

The Replication Crisis,
Reproducibility, and the
Reproducibility Project in
Psychology

J. Edward Swan II

Mississippi State University

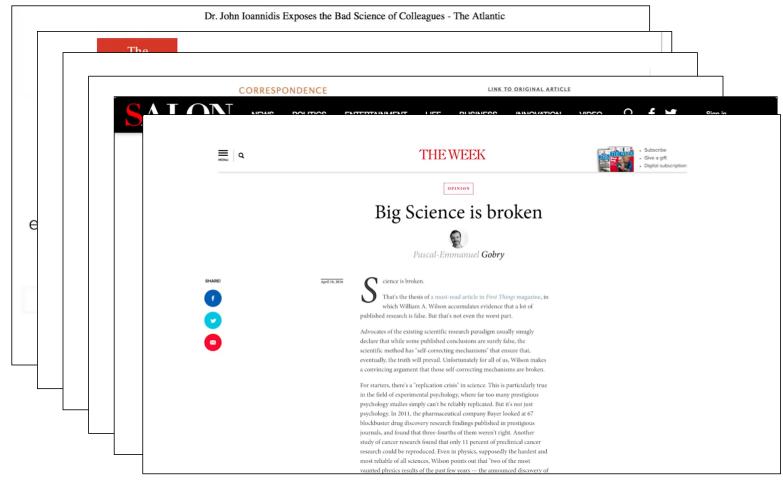
Monday, 4 October 2021










#### **Outline**

- The Replication Crisis
- Reproducibility Project: Psychology
- What Does it Mean?
- What Should We Do?

## **The Replication Crisis**

- The Replication Crisis
- Reproducibility Project: Psychology
- What Does it Mean?
- What Should We Do?

# The Replication Crisis (Reproducibility Crisis)



[Hen Thom 2017]

#### The Problem

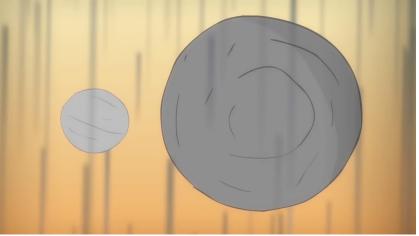
- Failure to replicate many published findings, even textbook findings
- Research biases
  - Publication bias: only significant ( $p \le 0.05$ ) results published
  - Selection bias: only significant results selected for analysis
  - Reporting bias: only significant results reported in paper
- Replication studies rarely funded, rarely published
  - Little incentive to do them
  - Therefore, most conducted studies are exploratory in nature

#### **Evidence**

- Cancer Biology
  - 2011 Analysis: 95% of cancer drugs fail in clinical trials
  - Led to replication studies on drug effectiveness (2011–2012)
- In other fields, additional replication studies followed

| Sponsor                                                  | %Replicated | Number Replicated |
|----------------------------------------------------------|-------------|-------------------|
| Bayer                                                    | 21%         | 14/67             |
| Amgen                                                    | 11%         | 6/53              |
| National Institute for Neurological Disorders and Stroke | 8%          | 1/12              |
| ALS Therapy Development Institute                        | 0%          | 0/47              |
| Reproducibility Project: Psychology                      | 36%         | 35/97             |

[Hen Thom 2017]


#### **Evidence**

- Replication studies conducted in biomedicine, psychology
- Survey data, based on question:
  - "Have you failed to reproduce somebody else's experiment?"

| Field                 | % Yes |
|-----------------------|-------|
| Chemistry             | 87%   |
| Biology               | 77%   |
| Physics / Engineering | 69%   |
| Medicine              | 67%   |
| Earth / Environment   | 64%   |
| Other                 | 62%   |
|                       |       |

# The Importance of Replication

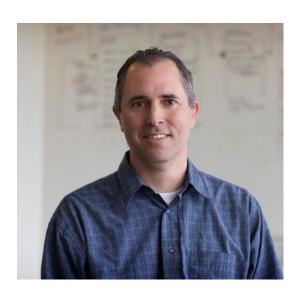






[Hen Thom 2017]

## Reproducibility Project: Psychology


- The Replication Crisis
- Reproducibility Project: Psychology
- What Does it Mean?
- What Should We Do?

