
Minimal Trusted Computing Base for MANET
Nodes

Vinay Thotakura, Mahalingam Ramkumar
Department of Computer Science and Engineering

Mississippi State University, MS.

Abstract—Securing any MANET routing protocol requires
measures to ensure that routing information advertised by a
node (to its neighbors) is consistent with routing information
assimilated by a node (from its neighbors). We investigate a
minimal trusted computing base (TCB) for MANET nodes
to ensure this requirement. We outline low complexity TCB
functions which can be executed inside trustworthy boundaries of
resource limited trustworthy MANET modules (TMM). The TCB
functions are used to maintain a table of active neighbors, create
routing records (RR), authenticate RRs to TMMs in neighboring
nodes, receive authenticated RRs, and update RRs, subject to
simple rules. Even while the dynamic RR database of every
node is stored outside the TMM, by storing the root of an index
ordered Merkle hash tree (IOMT) the TMMs can ensure that
nodes cannot modify, replay or even hide RRs.

I. INTRODUCTION

Nodes forming mobile ad hoc networks (MANET) do not
depend on an infrastructure of dedicated routers. The nodes
themselves share the responsibility of routing packets between
nodes, by adhering to a MANET routing protocol. In all
routing protocols participants broadcast routing information
to nodes within their range: either periodically, or on demand.
In general, a routing packet broadcast by a node A provides
two kinds of information to neighbors of A. viz., i) first-hand
information about A - that A is still a neighbor, or has entered
the neighborhood; and ii) nthhand information regarding other
nodes.

Based on information provided by A, (for example) that
a node D is 5 hops away from A, neighbors of A who
do not have currently have a path to D that is less than
6 hops, add this information regarding D in a database of
routing records (RR), indexed by the destination identity D.
On receiving a routing packet from a neighbor, a node updates
its RR database, and may advertise updated information to its
neighbors.

The need to rely on indirect (second-hand, third-hand, etc.)
information renders MANET protocols highly vulnerable to
attacks. Securing MANET routing protocols demands tangible
measures to ensure that the RRs advertised by a node are
consistent with RRs assimilated and stored by a node.

A. Trusted Computing Base

For any computing system with a desired set of assurances,
the trusted computing base (TCB) “is a small amount of
software and hardware we need to rely on” [1] to realize the
desired assurances. More specifically, as long as the TCB is

worthy of trust, the desired assurances can be realized even if
all other components of the system misbehave.

In typical approaches for securing MANET protocols the
TCB includes a set of cryptographic algorithms which are
assumed to be unbreakable, some trusted entities like key dis-
tribution centers and/or certificate authorities who are trusted
to perform their tasks, and the notion that the keys assigned
to nodes will not be privy to unintended parties. This TCB is
amplified using security protocols which specify policies for
cryptographic authentication/verification of routing data, with
the goal of realizing the desired assurances.

Unfortunately, leveraging this TCB to ensure consistency
of assimilated and advertised RRs can be i) expensive due to
high overhead for the security protocol, or ii) even infeasible.
Furthermore, some components of the TCB may not actually
be worthy of trust. For example, while it is assumed that the
secrets assigned to a node A are privy only to node A, in
practice nodes may not protect their secrets well. Some nodes
may even collude together. There are numerous ways in which
a set of n colluding nodes [2], all of which have access to each
other’s keys, can wreak havoc on the subnet.

B. Efficient TCB for MANET Nodes

One possible approach to expand the TCB is to implement
some special TCB functionality inside trustworthy boundaries
like tamper-responsive computing modules. To merit trust, and
to ensure that modules that offer this functionality can be
realized at a low cost, the TCB functions should be as simple
as possible. The contribution of this paper stems from the
question

What is a minimal TCB for MANET nodes to en-
sure consistency between assimilated and advertised
topology information?

The broad goal of the TCB is to prevent nodes from acting in a
malicious fashion. The challenge is in minimizing the storage
and computational requirements for the tasks performed inside
the trustworthy boundary. In the proposed model, a low
complexity trustworthy MANET module (TMM) housed in
every MANET node offers a set of TCB functions, which can
be leveraged with low overhead, to ensure that nodes can only
advertise RRs consistent with assimilated RRs.

In this approach every TMM protects some secrets that are
hidden even from the node which houses the TMM. Using
their respective secrets, any two TMMs X and Y (housed
in nodes X and Y respectively) can compute a pairwise

secret KXY . Routing records are created by TMMs, modified
by TMMs, and exchanged between TMMs (authenticated
using pairwise secrets). The TMMs also maintain a table of
neighbors. RRs are authenticated only to neighbors, and con-
sequently TMMs accept RRs only from TMMs of neighbors.
From the perspective of a TMMs, a nodes which houses the
TMM is an untrusted middle-men, who

1) has complete control over the communication interfaces
and channels;

2) has physical access to the TMM, but cannot expose
secrets protected by the TMM, or modify the TMM’s
TCB functionality; and

3) stores routing records.
The rules that govern how and when RRs should be modi-
fied, deleted or advertised are not complex enough to pose
significant challenges for implementation of such rules inside
resource limited TMMs. The primary challenge stems from
the fact that the dynamic database of RRs cannot be stored
inside the TMM. In our approach, a novel construct, an “index
ordered Merkle-hash-tree” (IOMT) is employed to ensure
that “storing a single value (the root of the tree) inside the
TMM, and storing an entire dynamic database of RRs outside
the trusted boundary of TMM, is for all practical purposes,
equivalent to storing the entire database of RRs inside the
TMM.” By storing the root of the tree, and performing
simple sequences of cryptographic hash and logical operations,
TMMs can ensure that RRs stored by untrusted nodes cannot
be modified, replayed, or even hidden from the TMM.

