parameters s

i

and o

i

being made so

as to minimize the approximation error d(R

i

;

^

R

i

). Error minimization is usually achieved

using LSR [16]. A simpler procedure based on the inner product of the range and codebook

blocks is described below.

3.2 Block Matching by Inner Product

Let each range block be ordered as a vector by scanning. Let r

i

be the zero mean

range vector corresponding to the range block R

i

, obtained by subtracting the mean

value of R

i

from all the elements. Let c

j

denote the zero-mean codebook vector obtained

similarly from the codebook block C

j

. Both r

i

and c

j

are N -dimensional vectors, where

N = r

2

. The problem at hand is to choose, for a given i, the codebook vector c

j

and the

scalars s

j

i

and o

j

i

so as to minimize the error

"

j

i

= d(
^
r

i

; r

i

) = d(s

j

i

c

j

+ o

j

i

; r

i

) = hr

i

� s

j

i

c

j

� o

j

i

; r

i

� s

j

i

c

j

� o

j

i

i: (3.2)

The symbol h:; :i denotes the scalar product of two vectors. Since both r

i

and c

j

are

zero-mean vectors, it is obvious that

o

j

i

= 0 (3.3)

for minimizing "

j

i

. Putting o

j

i

= 0 in (3.2) and equating the partial derivative of "

j

i

with

respect to s

j

i

to zero, we get

s

j

i

=

ij

�

2

c

j

(3.4)

where

ij

= hr

i

; c

j

i; �

c

j

= hc

j

; c

j

i (3.5)

22

Substituting the value of s

j

i

given by (3.4) into (3.2), we get

"

j

i

= hr

i

�

ij

�

2

c

j

c

j

; r

i

�

ij

�

2

c

j

c

j

i = �

2

r

i

�

2

ij

�

2

c

j

; (3.6)

where �

r

i

2

= hr

i

; r

i

i. Equation (3.6) gives the minimum approximation error of r

i

for a

given c

j

. For minimizing "

j

i

over all c

j

, we have to �nd the codebook block for which

2

ij

�

2

c

j

is maximum. If we normalize all codebook blocks by dividing them by �

c

j

, we just have

to �nd the maximum of jhr

i

;
~
c

j

ij, where
~
c

j

=

c

j

�

c

j

.

3.3 Limiting Scale Factor

It is normal practice to limit the scale factor s to some value s

max

. Also when

hierarchical coding is employed, we �x a tolerance, "

max

, for the approximation error.

The two conditions can be mathematically stated as

�

2

r

i

�

ij

s < "

max

; (3.7)

and

s < s

max

: (3.8)

From Schwartz's inequality,

2

ij

� �

c

j

�

r

i

. Therefore

�

2

r

i

� �

c

j

�

r

i

s

max

< "

max

(3.9)

or

�

r

i

� �

c

j

s

max

<

"

max

�

r

i

: (3.10)

We therefore check for the validity of the above condition before we calculate

ij

(which

involves N multiplications). This reduces the number of domain blocks searched.

23

3.4 Quantization of Scale Factor

The scale factor s has to be quantized �nally (normally to 5 to 7 bits) [46]. There-

fore it would be better if the quantization error is taken into account before the choice of

the best codebook block is made. Taking quantization error into account, the total error

becomes

" = hr � (s+4s)c ; r � (s+4s)ci: (3.11)

After a little algebra,

" = �

2

r

i

�

2

ij

�

2

c

j

+4s

2

�

2

c

j

: (3.12)

Thus now we choose the codebook block for which

2

ij

�

2

c

j

�4s

2

�

2

c

j

is maximum.

24

Chapter 4

FFT Based Block Matching

4.1 The Method

Having seen in Chapter 3 that block matching involves just one inner product of the

range and codebook vectors, we now present a method which reduces the computational

complexity to less than N multiplications per comparison on an average. This is done

by choosing the isometric transformations of the shrunken domain blocks to be di�erent

from the usual eight (4 rotations and 4 re
ections) [8]. We convert each shrunken domain

block into a vector using a suitable scanning procedure. We choose a set of N = r

2

transformations of each shrunken domain block by inverse scanning all possible circular

shifts of the corresponding vector. Now the inner product of a range block with each

member of a set of N codebook blocks derived from the same domain block is obtained by

circular correlation of the range vector and the parent shrunken domain vector. This would

involve N

2

multiplications. However we can implement the circular correlation using the

FFT algorithm to reduce the number of multiplications to the order of N log

2

N . Thus,

the average number of multiplications per comparison is reduced fromN to approximately

log

2

N .

Note that the number of isometric transformations used in this method is much

more than the usual 8. For example, for 8�8 range blocks, we permit 64 transformations.

We can also use the
ipped or reverse scan vector whose Fourier transform is just the

complex conjugate of the Fourier transform of the original scan vector to yield 64 more

transformations. In general for range block size r�r, we permit r

2

or 2r

2

transformations

of each shrunken domain block. As the number of transformations of each domain block

25

is increased we can hope to reduce the number of domain blocks (to keep the number of

codebook blocks constant) provided all transformations are `useful'.

If r 2 <

N

is a range vector and d 2 <

N

is a shrunken domain vector (assume

that the means are subtracted from r and d and further that d is normalized to have

unit norm), the inner products of r with all the circular shift transformations of d can be

written as a vector p 2 <

N

:

p = F

�1

(F(d):F

�

(r)); (4.1)

where F stands for the DFT and F

�1

for the IDFT, and the vector F(d):F

�

(r) is obtained

by multiplying the corresponding elements of the vectors F(d) and F

�

(r). The inner

products of r with all the circular shift transformations of the
ipped vector d

r

obtained

from d can be represented as,

p

r

= F

�1

(F(d):F(r)): (4.2)

Let
~
p denote a vector of 2N elements, obtained by appending the elements of p

r

to

those of p. The best suited transformation is given by the index of the element of
~
p with

the largest magnitude.

4.1.1 Implementation

The above scheme of FFT-based block matching was tried on a variety of 512�512

images. Among the N! possible scan orders, many were tried out, but only two of them

were found to be useful, in terms of the SNR of the decoded image. The �rst one is the

normal scanning method of stacking the rows of a block to form a single row vector. The

second method is the Hilbert scan ordering of pixels of a block [47]. The Hilbert scanning

of a 4� 4 block is shown in Figure 4.1.

The 512� 512 image was divided into 4096 range blocks of size 8� 8 and 256

non-overlapping domain blocks of size 32� 32. As explained in the previous section, 128

transformations of each shrunken domain block were permitted, making the number of

codebook blocks equal to 32768. Scaling down of the domain blocks to the size of the

range blocks was done by averaging sixteen pixels to one. Comparison of the range and

codebook blocks was done by computing p and p

r

using (4.1) and (4.2). The IFS code

26

Figure 4.1: Hilbert curve scanning of a 4� 4 block.

for each range block consists of:

� the scale factor (5 bits),

� mean of the range block (7 bits),

� address of one of the 256 domain blocks (8 bits), and

� transformation used (7 bits).

The results obtained by this method are compared with those obtained by

the conventional (Jacquin's) technique using 3969 domain blocks of size 16 � 16 (ad-

jacent domain blocks overlapping by the size of the range block), using the normal 8

transformations (four rotations and four re
ections). For a fair comparison, we have used

approximately the same number of codebook blocks for both the methods. which will lead

to the same compression ratio. (The number of codebook blocks for Jacquin's method is

3969 � 8 = 31752). The results of the three methods, viz., FFT-based block matching

(normal scan), FFT-based block matching (Hilbert scan), and Jacquin's method, with

exhaustive search of the domain blocks, are presented in Table 4.1. It is seen that the

SNR's obtained for FFT-based comparison methods are slightly lower than those of the

conventional method, indicating that not all the circular shift transformations are `use-

ful' for representing image blocks. Also, among the two methods employing FFT-based

block matching, the method using Hilbert scan ordering of pixels yields marginally better

results. However, while the conventional method requires 31752� 64 multiplications per

range block, the number of multiplications required by the FFT-based methods is about

25 times less, as we will see in the next section.