# Reproducibility Project: Psychology

| Sponsor                                                  | %Replicated | Number Replicated |
|----------------------------------------------------------|-------------|-------------------|
| Bayer                                                    | 21%         | 14/67             |
| Amgen                                                    | 11%         | 6/53              |
| National Institute for Neurological Disorders and Stroke | 8%          | 1/12              |
| ALS Therapy Development Institute                        | 0%          | 0/47              |
| Reproducibility Project: Psychology                      | 36%         | 35/97             |

## Reproducibility Project: Psychology

- Begun by Brian Nosek, University of Virginia, 2011
- Replicated 100 published studies
- Recruited very large team
  - Final paper has 270 coauthors
- Which studies to replicate?
  - Goal: minimize selection bias
  - Goal: maximize generalizability
- Published sampling frame and selection criteria

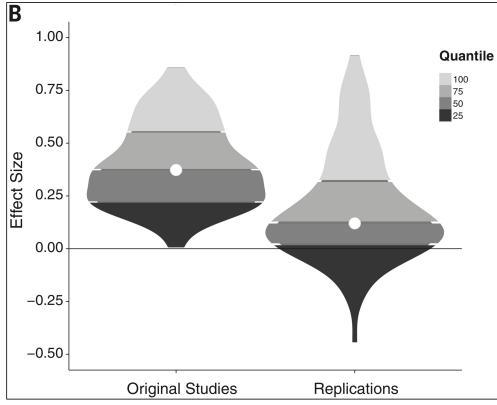


## Sampling frame and selection criteria

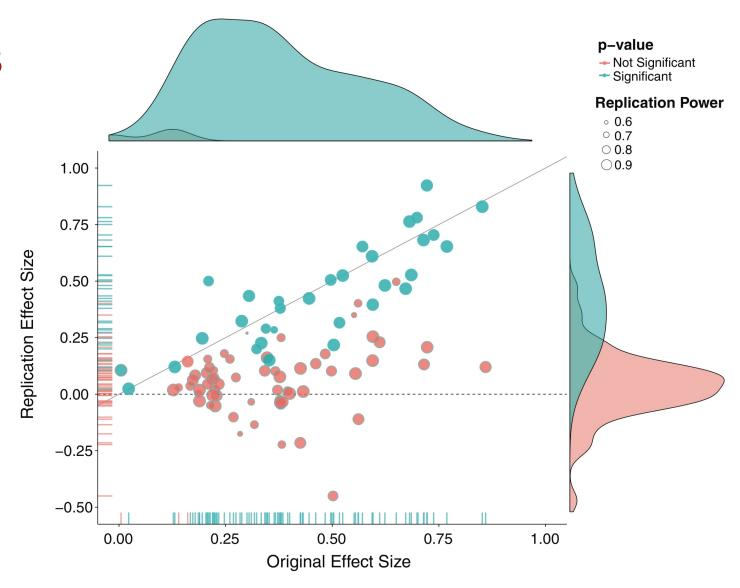
- Covered 3 leading journals
  - Psychological Science
  - Journal of Personality and Social Psychology
  - Journal of Experimental Psychology: Learning, Memory, and Cognition
- First 20 articles in each journal, then 10 more; begin with first 2008 issue
- Replicate last study in article (unless infeasible); 84% were last study
- Result must be a single inference test, usually t-test, F-test, r correlation
- If available, use original materials
- Seek design feedback from original authors
- Enough participants for high statistical power  $(1 \theta \text{ (power)} \ge 0.80)$

#### **Article selection results**


- 488 articles in 2008 issues of the 3 journals
- 158 available for replication
- 113 replications selected
- 100 completed by deadline