We refer to the functionality built into TMM to i) maintain a
neighbor table; and ii) maintain the RR database, viz., accept,
process, store and delete RRs subject to the rules governed
by the routing protocol, as MANET TCB functions. In this
paper we provide an outline of simple MANET TCB functions,
which can be implemented inside low complexity TMMs that
can be realized at a low cost. More specifically, such TCB
functions are simple enough to be implemented using a fixed
sequence of logical and cryptographic hash operations, and can
be leveraged with low overhead to ensure consistency between
assimilated and advertised topology information.

In Section II we begin with a broad overview of MANET
routing, a high level description of attacks on MANET routing
protocols, and current approaches to address attacks. In Sec-
tion (III) we introduce index-ordered Merkle trees (IOMT).
In Section IV we begin with an overview of TMMs, and
discuss three simple TCB functions for MANET nodes. In
Section IV-E we outline how the TCB functions can be
leveraged by nodes adhering to the ad hoc on demand distance
vector (AODV) protocol. Conclusions are offered in Section V.

II. MANET ROUTING PROTOCOLS

MANET routing protocols can be classified into proactive
and reactive protocols. In proactive approaches like dynamic
sequenced distance vector (DSDV) [5] protocol, nodes strive
to maintain a consistent view of the topology of a connected
subnet at all times. In reactive protocols like the ad hoc on-
demand distance vector (AODV) [6] protocol and the dynamic

source routing (DSR) [7] protocol, routes are determined on
demand.

In DSDV every node maintains a table indicating all nodes
in the subnet, a distance metric to each node, a sequence
number associated with the metric, and the neighbor which
provided this information (which is the next hop to reach that
destination). Every node periodically advertises the distance
metrics (hop count) for all nodes in the subnet to all neighbors.
Based on the information received from all neighbors, a node
recomputes its shortest metric to all other nodes in the subnet.
This updated information is advertised in the next update
provided to neighbors.

In reactive protocols, discovery of routes starts with a query
in the form of a route request (RREQ), which includes a
fresh sequence number of the initiator. Any node receiving the
RREQ gains knowledge of a mechanism to reach the initiator
of the RREQ. A node processing the RREQ responds to the
query by i) sending a route response (RREP) packet if it has
knowledge of a path (DSR) or forwarding information (in
AODV) to the desired destination; or ii) forwarding the RREQ
onwards otherwise. After a route is established intermediate
nodes may invoke route error (RERR) messages if a link
required to maintain the route is broken.

Some protocols like the temporally ordered routing algo-
rithm (TORA) [8] can operate in both proactive and reactive
modes at the same time. Nodes that desire to be reached can
proactively (and periodically) instantiate a process of flooding
an OPT packet with a fresh sequence number. A node that does
not have a path to a destination can also send a query (QRY)
packet, in response to which it receives an UPD packet (from
a node which does have a path to the destination) indicating
the distance to the desired destination.

A. Attacks on MANET Routing

Attacks on MANET routing protocols can be classified into
passive and active attacks. Passive attackers do not transmit
any data. The intention of such attacks could be to merely
observe traffic patterns or snoop on data exchanged between
nodes. Selective participation, where (for example) a node
announces its presence only if it needs to send or receive data
packets, but remains silent otherwise (does not take full part
in routing), can also be considered as a passive attack.

Active attacks are performed by taking an active part in
relaying messages and routing information. Such attacks at-
tempt to modify relayed routing data or replay old routing data
(which has been invalidated due to topology changes), with
the intention of disrupting the routing fabric. Some specific
instances of active attacks include modification of hop counts
in routing tables, reporting of fictitious neighbors, or randomly
corrupting routing information / data packets that are relayed.

The specific intention behind such attacks can vary. For
example, an active attacker may shorten the hop count in
order to ensure that most packets pass through the attacker.
The attacker can then suddenly start dropping packets, or send
supercilious RERR messages to create large scale disruptions
in the subnet. On the other hand, an attacker may increase the

hop count to reduce the chance of being in the route to the
destination, thereby shirking responsibility for relaying data.

Active attacks also include rushing attacks, where a rushed
bad packet is intended to preempt other good packets, and
thereby lower the chance of successful establishment of routes.
Other forms of active attacks include simple denial of service
(DoS) attacks where the attacker attempts to engage nodes in
performing fruitless tasks - for example, by sending random
bits in place of a digital signature, causing victims to invest
substantial effort to verify the “signature.” Such attacks can
be especially severe in scenarios involving resource limited
devices.

1) Addressing Attacks: Secure MANET routing protocols
include explicit features to address various attacks. In gen-
eral, mechanisms to address passive attacks require nodes to
monitor their neighbors to determine which of neighbors did
or did not send packets. For this purpose, a node processing
a packet sent by “node A” needs to verify that the packet
was sent by A. This is made possible through a cryptographic
authentication token accompanying the packet. Strategies for
addressing active attacks strive to detect inconsistencies in the
routing information. For this purpose, verification of multiple
cryptographic tokens (created by multiple of nodes) is called
for [9] (for example, verification of authentication tokens
appended at two hops, or even all hops).

Most often, due to the overhead for providing assurances
several “clever” optimizations in routing protocols (which can
improve the overall efficiency of the protocol) are dissuaded
in secure extensions of such protocols. For example, in DSR a
node A can receive or overhear various RREQ/RREP packets
that indicate segments of paths which include A or any
neighbor of A. While using this knowledge to create responses
for queries from other nodes can lower the overhead and
reduce latency, providing assurances of the integrity of such
responses is substantially more difficult. For this reason, secure
extensions of DSR typically allow only RREP by the final
destination [9], [2]. In both DSR and AODV, once a route
has been established, link failures can cause the path to break
down. While permitting intermediate nodes to make local
decisions to re-route packets can reduce the overhead for
finding alternate routes, most secure extensions will require
the source to re-initiate the RREQ process [10].

