Conducting Human-Subject Experiments with Virtual and Augmented Reality

VR 2004 Tutorial

J. Edward Swan II, Naval Research Laboratory (organizer)

Joseph L. Gabbard, Virginia Tech

Deborah Hix, Virginia Tech

Steve Ellis, NASA Ames

Bernard D. Adelstein, NASA Ames

Schedule

800 AM	0.4 hours	Introduction and Overview	Ed
830 AM	1.6 hours	Usability Engineering	Joe, Debby
1000 AM	0.5 hours	Coffee Break	
1030 AM	1.5 hours	Experimental Design and Analysis	Ed
1200 PM	1.5 hours	Lunch Break	
130 PM	0.5 hours	Experimental Design and Analysis	Ed
200 PM	1.0 hours	Human Performance Studies in Virtual Environments	Steve
300 PM	0.5 hours	Coffee Break	
330 PM	1.0 hours	Psychophysics: Classical Methods	Dov
430 PM	0.5 hours	Final Questions and Discussion	Ed

Outline

• Empiricism

- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Why Human Subject (HS) Experiments?

- VR and AR hardware/software more mature
- Focus of field:
 - Implementing technology \rightarrow using technology
- Increasingly running HS experiments:
 - How do humans perceive, manipulate, cognate with VR, AR-mediated information?
 - Measure utility of AR / VR for applications
- HS experiments at VR 2003:
 - -10/29 papers (35%)
 - -5/14 posters (36%)

Logical Deduction vs. Empiricism

- Logical Deduction
 - Analytic solutions in closed form
 - Amenable to proof techniques
 - Much of computer science fits here
 - Examples:
 - Computability (what can be calculated?)
 - Complexity theory (how efficient is this algorithm?)
- Empirical Inquiry
 - Answers questions that cannot be proved analytically
 - Much of science falls into this area
 - -Antithetical to mathematics, computer science

What is Empiricism?

- The Empirical Technique
 - Develop a hypothesis, perhaps based on a theory
 - Make the hypothesis testable
 - Develop an empirical experiment
 - Collect and analyze data
 - Accept or refute the hypothesis
 - Relate the results back to the theory
 - If worthy, communicate the results to your community
- Statistics:
 - Foundation for empirical work; necessary but not sufficient
 - Often not useful for managing problems of gathering, interpreting, and communicating empirical information.

Where is Empiricism Used?

- Humans are very non-analytic
- Fields that study humans:
 - Psychology / social sciences
 - Industrial engineering
 - Ergonomics
 - Business / management
 - Medicine
- Fields that don't study humans:
 - -Agriculture, natural sciences, etc.
- Computer Science:
 - -HCI
 - Software engineering

Experimental Validity

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Designing Valid Empirical Experiments

- Experimental Validity
 - Does experiment really measure what we want it to measure?
 - Do our results really mean what we think (and hope) they mean?
 - -Are our results reliable?
 - If we run the experiment again, will we get the same results?
 - Will others get the same results?
- Validity is a large topic in empirical inquiry
 - Usability Engineering can greatly enhance validity of VR / AR experiments

Experimental Variables

- Independent Variables
 - -What the experiment is studying
 - Occur at different levels
 - Example: stereopsis, at the levels of stereo, mono
 - Systematically varied by experiment

Dependent Variables

- What the experiment measures
- Assume dependent variables will be effected by independent variables
- Must be measurable quantities
 - Time, task completion counts, error counts, survey answers, scores, etc.
 - Example: VR navigation performance, in total time

Experimental Variables

- Independent variables can vary in two ways
 - Between-subjects: each subject sees a different level of the variable
 - Example: $\frac{1}{2}$ of subjects see stereo, $\frac{1}{2}$ see mono
 - Within-subjects: each subject sees all levels of the variable
 - Example: each subject sees both stereo and mono
- **Confounding factors** (or confounding variables)
 - Factors that are not being studied, but will still affect experiment
 - Example: stereo condition less bright than mono condition
 - Important to predict and control confounding factors, or experimental validity will suffer