## Data collection and processing

- How to measure a replication?
- How to quantify a series of replications?
- Each experiment analyzed with standard R packages
- Each analysis performed independently by 2<sup>nd</sup> team


| Original Study Result Characteristics         | Replication Study Result Characteristics         |
|-----------------------------------------------|--------------------------------------------------|
| p value                                       | p value                                          |
| effect size                                   | effect size                                      |
| df or sample size                             | df or sample size                                |
| result importance rating                      | power                                            |
| result surprisingness rating                  | replication challenge rating                     |
| experience, expertise rating of original team | experience, expertise rating of replicating team |
|                                               | replication quality rating                       |

### **Results**





### **Results**



#### **Results** by %Replicated ( $p \le 0.05$ )

Initial strength of evidence predicts replication success

| Original Strength of Evidence | %Replicated ( $p \le 0.05$ ) | Number Replicated |
|-------------------------------|------------------------------|-------------------|
| <i>p</i> ≤ 0.001              | 63%                          | 20/32             |
| <i>p</i> ≤ 0.02               | 41%                          | 26/63             |
| $0.02 \le p \le 0.04$         | 26%                          | 6/23              |
| 0.04 ≤ <i>p</i>               | 18%                          | 2/11              |

Cognitive psychology more successful than social psychology

| Sub-Discipline       | %Replicated ( $p \le 0.05$ ) | <b>Number Replicated</b> |
|----------------------|------------------------------|--------------------------|
| Cognitive Psychology | 50%                          | 21/42                    |
| Social Psychology    | 25%                          | 14/55                    |

- Weaker original effects in social psychology
- More within-subject, repeated measures designs in cognitive psychology

# **Results** by %Replicated ( $p \le 0.05$ )

Main effects more successful than interactions

| Effect Type        | %Replicated ( $p \le 0.05$ ) | Number Replicated |
|--------------------|------------------------------|-------------------|
| Main Effect        | 47%                          | 23/49             |
| Interaction Effect | 22%                          | 8/37              |

#### **Results** by Correlation with replications ( $p \le 0.05$ , original direction)

- Surprising effects were less reproducible (r = -0.244)
- Challenging experiments less reproducible (r = -0.219)
- Original result importance had little effect (r = -0.105)
- Team experience and expertise had almost no effect
  - Original (r = -0.072); Replication (r = -0.096)
- Replication quality had almost no effect (r = -0.069)
- Larger original effect sizes were more reproducible (r = 0.304)
- Larger replication effect sizes were more reproducible (r = 0.731)
- More powerful replications were more reproducible (r = 0.731)

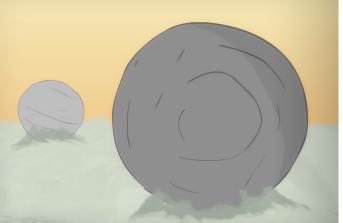
## Summary

- Even though the replications:
  - Used materials from original authors
  - Were reviewed in advance for methodological fidelity
  - Had high statistical power to measure original effect size
    - → replications produced weaker evidence for original findings
- The strength of initial evidence (p value, effect size)
  - → predicted replication success
- The characteristics of the teams, and the original finding
  - → no impact on replication success

## Why so few replications?

- Publication, selection, reporting biases
  - → effect sizes of original studies inflated
- Replications
  - All results reported
    - → no publication bias
  - All confirmatory tests based on pre-analysis plans
    - → no selection, reporting bias
  - Lack of biases likely big part of the reason

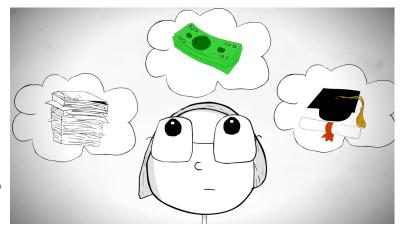
#### What Does it Mean?


- The Replication Crisis
- Reproducibility Project: Psychology
- What Does it Mean?
- What Should We Do?

## Reasons for Irreproducibility

- A study finds A, but the replication study does not find A. Why?
  - 1. The original study is wrong
  - 2. The replication study is wrong
  - 3. Both original and replication study are correct
- → A is not true
- $\rightarrow$  A is true
- → A could be true or false

How could #3 be the case?