III. INDEX ORDERED MERKLE TREE

A binary Merkle-tree [11] of height L with N = 2L leaves
l0 · · · lN−1 can be can be constructed using two one-way func-
tions - both of which can be derived from a cryptographic hash
function h() (for example, SHA-1). A function vi = hl(li)
maps a leaf to an intermediate node vi at height 0; a function
z = hn(x, y) maps two intermediate nodes x and y at height
n− 1 to a node z at height n. For example, z = h(x ‖ y)

Figure 1 depicts a Merkle tree with N = 16 leaves of height
L = 4. The root of the tree is a commitment to all leaves. To
prove to an entity (who only has access to the root of the tree)
that a leaf li is part of the tree, the prover provides the leaf li
with a set of L “instructions.”

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 la lb lc ld le lf

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve vf

v01 v23 v45 v67 v89 vab vcd vef

v03 v47 v8b vcf

v07 v8f

v0f

Fig. 1. A Binary Merkle tree with 16 leaves.

For example, to prove that l4 belongs to the tree, the prover
provides the L = 4 instructions (v5, 0), (v67, 0), (v03, 1) and
(v8f , 0). In each instruction, the first value is a hash and the
second is an “order-bit.” The verifier first computes v4 =
hl(l4). Then following the instructions, the verifier computes
x = h(v4 ‖ v5), x = h(x ‖ v67), x = h(v03 ‖ x) and
x = h(x ‖ v8f). Note that in each instruction, the order-
bit which informs the verifier how the result of the previous
hash should be combined with first value in the instruction.
The sequence of L hash operations performed based on the
L instructions will result in an output that is the same as the
root of the tree. As long as the hash function h() is pre-image
resistant, the verifier can now conclude that l4 is indeed a part
of the tree.

To modify the leaf l4 to l′4 the prover provides the verifier
with i) the old leaf; ii) L instructions; iii) the new leaf; and
iv) a justification for the modification. The verifier verifies i)
that l4 is part of the tree, and ii) the justification provided. If
satisfied, to accept l′4 as a replacement for l4 the verifier first
computes v′4 = hl(l

′
4) and uses the same set of L instructions

(provided to map v4 to the current root), to compute the new
root.

A. Index Ordered Merkle Tree

In general, a leaf lj , 1 ≤ j ≤ N may contain a record with a
record-index i ∈ I where |I| >> N . For example, I could be
the space of 128-bit IPv6 addresses or 48-bit MAC addresses,
but N may be substantially smaller (for example, thousands).

If N ≥ |I|, each record-index can be associated with a
fixed leaf-index 1 · · ·N in the tree. For example, record-index
i may simply correspond to the ithleaf. The verifier requiring
the current information regarding record indexed i can then
simply ask the prover to provide the ithleaf (along with L
instructions). If new information regarding entity i is received,
leaf i can be updated. After this the prover will not be able to
replay the old information regarding entity i.

However, in scenarios where |I| >> N only a small subset
of values in I are actually associated with leaves l1 · · · lN . If
the verifier (who does not store the leaves) desires to know

the current information regarding a record-index i, the prover
should either provide the leaf which contains the information
regarding i or, alternately, prove that no such leaf exists.
Without this feature, the prover may be able to insert multiple
leaves corresponding to index i, and thus be able to replay
invalidated data regarding the index i.

In IOMT a leaf is a three-tuple of the form (i, θ, i′). This
leaf corresponds to a record index i. The value θ could be a
pre-image resistant hash of the entire contents of the record.
The value i′ is also an index and signifies that no leaf exists
in the tree corresponding to an index that is enclosed by i and
i′.

A value x is enclosed by (i, i′) if i < x < i′, or if
x < i′ < i, or if i′ < i < x. If i = i′ all values are enclosed -
implying that i is the only leaf in the tree. The set of all current
leaves are thus virtually ordered based on an index. where
each index points to the next available index. The highest
index wraps around and points to the lowest index. This
approach is used in NSEC records in DNSSEC (domain name
system security) for providing authenticated denial of queried
records. An NSEC record of the form (abc.example.com,
abf.example.com) proves that no record pertaining to a name
abe.example.com exists. IOMT combines NSEC and Merkle
hash trees.

The IOMT tree is initialized by providing the verifier with
the root of an empty tree (all leaves set to (0, 0, 0)). The first
inserted leaf points to itself as the next leaf, thereby proving
that no other leaf exists. To add a leaf (C, θC) (or insert C in
the place of an empty leaf (0, 0, 0)) the prover demonstrates
that C does not currently exist in the tree. This is achieved
by showing a valid leaf like (A, θA, E) which shows that no
leaf exists for indices that fall between A and E. When C is
inserted (in place of a currently empty leaf) the leaf for A will
also need to be changed to (A, θA, C) to point to C, and the
value (C, θC , E) replaces an empty leaf.

Similarly, to delete a leaf corresponding to an index S,
the prover should provide two current leaves - the leaf to
be deleted, say (S, θS , U) and a leaf (say (P, θP , S)) which
points to S. The leaf for S needs to be set to (0, 0, 0) and the
leaf for P will now need to point to U , and thus modified to
(P, θP , U).