27

The decoded `Lena' image using the above procedure for Hilbert scan order-

ing of pixels in the domain blocks is shown in Figure 4.2 (a). The SNR is 29.12 dB.

Figure 4.2 (b) shows the decoded image at an SNR of 28.58 dB for the normal scan.

Figure 4.2 (c) shows the decoded `Lena' image at an SNR of 30.36 dB, using Jacquin's

Method.

4.2 Complexity of FFT-Based Block Matching

Among the various FFT algorithms, the split-radix FFT algorithm [48, 49, 50, 51]

is known to have the least computational complexity. The number of multiplications

required by this algorithm is close to the theoretical minimum [50, 51] and there is little

room for further reduction of its computational complexity. For a real vector in <

N

(where

N is a power of 2) the number of multiplications required by the split-radix algorithm is

given by [49]

�

r

(N) =

N

2

(log

2

N � 3) + 2: (4.3)

Speci�cally, for M = 64 the number of multiplications required is 98. Correlation of one

range vector with one shrunken domain vector and its time reversed version, therefore,

involves (see (4.1), (4.2))

1. Multiplication of the DFT's of the range and domain vectors and multiplication of

the DFT of the range vector with the conjugate of the DFT of the domain vector.

For real vectors of length N = 64, this can be implemented using 32 � 4 = 128

multiplications.

2. Two IFFTs. This would involve 98� 2 = 196 multiplications.

Thus, each range vector is compared with 128 codebook vectors with just 128+196 = 324

multiplications. On the other hand comparison of each range vector with 128 codebook

vectors by inner product would require 64 � 128 = 8192 multiplications. Thus the FFT

based methods provide a 25 fold reduction in the complexity of the block matching process.

For a general N (which is a power of 2) the complexity reduction factor is given by

c

r

=

2N

2

2[

N

2

(log

2

N � 3) + 2] + 2N

: (4.4)

28

Image JM FFT-NS FFT-HS

Lena 30.36 28.58 29.12

Baboon 24.87 24.65 25.13

Boats 30.05 28.25 29.13

Peppers 31.85 28.56 29.45

Table 4.1: Comparison of SNR of decoded images for Jacquin's method (JM), FFT-based

block matching - normal scan (FFT-NS) and Hilbert scan (FFT-HS).

For N = 256, c

r

= 70; for N = 16, c

r

= 10.

4.3 Faster Suboptimal Alternative

The block matching process can be further speeded up if we �rst check for a match in the

magnitude DFT of the range and domain blocks. It should be noted that, all the codebook

vectors obtained by circular shifting of a domain vector have the same magnitude DFT. (In

addition their phase di�erences are linear). We can therefore make an initial comparison

of the DFT magnitude to choose only those domain vectors that have a magnitude DFT

close to that of the range vector. The scalar product of the two vectors is a measure of

the degree of their closeness. Thus, in the case of 8� 8 range blocks, we have to compute

the scalar product of the 32 element DFT magnitude vector corresponding to each range

block (due to the symmetry property of the DFT of a real vector, only half the magnitude

coe�cients are independent) with 256 vectors (each of length 32) corresponding to the

256 domain blocks. Correlation of a range vector can be carried out with only a small

number (5� 10) of domain vectors whose magnitude DFT's are the closest to that of the

range vector. Though a good match in the magnitude DFT, does not imply a good overall

match, simulations show that even if only �ve to ten best matches are retained from the

256 domain blocks, there is not much di�erence in the quality of the match obtained in

comparison with the exhaustive search method involving correlation with all the domain

blocks. For 8 � 8 range blocks, computation of the scalar product of two magnitude

DFT vectors involves 32 multiplications. Hence, if k best matches in the magnitude

DFT are retained for correlation, the total number of multiplications per range block is

32 � 256 + 324k. The corresponding �gure is 324 � 256 if correlation is done with all

256 domain blocks. Thus if If 5 best matches in magnitude Fourier domain are retained

(k = 5), the computational complexity is reduced by about 8 times. Overall, this method

29

Figure 4.2: The decoded `Lena' image with (a) (top left) FFT-based block matching -

Hilbert scan, (b) (top right) normal scan, and (c) (bottom) Jacquin's method.

30

k Lena (NS) Lena (HS) Peppers (NS) Peppers (HS)

1 26.12 28.23 26.05 28.21

2 26.55 28.34 26.45 28.52

3 27.11 28.56 26.65 28.72

5 27.32 28.92 27.01 29.21

10 28.04 29.01 27.52 29.35

20 28.46 29.09 28.10 29.43

256 28.58 29.12 28.25 29.45

Table 4.2: SNR of reconstructed images for various choices of the number k of best

matching domain blocks retained. NS:normal scan, HS: Hilbert scan.

is therefore faster by 8 � 25 = 200 times compared to Jacquin's method. The results

for various values of k are tabulated for both normal scan and Hilbert scan in Table 4.2.

It can be seen that for the case of Hilbert scan, even choosing only the best matching

domain block (k = 1) does not drastically a�ect the PSNR of the image. This is probably

due to the fact that due to the nature of ordering of pixels in the Hilbert scan, the phase

dependence is reduced (ie, the di�erence between vectors of adjacent shifts is not as high

as in the case of the normal scan). Thus with the choice of the Hilbert scan for ordering

of pixels, Fourier domain block matching, followed by FFT based correlation of chosen

domain and range blocks, yields reasonably good quality decoded images with a drastic

reduction in encoding complexity.

4.4 Application of FFT-Based Block Matching for

Encoding Errors

As seen in the previous section, though FFT-based block matching can signi�cantly

speed up the encoding process of fractal image compression, the transformations used are

not always `useful'. Therefore to get the same quality of the encoded image as the method

using the regular transformations, we will have to sacri�ce compression ratio (by using

more number of domain blocks and hence increasing the number of bits required for coding

the domain block addresses). However we see that the circular shift transformations used

in FFT-based block matching are useful for coding errors. This is due to the fact that

errors usually occur as sharp features near the edges of the image, and these sharp features

may occur anywhere in a block. Hence if all circular shifts of a block are the permitted

31

transformations, all the transformations may be equally useful.

In this section we present a hybrid scheme of image compression in which the

�rst level of coding is the regular fractal compression scheme (using 8 transformations)

applied to the decimated image. The image is then decoded to full size. We then code

the errors by FFT-based block matching. The implementation details are as follows. An

image of size 512� 512 is decimated by averaging to the size of 128� 128, which is coded

using range blocks of size 4� 4 and domain blocks of size 8� 8, overlapping by the size

of the range block. The IFS code is decoded to obtain a 512� 512 image. The 32 � 32

block of mean values of the range blocks (which is transmitted as part of the IFS code) is

the source of domain blocks for coding errors. From the 32� 32 block (which is actually

the image decimated by a factor of 16) we form a pool of 49 domain blocks (All 8 � 8

blocks with an overlap of 4 pixels in both directions). The mean is subtracted from each

domain block and it is normalized, scanned (normal scanning) and Fourier transformed.