Usability Engineering

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Experimental Design

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Experimental Designs

• 2 x 1 is simplest possible design, with one independent

variable at two levels:

- Important confounding factors for within subject variables:
 - Learning effects
 - Fatigue effects
- Control these by counterbalancing the design
 - Ensure no systematic variation between levels and the order they are presented to subjects

Subjects	1 st condition	2 nd condition			
1, 3, 5, 7	stereo	mono			
2, 4, 6, 8	mono	stereo			

Factorial Designs

• *n* x 1 designs generalize the number of levels:

- Factorial designs generalize number of independent variables and the number of levels of each variable
- Examples: *n* x *m* design, *n* x *m* x *p* design, etc.
- Must watch for factorial explosion of design size!

3 x 2 design:	Stereopsis			
VE terrain type	stereo	mono		
flat				
hilly				
mountainous				

Cells and Levels

- Cell: each combination of levels
- Repetitions: typically, the combination of levels at each cell is repeated a number of times

- Example of how this design might be described:
 - "A 3 (VE terrain type) by 2 (stereopsis) within-subjects design, with 4 repetitions of each cell."
 - This means each subject would see 3 x 2 x 4 = 24 total conditions
 - The presentation order would be counterbalanced

Counterbalancing

- Addresses time-based confounding factors:
 - Within-subjects variables: control learning and fatigue effects
 - Between-subjects variables: control calibration drift, weather, other factors that vary with time
- There are two counterbalancing methods:
 - Random permutations
 - Systematic variation
 - Latin squares are a very useful and popular technique

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 1 & 3 & 2 \\ 2 & 1 & 3 \\ 2 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \\ 3 & 1 & 4 & 2 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 2 & 3 & 1 & 4 & 2 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 3 & 1 & 2 & 4 \\ 3 & 1 & 2 & 4 \\ 3 & 2 & 1 \end{bmatrix}$$

6 x 3 (there is no 3 x 3)

- Latin square properties:
 - Every level appears in every position the same number of times
 - Every level is followed by every other level
 - Every level is preceded by every other level

Counterbalancing Example

- "A 3 (VE terrain type) by 2 (stereopsis) withinsubjects design, with 4 repetitions of each cell."
- Perfectly counterbalances groups of 12 subjects

Subject	Presentation Order
1	1A, 1B, 2A, 2B, 3A, 3B
2	1B, 1A, 2B, 2A, 3B, 3A
3	1A, 1B, 3A, 3B, 2A, 2B
4	1B, 1A, 3B, 3A, 2B, 2A
5	2A, 2B, 1A, 1B, 3A, 3B
6	2B, 2A, 1B, 1A, 3B, 3A
7	2A, 2B, 3A, 3B, 1A, 1B
8	2B, 2A, 3B, 3A, 1B, 1A
9	3A, 3B, 1A, 1B, 2A, 2B
10	3B, 3A, 1B, 1A, 2B, 2A
11	3A, 3B, 2A, 2B, 1A, 1B
12	3B, 3A, 2B, 1A, 1B, 1A

Experimental Design Example #1

¹ sv = systemically varied, ² rp = randomly permuted

• All variables within-subject

From [Living et al. 03]

Experimental Design Example #2

Between Subject	Stereo Viewing		on			off				
	Control Movement		rate		position		rate		position	
	Frame of Reference		ego	exo	ego	exo	ego	exo	ego	exo
Within Subject	Computer Platform	cave	subjects 1 – 4	subjects 5 – 8	subject: subject:	sut	subject: subject:	sut	subject: subject:	sul
		wall				ojects		ojects		
		workbench			s 9 -	s 13	\$ 17	s 21	\$ 25	\$ 29
		desktop			12	- 16	- 20	- 24	- 28	- 32

• Mixed design: some variables between-subject, others within-subject.