As can be seen from the examples above, the process of
either adding or deleting a leaf requires modifying two leaves
simultaneously. Consider a scenario where two leaves (say l1
and l6) need to be modified concurrently. Note that the leaves
l1 and l6 have a common parent (v07) at height n = 3. To
modify both leaves simultaneously, verifier is provided with

1) the old leaves l1 and l6;
2) n− 1 = 2 instructions (v0, 1) (v23, 0) to reach the left-

child (v03) of the common parent, starting from v1 =
h(l1);

3) n− 1 = 2 instructions (v7, 0) and (v45, 1) to reach the
right-child v47 of the common parent, starting from v6 =
hl(l6); the verifier can now compute the common parent
v07 = h(v03 ‖ v47).

4) L− n = 1 instruction(s) (in this case (v8f , 0)) to reach

the root from the common parent; and
5) the new leaves l′1 and l′6 (along with the justification for

the changes).
After verifying that l1 and l6 are part of the tree, and the
justification provided, the verifier can now compute a new
root starting from values v′1 = hl(l

′
1) and v′6 = hl(l

′
6), using

the same set of 2× (n− 1) + L− n instructions.

IV. TMMS AND MANET TCB FUNCTIONS

For our purposes, as we shall see in this section, the leaves
of the IOMT are routing records indexed by the destina-
tion identity. Resource-limited trustworthy MANET modules
(TMMs) store the root of the IOMT. The modules will
also be capable of performing fixed sequence of hash and
logical operations to accept RRs authenticated by TMMs of
neighbors, update the database of RRs, and authenticate RRs
for verification by TMMs of neighbors. By doing so, TMMs
can ensure that untrusted nodes which store the RRs have no
freedom to misrepresent or even hide routing information.

In general, every node announces its presence in a MANET
subnet by sending a packet to its neighbors indicating a new
sequence number, and perhaps time of expiry. This information
traverses over multiple hops to other nodes (as second-hand,
third-hand, . . . , nthhand information) in the subnet. Depend-
ing on the nature of the protocol, every node may receive and
store one or more routing records (RR), originating from some
or all nodes in the subnet.

Consider a routing record (RR) for a node D stored by a
node X , of the form

rAD = [D ‖ q ‖ m ‖ τ] ‖ A, (1)

where q is a sequence number, m is a distance metric (say,
hop-count to D), and τ is a time after which this RR should
be discarded. This RR was received by X from a neighbor A,
indicating a hop count m−1. The hop count was incremented
by one before it was stored by X , indicating A as the next-hop
in the path to D.

An RR for D indicating a metric m = inf (where inf
is a large number) indicates that D is unreachable. Such a
situation can happen if, for example, after X received the RR
from A, the node A had moved away from the neighborhood
of X . An RR for D is updated by X if a new RR received by
X has i) a higher sequence number, or ii) the same sequence
number with a shorter metric.However, if the new RR is sent
from the same neighbor that had sent the stored RR, the RR
is updated even if it indicates the same sequence number and
higher metric.

When X receives a query requesting a path to a node D,
the node X with a valid RR for D is expected to provide its
RR for D to the querier (and not forward the query onward).
While the list of rules to be followed by every node is simple,
the primary challenge is in ensuring that nodes will indeed
adhere to such rules.

In the proposed approach every node possesses a trustwor-
thy MANET module (TMM) which performs simple to ensure
that i) nodes update their RRs consistent with some rules,

ii) nodes cannot advertise incorrect RRs, or even hide RRs.
TMMs are deliberately constrained to be simple to ensure
that they merit trust. The tasks performed by the TMM are
in response to inputs provided to the TMMs over well defined
interfaces. Such well-defined TCB functions performed by the
TMM are

1) UpdateNeighborTable(),
2) AddDeleteLeaf(), and
3) RelayRoutingRecord(),

The function UpdateNeighborTable() receives time-stamped mes-
sage authentication codes (MAC) (based on pairwise secrets)
as inputs to maintain a table of active neighbors inside the
TMM. The function AddDeleteLeaf() is used to add or delete
leaves of an index-ordered Merkle hash tree (IOMT), where
only the root of the tree is stored inside the TMM. The leaves
of the tree are RRs, indexed by the destination. The function
RelayRoutingRecord() is used to submit RRs from a neighbor
(authenticated by a TMM), modify the RR subject to simple
rules, and obtain MACs for updated RRs for verification at
TMMs in neighboring nodes. The three functions which are
assumed to be immutable, will serve as the TCB for a MANET
nodes.

A. Trustworthy MANET Modules (TMM)

TMMs can be low complexity low cost chips, possibly
similar to the trustworthy computing group (TCG) trusted
platform modules (TPM). Like TPMs, TMMs will be non-
programmable, and perform a fixed set of functions. It is
assumed that that every TMM possesses

1) a unique identity (which is the same as the identity of
the MANET node which houses the TMM);

2) an in-built cryptographic compression function h() (for
example, SHA-1);

3) a secret known only to the TMM; we shall denote such
a secret in TMM X as φX ;

4) some secrets provided by a trusted authority (like a
key distribution center) which can be used to compute
pairwise secrets with other nodes; thus two TMMs A and
B can independently compute a pairwise secret KAB

using their respective secrets.
5) a clock-tick counter: a TMM X uses its clock-tick value

tx and a value txd
provided to the TMM (possibly

during the boot-strapping process during which keys are
provided to the TMM) to compute a value t = tx− txd

.
The value t computed by all TMMs are “sufficiently
close,” and related to the real time t (for example,
number of microseconds elapsed since 0000 GMT Jan
1 2010).

6) limited (say 1 KB) volatile memory;

TMM functionality necessary for time synchronization and
boot-strapping of TMMs are not discussed in this paper. For
efficient approaches to facilitate pairwise keys (not discussed
in this paper) between low complexity trustworthy modules
see [12]- [14].