The 512� 512 error image is divided into 8� 8 blocks. If the mean of an error block is

over a predecided threshold, we code its mean. If the variance of the error block is over

a predecided threshold, the block is scanned, Fourier transformed and correlated with all

the domain blocks to get the best match. If the error after the matching is still over the

threshold, the residual error is again Fourier transformed and correlated with the domain

blocks.

The details of the performance of the compression scheme on the Lena image

is as follows. The �rst stage of compression yielded the image of Figure 4.3 (a) at an SNR

of 24.7 dB. The IFS code, after entropy coding required about 2760 bytes (compression

ratio of 95). For each of the 4096 error blocks of size 8� 8 the following codes were used

� 1 bit to describe if the mean of the error block is to be coded. This was coded using

400 bytes.

� 3 bits to code the means of the blocks indicated by item 1. Note that this is not

required for all the error blocks. This, after entropy coding required about 700

bytes.

� 2 bits to indicate the number of levels of residual error coding. 0-no error coding,

1- 1 level of error coding, 2-2 levels of error coding, and 3- 3 levels of error coding.

For the `Lena' image 896 blocks had three levels of coding, 525 blocks required two

levels and 611 blocks required one level of coding. This was entropy coded to 890

bytes.

32

k Lena Boats

1 30.52 29.26

2 30.78 29.52

3 30.92 29.78

5 31.14 30.02

10 31.23 30.10

49 31.25 30.15

Table 4.3: SNR of reconstructed images of the multistage compression scheme for various

choices of the number k of best matching domain blocks retained.

� 5 bits for the scale factors of each level. After entropy coding, this required about

2500 bytes.

� 6 bits for the domain block address required a total of about 2800 bytes after entropy

coding.

� 7 bits for the transformation, 3500 bytes.

The overall requirement was thus 13550 bytes, or a bit rate of 0:41 bpp at an SNR of 31.25

dB. The decoded image is shown in Figure 4.3 (b). As in the previous section, performing

the comparison of the error range blocks and the domain blocks in the magnitude Fourier

domain with a view of restricting the number of domain blocks searched, has been found

to signi�cantly reduce encoding time with only slight detoriation in the quality of the

decoded image. The PSNR for two images compressed under this scheme for various

choices of the number of domain blocks retained (k) for correlation with the error (range)

block is shown in Table 4.3

From Table 4.3 it is seen that even choosing the best match from the magnitude

Fourier domain does not drastically reduce the SNR. If the �ve best matches are chosen,

the di�erence is too small to be noticed.

33

Figure 4.3: (a) (Top) `Lena' image at compression ratio of 95, and (b) (bottom) after

error coding (compression ratio 19.5, SNR 31.25 dB).

34

Chapter 5

A Class of Feature Highlighting

Transforms

5.1 Introduction

Edges carry a signi�cant amount of information in an image, and preservation

of edges is a primary requirement of any image coding scheme. Since an edge is not

necessarily associated with high pixel value, the PSNR of an image coding scheme does

not give a true indication of the latter's ability to preserve edges.

The quality of a fractal coding scheme may be improved signi�cantly if coding

is preceded by a pre-processing scheme for edge enhancement. Towards this end we de�ne

in this Chapter, a class of transformations called Feature Highlighting Transforms (FHT).

This transform redistributes the energy in a signal in such a fashion that the occurrence of

any speci�ed features in the signal domain is highlighted by a peak at the corresponding

location in the transform domain. In the context of images, the feature of interest is

an edge, and the edges are highlighted by large values of the corresponding transform

coe�cients. If the FHT transformed image is coded, the chances of losing an edge are

lower than when the coding is done in the image domain. For reconstructing the image,

decoding is followed by an inverse FHT. An important feature of the FHT is that the direct

an inverse transforms can be evaluated using FFT. Hence, the additional computational

load involved in coding via FHT is small.

35

5.2 Feature Highlighting Transforms

Let b

0

; b

1

; � � � ; b

N�1

be a set of mutually orthogonal unit-norm vectors spanning

<

N

, so that

b

T

i

b

j

=

8

<

:

1 for i = j

0 otherwise

(5.1)

Let x = [x(0) x(1) � � � x(N � 1)]

T

be an arbitrary element of <

N

. The unitary transfor-

mation de�ned by

~
x = [b

0

b

1

� � � b

N�1

]

T

x (5.2)

conserves energy, i.e.

~
x

T

~
x = x

T

x 8 x 2 <

N

: (5.3)

It follows from (5.2) that the elements of
~
x can be expressed as the inner products of x

with the basis vectors b

n

, i.e.

~x(n) = x

T

b

n

; n = 0; 1; � � � ; N � 1: (5.4)

Since the matrix [b

0

b

1

� � � b

N�1

] is unitary it also follows that the inverse transformation

is given by

x = [b

0

b

1

� � � b

N�1

]
~
x (5.5)

=

N�1

X

n=0

~x(n)b

n

Let the signal vector x contain a feature of interest at the n

th

location. We seek

a unitary transformation of x such that the n

th

transform coe�cient ~x(n) is signi�cantly

large. More generally, if the feature of interest occurs at more that one location in x, all

the corresponding transform coe�cients should be large compared to to the rest. Such a

transformation will be called a Feature Highlighting Transform (FHT).

Consider, for example the time series x 2 <

N

shown in Figure 5.1(i). Let

36

the `feature of interest' in the time series be the occurrence of two negative going pulses

sandwiched between two positive ones. (This feature occurs at four places in x.) The

feature vector is de�ned as a unit-norm vector f 2 <

N

, containing a replica of the desired

feature in the beginning and zeroes elsewhere, as shown in Figure 5.1(ii). Consider the

set of N vectors f

0

;f

1

; � � � ;f

N�1

, where f

n

is the vector obtained by circularly shifting

the elements of f

0

through n places to the right. Let y(n) be the inner product of x and

f

n

y(n) = x

T

f

n

; n = 0; 1; � � � ; N � 1: (5.6)

This inner product has a large value if and only if the feature of interest is present at the

n

th

location of x. In other words the transform

y = [y(0) y(1) � � � y(N � 1)] = [f

0

f

1

� � � f

N�1

]

T

x (5.7)

has peaks at the locations of the feature of interest in the signal x. However the transfor-

mation de�ned by (5.7) is not easily invertible since its basis vectors f

n

are not mutually

orthogonal. This drawback can be overcome if we can �nd a vector b such that

1. it is close to the feature vector f , and

2. all its circular shifts are mutually orthogonal.

We now show that all circular shifts of the impulse response of any all-pass

�lter [52] are mutually orthogonal. Let h 2 <

N

be the impulse response of an all-

pass �lter and let H = F(h) be the corresponding transfer function. It follows that

j H(n) j= 1 for n = 0; 1; � � � ; N � 1, and hence

(H:H

�

) = [1; 1; � � � ; 1]

T

; (5.8)

where H:H

�

denotes the vector obtained by multiplying the corresponding elements

(Hadamard product) of H and H

�

. Taking the IDFT of both sides of (5.8) we get

F

�1

(H:H

�

) = [1; 0; 0; � � � ; 0]

T

(5.9)

but F

�1

(H:H

�

) is nothing but the circular autocorrelation of the impulse response vector

37

h. It follows that all circular shifts of h are mutually orthogonal [53, 54].

As the phases �

n

(n = 0; 1; � � � ; N � 1) of the elements of H can be arbitrary,

we have in�nitely many choices for the vector h with mutually orthogonal circular shifts.

The trivial choice of �

n

= 0 8 n leads to h = e

0

= [1 0 � � � 0]

T

. The vector e

0

along with

its circular shifts form the standard basis for <

N

. The transformation corresponding to

this set of basis vectors is the identity transformation. Other choices of the phases of �

n

yield other sets of orthonormal basis vectors corresponding to nontrivial transformations.