## Reasons for Irreproducibility

- First impressions are often false
- Can be hard to detect difference between real result and noise
- If enough hypothesis tests are conducted, can usually find something
  - Can be controlled by adjusting familywise  $\alpha$  level [Howell 2002, ch 12]
- Incentive structure of science does not maximize yield of true results
  - Incentives result in many exploratory studies
  - True for every field of science
- If a finding is spurious, won't find evidence until replication is attempted



## **Considering Reproducibility**

- A study finds A, and the replication study finds A.
   What does this mean?
  - → A is a reliable finding
- What about theoretical explanation for A?
  - → Explanation might still be wrong
- Understanding the reasons for A requires multiple investigations
  - Provide converging support for the true theory
  - Rule out alternative, false theories







## **How Many Studies Should Be Reproducible?**

- Is 36% reproducibility too small?
- What would 100% reproducibility mean?
- Progress requires both
  - Exploratory studies: innovative, new ideas
  - Confirmatory studies: replications
- Innovation points out ideas that are possible
- Replication points out ideas that are likely
  - → Progress requires both
- Scientific incentives—funding, publication, awards, advancement—should be tuned to encourage an optimal balance, in a collective effort of discovery

#### What Should We Do?

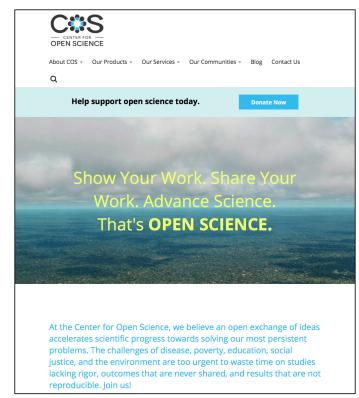
- The Replication Crisis
- Reproducibility Project: Psychology
- What Does it Mean?
- What Should We Do?

## Value (Accept) Replication Studies

- Value confirmation (replication) studies
- Value exploratory studies
  - → Value studies that are well done, regardless of type or results
- Requires changing our incentive system
- Less emphasis on surprise
  - "...but rather a reduction in the available cues, which makes the reduced performance not terribly surprising."
  - "...this experiment tells us something important about depth perception in AR, most of which isn't especially surprising, it is not clear that this will help very much..."
  - "It is not entirely surprising that participants became more accurate in 'feedback' condition..."

#### Recommendations

- Value (accept) replication studies
  - If accepted, they will come
- Pre-register research plans
  - Before collecting data, create detailed, written plan:
    - hypothesis, methods, analysis
  - Removes possibility of p-hacking
  - Even better: publically pre-register the plan
    - e.g., Center for Open Science (<a href="https://cos.io">https://cos.io/prereg/">https://cos.io/prereg/</a>)
- Run larger studies
  - more participants == more experimental power
  - BUT: more expensive


#### Recommendations

- Describe methods in more detail → easier replication
  - Problem in our field: limited pages
  - Solutions:
    - Additional details in supplementary material, or in associated thesis / dissertation
    - We could adopt longer page limits
    - Main paper in bigger font, methods in smaller font (e.g., Nature)
- Upload materials to open repositories 

   easier replication
  - Data, materials, code
    - Center for Open Science (<a href="https://cos.io">https://cos.io</a>)
    - TVCG Replicability Stamp (<a href="https://www.computer.org/digital-library/journals/tg/tvcg-replicability-stamp-now-available">https://www.computer.org/digital-library/journals/tg/tvcg-replicability-stamp-now-available</a>)
    - IEEE DataPort (<a href="https://ieee-dataport.org">https://ieee-dataport.org</a>), IEEE Code Ocean (<a href="https://codeocean.com">https://codeocean.com</a>)
    - arXiv, many other preprint servers, other repositories...