1) TMM Data Structures: Every TMM maintains a table
of neighbors. In the neighbor-table each row consists of

1) the identity of the neighbor,
2) the time at which the neighbor was last heard from (the

time at which an authenticated packet was received from
the neighbor);

3) a pairwise key for the neighbor, and
4) the status (0,1, or 2) of the neighbor.

Nodes in the neighbor table with status 0 are not considered as
neighbors. Status 1 indicates that bi-directionality of the link
has not been confirmed; status 2 indicates a neighbor with a
confirmed bidirectional link.

Apart form the neighbor table, the other values stored inside
the TMM include some static protocol specific constants.
Some examples of such parameters include

1) Tv: life-time of a newly created sequence number;
2) δ: permitted time difference between the times when

a MAC was created by a TMM and the time a TMM in a
neighbor verifies the MAC (accounting for processing delay
and clock-drift).

3) δs time after which silent neighbors will be removed
from the table (status will be set to 0).

4) inf a constant to denote infinite metric, and
5) r0 the root of an empty IOMT;
In addition, TMMs maintain two dynamic values - the

current sequence number q of the node, and the root of the
IOMT. All static values, and the dynamic sequence number
q, are assumed to be preserved even if the node is rebooted.1

On resetting the TMM, the static parameters and the sequence
number q are loaded and stored inside the TMM, with the root
set to r0; the neighbor table is empty.

2) Inputs and Outputs: The inputs to the three interfaces
include values like leaves of the IOMT, RRs, MACs, time, and
instructions to map a leaf to the root. The outputs of the TMM
are MACs and the current time (according to the clock-tick
counter inside the TMM).

An RR pertaining to a destination D, provided by a neighbor
A is of the form

rAD = D ‖ A where D = [D ‖ q ‖ m ‖ τ]. (2)

Associated with the rAD are values

hD = h(D), and θD = h(hD ‖ A). (3)

An IOMT leaf is of the form (D, θD, G) where D is the
identity of the destination, θD (as in Eq (3)) is a one-way
function of a RR for D, and G is the identity of the next node
(in the increasing order of node identity) in the tree.

A leaf with θ = 0, for example, lj = (D, 0, H), indicates
an uninitialized RR for D. An initialized RR rAD with τ < t
(where t is the current time) is an expired RR. An initialized
RR is invalid if it has not expired, but has a metric m = inf
(which indicates a lack of a path to D).

1This could be achieved by authenticating the current state against a non-
resettable counter inside the TMM. Specific strategies for this purpose are
beyond the scope of this paper.

3) Message Authentication Codes: Consider an example
where a TMM X with neighbors A, B and C in its neighbor
table advertises an RR rAD (a route for D provided by a
neighbor A) to its neighbors. The TMM X shares secrets
KXA,KXB an KXC respectively, with its neighbors. The
pairwise secrets are also stored in the neighbor table. This
broadcast by X to its neighbors is individually authenticated
using message authentication codes (MAC) µA, µB and µC ,
which are computed as

µA = h(hD ‖ t ‖ 1 ‖ KXA)

µB = h(hD ‖ t ‖ 0 ‖ KXB)

µC = h(hD ‖ t ‖ 0 ‖ KXC) (4)

where hD is computed as shown in Eq (3), and t is the current
time (according to the clock inside the TMM X). Note that the
MAC is computed differently for nodes like B and C (who
can use RRs to update their RR database), and for A who
should not use this RR to update its database (as this RR is
an ACK for an RR from A). More specifically, that the MAC
for A is computed using a flag 1 indicates that the MAC is
an ACK.

For example, node B will be able to supply the RR [D ‖
q ‖ m ‖ τ] supplied by X along with the MAC µB to its
TMM (TMM B) to demonstrate that

1) node X is a neighbor which sent some value hD at time
t (this information can be used to update the neighbor
table of B); and

2) [D ‖ q ‖ m ‖ τ] is an authentic RR from X .
Node C can also use the value µC to update the neighbor
table and demonstrate (to its TMM) the receipt of a new RR
from X . However, node A can use the MAC µA (which is
computed using a flag 1) only to update its neighbor table.

B. TCB Function UpdateNeighborTable()

A node A is a neighbor of X only if it has an entry in the
neighbor table of X , with status 1 or 2. A node with status
1 or 2 will be added to the table only if a verifiable MAC is
received from the node.

The inputs to UpdateNeighborTable() are i) an identity of a
neighbor (say A); ii) a value V ; iii) a MAC µ, iv) time t′ at
which the MAC was computed; and v) and a one bit flag b.
The TMM X uses the pairwise secret KXA to verify that

µ = h(V ‖ t′ ‖ b ‖ KXA) (5)

If the MAC is found to be authentic, and the difference
between the time t′ and current time t of the TMM X is less
than a threshold δ, the neighbor table entry for A is updated.
More specifically, i) if the last-heard field for A is currently
to < t′, then the last-heard field is updated to t′; ii) if no entry
exists currently for A, an entry is created, and the status set to
1. Furthermore, stale entries in the neighbor table - entries for
which the difference between the last-heard time and current
time is more than a threshold δs, are removed from the table.

If the MAC is authentic and b = 1, the implication is that
the MAC is an acknowledgment. If the status of the neighbor

A is currently 1 (bi-directionality not verified), receipt of an
ACK is construed as proof of bi-directionality, and the status
is set to 2.

If the MAC is authentic, b = 0, and2 V 6= t′, the implication
is that the value V is the hash of an RR provided by A. In this
case the TMM outputs a “memorandum to itself” in the form
of a “symmetric certificate” sc binding V to the provider A,
and the current root r of the IOMT, as

sc = h(V ‖ A ‖ r ‖ φX), (6)

where φX is a secret known only to TMM X . The value sc
can be submitted as proof to the TMM that a value V was
sent by A till the time the root of the IOMT remains r. As we
shall see soon, such certificates (or a “self-MAC”) will serve
as inputs to the RelayRoutingRecord() function to update the RR
database.

