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Motivation and Goals
• Course attendee backgrounds?

Studying experimental design and analysis at• Studying experimental design and analysis at 
Mississippi State University:

– PSY 3103 Introduction to Psychological Statistics
PSY 3314 Experimental Psychology– PSY 3314 Experimental Psychology

– PSY 6103 Psychometrics
– PSY 8214 Quantitative Methods In Psychology II
– PSY 8803 Advanced Quantitative Methods

IE 6613 E i i St ti ti I– IE 6613 Engineering Statistics I
– IE 6623 Engineering Statistics II
– ST 8114 Statistical Methods
– ST 8214 Design & Analysis Of Experiments
– ST 8853 Advanced Design of Experiments I
– ST 8863 Advanced Design of Experiments II

• 7 undergrad hours; 30 grad hours; 3 departments!
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• 7 undergrad hours; 30 grad hours; 3 departments!



Motivation and Goals
• What can we accomplish in 200 minutes?

• Study subset of basic techniques 
– I have found these to be the most applicable to 

i li ti l tivisualization evaluation

• Focus on intuition behind basic techniquesFocus on intuition behind basic techniques

• Become familiar with basic 
concepts and terms
– Facilitate working with collaborators from 

psychology industrial engineering statistics etc
3

psychology, industrial engineering, statistics, etc.



Why Human Subject (HS) Experiments?
G hi h d / ft t• Graphics hardware / software more mature

• Sophisticated interactive techniques possible

• Focus of field:
– Implementing technology  using technology

T d t IEEE Vi t l R lit SIGGRAPH– Trend at IEEE Virtual Reality, SIGGRAPH
– Called for in NIH-NSF Visualization Research Challenges 

Report [Johnson et al 06]

• Increasingly running HS experiments:
– How do humans perceive, manipulate, cognate with p , p , g

CG-mediated information?
– Measure utility of visualizations for application domains
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Conducting Human-Subject Experiments
• Human subject experiments at IEEE Visualization:• Human subject experiments at IEEE Visualization:

Year Vis % Info Vis % VAST %
2006 8 / 63 13% 2 / 24 8%2006 8 / 63 13% 2 / 24 8%
2007 3 / 56 4% 12 / 27 44%
2008 9 / 50 18% 14 / 27 52% 7 / 21 33%
2009 13 / 54 24% 17 / 37 46% 7 / 26 27%

• Human subject experiments at IEEE Virtual Reality:

VR year papers % sketches % posters %
2003 10 / 29 35% 5 / 14 36%
2004 9 / 26 35% 5 / 23 22%2004 9 / 26 35% 5 / 23 22%
2005 13 / 29 45% 1 / 8 13% 8 / 15 53%
2006 12 / 27 44% 2 / 10 20% 1 / 10 10%
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2007 9 / 26 35% 3 / 15 20% 5 / 18 28%
2008 21 / 37 68% 9 / 29 31%



Outline
• Experimental Validity

• Experimental DesignExperimental Design

• Describing Data
G hi D– Graphing Data

– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing

– Analysis of Variance

– Power
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• Graphical Data Analysis



The Empirical Method
• The Empirical Method:

– Develop a hypothesis, perhaps based on a theory
– Make the hypothesis testable
– Develop an empirical experiment
– Collect and analyze data
– Accept or refute the hypothesis
– Relate the results back to the theory
– If worthy communicate the results to scientific community– If worthy, communicate the results to scientific community

• Statistics: 
f ff– Foundation for empirical work; necessary but not sufficient

– Often not useful for managing problems of gathering, 
interpreting, and communicating empirical information.
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Designing Valid Empirical Experiments
• Experimental Validity

Does experiment really measure what we want it– Does experiment really measure what we want it 
to measure?

– Do our results really mean what we think 
(and hope) they mean?

– Are our results reliable?
If we run the experiment again will we get the same• If we run the experiment again, will we get the same 
results?  

• Will others get the same results?

• Validity is a large topic in empirical inquiry
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Example of a Validity Issue
• 2D Flow Visualization2D Flow Visualization 

Experiment

• Tested differentTested different 
visualization methods

• Measured subjects’ ability• Measured subjects  ability 
to locate critical points
– error, response time

• Validity Issue:
– Interested in which 

visualization method is most 
effective

– How well does what we 
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measured relate to 
“effectiveness?”



