

Experimental Design and Analysis for Human-Subject Visualization Experiments

IEEE Visualization 2007 Tutorial

J. Edward Swan II, Ph.D.

Department of Computer Science and Engineering Department of Psychology (Adjunct) Institute for Neurocognitive Science and Technology

Mississippi State University

Schedule

8:30 – 10:10 AM 100 minutes Experimental Design and Analysis Part I

10:10 – 10:40 AM 30 minutes Coffee Break

10:40 – 12:10 AM 90 minutes Experimental Design and Analysis Part II

Motivation and Goals

- Course attendee backgrounds?
- Studying experimental design and analysis at Mississippi State University:
 - PSY 3103 Introduction to Psychological Statistics
 - PSY 3314 Experimental Psychology
 - PSY 6103 Psychometrics
 - PSY 8214 Quantitative Methods In Psychology II
 - PSY 8803 Advanced Quantitative Methods
 - IE 6613 Engineering Statistics I
 - IE 6623 Engineering Statistics II
 - ST 8114 Statistical Methods
 - ST 8214 Design & Analysis Of Experiments
 - ST 8853 Advanced Design of Experiments I
 - ST 8863 Advanced Design of Experiments II
- 7 undergrad hours; 30 grad hours; 3 departments!

Motivation and Goals

- What can we accomplish in one morning?
- Study subset of basic techniques
 - I have found these to be the most applicable to visualization evaluation
- Focus on intuition behind basic techniques
- Become familiar with basic concepts and terms
 - Facilitate working with collaborators from psychology, industrial engineering, statistics, etc.

Outline

- Empiricism
- Experimental Validity
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Why Human Subject (HS) Experiments?

- Graphics hardware / software more mature
- Sophisticated interactive techniques possible
- Focus of field:
 - Implementing technology → using technology
 - Trend at IEEE Virtual Reality, SIGGRAPH
 - Called for in NIH-NSF Visualization Research Challenges Report [Johnson et al. 06]
- Increasingly running HS experiments:
 - How do humans perceive, manipulate, cognate with CG-mediated information?
 - Measure utility of visualizations for application domains

Conducting Human-Subject Experiments

• Human subject experiments at IEEE Visualization:

Year	Vis Papers	%	Info Vis papers	%
2006	8 / 63	13%	2 / 24	8%
2007	3 / 56	4%	12 / 27	44%

Human subject experiments at IEEE Virtual Reality:

VR year	papers	%	sketches	%	posters	%
2003	10 / 29	35%			5 / 14	36%
2004	9 / 26	35%			5 / 23	22%
2005	13 / 29	45%	1 / 8	13%	8 / 15	53%
2006	12 / 27	44%	2 / 10	20%	1 / 10	10%
2007	9 / 26	35%	3 / 15	20%	5 / 18	28%

Logical Deduction vs. Empiricism

Logical Deduction

- Analytic solutions in closed form
- Amenable to proof techniques
- Much of computer science fits here
 - Computability (what can be calculated?)
 - Complexity theory (how efficient is this algorithm?)

Empirical Inquiry

- Answers questions that cannot be proved analytically
- Much of science falls into this area
- -Antithetical to mathematics, computer science

What is Empiricism?

The Empirical Method

- Develop a hypothesis, perhaps based on a theory
- Make the hypothesis testable
- Develop an empirical experiment
- Collect and analyze data
- Accept or refute the hypothesis
- Relate the results back to the theory
- If worthy, communicate the results to scientific community

• Statistics:

- Foundation for empirical work; necessary but not sufficient
- Often not useful for managing problems of gathering, interpreting, and communicating empirical information.

Where is Empiricism Used?

- Humans are very non-analytic
- Fields that study humans:
 - Psychology / social sciences
 - Industrial engineering
 - Ergonomics
 - Business / management
 - Medicine
- Fields that don't study humans:
 - Agriculture, natural sciences, etc.
- Computing Sciences:
 - Human-computer interaction
 - Software engineering

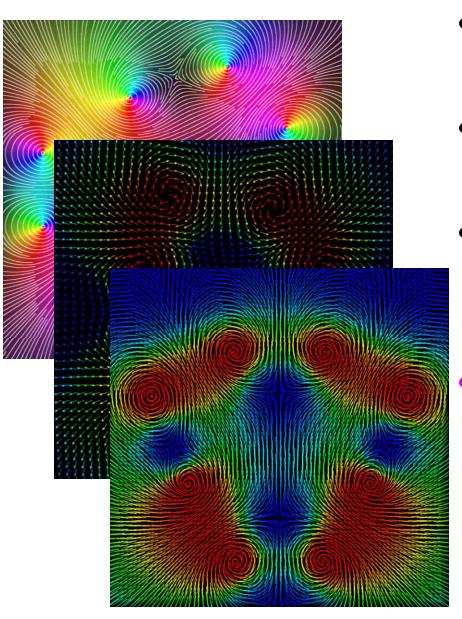
Experimental Validity

- Empiricism
- Experimental Validity
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Designing Valid Empirical Experiments

- Experimental Validity
 - Does experiment really measure what we want it to measure?
 - Do our results really mean what we think (and hope) they mean?
 - Are our results reliable?
 - If we run the experiment again, will we get the same results?
 - Will others get the same results?
- Validity is a large topic in empirical inquiry

Example of a Validity Issue



- 2D Flow Visualization Experiment
- Tested different visualization methods
- Measured subjects' ability to locate critical points
 - error, response time
- Validity Issue:
 - Interested in which visualization method is most effective
 - How well does what we measured relate to "effectiveness?"

Experimental Variables

- Independent Variables
 - What the experiment is studying
 - Occur at different levels
 - Example: stereopsis, at the levels of stereo, mono
 - Systematically varied by experiment
- Dependent Variables
 - What the experiment measures
 - Assume dependent variables will be effected by independent variables
 - Must be measurable quantities
 - Time, task completion counts, error counts, survey answers, scores, etc.
 - Example: VR navigation performance, in total time

Experimental Variables

- Independent variables can vary in two ways
 - Between-subjects: each subject sees a different level of the variable
 - Example: ½ of subjects see stereo, ½ see mono
 - Within-subjects: each subject sees all levels of the variable
 - Example: each subject sees both stereo and mono
- Confounding factors (or confounding variables)
 - Factors that are not being studied, but will still affect experiment
 - Example: stereo condition less bright than mono condition
 - Important to predict and control confounding factors, or experimental validity will suffer

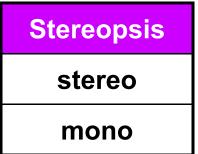
Experimental Design

- Empiricism
- Experimental Validity
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Experimental Designs

• 2 x 1 is simplest possible design, with one independent variable at two levels:

Variable		
level 1		
level 2		



- Important confounding factors for within subject variables:
 - Learning effects
 - Fatigue effects
- Control these by counterbalancing the design
 - Ensure no systematic variation between levels and the order they are presented to subjects

Subjects	1st condition	2 nd condition
1, 3, 5, 7	stereo	mono
2, 4, 6, 8	mono	stereo

Factorial Designs

• n x 1 designs generalize the number of levels:

VE terrain type
flat
hilly
mountainous

- Factorial designs generalize number of independent variables and the number of levels of each variable
- Examples: $n \times m$ design, $n \times m \times p$ design, etc.
- Must watch for factorial explosion of design size!