For a feature highlighting transform, the �rst basis vector is chosen to be the all-pass

impulse response that is closest to the appropriate feature vector.

Popat et al [55] have used dispersive FIR all-pass �lters to make any memoryless

source appear Gaussian, thereby facilitating e�cient Lloyd-Max quantization. Strube [56]

has used an all-pass �lter in an ADPCM system to disperse pitch pulses over time to

reduce quantizer overload distortion. He has also suggested a technique for constructing

an all-pass �lter with a desired impulse response. However for the case of all-pass impulse

response of �nite duration, in the next Section, we outline a very simple procedure for

constructing the closest basis vector (an all-pass impulse response) to any arbitrary desired

feature vector.

5.3 Construction of Basis Vectors for FHT

We have seen in the previous Section that any all-pass impulse response vector of

size N and all its circular shifts form an orthonormal basis for <

N

. For highlighting a

feature represented by the feature vector f = [f(0) f(1) � � � f(N � 1)]

T

we need to �nd

the all-pass impulse response that is closest to f . In other words we need to minimize

the error " de�ned as

" =

N�1

X

n=0

j h(n)� f(n) j

2

; (5.10)

where h(n), n = 0; 1; � � � ; N � 1 are the elements of the impulse response vector h of an

all-pass �lter. Since the transfer function of an all-pass �lter can be written as

H = [e

j�

0

e

j�

1

� � � e

j�

N�1

]

T

; (5.11)

38

it follows that

h(n) =

N�1

X

k=0

e

j(

2�kn

N

+�

k

)

; n = 0; 1; � � � ; N � 1 (5.12)

Let

f(n) =

N�1

X

k=0

a

k

e

j(

2�kn

N

+�

k

)

; n = 0; 1; � � � ; N � 1 (5.13)

Hence the error " is given by

" =

N�1

X

n=0

l�1

X

k=0

N�1

X

k=0

[e

j(

2�kn

N

+�

k

)

� a

k

e

j(

2�kn

N

+�

k

)

]� [e

�j(

2�ln

N

+�

l

)

� a

l

e

�j(

2�ln

N

+�

l

)

] (5.14)

=

N�1

X

k=0

N�1

X

l=0

(

N�1

X

n=0

[e

j(

2�(k�l)n

N

)

e

j(�

k

��

l

)

� a

l

e

j(

2�(k�l)n

N

)

e

j(�

k

��

l

)

� a

k

e

j(

2�(k�l)n

N

)

e

j(�

k

��

l

)

+ a

k

a

l

e

j(

2�(k�l)n

N

)

e

j(�

k

��

l

)

])

Using the identity

N�1

X

n=0

e

j(

2�(k�l)n

N

)

=

8

<

:

N for k = l

0 otherwise

(5.15)

for k; l = 0; � � � ; N � 1, (5.14) is reduced to

" = N [N � 2

N�1

X

k=0

a

k

cos(�

k

� �

k

) +

N�1

X

k=0

a

2

k

] (5.16)

Hence, the error is minimized if we choose

�

k

= �

k

; k = 0; 1; � � � ; N � 1 (5.17)

In other words, the phase spectrum of h should be identical to that of the feature vector

f .

The following simple algorithm can be used for designing the basis vectors of

the FHT.

1. De�ne the vector f , the desired feature vector.

39

0 50 100 150
−1

−0.5

0

0.5

1

(i) Time series of 128 points
0 50 100 150

−1

−0.5

0

0.5

1

(ii) Feature vector

0 50 100 150
−1

−0.5

0

0.5

(iii) Basis vector
0 50 100 150

−2

−1

0

1

2

(iv) FHT of (i)

Figure 5.1: FHT for highlighting the feature of �gure (ii). The `desired feature', shown in

(ii), occurs at four instances in (i) corresponding to the four leading transform coe�cients

in (iv); (iii) is the closest all-pass impulse response to the feature vector of (ii) and hence

the basis vector used for the transformation.

2. Compute the DFT F of f .

3. Retain the phase values �

0

; � � � ; �

N�1

of F , and reset all the amplitude coe�cients

to 1 to obtain the vector H.

4. Compute the IDFT of H to obtain the vector h.

5. Obtain the �rst basis vector b

0

by setting b

0

= h. Obtain the remaining basis

vectors b

1

; � � � ; b

N�1

by circular shifting of b

0

by 1; � � � ; N � 1 steps.

Figure 5.1(iii) shows the all pass impulse response vector that is closest to the

feature vector in Figure 5.1(ii). The FHT of the signal in Figure 5.1(i), corresponding to

this basis vector, is shown in Figure 5.1(iv).

40

5.4 Implementation of FHT and IFHT

The FHT and inverse FHT (IFHT) can be e�ciently implemented using FFT by

taking advantage of the fact that all the basis vectors are circularly shifted versions of the

�rst basis vector. Speci�cally, we have

b

n

(k) = b

0

(k � n) = h(k � n); k; n = 0; � � � ; N � 1: (5.18)

Combining (5.4) and (5.18), we get

~x(n) =

N�1

X

k=0

x(k)h(k � n) (5.19)

and hence

~
x = F

�1

(F(x):H

�

): (5.20)

From (5.6) and (5.18), we get

x(k) =

N�1

X

n=0

~x(n)b

n

(k) (5.21)

=

N�1

X

n=0

~x(n)h(k � n);

and hence

x = F

�1

(F(
~
x):H): (5.22)

(5.20) and (5.22) indicate that two N -point FFTs have to be performed to compute the

FHT and an equal number to compute the IFHT.

5.5 Extension to Higher Dimensions

Extension of FHT to higher dimensions is conceptually straightforward. The ex-

tension can be readily demonstrated by considering a 2-dimensional signal or image of

41

(i) Desired feature
20 40 60 80 100 120

20

40

60

80

100

120

(ii) Closest basis matrix
20 40 60 80 100 120

20

40

60

80

100

120

Figure 5.2: An example of 2-dimensional feature and basis vectors.

size N � N . The image space <

N

2

is spanned by a set of N

2

basis matrices. We want

the basis matrices to be mutually orthogonal and derivable from a single matrix through

combinations of circular shifts in both directions. The �rst basis matrix is obtained by

taking the 2-dimensional DFT of the feature matrix F , resetting the magnitudes of all

Fourier coe�cients to unity while retaining the phases, and taking the 2-dimensional

IDFT. Figure 5.2 gives an example of 2-dimensional feature matrix and the closest basis

matrix. The other N

2

� 1 basis matrices are obtained by di�erent shifts of the �rst basis

matrix in both dimensions.

5.6 Use of FHT in Image Compression

The FHT used in conjunction with a fractal coding technique for low-bit-rate image

compression. FHT is applied to the image before encoding in order to enhance the edges of

of the image. Since the edges correspond to higher transform coe�cients, they are better

preserved in the coding-decoding process. The FHT transformed (edge-enhanced) image

may be encoded using any coding scheme. After decoding the IFHT is performed to return

to the original spatial domain. The feature matrix F chosen for edge enhancement has

the same size as the image matrix, with F (0; 0) = F (1; 1) = 1;F (0; 1) = F (1; 0) = �1,

and zero elsewhere. The corresponding basis matrices are obtained using the procedure

described in the last section.

The original 512�512 `Lena' image, shown in Figure A.2 (a), was encoded and

42

reconstructed using this technique. After transforming to the FHT domain, the encoding

was done using the standard IFS compression scheme of Jacquin [8]. The FHT-domain

image was segmented into 16� 16 range blocks and 32� 32 domain blocks. The domain

blocks were shrunk to the size of the range blocks by averaging 4 pixels to form 1 pixel.