Gathering Data

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Gathering Data

- Some unique aspects of VR and AR
 - Can capture, log, and analyze head trajectory
 - If we log head / hand trajectory so we can play it back, must have way of logging critical incidents
 - VR / AR equipment more fragile than other UI setups
 - In a CAVE:
 - Observing a subject can break their presence / immersion
 - Determining button presses when experimenter cannot see wand
 - In AR, very difficult to know what user is seeing
 - Can mount separate display near user or on their back
 - Could mount lightweight camera on user's head

Graphing Data

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Types of Statistics

- Descriptive Statistics
 - Describe and explore data
 - Summary statistics: many numbers \rightarrow few numbers
 - All types of graphs and visual representations
 - Data analysis begins with descriptive stats
 - Understand data distribution
 - Test assumptions of significance tests
- Inferential Statistics
 - Detect relationships in data
 - Significance tests
 - Infer population characteristics from sample characteristics

Summary Statistics

- Many numbers \rightarrow few numbers
- Measures of central tendency:
 - Mean: average
 - Median: middle value
 - Mode: most common, highest point
- Measures of variability / dispersion:
 - Mean absolute deviation
 - -Variance
 - Standard Deviation

Exploring Data with Graphs

Histogram common data overview method

Classifying Data with Histograms

Stem-and-Leaf: Histogram From Actual Data

From [Howell 02] p 21,

23

Boxplot

- Emphasizes variation and relationship to mean
- Because narrow, can be used to display side-by-side groups

Example Histogram and Boxplot from Real Data

We Have Only Scratched the Surface...

- There are a vary large number of graphing techniques
- Tufte's [83, 90] works are classic, and stat books show many more examples (e.g. Howell [03]).

Lots of good examples...

And plenty of bad examples!

From [Tufte 83], p 134, 62

Descriptive Statistics

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Populations and Samples

- Population:
 - Set containing every possible element that we want to measure
 - Usually a Platonic, theoretical construct
 - Mean: μ Variance: σ^2 Standard deviation: σ
- Sample:
 - Set containing the elements we actually measure (our subjects)
 - Subset of related population
 - -Mean: \overline{X} Variance: s^2 Standard deviation: sNumber of samples: *N*

Measuring Variability / Dispersion

Mean:

$\overline{X} = \frac{\sum X}{N}$

Mean absolute deviation:

m.a.d. =
$$\frac{\sum \left| X - \overline{X} \right|}{N}$$

Variance:

$$s^{2} = \frac{\sum \left(X - \overline{X}\right)^{2}}{N - 1}$$

$$s = \sqrt{\frac{\sum \left(X - \overline{X}\right)^2}{N - 1}}$$

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

- Standard deviation uses same units as samples and mean.
- Calculation of population variance σ^2 is theoretical, because μ almost never known and the population size *N* would be very large (perhaps infinity). 34

Sums of Squares, Degrees of Freedom, Mean Squares

Very common terms and concepts

$$s^{2} = \frac{\sum (X - \overline{X})^{2}}{N - 1} = \frac{SS}{df} = \frac{\text{sums of squares}}{\text{degrees of freedom}} = \text{MS (mean squares)}$$

- Sums of squares:
 - Summed squared deviations from mean
- Degrees of freedom:
 - Given a set of *N* observations used in a calculation, how many numbers in the set may vary
 - Equal to *N* minus number of means calculated
- Mean squares:
 - Sums of squares divided by degrees of freedom
 - Another term for variance, used in ANOVA

Hypothesis Testing

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments
Hypothesis Testing

• Goal is to infer population characteristics from sample characteristics

Testable Hypothesis

- General hypothesis: The research question that motivates the experiment.
- Testable hypothesis: The research question expressed in a way that can be measured and studied.
- Generating a good testable hypothesis is a real skill of experimental design.
 - By good, we mean contributes to experimental validity.
 - Skill best learned by studying and critiquing previous experiments.

Testable Hypothesis Example

- General hypothesis: Stereo will make people more effective when navigating through a virtual environment (VE).
- Testable hypothesis: We measure time it takes for subjects to navigate through a particular VE, under conditions of stereo and mono viewing. We hypothesis subjects will be faster under stereo viewing.
- Testable hypothesis requires a measurable quantity:
 - Time, task completion counts, error counts, etc.
- Some factors effecting experimental validity:
 - Is VE representative of something interesting (e.g., a real-world situation)?
 - Is navigation task representative of something interesting?
 - Is there an underlying theory of human performance that can help predict the results? Could our results contribute to this theory?