## **Conclusion: Reasons for Optimism**

- Current zeitgeist among journals, funders, scientists:
   paying more attention to replication, statistical power, p-hacking, etc.
- In Psychology:
  - Journals have begun publishing pre-registered studies
  - Scientists from many labs have collaboratively replicated earlier studies
- Center for Open Science:
  - Established 2013
  - Developing standards for transparency and openness
  - Channeling 1M USD to pre-registration challenge



#### References

- [Cohen 1994] J Cohen, "The Earth is Round (p < .05)", American Psychologist, 49(12), pages 997–1003.
- [Cohen 1988] J Cohen, Statistical Power Analysis for the Behavioral Sciences, 2<sup>nd</sup> edition, Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.
- [Economist 2013] "Unreliable Research: Trouble at the Lab", *The Economist*, 18 Oct 2013.
- [Freedman 2010] Freedman, D. H., "Lies, Damned Lies, and Medical Science: Dr. John Ioannidis Exposes the Bad Science of Colleagues", *The Atlantic*, Nov 2010.
- [Groby 2016] Gobry, P.-E., "Big Science is Broken", The Week, 18 April 2016.
- [Hen Thom 2017] Henderson, D., Thomson, K., "What Makes Science True?", NOVA Video Short, 1 Jan 2017.
  - http://www.pbs.org/wgbh/nova/body/reproduce-science.html
- [loannidis 2005] Ioannidis, J. P. A., "Why Most Published Research Findings Are False", *PLOS Medicine*, 2(8), e124., 2005. http://doi.org/10.1371/journal.pmed.0020124
- [Howell 2002] DC Howell, *Statistical Methods for Psychology*, 5<sup>th</sup> edition, Duxbury, Pacific Grove, CA, 2002.
- [Living Swan et al 2003] MA Livingston, JE Swan II, JL Gabbard, TH Höllerer, D Hix, SJ Julier, Y Baillot, D Brown, "Resolving Multiple Occluded Layers in Augmented Reality", The 2nd International Symposium on Mixed and Augmented Reality (ISMAR), 56–65, 2003.

- [OSC 2015] Open Science Collaboration, "Estimating the Reproducibility of Psychological Science", *Science*, 349(6251), 2015, DOI: 10.1126/science.aac4716
- [OSC 2012] Open Science Collaboration, "An Open, Large-Scale, Collaborative Effort to Estimate the Reproducibility of Psychological Science", *Perspectives on Psychological Science*, 7(6), 657–660, 2012. http://doi.org/10.1177/1745691612462588
- [Prinz et al. 2011] Prinz, F., Schlange, T., & Asadullah, K., "Believe it or not: How much can we rely on published data on potential drug targets?", Nature Reviews Drug Discovery, 10(9), 712–712, 2011. http://doi.org/10.1038/nrd3439-c1
- [Rehman 2013] Rehman, J., "Cancer research in crisis: Are the drugs we count on based on bad science?", Salon, 1 Sep 2013.
- [Swan et al 2003] JE Swan II, JL Gabbard, D Hix, RS Schulman, KP Kim, "A Comparative Study of User Performance in a Map-Based Virtual Environment", Technical Papers, *IEEE Virtual Reality*, 259–266, 2003.
- [Young 2016] Young, E. (2016, March 4). "Psychology's Replication Crisis Can't Be Wished Away", *The Atlantic*, 4 Mar 2016.
- [Young 2015] Young, E., "How Reliable Are Psychology Studies?: Brian Nosek's Reproducibility Project Finds Many Psychology Studies Unreliable", *The Atlantic*, 25 Aug 2015.

#### **Contact Information**

#### J. Edward Swan II

Professor, Department of Computer Science and Engineering
Faculty, Center for Advanced Vehicular Systems
Research Fellow, Social Science Research Center
Mississippi State University
swan@acm.org
+1-662-325-7507

#### Slide Location:

web.cse.msstate.edu/~swan/teaching/tutorials/Swan-ISMAR2021-WoRXR-Workshop-Replication-Crisis.pdf



The Replication Crisis,
Reproducibility, and the
Reproducibility Project in
Psychology

J. Edward Swan II

Mississippi State University

Monday, 4 October 2021



ISMAR 2021
OCTOBER 4-8 BARI - ITALY