An entry for a potential neighbor A can be initiated (status
set to 0, and pairwise key KXA computed and stored) without
providing a valid MAC. In all three approaches [12] - [14]
for facilitating pairwise keys between resource limited nodes,
based on two inputs A and PA (where A is the identity of a
module and PA is a non secret value associated with A), X
can compute a pairwise secret KXA by performing a small
number of cryptographic hash operations. If the five inputs to
UpdateNeighborTable() are (A,PA, 0, 0, 0), the TMM considers
this as a request to add an entry for A in the neighbor table
(with status set to 0), and computes the key KXA.

While no node cannot be added as a neighbor (status
1 or 2) without a verifiable MAC, TMMs permit nodes
to remove neighbors without offering any justification. A
call UpdateNeighborTable(Y, 0, 0, 0, 0) to the TMM removes the
identified neighbor Y from its table (if an entry exists for
Y). It is important to note that TMMs can only ensure that
a node cannot perform active attacks like replaying old RRs
or providing incorrect RRs, or hiding RRs. A TMM cannot
however force a node to actually send the RR: after all, the
communication interfaces are under the control of the node
- not the TMM. The power granted to the untrusted node
which houses the TMM to remove nodes from the TMMs
“view of the neighborhood” is to provide the ability to deter
selfish neighbors engaging in passive attacks like selective
participation. A selfish node risks being ejected from the
neighborhood of all nodes.

C. TCB Function AddDeleteLeaf()
The TCB function AddDeleteLeaf() is used for inserting and

deleting leaves in an IOMT. Recall from Section III that two
leaves have to be modified simultaneously to insert or delete
a leaf. The inputs to the function AddDeleteLeaf() are thus

1) identity of the node to be deleted/inserted.
2) two leaves li = (i1, θi, i2) and lj = (j1, θj , j2);
3) n - the height of the common parent of li and lj
4) a sequence of n − 1 instructions Ii to be applied to

vi = hl(li) to obtain a value x;

2If V = t′, this is a “HELLO” message from A indicating only its current
time.

5) a sequence of n − 1 instructions Ij to be applied to
vj = hl(lj) to obtain a value y;

6) L: height of the tree;
7) L− n instructions Ir to map h(x ‖ y) to the root;

The function AddDeleteLeaf() first verifies the current leaves
against the root of the tree. If at least one leaf is empty, the
TMM assumes that a leaf needs to be inserted.

Assume that destination identity A needs to be inserted to
replace a leaf li = (0, 0, 0). If the tree is empty (the current
root is r0), the TMM modifies the first leaf li = (0, 0, 0) to
l′i = (A, 0, A). If not, the operations performed by the TMM
(after verifying the leaves) are

1) verify that (j1, j2) encloses A (to ensure that no leaf for
A exists currently);

2) create leaf l′j = (j1, θj , A) to replace lj ;
3) create leaf l′i = (A, 0, j2) to replace li;
4) update root.

Now assume that F is indicated as the identity to be removed.
In this case, lj = (j1 = F, θF , j2) should be replaced with
l′j = (0, 0, 0). Now the steps taken by the TMM are

1) verify θF = 0 and i2 = F ;
2) create l′j = (0, 0, 0) and l′i = (i1, θi, j2) to replace lj

and li;
3) update root.

The function AddDeleteLeaf() creates place-holders for destina-
tions, with uninitialized RRs. Leaves are inserted with their
θ values set to 0; and leaf can be deleted only if its θ
value is zero. Uninitialized RRs can be initialized, modified
(and initialized RRs can be uninitialized) using TCB function
RelayRoutingRecord().

D. TCB Function RelayRoutingRecord()

Broadly, the purpose of the TCB function RelayRoutin-
gRecord() in a TMM X is to create MACs (which can be sent
to neighbors of X) corresponding to an RR which is stored
and can be verified by X to be consistent with the root of it’s
tree. The MACs are created as explained in Section IV-A3 (for
authenticating an RR received from a neighbor A, the MAC
for A includes a flag set to 1 and for all other neighbors the
flag is set to 0).

In general, inputs to RelayRoutingRecord() are i) a currently
stored RR along with instructions to map the RR to the current
root r; and ii) a fresh RR received from a neighbor, along
with a symmetric certificate (to prove that the hash of the
RR was received from the neighbor when the root was r).
Recall that the symmetric certificate was created as an output
of UpdateNeighborTable(). The function RelayRoutingRecord() up-
dates the RR subject to some simple rules, and advertises the
updated RR to all neighbors (by creating MACs).

In some scenarios, the new RR may not cause the old RR
to be updated. In some scenarios the function RelayRoutin-
gRecord() may be called without a new RR, to simply advertise
a current RR, or advertise a current RR after modifying it. A
current RR rAD may need to be modified without an external
trigger if: i) neighbor A which provided the RR is no longer

a neighbor, ii) time of validity of the RR has expired, or iii)
the leaf for the corresponding RR is uninitiated.

Assume that the RR pertaining to a node S currently stored
in the RR database of TMM X is rAS = S ‖ A, where S =
[S, q,m, τ], and that the corresponding leaf is ls = (S, θS , V)
(where θS = h(hS ‖ A), where hS = h(S)). Also assume
that new information S′ = [S, q′,m′, τ ′] regarding S has
been received from a neighbor id. The inputs to the interface
RelayRoutingRecord() to process the new RR are

1) current RR S ‖ A
2) current leaf ls = (S, θS , V);
3) L instructions to map ls to the current root r.
4) new RR S′ ‖ id
5) a symmetric certificate sc sc = h(hS ‖ id ‖ r ‖ φX)

(where φX is a secret known only to TMM X) to
authenticate the new RR received from neighbor id

The TMM verifies S ‖ A is consistent with the value θS in
ls, and that the L instructions map the leaf ls to the current
root r. The TMM then verifies the new RR S′ ‖ id using sc.