3 x 2 design:	Stereopsis	
VE terrain type	stereo	mono
flat		
hilly		
mountainous		

Cells and Repetitions

- Cell: each combination of levels
- Repetitions: typically, the combination of levels at each cell is repeated a number of times

	Stereopsis		
VE terrain type	stereo	mono	cell
flat		_	9011
hilly			
mountainous			

- Example of how this design might be described:
 - "A 3 (VE terrain type) by 2 (stereopsis) within-subjects design, with 4 repetitions of each cell."
 - This means each subject would see 3 x 2 x 4 = 24 total conditions
 - The presentation order would be counterbalanced

Counterbalancing

- Addresses time-based confounding factors:
 - Within-subjects variables: control learning and fatigue effects
 - Between-subjects variables: control calibration drift, weather, other factors that vary with time
- There are two counterbalancing methods:
 - Random permutations
 - Systematic variation
 - Latin squares are a very useful and popular technique

$$\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \\ 3 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 1 & 3 \\ 3 & 1 & 4 & 2 \\ 4 & 3 & 2 & 1 \end{bmatrix}$$
• Latin square properties:

- Every level appears in every position the same number of times

- Every level is followed by every other level

- Every level is preceded by every other level

- Every level is followed by

6 x 3 (there is no 3 x 3 that has all 3 properties)

Counterbalancing Example

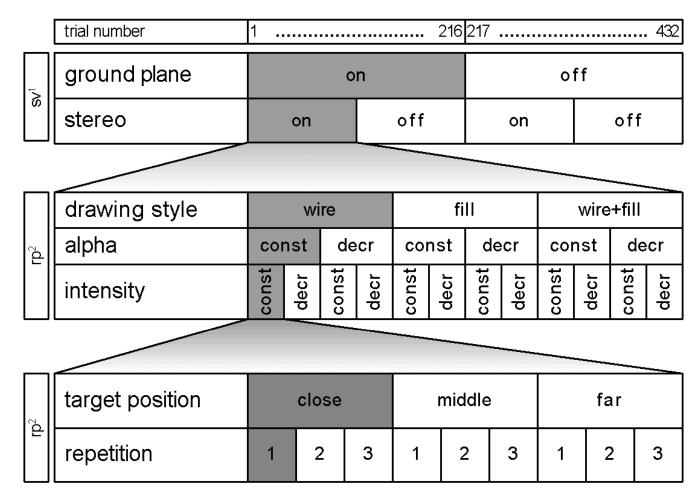
- "A 3 (VE terrain type) by 2 (stereopsis) withinsubjects design, with 4 repetitions of each cell."
- Form Cartesian product of Latin squares
 {6 x 3} (VE Terrain Type) ⊗ {2 x 2} (Stereopsis)
- Perfectly counterbalances groups of 12 subjects

Subject	Presentation Order
1	1A, 1B, 2A, 2B, 3A, 3B
2	1B, 1A, 2B, 2A, 3B, 3A
3	2A, 2B, 3A, 3B, 1A, 1B
4	2B, 2A, 3B, 3A, 1B, 1A
5	3A, 3B, 1A, 1B, 2A, 2B
6	3B, 3A, 1B, 1A, 2B, 2A
7	1A, 1B, 3A, 3B, 2A, 2B
8	1B, 1A, 3B, 3A, 2B, 2A
9	2A, 2B, 1A, 1B, 3A, 3B
10	2B, 2A, 1B, 1A, 3B, 3A
11	3A, 3B, 2A, 2B, 1A, 1B
12	3B, 3A, 2B, 2A, 1B, 1A

$\lceil 1 \rceil$	2	3
2	3	1
3	1	$2 \rfloor$
$\lceil 1 \rceil$	3	$2\rceil$
2	1	3
3	2	1

$$\begin{bmatrix} A & B \\ B & A \end{bmatrix}$$

Experimental Design Example #1



¹ sv = systemically varied, ² rp = randomly permuted

All variables within-subject

Experimental Design Example #2

Betv	Stereo Viewing		on			off					
Between Su	Control Movement		rate position		rate positio		ition				
ubject	Frame of Reference		ego	exo	ego	exo	ego	exo	ego	exo	
8	≥ Co cave		suk	suk	suk	suk	suk	suk	suk	suk	
	Computer Platform Within Subject	wall	ojects	subjects 5-8 subjects 1-4	ojects	ojects ojects	subjects	subjects subjects	subjects	subjects	subjects
Subj		workbench			от о I I	3 13 - 16	8 17	8 21 .	8 25	\$ 29	
ect		desktop	4				- 20	- 24	- 28	- 32	

 Mixed design: some variables between-subject, others within-subject.

Gathering Data

- Empiricism
- Experimental Validity
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Dependent Measures

- Workhorse measures:
 - Response time, error counts
- Some additional measures (many others exist):
 - Critical incidents
 - 6 degree-of-freedom tracker trajectory (head, hand)
 - Eye-tracker data
 - Answers scored by experts
 - Questions answered on Likert scale:

I was able to generate a visualization that tested my hypothesis:							
strongly agree	Agree	neutral	disagree	strongly disagree			

Cognitive Analysis Techniques

- Cognitive techniques may yield important insights for Visualization analysis
- Example of a cognitive analysis:
 - Subject uses think out loud protocol
 - Session videotaped, perhaps logged
 - Log is divided into brief intervals
 - Each interval labeled with cognitive state
 - Counts of cognitive states are analyzed
- But cognitive techniques give more qualitative (less quantitative) results

Pilot Testing a Design

- Experimental designs have to be tested and iterated (debugged)
- Typical flow:
 - 1st run: subjects are you, collaborators
 - 2nd run: small number of preliminary subjects
 - 3rd run: subset of real subjects
- With each run, problems are revealed; fix problems and iterate
- For later runs, perform data analysis before gathering additional data

Graphing Data

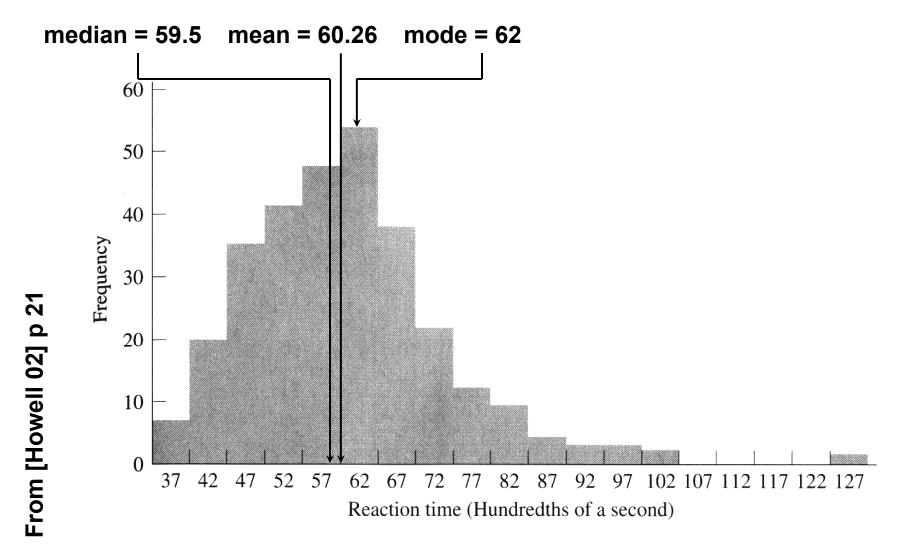
- Empiricism
- Experimental Validity
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Types of Statistics