The standard set of eight transformations (4 rotations and 4 re
ections) was used to

transform the domain blocks . 5 bits were used to store each scale factor, 6 bits for

the mean of the range blocks, 10 bits for the domain block address and 3 bits for the

transformation. resulting in a total of 24 bits per range block.

The fractal code was decoded to the original image size of 512�512, the inverse

FHT was taken, and the resulting image smoothed along the edges by averaging three

pixels. Figure 5.3 (a) shows the output image at a compression ratio of 95. Comparison

of this with the image shown in Figure 5.3 (b), which is obtained the same way except

that FHT was not used before the fractal coding (and thus no IFHT after the decoding),

shows that the image of Figure 5.3 (a) has a much better reproduction of signi�cant edges

than that of Figure 5.3 (b). The improvement is especially noticeable near the tip of the

hat and the nose of Lena. Figure 5.4 shows the blown up portions of the face (left) and

the top edge of the cap (right). The images, in this �gure, from top to bottom, are blown

up portions of images of Figure 5.3 (a) (coding with edge-enhancement),5.3 (b) (coding

without edge-enhancement) and Figure A.2 (a) (original `Lena'). Images in Figure 5.3

have both been subjected to smoothing along the edges of the range blocks. While the

blockiness in the top image is almost removed, it is still very much apparent in the

bottom image. Overall the image of Figure 5.3 (a) is visually more acceptable than that

in Figure 5.3 (b), though the SNR of the former (25.15 dB) is slightly less than that of

the latter (25.72dB).

5.7 A Variant of the FHT

A disadvantage of using an all pass impulse responses as basis vectors is the non-

smoothness of the basis vectors. Truncation of the transform coe�cients may therefore

cause annoying e�ects. Note that by using all pass functions, the FHTs sacri�ce fre-

quency resolution to achieve maximum spatial / temporal resolution (as the basis vectors

are orthogonal to all shifts). Frequency transforms like DFT and DCT have no spatial

43

Figure 5.3: (a) (Top) decompressed `Lena' image at compression ratio of 95 with FHT,

(b) (bottom) without FHT.

44

Figure 5.4: Blowup of face and tip-of-hat of `Lena'. Top row- with FHT. Middle row-

without FHT. Bottom row- original `Lena'.

45

/ temporal resolution, but have maximum possible frequency resolution. Wavelet trans-

forms [4, 57] strike a compromise between these two extremes. Taking a cue from wavelet

transforms we may sacri�ce some spatial / temporal resolution (by relaxing the condition

of orthogonality to all shifts) and get a better approximation of the `desired' basis func-

tion (or smoother basis functions) . For the case of orthogonality to alternate shifts the

magnitude each element of the DFT of the basis vector need not be unity. In this case

j B(k) j, k = 0 � � �N � 1 just have to satisfy the condition [57]

jB(k)j

2

+ jB(k +

N

2

)j

2

= 2 (5.23)

This gives us a little more freedom in choosing the magnitude of the DFT coe�cients

of the basis vectors. Using these basis vectors,

N

2

coe�cients of the transformation are

generated as the even correlation coe�cients of the data vector and b. The other coe�-

cients are obtained from the even correlation coe�cients of the data vector with g, where

g is obtained by time reversing b (
ipping the vector) and changing the sign of all odd

coe�cients [5]. Here B and G (where b

F

$ B and g

F

$ G) are quadrature mirror �lters

(QMF) [53, 54]. Alternately b corresponds to the scaling function and g corresponds to

the wavelet. Figure 5.5 shows an example where for a given feature vector, the closest

basis vector (CBV) that is orthogonal to all shifts is a very poor approximation. How-

ever on relaxing the condition of orthogonality to every shift to orthogonality to alternate

shifts we get the CBV that is a much better approximation of the feature vector.

46

0 50 100 150
−0.2

−0.1

0

0.1

(i) Feature Vector
0 50 100 150

−1

−0.5

0

(ii) Closest Basis Vector Orthogonal to All Shifts

0 50 100 150
−0.8

−0.6

−0.4

−0.2

0

0.2

(iii) CBV Orthogonal to Alternate Shifts
0 50 100 150

−1

−0.5

0

0.5

(iv) Complementary Basis to (iii)

Figure 5.5: An example demonstrating tradeo�s between temporal resolution and the

closeness of the basis vector to the feature vector.

47

Chapter 6

Interpolation of Images

6.1 Fractal Interpolation

Fractal, or IFS coding of images, lends itself naturally to interpolation. We have

seen in Chapter 2 that the IFS code for each range block consists of four parameters,

1. domain block address,

2. isometric transformation,

3. o�set or range block mean, and

4. scale factor.

The IFS code does not specify the number of pixels in each range block. Therefore the

image can be decoded to any size, with the only limitation that the range blocks of the

decoded image have edges that are whole numbers. For example an M �N image coded

with range blocks of size r� r can be decoded as an image of size

M

r

m�

N

r

m with range

blocks of size m�m. In this Chapter we discuss some features of fractal interpolation of

images and compare it with interpolation using DCT and subband interpolation.

One major disadvantage of interpolation using IFS is that it does not guarantee

distortionless coding of the original image however much we increase the bit rate of the

coding scheme. At the coding stage of the IFS we try to reduce the collage error

"

c

=

N

r

X

n=1

d(R

i

;

^

R

i

) (6.1)

48

in order to reduce the reconstruction error

" = d(A;

^

A) (6.2)

where, R

i

and

^

R

i

denote, respectively, the i

th

range block and its approximation, A is

the original image, and

^

A is the reconstructed image. Collage theorem guarantees the

closeness of A and

^

A if the collage error "

c

is small. Similar to (1.15), the collage error

too can be expressed in terms of the peak signal to collage error ratio, (PSN

c

R) as

PSN

c

R = 10 log

10

(2

b

� 1)

2

MN

"

c

; (6.3)

where b is the number of bits used to represent each pixel of the original image of size

M � N . It is meaningless to talk about the reconstruction error in the case of IFS

interpolated images, since A and

^

A are of di�erent sizes. However, it is intuitively

obvious that we should �rst have an IFS code with the minimum possible collage error

to obtain interpolated images of good quality. Also, it is known that we can increase the

�delity of the IFS, by reducing the size of the range blocks. We would therefore expect

that, for good interpolation, we should code the original image with very small range

blocks and then decode the IFS code for an image of larger size.

Figure 6.1 (a) shows an interpolated image of size 512 � 512, starting with

an original image of size 128 � 128 and using the IFS code with 2 � 2 range blocks.

Figure 6.1 (b) shows the interpolated image of the same size using the IFS code with 4�4

range blocks. Though the IFS code (with 2 � 2 range blocks) used for generating the

image in Figure 6.1 (a) has a PSN

c

R of 51 dB, which is higher than the PSN

c

R of 32 dB

for the IFS code (with 4�4 range blocks) used for generating the image in Figure 6.1 (b),

the interpolated image in Figure 6.1 (a) is obviously inferior to that in Figure 6.1 (b).

Apparently, reduction of the collage error is not a su�cient condition for improving the

quality of the interpolated image. The reason may be that the 2� 2 range blocks are too

small to catch any meaningful feature of the image. We should therefore try to improve

the �delity of the IFS code, without reducing the range block size. This can be done by

coding a range block R, with multiple domain blocks:

^

R = m

r

+

n

X

i=1

s

i

C

i

; (6.4)

49

Figure 6.1: (a) (Top left) interpolated `Elephants' image (512�512). The original 128�128

image was coded using 2� 2 range blocks.(b) (Top right) coded using 4� 4 range blocks.