If consistent, the RR can be updated subject to some rules.
For example, RR will be updated if

1) q′ > q: fresher sequence number;
2) q′ = q and m′ < m−1: same sequence number, shorter

metric;
3) q = q′, id = A, m′ 6= m − 1: same sequence number,

different metric, provided by the same neighbor who
provided the currently stored RR.

4) θS = 0: the current RR for S is uninitialized.

As explained in Section IV-A3, a MAC is computed for all
neighbors (with status 1 or 2).

1) sc = 0: Unauthenticated Requests: If sc = 0, the TMM
interprets this as a request to relay (and possibly update) a
record without an authenticated input from another TMM. The
TMM first checks validity of the current RR and updates the
RR as follows

1) if A is not an active neighbor and t < τ (where t is the
current time according to the TMMs clock), the TMM
sets m = inf , and updates θS , and the root r.

2) if t ≥ τ , the TMM sets θS = 0 and updates root r;
3) if θS = 0 the TMM sets θS = h(h(S ‖ q = 0 ‖

inf ‖ 0) ‖ 0) and updates the root r (uninitialized RR
is initialized to an invalid,expired RR).

Irrespective of whether the RR was updated, the now-current
RR is authenticated to its neighbors.

If sc = 0 and S = X (the TMMs own identity) the TMM
interprets this as a request to announce its height (0) with a
fresh sequence number. In this case the TMM X increments
its own sequence number to q′, computes hX = h(X ‖ q′ ‖
0 ‖ t′) where t′ = t+ Tv , and Tv is a static parameter which
specifies the duration of validity information corresponding to
a sequence number), and outputs a MAC for each neighbor.

If all input fields to a call RelayRoutingRecord() are empty the
TMM outputs a MAC for every node in the neighbor table -
even ones with status set to 0. For example, for to a node Z

in the table with pair-wise key KXZ the MAC is computed
as

µZ = h(t ‖ t ‖ 0 ‖ KXZ). (7)

E. Using the TMM Interfaces

We shall now provide a broad overview of how the three
TMM interfaces can be used for securing a protocol like
AODV. Every packet transmitted by a node confirms to the
plain AODV protocol - the only difference is that every packet
includes a set of MACs - one for each neighbor, and the time
t at which the MAC was computed.

Consider a node X (with TMM X) which is powered on. By
overhearing packets, the node X recognizes that it has nodes
(say) A,B,C in its neighborhood. At this point, as A,B,C
do not consider X as their neighbor, the packets overheard
by X cannot be cryptographically verified by the TMM X
(thus, while node X can “sense” its neighbors, the TMM of
X cannot).
X uses the UpdateNeighborTable() interface to add A,B and

C to the neighbor table, with status set to 0. Now X uses
its RelayRoutingRecord() interface (with all fields set to 0) to
obtain a time-stamped MAC for each potential neighbor. Such
MACs from X can be used by A,B and C to add X to their
neighbor tables (with status set to 1). Subsequent packets from
A,B and C will include a MAC for X which can be used by
X to add them to its neighbor table. Whenever an RR sent
by a node X is ACKed by a neighbor A, X will mark A’s
neighbor status as 2 (bi-directional link verified).

Assume that a node S in the subnet desires to send a route
request for a node D. A route request from S to D provides
i) a valid RR regarding the initiator S, and ii) an invalid RR
(m = inf) corresponding to a destination D. The initiator
makes two calls to RelayRoutingRecord() - to create an updated
RR for itself (with a new sequence number), and to get MACs
for an invalid RR for D (which the node cannot do if it has a
valid RR for D). Individual MACs are created for both RRs
(one for each neighbor). The nodes which receive the RREQ
supply a valid RR for S to update their RR database. Following
this they supply the invalid RR for D. If a node has a valid
RR for D the node cannot relay the RREQ - as the TMM will
only create a MAC for a valid RR for D.

To send a route error (RERR) message for a destination D,
a node is required to send an invalid RR for D to its neighbors.
The TMM does not know, or care, if an invalid RR is used for
an RREQ, or a route error message. All that the TMMs know
are a simple set of rules to update a leaf (and consequently,
the root) and creating MACs.

If a node processing or creating an RREQ for a destination
D does not currently have a leaf for D, an uninitialized entry
for D is created using AddDeleteLeaf(). The RREQ creator
can initialize the RR (to infinite metric, last known sequence
number 0, and time of expiry 0) by using the interface
RelayRoutingRecord(). Intermediate nodes can initialize their RR
for D using the received RR.

V. CONCLUSIONS

Securing MANET routing protocols mandates ensuring that
nodes do not advertise incorrect routing information, or hide
routing information. Conventional approaches for securing
MANETs rely on a variety of techniques including carrying
over of cryptographic authentication such that a node can
verify that an RR provided by a node Y is consistent with the
same RR provided to Y by a neighbor of Y . Carrying over
authentication, does not prevent attacks by colluding nodes,
does not inhibit the ability of a node to hide information,
and demands substantial overhead. Due to the substantial
complexity and overhead associated with mechanisms for
carrying over authentication, secure extensions of MANET
routing protocols dissuade many possible optimizations; while
such optimizations can make the protocols more efficient, they
also render the problem of authenticating RRs substantially
more complex.