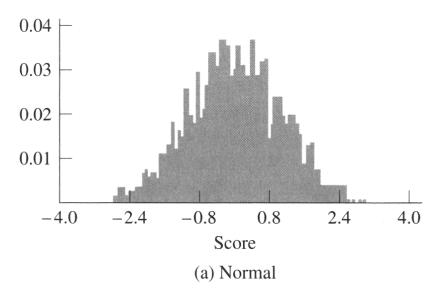
- Descriptive Statistics
 - Describe and explore data
 - Summary statistics:
 many numbers → few numbers
 - All types of graphs and visual representations
 - Data analysis begins with descriptive stats
 - Understand data distribution
 - Test assumptions of significance tests
- Inferential Statistics
 - Detect relationships in data
 - Significance tests
 - Infer population characteristics from sample characteristics

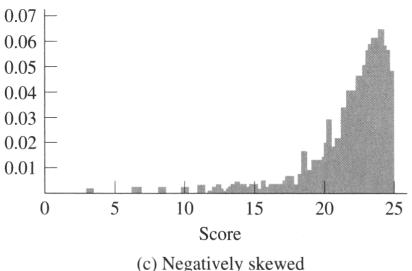
Exploring Data with Graphs

Histogram common data overview method



Classifying Data with Histograms





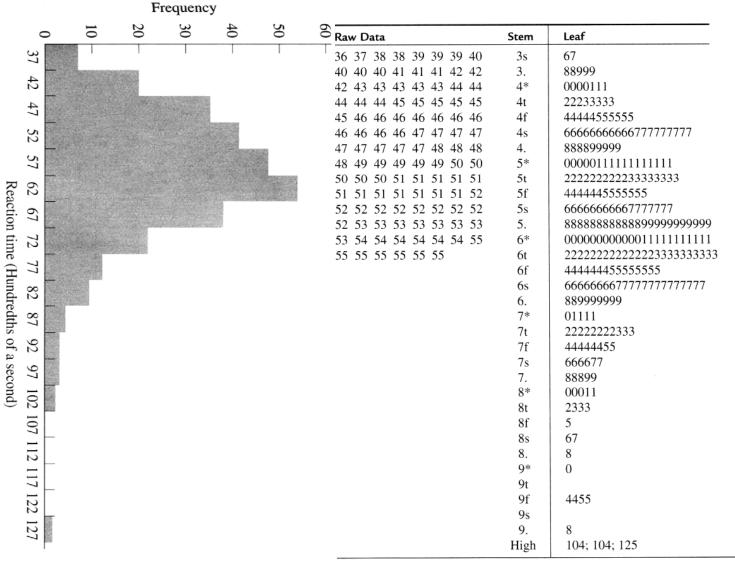
0.05 0.04 0.03 0.02 -5 -3 -1 1 3 5 Score (b) Bimodal

0.07 0.06 0.05 0.04 0.03 0.02 0.01 0 5 10 15 20 25 Score

(d) Positively skewed

From [Howell 02] p 21, 2;

Stem-and-Leaf: Histogram From Actual Data

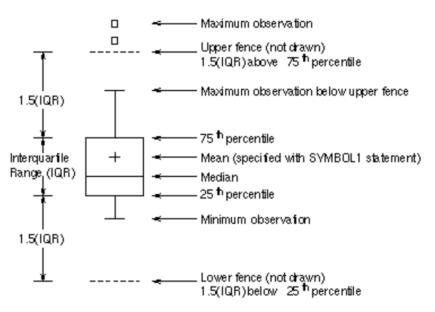


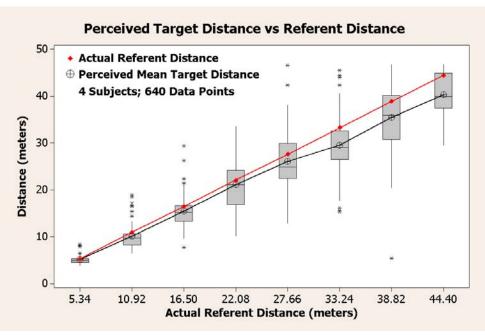
Stem-and-Leaf: Histogram From Actual Data

Midterm #1 Grades

```
0% F
  0% F 1
  0% F 2
  0% F 3
 3% F 4 7
  0% F 5
   12% D 6 1789
4
3 9% C 7 024
10 30% B 8 0014458889
14 42% A 9 01112333455579
  0% A 10
32
```

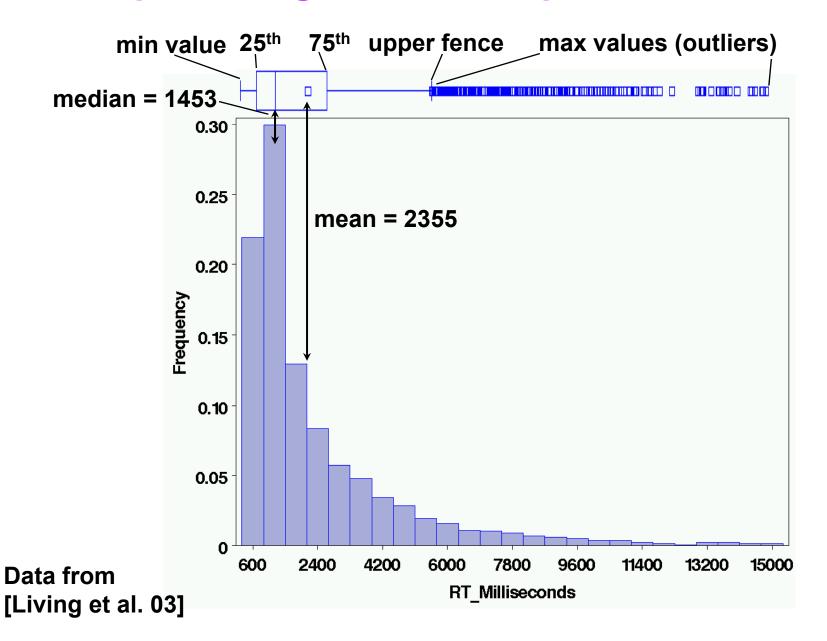
Boxplot





- Emphasizes variation and relationship to mean
- Because narrow, can be used to display side-byside groups

Example Histogram and Boxplot from Real Data

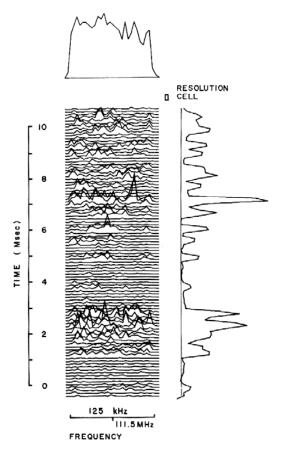


We Have Only Scratched the Surface...

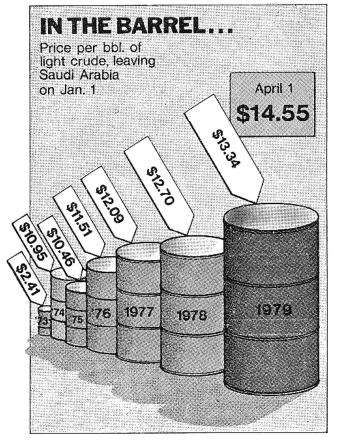
• There are a vary large number of graphing techniques

• Tufte's [83, 90] works are classic, and stat books show many

more examples (e.g. Howell [03]).



Lots of good examples...



And plenty of bad examples!