What Are the Possible Alternatives?

• Let time to navigate be μ_s : stereo time; μ_m : mono time

– Perhaps there are two populations: $\mu_s - \mu_m = d$

– Perhaps there is one population: $\mu_s - \mu_m = 0$

Hypothesis Testing Procedure

- 1. Develop testable hypothesis $H_1: \mu_s \mu_m = d$
 - (E.g., subjects faster under stereo viewing)
- 2. Develop null hypothesis $H_0: \mu_s \mu_m = 0$
 - Logical opposite of testable hypothesis
- 3. Construct sampling distribution assuming H_0 is true.
- 4. Run an experiment and collect samples; yielding sampling statistic *X*.
 - (E.g., measure subjects under stereo and mono conditions)
- 5. Referring to sampling distribution, calculate conditional probability of seeing X given H_0 : $p(X | H_0)$.
 - If probability is low ($p \le 0.05$, $p \le 0.01$), we are unlikely to see X when H_0 is true. We reject H_0 , and embrace H_1 .
 - If probability is not low (p > 0.05), we are likely to see X when H_0 is true. We do not reject H_0 .

Example 1: VE Navigation with Stereo Viewing

- 1. Hypothesis H_1 : $\mu_s \mu_m = d$
 - Subjects faster under stereo viewing.
- 2. Null hypothesis $H_0: \mu_s \mu_m = 0$
 - Subjects same speed whether stereo or mono viewing.
- 3. Constructed sampling distribution assuming H_0 is true.
- 4. Ran an experiment and collected samples:
 - 32 subjects, collected 128 samples
 - $-X_s = 36.431 \text{ sec}; X_m = 34.449 \text{ sec}; X_s X_m = 1.983 \text{ sec}$
- 5. Calculated conditional probability of seeing 1.983 sec given H_0 : $p(1.983 \text{ sec } | H_0) = 0.445$.
 - p = 0.445 not low, we are likely to see 1.983 sec when H_0 is true. We do not reject H_0 .
 - This experiment did not tell us that subjects were faster under stereo viewing.

Example 2: Effect of Intensity on AR Occluded Layer Perception

- 1. Hypothesis H_1 : $\mu_c \mu_d = d$
 - Tested constant and decreasing intensity. Subjects faster under decreasing intensity.
- 2. Null hypothesis H_0 : $\mu_c \mu_d = 0$

- Subjects same speed whether constant or decreasing intensity.

- 3. Constructed sampling distribution assuming H_0 is true.
- 4. Ran an experiment and collected samples:

- 8 subjects, collected 1728 samples

 $-X_c = 2592.4$ msec; $X_d = 2339.9$ msec; $X_c - X_d = 252.5$ msec

- 5. Calculated conditional probability of seeing 252.5 msec given H_0 : $p(252.5 \text{ msec} | H_0) = 0.008$.
 - -p = 0.008 is low ($p \le 0.01$); we are unlikely to see 252.5 msec when H_0 is true. We reject H_0 , and embrace H_1 .
 - This experiment suggests that subjects are faster under decreasing intensity.

Some Considerations...

- The conditional probability $p(X | H_0)$
 - Much of statistics involves how to calculate this probability; source of most of statistic's complexity
 - Logic of hypothesis testing the same regardless of how $p(X \mid H_0)$ is calculated
 - If you can calculate $p(X | H_0)$, you can test a hypothesis
- The null hypothesis H₀
 - $-H_0$ usually in form $f(\mu_1, \mu_2,...) = 0$
 - Gives hypothesis testing a double-negative logic: assume H_0 as the opposite of H_1 , then reject H_0
 - Philosophy is that can never prove something true, but can prove it false
 - H_1 usually in form $f(\mu_1, \mu_2,...) \neq 0$; we don't know what value it will take, but main interest is that it is not 0

When We Reject H₀

- Calculate $\alpha = p(X | H_0)$, when do we reject H_0 ?
 - In psychology, two levels: $\alpha \le 0.05$; $\alpha \le 0.01$
 - Other fields have different values
- What can we say when we reject H_0 at $\alpha = 0.008$?
 - "If H_0 is true, there is only an 0.008 probability of getting our results, and this is unlikely."
 - Correct!
 - "There is only a 0.008 probability that our result is in error."
 - Wrong, this statement refers to $p(H_0)$, but that's not what we calculated.
 - "There is only a 0.008 probability that H_0 could have been true in this experiment."
 - Wrong, this statement refers to $p(H_0 | X)$, but that's not what we calculated.