The need for trusted boundaries in which co-operative
routing tasks are carried out has been addressed by some
researchers. In [16] the authors include the wireless transceiver
inside the trust boundary. In [17] the trusted computing module
has complex features built into the wireless driver (executed
within the confines of the trusted module). In [18] explicit
consideration is given to the need for lowering the complexity
of tasks to be performed inside the trusted boundary. The
scheme employs “nuglets of currency” protected by smart-
cards to promote faithful forwarding of packets. More re-
cently Gaines et al [19] have proposed a generic dual-agent
approach to MANETs where some desired characteristics of a
trustworthy network agent (like low computational and storage
requirements) are enumerated.

The motivation for this paper stems from the very essence
of the notion of trustworthy computing - that simple tasks
performed inside a trustworthy boundary can serve as a
trusted computing base (TCB), which can be amplified to
provide complex assurances. In this paper we outlined simple
TCB functions for MANET nodes. In designing the TCB
functions we have placed some common-sense restrictions like
restricting the operations to simple, hard-wired sequences of
logical and cryptographic hash operations. Such TMMs with
simple functionality can be realized at low cost. Due to their
simplicity their hard-wired functionality can be verified easily.

One of the primary challenges in the design of the TCB
functions was a mechanism for maintaining the integrity of the
dynamic database of RRs stored outside the TMM. If the label
corresponding to each leaf is fixed, (for example, leaves 1 to
N contain information regarding entities 1 to N respectively)
simple Merkle trees can achieve this goal. However, in scenar-
ios where one-to-one correspondence between identities and
leaves are not possible, the index-ordered Merkle tree (IOMT)
which combines the concept of Merkle trees with the NSEC
approach used in DNSSEC, is necessary.

As a first attempt in deriving tangible TCB functions for
MANET nodes, we have focused protocols where only one
RR pertaining to a destination is stored in every node. How-

ever, we believe that simple extensions and generalizations to
the TCB function RelayRoutingRecord() can result in a TCB
function suitable for different types of routing protocols.
Research on generalization of the function RelayRoutingRecord()
is underway.

REFERENCES

[1] B. Lampson, M. Abadi, M. Burrows, E. Wobber, “Authentication in Dis-
tributed Systems: Theory and Practice,” ACM Transactions on Computer
Systems, 1992.

[2] Y-C Hu ,A Perrig,. D B.Johnson, “Ariadne: A Secure On-Demand
Routing Protocol for Ad Hoc Networks,” Journal of Wireless Networks,
11, pp 11–28, 2005.

[3] S. Weiler, J. Ihren, “RFC 4470: Minimally Covering NSEC Records and
DNSSEC On-line Signing,” April 2006.

[4] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose “RFC 4033:
DNS Security Introduction and Requirements,” March 2005.

[5] C Perkins, P Bhagvat, “Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers,” ACM SIG-
COMM Symposium on Communication, Architectures and Applica-
tions, 1994.

[6] C. Perkins, E.Royer, S. Das “Ad hoc On-demand Distance Vec-
tor (AODV) Routing, Internet Draft, draft-ietf-manet-aodv-11.txt, Aug
2002. The 6th World Multi-Conference on Systemics, Cybernetics and
Informatics (SCI 2002), 2002.

[7] D. Johnson, D. Maltz, Y-C. Hu, J. Jetcheva, “The Dynamic Source
Routing Protocol for Mobile Ad Hoc Networks,” Internet Draft, draft-
ietf-manet-dsr-05.txt, June 2001.

[8] V. D. Park, M. S. Corson, “A Highly Adaptive Distributed Routing
Algorithm for Mobile Wireless Networks,” pp 1405–1413, INFOCOM
1997.

[9] J. Kim, G. Tsudik, “SRDP: Securing Route Discovery in DSR,” IEEE
Mobiquitous’05, July 2005.

[10] M.G.Zapata, N.Asokan, “Securing Ad hoc routing protocols,” WISE-02,
Atlanta, Georgia, 2002.

[11] R.C. Merkle “Protocols for Public Key Cryptosystems,” In Proceedings
of the 1980 IEEE Symposium on Security and Privacy, 1980.

[12] M. Ramkumar, “The Subset Keys and Identity Tickets (SKIT) Key
Distribution Scheme,” IEEE Transactions on Information Forensics and
Security, 5(1), pp 39–51, March 2010.

[13] M. Ramkumar, “On the scalability of a “non-scalable” key distribution
scheme,” IEEE SPAWN, Newport Beach, CA, June 2008.

[14] M. Ramkumar, “Trustworthy Computing Under Resource Constraints
With the DOWN Policy,” IEEE Transactions on Secure and Dependable
Computing, March 2008.

[15] TCG Specification: Architecture Overview, Specification Revision 1.4,
2nd August 2007.

[16] J-H. Song, V. Wong, V. Leung, “Secure Routing with Tamper Resistant
Module for Mobile Ad Hoc Networks,” ACM SIGMOBILE Mobile
Computing and Communications Review, vol. 7, no. 3, ACM Press,
New York, Jul. 2003.

[17] M. Jarrett and P. Ward, “Trusted Computing for Protecting Ad-hoc
Routing,” Proceedings of the 4th Annual Communication Networks and
Services Research Conference, IEEE Computer Society, May 2006.

[18] J-P. Hubaux, L Buttyan, S. Capkun, “Quest for Security in Mobile Ad
Hoc Networks,” Proceedings of the ACM MOBIHOC 2001.

[19] B. Gaines, M. Ramkumar, “A Framework for Dual Agent Routing
Protocols for MANETs,” IEEE Globecom 2008, New Orleans, LA, Nov
2008.