Descriptive Statistics

- Empiricism
- Experimental Validity
- Usability Engineering
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Summary Statistics

- Many numbers → few numbers
- Measures of central tendency:
 - Mean: average
 - Median: middle data value
 - Mode: most common data value
- Measures of variability / dispersion:
 - Mean absolute deviation
 - Variance
 - Standard Deviation

Populations and Samples

Population:

- Set containing every possible element that we want to measure
- Usually a Platonic, theoretical construct
- Mean: μ Variance: σ^2 Standard deviation: σ

Sample:

- Set containing the elements we actually measure (our subjects)
- Subset of related population
- Mean: \overline{X} Variance: s^2 Standard deviation: s Number of samples: N

Measuring Variability / Dispersion

Mean:

$$\overline{X} = \frac{\sum X}{N}$$

Variance:

$$s^2 = \frac{\sum \left(X - \overline{X}\right)^2}{N - 1}$$

$$\sigma^2 = \frac{\sum (X - \mu)^2}{N}$$

Mean absolute deviation:

$$\text{m.a.d.} = \frac{\sum \left| X - \overline{X} \right|}{N}$$

Standard deviation:

$$s = \sqrt{\frac{\sum (X - \overline{X})^2}{N - 1}}$$

- Standard deviation uses same units as samples and mean.
- Calculation of population variance σ^2 is theoretical, because μ almost never known and the population size N would be very large (perhaps infinity).

Sums of Squares, Degrees of Freedom, Mean Squares

Very common terms and concepts:

$$s^{2} = \frac{\sum (X - \overline{X})^{2}}{N - 1} = \frac{SS}{df} = \frac{\text{sums of squares}}{\text{degrees of freedom}} = MS \text{ (mean squares)}$$

- Sums of squares:
 - Summed squared deviations from mean
- Degrees of freedom:
 - Given a set of N observations used in a calculation, how many numbers in the set may vary
 - Equal to N minus number of means calculated
- Mean squares:
 - Sums of squares divided by degrees of freedom
 - Another term for variance, used in ANOVA

Example: Degrees of Freedom

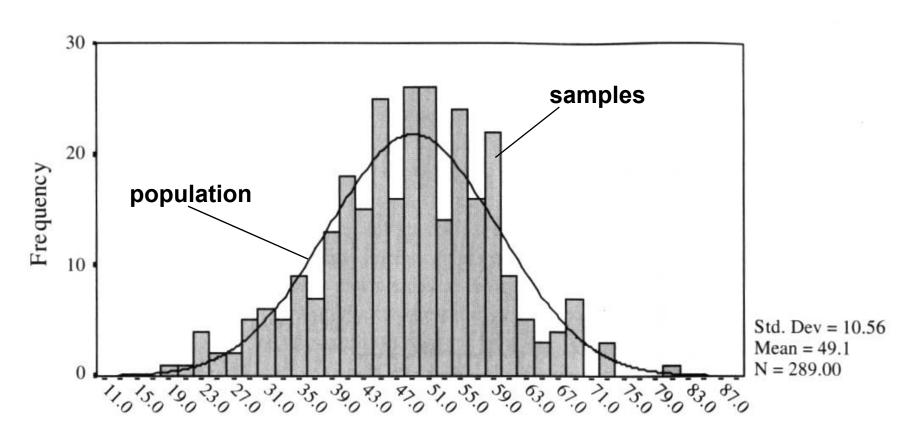
- Samples: 6, 8, 10; N = 3; X = 8
- If mean must remain X = 8;
 how many numbers may vary?
- Answer: 2 may vary (2 + 36 + a)/3 = 8
 - Value of a constrained to keep X = 8
- We say that this set has
 N-1 = 2 degrees of freedom (dof, df)
 - Generally equal to N minus 1 per mean calculated

Hypothesis Testing

- Empiricism
- Experimental Validity
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Hypothesis Testing

 Goal is to infer population characteristics from sample characteristics



Testable Hypothesis

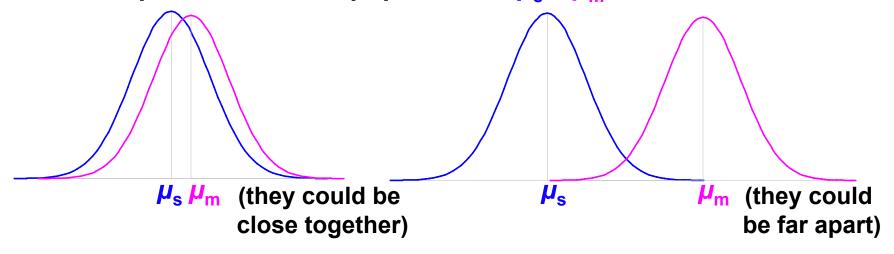
- General hypothesis: The research question that motivates the experiment.
- Testable hypothesis: The research question expressed in a way that can be measured and studied.
- Generating a good testable hypothesis is a real skill of experimental design.
 - By good, we mean contributes to experimental validity.
 - Skill best learned by studying and critiquing previous experiments.

Testable Hypothesis Example

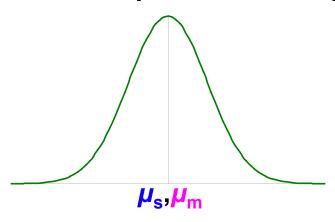
- General hypothesis: Stereo will make people more effective when navigating through a virtual environment (VE).
- Testable hypothesis: We measure time it takes for subjects to navigate through a particular VE, under conditions of stereo and mono viewing. We hypothesis subjects will be faster under stereo viewing.
- Testable hypothesis requires a measurable quantity:
 - Time, task completion counts, error counts, etc.
- Some factors effecting experimental validity:
 - Is VE representative of something interesting (e.g., a real-world situation)?
 - Is navigation task representative of something interesting?
 - Is there an underlying theory of human performance that can help predict the results? Could our results contribute to this theory?

What Are the Possible Alternatives?

- Let time to navigate be μ_s : stereo time; μ_m : mono time
 - Perhaps there are two populations: $\mu_s \mu_m = d$



– Perhaps there is one population: $\mu_s - \mu_m = 0$



Hypothesis Testing Procedure

- 1. Develop testable hypothesis H_1 : $\mu_s \mu_m = d$
 - (E.g., subjects faster under stereo viewing)
- 2. Develop null hypothesis H_0 : $\mu_s \mu_m = 0$
 - Logical opposite of testable hypothesis
- 3. Construct sampling distribution assuming H_0 is true.
- 4. Run an experiment and collect samples; yielding sampling statistic *X*.
 - (E.g., measure subjects under stereo and mono conditions)
- 5. Referring to sampling distribution, calculate conditional probability of seeing X given H_0 : $p(X \mid H_0)$.
 - If probability is low ($p \le 0.05$, $p \le 0.01$), we are unlikely to see X when H_0 is true. We reject H_0 , and embrace H_1 .
 - If probability is not low (p > 0.05), we are likely to see X when H_0 is true. We do not reject H_0 .

Example 1: VE Navigation with Stereo Viewing

- 1. Hypothesis H_1 : $\mu_s \mu_m = d$
 - Subjects faster under stereo viewing.
- 2. Null hypothesis H_0 : $\mu_s \mu_m = 0$
 - Subjects same speed whether stereo or mono viewing.
- 3. Constructed sampling distribution assuming H_0 is true.
- 4. Ran an experiment and collected samples:
 - 32 subjects, collected 128 samples
 - $-X_s = 36.431 \text{ sec}; X_m = 34.449 \text{ sec}; X_s X_m = 1.983 \text{ sec}$
- 5. Calculated conditional probability of seeing 1.983 sec given H_0 : $p(1.983 \text{ sec} \mid H_0) = 0.445$.
 - p = 0.445 not low, we are likely to see 1.983 sec when H_0 is true. We do not reject H_0 .
 - This experiment did not tell us that subjects were faster under stereo viewing.