(c) (Bottom left) 4� 4 range blocks with n of (6.4) equal to 8. (d) (Bottom right) n = 8.

50

where m

r

is the mean of the range block, C

i

are zero mean, normalized codebook blocks

and s

i

are the scale factors. For n = 1, (6.4) reduces to (2.15). There is one more

advantage of using a larger range block size. As already stated, an IFS coded image of

size M � N can be decoded to a size m

M

r

� m

M

r

, where m is any positive integer and

r � r is the size of the range blocks. Hence, the larger the value of r, the larger is the

number of possible sizes to which the image can be decoded.

6.1.1 Convergence of the IFS

The use of multiple domain blocks makes the study of convergence of the IFS even

more intricate. However if the scheme proposed by Oien and Lepsoy [40], and outlined in

Section 2.5, is used, it can be easily seen that convergence is reached in a �xed number

of iterations, irrespective of the scale factor, even if multiple domain blocks are used. We

may therefore use IFS coding with the following restrictions:

� Domain blocks having an integral square number of range blocks.

� Decimation of domain blocks by averaging

� Choice of the 8 standard transformations consisting of re
ections and rotations.

As in [40], for any arbitrary choice of the initial image, after the �rst iteration, the means

of all range blocks are �xed as the second term in the right-hand side of (6.4) is zero

mean. If the size of the domain blocks is 4 times that of the range blocks, the means

of each quadrant of each range block is �xed after the second iteration. After the third

iteration the means of each quadrant of each quadrant of each range block are �xed, and

so on, till the mean (or just the value) of each pixel is �xed, at which point, convergence

is achieved.

6.1.2 Results

The IFS interpolated 512 � 512 images of `Elephants' using 4 � 4 range blocks with

n (of (6.4)) equal to 4 (PSN

c

R=50.5 dB) and 8 (52 dB) are shown in Figure 6.1 (c)

and (d) respectively. Figure 6.2 shows other examples of interpolation of the 128 � 128

images shown in Figure A.1 to 512 � 512 images. While the images in Figure 6.2 (a)

(PSN

c

R=49dB), (b) (46 dB) and (c) (49dB) use 4�4 range blocks with n = 4, the image

51

in Figure 6.2 (d) (48 dB) is the result of interpolation using 8� 8 are blocks with n = 16.

Though the `Girl' image in Figure 6.2 (d) is more acceptable than that in Figure 6.2 (c),

neither of them is of high quality. Though fractal interpolation adds a lot of details to

the interpolated image, it also adds a lot of artifacts which are unacceptable. Particularly

unacceptable artifacts are the speckle noise on smooth regions and the secondary edges

(like the one near the face of the `Girl' in Figure 6.2 (d). Also note that as n is increased,

(or if the IFS is coded using more number of bits) one does not perceive more than a slight

improvement in the quality of the interpolated image. For example, there is not much

di�erence between the images of Figure 6.1 which are coded with increasing bit rates.

6.1.3 Interpolation as a Route to Low Bit Rate Fractal Coding

As we have seen in the previous section, the quality of the interpolated image does

not improve much as bit rate of the IFS code is increased. It is observed that there is not

much use in coding the images at the original size at more than 35 dB PSNR. However

fractal interpolation can be useful for low bit rate coding. As an example, Figure 5.3 (b)

was coded using 16 � 16 range blocks to achieve a compression ratio of about 95 with

an SNR of 25.72 dB. However the image of Figure 4.3 (a) was obtained by coding the

decimated version of the image and then reconstructed by interpolation to the original

size. The compression ratio is again about 95 and the SNR is 24.85 dB. Though the SNR

of the latter is lower than that of the one coded without decimation and interpolation, it

is advantageous to use the latter scheme as the computational complexity is drastically

reduced since, in e�ect, an 128� 128 image is coded instead of a 512� 512 image.

6.1.4 Feature Highlighting Transforms for Interpolation

We have seen in Chapter 5, as to how feature highlighting transforms may be used

to signi�cantly increase the quality of the decompressed image. We now outline a scheme

where FHTs can be used for interpolation of images. For example, for interpolating an

128�128 image to the size of 512�512 , the input image is FHT transformed (with basis

vectors of size 128 � 128) and then coded. The decoding is done to obtain a 512 � 512

image which is inverse transformed using a kernel of size 512�512. The forward transform

kernel is obtained from a feature vector [1 � 1 0 0 � � � 0] 2 R

128

. The inverse transform

kernel is obtained from the feature vector [1 � 1 0 0 � � � 0] 2 R

512

(zero padding the

52

Figure 6.2: (a) (Top left) 512 � 512 interpolated `Squirrels' image for n = 4. (b) (Top

right) `Cheetah' (c) (bottom left) and (d) (bottom right) `Girl'. (a), (b) and (c) are results

of interpolation with range block size of 4�4 and n = 4. (d) is obtained from range block

size of 8� 8 with n = 16.

53

forward transform feature vector). The basis vectors are obtained from the feature vectors

as the nearest all pass impulse response to the feature vector, as outlined in Chapter 5.

The result of this interpolation for the 128 � 128 `Lena' image (which was obtained by

decimating a 512� 512 Lena image) is shown in Figure 6.3 (a). The SNR of the decoded

image at 512 � 512 is 24.53 dB. Figure 6.3 (b) shows another example of interpolation

using FHT for the 128� 128 squirrel image to a size of 512� 512.

6.2 Comparison with Other Interpolation Schemes

6.2.1 Interpolation Using DCT

For this form of interpolation the DCT coe�cients of the original image (scaled

appropriately - for example for interpolation from 128 � 128 to 512 � 512, each of the

128�128 DCT coe�cients are multiplied by 16) are taken as the low frequency coe�cients

of the DCT of the interpolated image. These coe�cients are zero-padded and the inverse

DCT is taken to obtain the interpolated image. The interpolated `Elephants' image thus

obtained is shown in Figure 6.4 (a). Though the quality of the image is slightly better than

that in Figure 6.4 (b), obtained by linear interpolation, the DCT interpolated image lacks

sharpness, unlike the fractal interpolated image. But the advantage of DCT interpolation

is that no annoying artifacts are added to the image.

6.2.2 Interpolation Using Subband Decomposition

In this method the image to be interpolated is assumed to be the product of the

subband decomposition of the interpolated image. (To be more speci�c, the subband ob-

tained by both column and row wise �ltering by the low pass component of the QMF pair,

which is commonly referred to as the LL band). The interpolated image is obtaining by

reconstructing the image through subband reconstruction, in which the subbands LH,HL

and HH are all set to zero. Figure 6.5 shows the method of constructing the interpolated

image from the original image. Figures 6.4 (c) and (d) show the interpolated `Elephants'

and `Cheetah' images of size 512 � 512. For both images, the low pass �lter used is the

Daubachies's �lter [4] of length 6. Comparison with other forms of interpolation shows

that the subband interpolation is perhaps the best method. The sharpness of the im-

ages is better than that for DCT interpolation or linear interpolation, and unlike fractal

54

Figure 6.3: (a) (Top) interpolated `Lena' image with FHT. (Figure 4.3-(a) shows the the

interpolated `Lena' image without FHT). (b) (Bottom) interpolated `Squirrel' image with

FHT.

55

Figure 6.4: (a) (Top left) DCT interpolation of 128� 128 `Elephants' image to 512� 512

image. (b) (Top right) linear interpolation. (c) (Bottom left) subband interpolation of

`Elephants' image. (d) (Bottom right) subband interpolation of `Cheetah' image.