When We Don't Reject H₀

- What can we say when we don't reject H_0 at $\alpha = 0.445$?
 - "We have proved that H_0 is true."
 - "Our experiment indicates that H_0 is true."
 - Wrong, statisticians agree that hypothesis testing cannot prove H₀ is true.
- Statisticians do not agree on what failing to reject
 *H*₀ means.
 - Conservative viewpoint (Fisher):
 - We must suspend judgment, and cannot say anything about the truth of H_0 .
 - Alternative viewpoint (Neyman & Pearson):
 - We "accept" H₀, and act as if it's true for now...
 - But future data may cause us to change our mind

From [Howell 02], p 99

Hypothesis Testing Outcomes

		Decision			
		Reject H ₀	Don't reject H ₀		
		correct	wrong		
True	H ₀ false	a result!	type II error		
state	-	$p = 1 - \beta = power$	$\rho = \beta$		
of the		wrong	correct		
world	H ₀ true	type I error	(but wasted time)		
	•	$p = \alpha$	$p = 1 - \alpha$		

- $\alpha = p(X | H_0)$, so hypothesis testing involves calculating α
- Two ways to be right:
 - Find a result
 - Fail to find a result and waste time running an experiment
- Two ways to be wrong:
 - Type I error: we think we have a result, but we are wrong
 - Type II error: a result was there, but we missed it

When Do We Really Believe a Result?

- When we reject H_0 , we have a result, but:
 - -It's possible we made a type I error
 - -It's possible our finding is not reliable
 - Just an artifact of our particular experiment
- So when do we really believe a result?
 - Statistical evidence
 - *α* level: (*p* < .05, *p* < .01, *p* < .001)
 - Power
 - Meta-statistical evidence
 - Plausible explanation of observed phenomena
 - Based on theories of human behavior: perceptual, cognitive psychology; control theory, etc.
 - Repeated results
 - Especially by others

Hypothesis Testing Means

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Hypothesis Testing Means

- How do we calculate $\alpha = p(X | H_0)$, when X is a mean?
 - Calculation possible for other statistics, but most common for means
- Answer: we refer to a sampling distribution
- We have two conceptual functions:
 - Population: unknowable property of the universe
 - Distribution: analytically defined function, has been found to match certain population statistics

Calculating $\alpha = p(X | H_0)$ with A Sampling Distribution

- Sampling distributions are analytic functions with area 1
- To calculate α = p(X | H₀) given a distribution, we first calculate the value D, which comes from an equation of the form:

- 2 * (area of the distribution to the right of | D |)
- If H_0 true, we expect D to be near central peek of distribution
- If *D* far from central peek, we have reason to reject the idea that H_0 is true

A Distribution for Hypothesis Testing Means

• The Standard Normal Distribution ($\mu = 0, \sigma = 1$)

$$N(X;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}} e^{-\frac{(X-\mu)^2}{2\sigma^2}}$$

52

The Central Limit Theorem

- Full Statement:
 - Given population with (μ, σ^2) , the sampling distribution of means drawn from this population is distributed $(\mu, \sigma^2/n)$, where *n* is the sample size. As *n* increases, the sampling distribution of means approaches the normal distribution.
- Implication:
 - As *n* increases, distribution of means becomes normal, regardless of how "non-normal" the population looks.
- How big does *n* have to be before means look normally distributed?

– For very "non-normal" data, $n \approx 30$.

Central Limit Theorem in Action

Response time data set A; N = 3436 data points. Data from [Living et al. 03]. Plotting 100 means drawn from *A* at random without replacement, where *n* is number of samples used to calculate mean.