Example 2: Effect of Intensity on AR Occluded Layer Perception

- 1. Hypothesis H_1 : $\mu_c \mu_d = d$
 - Tested constant and decreasing intensity. Subjects faster under decreasing intensity.
- 2. Null hypothesis H_0 : $\mu_c \mu_d = 0$
 - Subjects same speed whether constant or decreasing intensity.
- 3. Constructed sampling distribution assuming H_0 is true.
- 4. Ran an experiment and collected samples:
 - 8 subjects, collected 1728 samples
 - $-X_c = 2592.4 \text{ msec}$; $X_d = 2339.9 \text{ msec}$; $X_c X_d = 252.5 \text{ msec}$
- 5. Calculated conditional probability of seeing 252.5 msec given H_0 : $p(252.5 \text{ msec} \mid H_0) = 0.008$.
 - -p = 0.008 is low ($p \le 0.01$); we are unlikely to see 252.5 msec when H_0 is true. We reject H_0 , and embrace H_1 .
 - This experiment suggests that subjects are faster under decreasing intensity.

Some Considerations...

- The conditional probability $p(X \mid H_0)$
 - Much of statistics involves how to calculate this probability; source of most of statistic's complexity
 - Logic of hypothesis testing the same regardless of how $p(X \mid H_0)$ is calculated
 - If you can calculate $p(X \mid H_0)$, you can test a hypothesis

The null hypothesis H₀

- $-H_0$ usually in form $f(\mu_1, \mu_2,...) = 0$
- Gives hypothesis testing a double-negative logic: assume H_0 as the opposite of H_1 , then reject H_0
- Philosophy is that can never prove something true, but can prove it false
- H_1 usually in form $f(\mu_1, \mu_2,...)$ ≠ 0; we don't know what value it will take, but main interest is that it is not 0

When We Reject H₀

- Calculate $\alpha = p(X \mid H_0)$, when do we reject H_0 ?
 - In psychology, two levels: α ≤ 0.05; α ≤ 0.01
 - Other fields have different values
- What can we say when we reject H_0 at $\alpha = 0.008$?
 - "If H_0 is true, there is only an 0.008 probability of getting our results, and this is unlikely."
 - Correct!
 - "There is only a 0.008 probability that our result is in error."
 - Wrong, this statement refers to $p(H_0)$, but that's not what we calculated.
 - "There is only a 0.008 probability that H_0 could have been true in this experiment."
 - Wrong, this statement refers to $p(H_0 \mid X)$, but that's not what we calculated.

When We Don't Reject H₀

- What can we say when we don't reject H_0 at $\alpha = 0.445$?
 - "We have proved that H₀ is true."
 - "Our experiment indicates that H₀ is true."
 - Wrong, statisticians agree that hypothesis testing cannot prove H_0 is true.
- Statisticians do not agree on what failing to reject H₀ means.
 - Conservative viewpoint (Fisher):
 - We must suspend judgment, and cannot say anything about the truth of H_0 .
 - Alternative viewpoint (Neyman & Pearson):
 - We "accept" H₀, and act as if it's true for now...
 - But future data may cause us to change our mind

Probabilistic Reasoning

If hypothesis testing was absolute:

- If H_0 is true, then X cannot occur...however, X has occurred...therefore H_0 is false.
- e.g.: If a person is a Martian, then they are not a member of Congress (true)...this person is a member of Congress...therefore they are not a Martian. (correct result)
- e.g.: If a person is an American, then they are not a member of Congress (false)...this person is a member of Congress...therefore they are not an American. (correct result because if-then false)

However, hypothesis testing is probabilistic:

- If H_0 is true, then X is highly unlikely...however, X has occurred...therefore H_0 is highly unlikely.
- e.g.: If a person is an American, then they are probably not a member of Congress (true, right?)...this person is a member of Congress...therefore they are probably not an American. (correct hypothesis testing reasoning, but incorrect result)

Hypothesis Testing Outcomes

		Decision		
		Reject H ₀	Don't reject H ₀	
		correct	wrong	
True	H_0 false	a result!	type II error	
state	·	$p = 1 - \beta = power$	$p = \beta$	
of the		wrong	correct	
world	<i>H</i> ₀ true	type I error	(but wasted time)	
	•	$p = \alpha$	$p = 1 - \alpha$	

- $p(X | H_0)$ compared to α , so hypothesis testing involves setting α (typically 0.05 or 0.01)
- Two ways to be right:
 - Find a result
 - Fail to find a result and waste time running an experiment
- Two ways to be wrong:
 - Type I error: we think we have a result, but we are wrong
 - Type II error: a result was there, but we missed it

When Do We Really Believe a Result?

- When we reject H_0 , we have a result, but:
 - It's possible we made a type I error
 - It's possible our finding is not reliable
 - Just an artifact of our particular experiment
- So when do we really believe a result?
 - Statistical evidence
 - α level: (p < .05, p < .01, p < .001)
 - Power
 - Meta-statistical evidence
 - Plausible explanation of observed phenomena
 - Based on theories of human behavior: perceptual, cognitive psychology, control theory, etc.
 - Repeated results
 - Especially by others

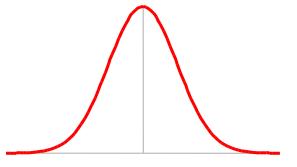
Hypothesis Testing Means

- Empiricism
- Experimental Validity
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

Hypothesis Testing Means

- How do we calculate $\alpha = p(X | H_0)$, when X is a mean?
 - Calculation possible for other statistics, but most common for means
- Answer: we refer to a sampling distribution
- We have two conceptual functions:
 - Population: unknowable property of the universe
 - Distribution: analytically defined function,
 has been found to match certain population statistics





Calculating $\alpha = p(X | H_0)$ with A Sampling Distribution

- Sampling distributions are analytic functions with area 1
- To calculate $\alpha = p(X \mid H_0)$ given a distribution, we first calculate the value D, which comes from an equation of the form:

$$D = \frac{\left(\text{size of effect}: f(\overline{X})\right)}{\left(\text{variability of effect}: f(s^2, N)\right)}$$

- $\alpha = p(X | H_0)$ is equal to:
 - Probability of seeing a value ≥ | D |
 - 2 * (area of the distribution to the right of | D |)
- If H_0 true, we expect D to be near central peek of distribution
- If D far from central peek, we have reason to reject the idea that H_0 is true

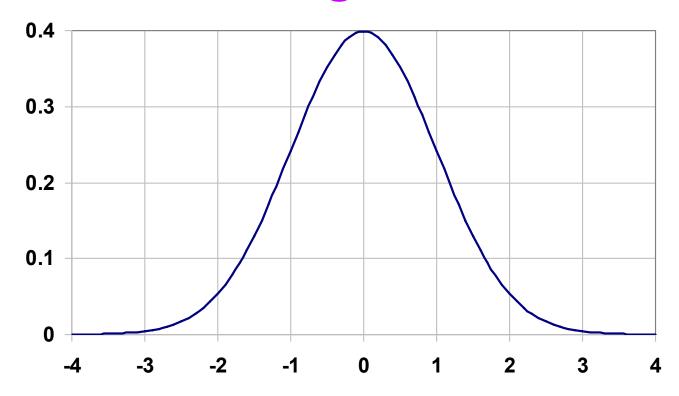
assumption

that H₀ true

 α = area $\geq |D|$

D?