56

Figure 6.5: Subband interpolation of images. h is the low pass Quadrature Mirror Filter.

interpolation, no artifacts are introduced.

57

Chapter 7

Conclusions

In this thesis, some new methods of improving the e�cacy of fractal image com-

pression have been explored. The aim is to develop new fractal coding schemes, which,

for a given compression ratio, yield either a signi�cant reduction in complexity at the cost

of a marginal reduction in quality, or a signi�cant improvement in quality for a marginal

increase in computation. All comparisons are with reference to Jacquin's block matching

technique [8] which involves an exhaustive search in the domain library or a sub-library.

In Chapter 3 we introduced the method of block matching through inner prod-

uct, which is twice as fast as the conventional least squares method of block matching. In

Chapter 4 we introduced a new technique of FFT-based block matching, in which the set

of isometric transformations chosen for each domain block were di�erent from the regular

8 transformations consisting of rotations and re
ections. The new set of transformations

consisting of circular shifts of the pixels of a shrunken domain block expressed as a vector,

facilitate the use of a single FFT for computing the inner product of a range block with the

entire set of codebook blocks generated by a domain block. Since the number of codebook

blocks per domain block is much larger than 8, the size of the domain library required

for a given number of codebook blocks gets correspondingly reduced. Thus, for a given

compression ratio, the new method yields a very signi�cant increase in the computational

speed as compared to Jacquin's method, for the cost of a slight degradation in the decoded

image quality. For example, for range block sizes of 8� 8, the FFT-based block matching

method is approximately 25 times faster than Jacquin's method and has a PSNR ap-

proximately 0:75 dB lower. The reduction in PSNR indicates that some codebook blocks

generated by the new transformation algorithm are not useful. The new method can be

58

speeded up further by restricting the FFT-based matching of each range block to only a

small subset of domain blocks whose magnitude DFT's are relatively closer to that of the

range block. The reduction in computation achieved with this restriction is considerable,

with negligible additional loss in image quality.

We have also attempted a hybrid scheme wherein the above block matching technique

is used to encode the error image resulting from the �rst stage of a low-bit-rate fractal

compression scheme. For encoding the errors we choose the domain blocks from a highly

decimated image. We have found that we need up to three levels of approximations for

many range blocks for coding the residual error in a block, within some tolerance.

In Chapter 5 we introduced a new family of fast, unitary, feature highlighting

transforms (FHT). The FHT is made to highlight features by choosing the basis vectors of

the transform as an impulse response of an all-pass �lter, closest to the feature we desire

to highlight, and all its translates. The FHT was used to signi�cantly improve the quality

of the edges of decoded images of a low bit rate fractal compression scheme. We have

also brie
y explored some modi�cations of the FHT where tradeo�s are made between

the spatial / temporal resolution of the basis vectors and their closeness to the feature we

desire to highlight. If the resolution is further reduced (say, by making the basis vectors

orthogonal to every fourth shift) we could highlight multiple features. Other uses of FHT

and its variants are yet to be investigated.

The IFS code naturally lends itself to interpolation since decoding can be done

at any image resolution. In order to get interpolated images of good quality, the quality of

the non-interpolated decoded images should be good, which may be achieved by choosing

range blocks of small size. However, our studies indicate that fractal interpolation does

not work well with range blocks of small size. Hence, we have devised an IFS coding

technique of improving the quality of the non-interpolated images without reducing the

size of the range blocks. In this technique, multiple domain are used to approximate each

range block. Though IFS interpolation yields, in general, sharper pictures than other

methods, it also introduces a lot of artifacts which are, at times, unacceptable. Moreover

the improvement in the quality of interpolated images with increase in the bit rate of the

IFS code is only marginal. Still, the fractal interpolation scheme can be useful as a low-

complexity, low-bit-rate, compression scheme, where the original image is decimated, IFS

coded, and then decoded at a higher resolution. For this scheme too, by enhancing the

edges of the image using the FHT before IFS coding, the quality of the decoded image can

be signi�cantly improved. We have compared the quality IFS interpolation with linear

59

interpolation, interpolation using DCT, and subband interpolation. We see that the the

most acceptable quality of interpolation is achieved through subband interpolation. The

sharpness of subband interpolated images is better than that of linear interpolation or

DCT, and, unlike IFS interpolation, no annoying artifacts are added.

60

Appendix A

Original Images Used

61

Figure A.1: 128� 128 images. `Elephants', `Squirrels', `Girl', and `Cheetah'.

62

Figure A.2: 512� 512 images. `Lena', `Peppers',`Boats' and `Baboon'.

63

Bibliography

[1] N.S.Jayant and P.Noll, Digital Coding of Waveforms, Englewood Cli�s, NJ, Prentice

Hall, 1984.

[2] N.Ahmed, T.Natarajan, K.R.Rao, `Discrete Cosine Transform', IEEE Trans. Com-

put. C-23, pp 90-93, Jan 1974.

[3] G.K.Wallace, `The JPEG Still Picture Compression Standard', Commun. ACM, 34,

pp 31-44, Apr 91.

[4] I.Daubechies, `The Wavelet Transform, Time-Frequency Localization and Signal

Analysis', IEEE Trans. on IT, 36(5), pp 961-1005, Sep 90.

[5] J.M.Shapiro, `Embedded Image Coding Using Zero-Trees of Wavelet Coe�cients',

IEEE Trans. on Signal Proc., 41(12), pp 3445-62, Dec 93.

[6] J.W.Woods and S.D.O'Neil, `Subband Coding of Images', IEEE Trans. of ASSP,

34(5), Oct 86.

[7] P.J.Burt and E.H.Adelson, `The Laplacian Pyramid as an E�cient Image Code',

IEEE Trans. on Commn., pp 532-540, Apr 83.

[8] A.E.Jacquin, `Image Coding Based on a Fractal Theory of Iterated Contractive Image

Transformations', IEEE Trans. on Image Proc., 1(1), pp 18-30, Jan 1992.

[9] A.E.Jacquin, `Fractal Image Coding: A Review', Proc. of the IEEE, 81(10), pp

1451-65.

[10] M.Barnsley, Fractals Everywhere, Academic Press, San Diego, CA, 1988.

[11] M.Barnsley and A.D.Sloan, `A Better Way to Compress Images', Byte, pp 215-23,

Jan 1988.

64

[12] Y.Fisher, `Mathematical Background', in Y.Fisher (ed), Fractal Image Compression:

Theory and Application, Chapter 2, Springer Verlag, NY, 1995.

[13] Y.Fisher, E.W.Jacobs, R.D.Boss, `Iterated Transform Image Compression', NOSC

TR-1048, Naval Ocean Systems Center, San Diego, CA.

[14] E.W.Jacobs, Y.Fisher and R.D.Boss,`Image Compression: A study of the Iterated

Transform Method', Signal Processing, 19, pp 251-63, 1992.

[15] Y.Fisher, `Fractal Image Compression with Quad-trees' in Y.Fisher (ed), Fractal

Image Compression: Theory and Application, Chapter 3, Springer Verlag, NY, 1995.

[16] Y.Fisher, `Introduction', in Y.Fisher (ed), Fractal Image Compression: Theory and

Application, Chapter 1, Springer Verlag, NY, 1995.

[17] D.M.Munro and F.Dudbridge, `Fractal Approximation of Image Blocks', ICASSP-92,

III, pp 485-88

[18] F.Dudbridge, `Least Squares Block Coding by Fractal Functions', in Y.Fisher (ed),

Fractal Image Compression: Theory and Application, Chapter 3, Springer Verlag,

NY, 1995.