- This demonstrates:
 - As number of samples increases, distribution of means approaches normal distribution;
 - Regardless of how "non-normal" the source distribution is! 54

The t Distribution

- In practice, when H₀: μ_c μ_d = 0 (two means come from same population), we calculate α = p(X | H₀) from *t* distribution, not Z distribution
- Why? Z requires the population parameter σ², but σ² almost never known. We estimate σ² with s², but s² biased to underestimate σ². Thus, *t* more spread out than Z distribution.
- *t* distribution parametric: parameter is *df* (degrees of freedom)

t-Test Example

- Null hypothesis $H_0: \mu_s \mu_m = 0$
 - Subjects same speed whether stereo or mono viewing.
- Ran an experiment and collected samples:
 - 32 subjects, collected 128 samples
 - $-n_s = 64, X_s = 36.431 \text{ sec}, s_s = 15.954 \text{ sec}$
 - $-n_m = 64, X_m = 34.449 \text{ sec}, s_m = 13.175 \text{ sec}$

$$t(126) = \frac{f(\overline{X})}{f(s^2, N)} = \frac{\overline{X}_s - \overline{X}_m}{\sqrt{s_p^2 \left(\frac{1}{n_s} + \frac{1}{n_m}\right)}} = 0.766, s_p^2 = \frac{(n_s - 1)s_s^2 + (n_m - 1)s_m^2}{n_s + n_m - 2}$$

Calculation described by [Howell 02], p 202

One- and Two-Tailed Tests

- *t*-Test example is a two-tailed test.
 - Testing whether two means differ, no preferred direction of difference: H_1 : $\mu_s - \mu_m = d$, either $\mu_s > \mu_m$ or $\mu_s < \mu_m$
 - E.g. comparing stereo or mono in VE: either might be faster
 - Most stat packages return two-tailed results by default
- One-tailed test is performed when preferred direction of difference: $H_1: \mu_s > \mu_m$
 - E.g. in [Meehan et al. 03], hypothesis is that heart rate & skin conductance will rise in stressful virtual environment

Power

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Interpreting *α*, *β*, and Power

		Decision			
		Reject H ₀	Don't reject H ₀		
True state	H ₀ false H ₀ true	<mark>a result</mark> ! <i>p</i> = 1 – β = power	type II error ρ = β		
of the world		type I error ρ = α	wasted time ρ = 1 – α		

- If H_0 is true:
 - α is probability we make a type I error: we think we have a result, but we are wrong
- If *H*₁ is true:
 - β is probability we make a type II error: a result was there, but we missed it
 - Power is a more common term than β

Increasing Power by Increasing α

60

Increasing Power by Measuring a Bigger Effect

- If the effect size is large:
 - Power increases
 - Type II error decreases
 - α and type I error stay
 the same
- Unsurprisingly, large effects are easier to detect than small effects

α

 H_1

power

H₀

β

but variance drops by half.

Analysis of Variance and Factorial Experiments

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

ANOVA: Analysis of Variance

- *t*-test used for comparing two means
 - (2 x 1 designs)
- ANOVA used for factorial designs
 - Comparing multiple levels (n x 1 designs)
 - Comparing multiple independent variables (n x m, n x m x p), etc.
 - Can also compare two levels (2 x 1 designs);
 ANOVA can be considered a generalization of a *t*-Test
- No limit to experimental design size or complexity
- Most widely used statistical test in psychological research
- ANOVA based on the *F* Distribution; also called an *F*-Test

- Null hypothesis H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$; H_1 : at least one mean differs
- Estimate variance between each group: MS_{between}
 - Based on the difference between group means
 - If H_0 is true, accurate estimation
 - If H_0 is false, biased estimation: overestimates variance
- Estimate variance within each group: MS_{within}
 - Treats each group separately
 - Accurate estimation whether H_0 is true or false
- Calculate F critical value from ratio: F = MS_{between} / MS_{within}
 - If $F \approx 1$, then accept H_0
 - If F >> 1, then reject H_0

ANOVA Uses The F Distribution

- Calculate α = p(X | H₀) by looking up F critical value in F-distribution table
- F-distribution parametric: F (numerator df, denominator df)
- *α* is area to right of *F* critical value (one-tailed test)
- F and t are distributions are related: F (1, q) = t (q)

From [Saville Wood 91], p 52, and [Devore Peck 86], p 563

Probability density

ANOVA Example

- Hypothesis *H*₁:
 - Platform (Workbench, Desktop, Cave, or Wall) will affect user navigation time in a virtual environment.
- Null hypothesis H₀: μ_b = μ_d = μ_c = μ_w.
 Platform will have no effect on user navigation time.
- Ran 32 subjects, each subject used each platform, collected 128 data points.