A Distribution for Hypothesis Testing Means



• The Standard Normal Distribution (μ = 0, σ = 1) (also called the *Z*-distribution):

$$N(X;\mu,\sigma) = \frac{1}{\sigma\sqrt{2\pi}}e^{-\frac{(X-\mu)^2}{2\sigma^2}}$$

The Central Limit Theorem

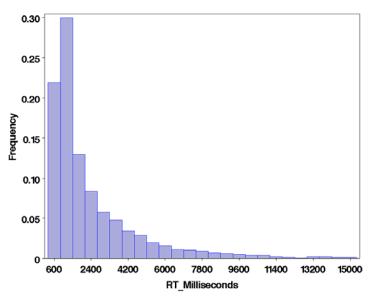
Full Statement:

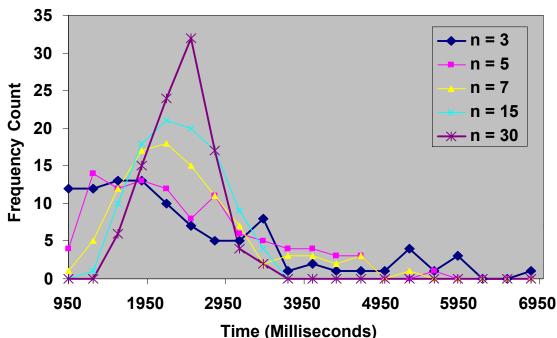
-Given population with (μ, σ^2) , the sampling distribution of means drawn from this population is distributed $(\mu, \sigma^2/n)$, where n is the sample size. As n increases, the sampling distribution of means approaches the normal distribution.

Implication:

- As n increases, distribution of means becomes normal, regardless of how "non-normal" the population looks.
- How big does n have to be before means look normally distributed?
 - For very "non-normal" data, $n \approx 30$.

Central Limit Theorem in Action





Response time data set A; N = 3436 data points. Data from [Living et al. 03].

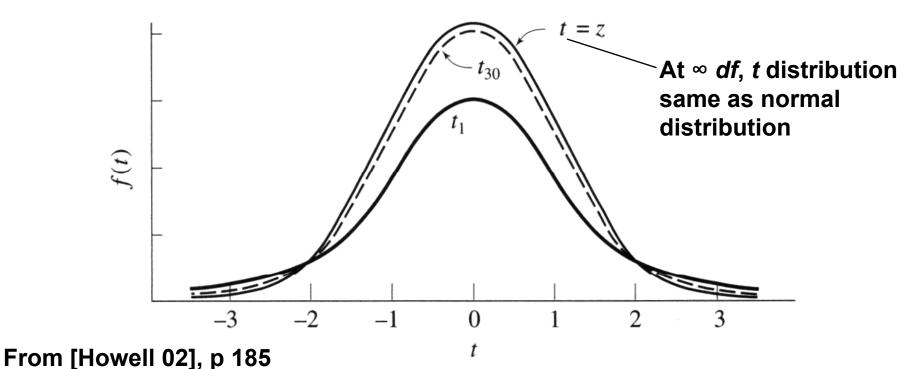
Plotting 100 means drawn from *A* at random without replacement, where *n* is number of samples used to calculate mean.

This demonstrates:

- As number of samples increases, distribution of means approaches normal distribution;
- Regardless of how "non-normal" the source distribution is!

The t Distribution

- In practice, when H_0 : $\mu_c \mu_d = 0$ (two means come from same population), we calculate $\alpha = p(X \mid H_0)$ from t distribution, not Z distribution
- Why? Z requires the population parameter σ^2 , but σ^2 almost never known. We estimate σ^2 with s^2 , but s^2 biased to underestimate σ^2 . Thus, t more spread out than Z distribution.
- t distribution parametric: parameter is df (degrees of freedom)

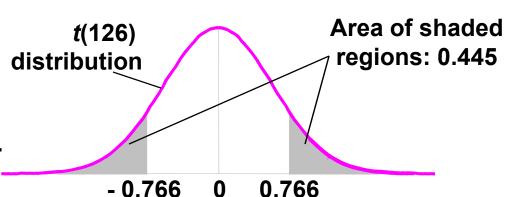


t-Test Example

- Null hypothesis H_0 : $\mu_s \mu_m = 0$
 - Subjects same speed whether stereo or mono viewing.
- Ran an experiment and collected samples:
 - 32 subjects, collected 128 samples
 - $-n_s = 64$, $X_s = 36.431$ sec, $s_s = 15.954$ sec
 - $-n_m = 64$, $X_m = 34.449$ sec, $s_m = 13.175$ sec

$$t(126) = \frac{f(\overline{X})}{f(s^2, N)} = \frac{\overline{X}_s - \overline{X}_m}{\sqrt{s_p^2 \left(\frac{1}{n_s} + \frac{1}{n_m}\right)}} = 0.766, s_p^2 = \frac{(n_s - 1)s_s^2 + (n_m - 1)s_m^2}{n_s + n_m - 2}$$

- Look up t(126) = 0.766 in a t-distribution table: 0.445
- Thus, $\alpha = p(1.983 \text{ sec} \mid H_0) = 0.445$, and we do not reject H_0 .



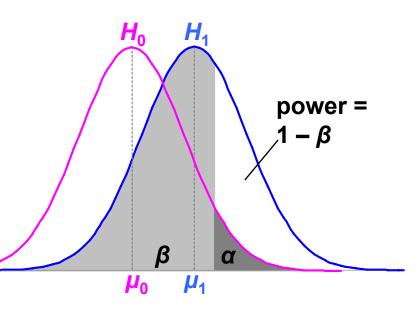
Power

- Empiricism
- Experimental Validity
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - -Power
 - Analysis of Variance and Factorial Experiments

Interpreting α , β , and Power

		Decision		
		Reject H ₀	Don't reject H ₀	
True state	- truc	a result! $p = 1 - \beta = power$	type II error ρ = β	
of the world		type I error $p = \alpha$	wasted time $p = 1 - \alpha$	

- If H_0 is true:
 - α is probability we make a type I error: we think we have a result, but we are wrong
- If H₁ is true:
 - β is probability we make a type II error: a result was there, but we missed it
 - Power is a more common term than β



Increasing Power by Increasing α

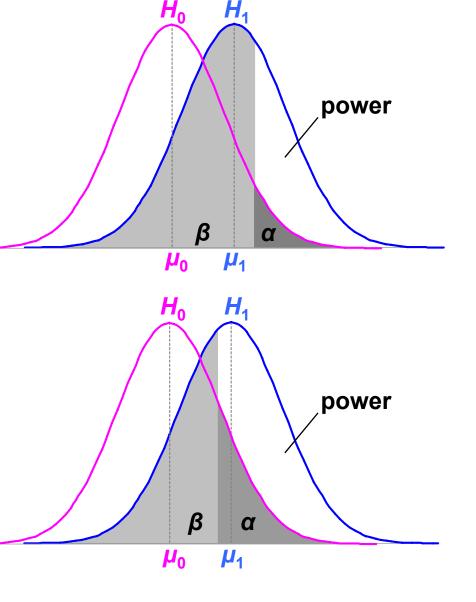
• Illustrates α / power tradeoff

• Increasing α :

- Increases power
- Decreases type II error
- Increases type I error

Decreasing α:

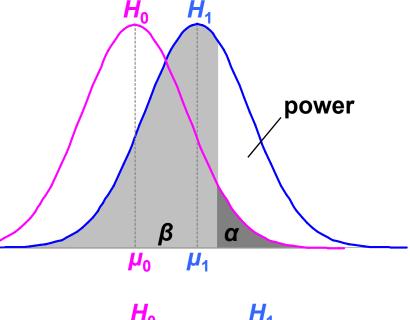
- Decreases power
- Increases type II error
- Decreases type I error