[19] D.M.Munro, `A Hybrid Fractal Transform', ICASSP-93, V, pp 169-72.

[20] D.M.Munro and S.J.Woolley, `Fractal Image Compression Without Searching',

ICASSP-94, V, pp 557-60

[21] S.J.Woolley and D.M.Munro, `Optimum Parameters for Hybrid Fractal Image Cod-

ing', ICASSP-95, IV, pp 2571-74.

[22] H.Zhang, X.Gao and Z.He, `A Modi�ed Fractal Transform', ICASSP-95, IV, pp 2567-

70.

[23] G.E.Oien, S.Lepsoy and T.A.Ramstad, `An Inner Product Space Approach to Image

Compression by Contractive Transformations', ICASSP-91, IV, pp 2773-76.

[24] G.Vines, `Orthogonal Basis IFS', in Y.Fisher (ed), Fractal Image Compression: The-

ory and Application, Chapter 3, Springer Verlag, NY, 1995.

65

[25] D.Saupe and R.Hamzaoui, `Complexity Reduction Methods for Fractal Image Com-

pression' IMA Conf. in Image Proc. : Mathematical Methods and Applications,

T.M.Blacklegde (ed), Oxford University Press, 1995.

[26] D.Saupe, `Breaking the Time Complexity of Fractal Image Compression', Technical

Report 53, Institut fur Informatik, Universitat Frieburg, 1994.

[27] K.W.Barthel, T.Voye and P.Noll, `Improved Fractal Image Coding', Proceedings of

the International Picture Coding Symposium, PCS-93, Section 1.5, March 93.

[28] B.Ramamoorthi and A.Gersho, `Classi�ed Vector Quantization of Images', IEEE

Trans. Commn. COM-34, 1986.

[29] R.D.Boss and E.W.Jacobs, `Archetype Classi�cation in an Iterated Transform Image

Compression Algorithm' in Y.Fisher (ed), Fractal Image Compression: Theory and

Application, Chapter 4, Springer Verlag, NY, 1995.

[30] S.Lepsoy and G.E.Oien, `Fast Attractor Image Coding by Adaptive Codebook Clus-

tering' in Y.Fisher (ed), Fractal Image Compression: Theory and Application, Chap-

ter 9, Springer Verlag, NY, 1995.

[31] T.Bedford, F.M.Dekking and M.S.Keane, `Fractal Image Coding Techniques and

Contractive Operators', Nieuw Arch. Wisk (4) 10,3, pp 185-218, 1992.

[32] J.Kominek, `Algorithm for Fast Fractal Image Compression', Proc. of SPIE Digital

Video Compression: Algorithms and Technologies, 2419, pp 296-305, 1995.

[33] C.Frigaard, J.Gade, T.Hemmingsen and T.Sand, `Image Compression Based on Frac-

tal Theory', Technical Report, Institute for Electronic Systems, Aalberg University,

Denmark, 1994.

[34] B.Bani-Eqbal, `Speeding Up Fractal Image Compression', Proc. of SPIE: Still Image

Compression, 2418, pp 67-74, 1995.

[35] B.E.Wohlberg, G.de Jager, `Fast Image Domain Fractal Compression by DCT Do-

main Block Matching', Elect. Lett. 30, pp 474-75, Mar 94.

[36] J.Kominek, `Convergence of Fractal Encoded Images' Proc. of Data Compression

Conference, pp 242-251, 1995.

66

[37] L.Lundhiem, `A Discrete Framework for Fractal Signal Modeling', in Y.Fisher (ed),

Fractal Image Compression: Theory and Application, Chapter 7, Springer Verlag,

NY, 1995.

[38] B.Hurtgen, `Contractivity of Fractal Transforms for Image Coding', Elect. Lett.,

29(20) pp 1749-50.

[39] J.Domaszenicz and J.Vaishampayan, `Graph Theoretical Analysis of Fractal Trans-

forms', ICASSP-95, IV, pp 2559-62

[40] G.E.Oien and S.Lepsoy, `A Class of Fractal Image Coders With Fast Decoder Con-

vergence', in Y.Fisher (ed), Fractal Image Compression: Theory and Application,

Chapter 8, Springer Verlag, NY, 1995.

[41] Z.Baharav, D.Malah and E.Karnin, `Hierarchical Interpretation of Fractal Image

Compression and its Applications', in Y.Fisher (ed), Fractal Image Compression:

Theory and Application, Chapter 5, Springer Verlag, NY, 1995.

[42] A.Bogdan,`Multiscale Fractal Image Coding and the Two-scale Di�erence Equation',

Columbia University Technical Report, TR-358-94-05, pp 1-14, 1994.

[43] H.Krupnik, D.Malah and E.Karnin,`Fractal Representation of Images via the Discrete

Wavelet Transform', IEEE 18th Conv. in Isreal, Tel-Aviv, Mar 1995.

[44] R.Rinaldo and G.Calvagno, `An Image Coding Scheme Using Block Prediction of the

Pyramid Subband Decomposition', IEEE International Conference on Image Process-

ing, ICIP-94, 1994.

[45] S.G.Mallat, `A Theory for Multiresolution Signal Decomposition: The Wavelet Rep-

resentation.' IEEE Trans. of PAMI, 11(7), pp 674-693, Jul 89.

[46] G.Oien, `Parameter Quantization in Fractal Image Coding', ICASSP-94, V, pp 142-

146

[47] A.R.Butz, `Alternative Algorithm for Hilbert's Space Filling Curve',IEEE Trans. on

Computers, pp 924-26, Apr 1971.

[48] P.Duhamel and M.Vetterli, `Improved Fourier and Hartley Transform Algorithms:

Application to Cyclic Convolution of Real Data.' IEEE Trans. Acoust., Speech and

Signal Processing, vol ASSP-35, pp 818-824, June 1987.

67

[49] P.Duhamel, `Implementation of \Split-Radix" FFT Algorithms for complex, real and

real-symmetric data,' IEEE Trans. on Acoust., Speech, Signal Processing, vol-ASSP-

34, pp 285-295, Apr. 1986.

[50] P.Duhamel, `AlgorithmsMeeting the Lower Bounds on the Multiplicative Complexity

of Length - 2

n

DFT's and Their Connection with Practical Applications,' IEEE

Trans. Acoust., Speech, Signal Processing, vol 38, pp 1504-1511, Sep. 1990.

[51] H.S.Malvar,Signal Processing with Lapped Transforms, Artech House Inc.,Norwood,

1992.

[52] P.A.Regalia, S.K.Mitra and P.P.Vaidyanathan, `The Digital All Pass Filter: a Ver-

satile Signal Processing Building Block', Proc. IEEE, Vol 76, Jan 1988.

[53] P.P.Vaidyanathan, Multirate Systems and Filter Banks, Englewood Cli�s, N.J, Pren-

tice Hall Signal Processing Series, 1994.

[54] M. Vetterli and J Kovacevic, Wavelets and Subband Coding, Englewood Cli�s, N.J,

Prentice Hall Signal Processing Series, 1995.

[55] K.Popat and K.Zeger, `Robust Quantization of Memoryless Sources Using Dispersive

FIR Filters', IEEE Trans. on Commn., Vol 40, No 11, November 1992.

[56] H.W.Strube, `How to Make an All-Pass Filter with a Desired Impulse Response',

IEEE Trans. on ASSP, ASSP-30, No 2, April 1982.

[57] I Daubechies, `Orthonormal Bases of Compactly Supported Wavelets',Commun. of

Pure and Appl. Math. 41, pp 909-996, Nov 1988.

68