Platform

Source	SS	df	MS	F	р
Between (platform)	1205.8876	3	401.9625	3.100*	0.031
Within (P x S)	12059.0950	93	129.6677		

**p* < .05

• Reporting in a paper: *F*(3, 93) = 3.1, *p* < .05

Main Effects and Interactions

- Main Effect
 - The effect of a single independent variable
 - In previous example, a *main effect* of platform on user navigation time: users were slower on the Workbench, relative to other platforms
- Interaction
 - Two or more variables interact
 - Often, a 2-way interaction can describe main effects

Example of an Interaction

- Main effect of drawing style:
 - F(2,14) = 8.84, p < .01
 - Subjects slower with wireframe style
- Main effect of intensity:
 - F(1,7) = 13.16, p < .01
 - Subjects faster with decreasing intensity
- Interaction between drawing style and intensity:
 - *F*(2,14) = 9.38, *p* < .01
 - The effect of decreasing intensity occurs only for the wireframe drawing style; for fill and wire+fill, intensity had no effect
 - This completely describes the main effects discussed above

Reporting Statistical Results

- For parametric tests, give degrees of freedom, critical value, *p* value:
 - $F(2,14) = 8.84^*$, p < .01 (report pre-planned significance value)
 - t(8) = 4.11, p = .0034 (report exact p value)
 - F(8,12) = 5.826403, p = 3.4778689e10-3 (too many insignificant digits)
- Give primary trends and findings in graphs
 - Best guide is [Tufte 83]
- Use graphs / tables to give data, and use text to discuss what the data means
 - Avoid giving too much data in running text

References

- [Devore Peck 86] J Devore, R Peck, Statistics: The Exploration and Analysis of Data, West Publishing Co., St. Paul, MN, 1986.
- [Living et al. 03] MA Livingston, JE Swan II, JL Gabbard, TH Höllerer, D Hix, SJ Julier, Y Baillot, D Brown, "*Resolving Multiple Occluded Layers in Augmented Reality*", The 2nd International Symposium on Mixed and Augmented Reality (ISMAR '03), October 7–10, 2003, Tokyo, Japan, pages 56–65.
- [Howell 02] DC Howell, Statistical Methods for Psychology, 5th edition, Duxbury, Pacific Grove, CA, 2002.
- [Meehan et al. 03] M Meehan, S Razzaque, MC Whitton, FP Brooks, Jr., "Effect of Latency on Presence in Stressful Virtual Environments", Technical Papers, IEEE Virtual Reality 2003, March 22–26, Los Angeles, California: IEEE Computer Society, 2003, pages 141–148.
- [Saville Wood 91] DJ Saville, GR Wood, Statistical Methods: The Geometric Approach, Springer-Verlag, New York, NY, 1991.
- [Swan et al. 03] JE Swan II, JL Gabbard, D Hix, RS Schulman, KP Kim, "A Comparative Study of User Performance in a Map-Based Virtual Environment", Technical Papers, IEEE Virtual Reality 2003, March 22–26, Los Angeles, California: IEEE Computer Society, 2003, pages 259–266.
- [Tufte 90] ER Tufte, *Envisioning Information*, Graphics Press, Cheshire, Connecticut, 1990.
- [Tufte 83] ER Tufte, *The Visual Display of Quantitative Information*, Graphics Press, Cheshire, Connecticut, 1983.

Contact Information

J. Edward Swan II, Ph.D. The Naval Research Laboratory Washington, DC

swan@acm.org 202/404-4984