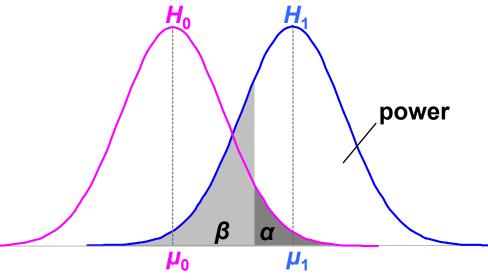


Increasing Power by Measuring a Bigger Effect

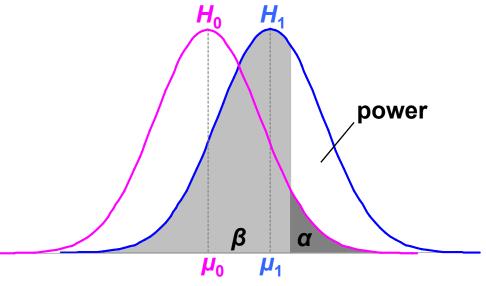
- If the effect size is large:
 - Power increases
 - Type II error decreases
 - α and type I error staythe same

 Unsurprisingly, large effects are easier to detect than small effects





Increasing Power by Collecting More Data



- Increasing sample size (N):
 - Decreases variance
 - Increases power
 - Decreases type II error
 - α and type I error stay the same
- There are techniques that give the value of *N* required for a certain power level.

• Here, effect size remains the same, but variance drops by half.

power

Using Power

• Need α , effect size, and sample size for power:

power =
$$f(\alpha, |\mu_0 - \mu_1|, N)$$

- Problem for Visualization:
 - Effect size $|\mu_0 \mu_1|$ hard to know in our field
 - Population parameters estimated from prior studies
 - But our field is so new, not many prior studies
 - Can find effect sizes in more mature fields
- Post-hoc power analysis:

effect size =
$$|X_0 - X_1|$$

- Estimate from sample statistics
- But this makes statisticians grumble (e.g. [Howell 02] [Cohen 88])

Other Uses for Power

1. Number samples needed for certain power level:

$$N = f(\text{ power, } \alpha, |\mu_0 - \mu_1| \text{ or } |X_0 - X_1|)$$

- Number extra samples needed for more powerful result
- Gives "rational basis" for deciding N [Cohen 88]
- 2. Effect size that will be detectable:

$$|\mu_0 - \mu_1| = f(N, \text{ power, } \alpha)$$

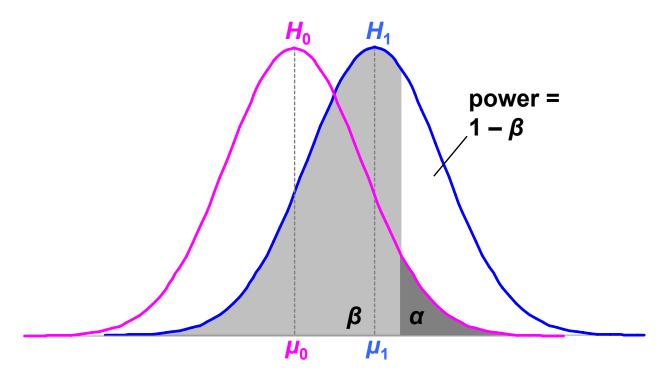
3. Significance level needed:

$$\alpha = f(|\mu_0 - \mu_1|) \text{ or } |X_0 - X_1|, N, \text{ power })$$

(1) is the most common power usage

Arguing the Null Hypothesis

- Cannot directly argue H_0 : $\mu_s \mu_m = 0$. But we can argue that $|\mu_0 \mu_1| < d$.
 - Thus, we have bound our effect size by d.
 - If d is small, effectively argued null hypothesis.



Example of Arguing H_0

 We know GP is effective depth cue, but can we get close with other graphical cues?

ground plane	drawing style	opacity	intensity	mean error*
on	all levels	both levels	both levels	0.144
off	wire+fill	decreasing	decreasing	0.111

*F(1,1870) = 1.002, p = .317

- Our effect size is d = .087 standard deviations
- Where can our experiment bound d? $d(N = 265, power = .95, \alpha = .05) = .31$ standard deviations
- This bound is significant at α = .05, β = .05, using same logic as hypothesis testing.

But how meaningful is $d \ge .31$? Other significant d's:

 Not very meaningful. If we ran an experiment to bound d ≥ .1, how much data would we need?

N(power = .95,
$$\alpha$$
 = .05, d = .1) = 2600

• Original study collected N = 3456, so N = 2600 reasonable

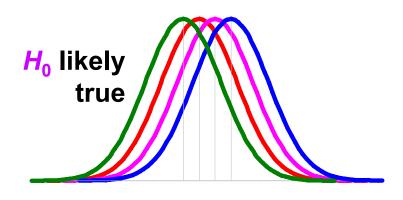
Analysis of Variance and Factorial Experiments

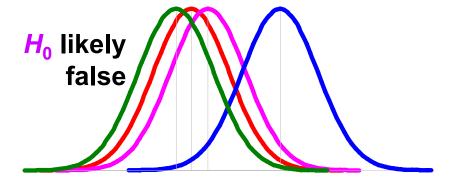
- Empiricism
- Experimental Validity
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

ANOVA: Analysis of Variance

- *t*-test used for comparing two means
 - (2 x 1 designs)
- ANOVA used for factorial designs
 - Comparing multiple levels ($n \times 1$ designs)
 - Comparing multiple independent variables $(n \times m, n \times m \times p)$, etc.
 - Can also compare two levels (2 x 1 designs);
 ANOVA can be considered a generalization of a t-Test
- No limit to experimental design size or complexity
- Most widely used statistical test in psychological research
- ANOVA based on the F distribution;
 also called an F-Test

How ANOVA Works

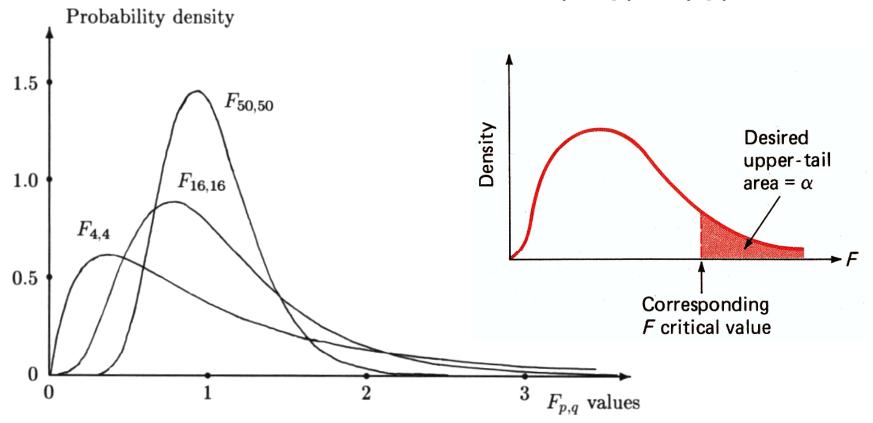




- Null hypothesis H_0 : $\mu_1 = \mu_2 = \mu_3 = \mu_4$; H_1 : at least one mean differs
- Estimate variance between each group: MS_{between}
 - Based on the difference between group means
 - If H_0 is true, accurate estimation
 - If H_0 is false, biased estimation: overestimates variance
- Estimate variance within each group: MS_{within}
 - Treats each group separately
 - Accurate estimation whether H_0 is true or false
- Calculate F critical value from ratio: F = MS_{between} / MS_{within}
 - If $F \approx 1$, then accept H_0
 - If F >> 1, then reject H_0

ANOVA Uses The F Distribution

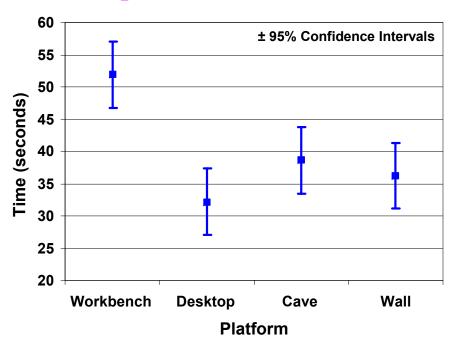
- Calculate $\alpha = p(X | H_0)$ by looking up F critical value in F-distribution table
- F-distribution parametric: F (numerator df, denominator df)
- α is area to right of F critical value (one-tailed test)
- F and t are distributions are related: $F(1, q) = t(q)^2$



From [Saville Wood 91], p 52, and [Devore Peck 86], p 563

ANOVA Example

- Hypothesis H₁:
 - Platform (Workbench, Desktop, Cave, or Wall) will affect user navigation time in a virtual environment.
- Null hypothesis H_0 : $\mu_b = \mu_d = \mu_c = \mu_w$.
 - -Platform will have no effect on user navigation time.
- Ran 32 subjects, each subject used each platform, collected 128 data points.



Source	SS	df	MS	F	p
Between (platform)	1205.8876	3	401.9625	3.100*	0.031
Within (P x S)	12059.0950	93	129.6677		

*p < .05

• Reporting in a paper: F(3, 93) = 3.1, p < .05

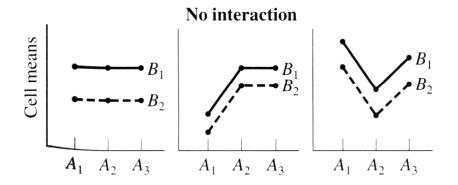
Main Effects and Interactions

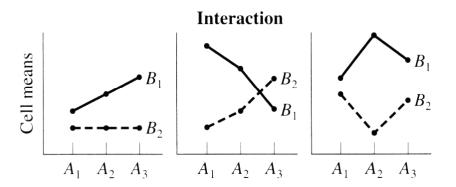
Main Effect

- The effect of a single independent variable
- In previous example, a main effect of platform on user navigation time: users were slower on the Workbench, relative to other platforms

Interaction

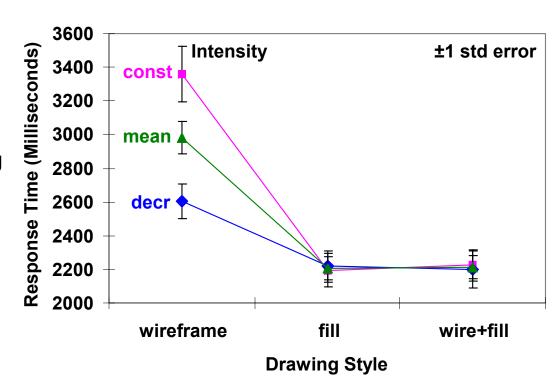
- Two or more variables interact
- Often, a 2-way interaction can describe main effects





Example of an Interaction

- Main effect of drawing style:
 - F(2,14) = 8.84, p < .01
 - Subjects slower with wireframe style
- Main effect of intensity:
 - F(1,7) = 13.16, p < .01
 - Subjects faster with decreasing intensity
- Interaction between drawing style and intensity:
 - F(2,14) = 9.38, p < .01
 - The effect of decreasing intensity occurs only for the wireframe drawing style; for fill and wire+fill, intensity had no effect
 - This completely describes the main effects discussed above



Outline

- Empiricism
- Experimental Validity
- Experimental Design
- Gathering Data
- Describing Data
 - Graphing Data
 - Descriptive Statistics
- Inferential Statistics
 - Hypothesis Testing
 - Hypothesis Testing Means
 - Power
 - Analysis of Variance and Factorial Experiments

References

- [Cohen 88] J Cohen, Statistical Power Analysis for the Behavioral Sciences, 2nd edition, Lawrence Erlbaum Associates, Hillsdale, NJ, 1988.
- [Cohen 94] J Cohen, "The Earth is Round (p < .05)", American Psychologist, 49(12), pages 997–1003.
- [Devore Peck 86] J Devore, R Peck, Statistics: The Exploration and Analysis of Data, West Publishing Co., St. Paul, MN, 1986.
- [Johnson et al. 06] CR Johnson, R Moorhead, T Munzner, H Pfister, P Rheingans, TS Yoo (Eds), NIH-NSF Visualization Research Challenges Report, IEEE Press, 2006.
- [Living et al. 03] MA Livingston, JE Swan II, JL Gabbard, TH Höllerer, D Hix, SJ Julier, Y Baillot, D Brown, "Resolving Multiple Occluded Layers in Augmented Reality", The 2nd International Symposium on Mixed and Augmented Reality (ISMAR '03), October 7–10, 2003, Tokyo, Japan, pages 56–65.
- [Howell 02] DC Howell, Statistical Methods for Psychology, 5th edition, Duxbury, Pacific Grove, CA, 2002.
- [Meehan et al. 03] M Meehan, S Razzaque, MC Whitton, FP Brooks, Jr., "Effect of Latency on Presence in Stressful Virtual Environments", Technical Papers, IEEE Virtual Reality 2003, March 22–26, Los Angeles, California: IEEE Computer Society, 2003, pages 141–148.
- [Saville Wood 91] DJ Saville, GR Wood, Statistical Methods: The Geometric Approach, Springer-Verlag, New York, NY, 1991.
- [Swan et al. 06] JE Swan II, MA Livingston, HS Smallman, D Brown, Y Baillot, JL Gabbard, D Hix, "A Perceptual Matching Technique for Depth Judgments in Optical, See-Through Augmented Reality, Technical Papers, IEEE Virtual Reality 2006, March 25–29, 2006.
- [Swan et al. 03] JE Swan II, JL Gabbard, D Hix, RS Schulman, KP Kim, "A Comparative Study of User Performance in a Map-Based Virtual Environment", Technical Papers, IEEE Virtual Reality 2003, March 22–26, Los Angeles, California: IEEE Computer Society, 2003, pages 259–266.
- [Tufte 90] ER Tufte, Envisioning Information, Graphics Press, Cheshire, Connecticut, 1990.
- [Tufte 83] ER Tufte, *The Visual Display of Quantitative Information*, Graphics Press, Cheshire, Connecticut, 1983.
- [Wu et al. 96] SC Wu, JW Smith, JE Swan II, "Pilot Study on the Effects of a Computer-Based Medical Image System", Proc. 17th Annual Fall Symposium of the American Medical Informatics Association (AMIA), Washington DC, USA, October 26–30, 1996, pages 674–678.

Contact Information

J. Edward Swan II, Ph.D.

Associate Professor
Department of Computer Science and Engineering
Department of Psychology (Adjunct)
Institute for Neurocognitive Science and Technology
swan@acm.org
(662) 325-7507

Slide Location:

http://www.cse.msstate.edu/~swan/teaching/tutorials/Swan-Vis2007-Tutorial.pdf