Experimental Variables
• Independent Variables

– What the experiment is studying
– Occur at different levels

• Example: stereopsis, at the levels of stereo, mono
– Systematically varied by experimentSystematically varied by experiment

• Dependent Variables
– What the experiment measures
– Assume dependent variables will be effected by 

independent variablesp
– Must be measurable quantities

• Time, task completion counts, error counts, 
survey answers, scores, etc.
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survey answers, scores, etc.
• Example: VR navigation performance, in total time



Experimental Variables 
• Independent variables can vary in two ways

– Between-subjects: each subject sees a different level of 
the ariablethe variable
• Example: ½ of subjects see stereo, ½ see mono

– Within-subjects: each subject sees all levels of the 
i blvariable

• Example: each subject sees both stereo and mono

• Confounding factors (or confounding variables)Confounding factors (or confounding variables)
– Factors that are not being studied, but will still affect 

experiment
• Example: stereo condition less bright than mono condition• Example: stereo condition less bright than mono condition

– Important to predict and control confounding factors, or 
experimental validity will suffer

11



Experimental Design
• Experimental Validity

• Experimental DesignExperimental Design

• Describing Data
G hi D– Graphing Data

– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing

– Analysis of Variance

– Power

12
• Graphical Data Analysis



Experimental Designs
• 2 x 1 is simplest possible design with one independent• 2 x 1 is simplest possible design, with one independent 

variable at two levels:
Variable

l l 1

Stereopsis

tlevel 1

level 2

stereo

mono

• Important confounding factors for within subject variables:
– Learning effects
– Fatigue effectsg

• Control these by counterbalancing the design
– Ensure no systematic variation between levels and the order 

they are presented to subjectsy p j

Subjects 1st condition 2nd condition

1 3 5 7 stereo mono

13

1, 3, 5, 7 stereo mono

2, 4, 6, 8 mono stereo



Factorial Designs
1 d i li th b f l l• n x 1 designs generalize the number of levels:

VE terrain type
flatflat
hilly

mountainous

• Factorial designs generalize number of independent variables 
and the number of levels of each variable

• Examples: n x m design, n x m x p design, etc.Examples: n x m design, n x m x p design, etc. 
• Must watch for factorial explosion of design size!

3 x 2 design: Stereopsisg p
VE terrain type stereo mono

flat

14

hilly
mountainous



Cells and Repetitions
• Cell: each combination of levels• Cell: each combination of levels
• Repetitions: typically, the combination of levels at 

each cell is repeated a number of timesp
Stereopsis

VE terrain type stereo mono cell
flat
hilly

t i

cell

• Example of how this design might be described:
“A 3 (VE terrain type) by 2 (stereopsis) within subjects

mountainous

– A 3 (VE terrain type) by 2 (stereopsis) within-subjects 
design, with 4 repetitions of each cell.”

– This means each subject would see 3 x 2 x 4 = 24 total 
conditions
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conditions
– The presentation order would be counterbalanced



Counterbalancing
• Addresses time-based confounding factors:Addresses time based confounding factors:

– Within-subjects variables: control learning and fatigue effects
– Between-subjects variables: control calibration drift, weather, 

other factors that vary with time

• There are two counterbalancing methods:
– Random permutations

Systematic variation– Systematic variation
• Latin squares are a very useful and popular technique

• Latin square properties:
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by every other level 123
6 x 3 (there is no 3 x 3 that has all 3 properties)



Counterbalancing Example
• “A 3 (VE terrain type) by 2 (stereopsis) within-• A 3 (VE terrain type) by 2 (stereopsis) within-

subjects design, with 4 repetitions of each cell.”
• Form Cartesian product of Latin squares 

{6 x 3} (VE Terrain Type)  {2 x 2} (Stereopsis) 







132
321

{6 x 3} (VE Terrain Type)  {2 x 2} (Stereopsis)
• Perfectly counterbalances groups of 12 subjects

Subject Presentation Order













312
231
213

1 1A, 1B, 2A, 2B, 3A, 3B
2 1B, 1A, 2B, 2A, 3B, 3A
3 2A, 2B, 3A, 3B, 1A, 1B
4 2B 2A 3B 3A 1B 1A 









 123
312

4 2B, 2A, 3B, 3A, 1B, 1A
5 3A, 3B, 1A, 1B, 2A, 2B
6 3B, 3A, 1B, 1A, 2B, 2A
7 1A, 1B, 3A, 3B, 2A, 2B









AB
BA

, , , , ,
8 1B, 1A, 3B, 3A, 2B, 2A
9 2A, 2B, 1A, 1B, 3A, 3B
10 2B, 2A, 1B, 1A, 3B, 3A
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11 3A, 3B, 2A, 2B, 1A, 1B
12 3B, 3A, 2B, 2A, 1B, 1A



Experimental Design Example #1
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• All variables within-subject
From [Living Swan et al 03]



Experimental Design Example #2
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others within-subject.

From [Swan et al 03]



Types of Statistics
• Descriptive Statistics:

– Describe and explore data
– Summary statistics: 

many numbers  few numbers
– All types of graphs and visual representationsAll types of graphs and visual representations
– Data analysis begins with descriptive stats

• Understand data distribution
Test assumptions of significance tests• Test assumptions of significance tests

• Inferential Statistics:
– Detect relationships in data
– Significance tests

Infer population characteristics from sample

20

– Infer population characteristics from sample 
characteristics



Graphing Data
• Experimental Validity

• Experimental DesignExperimental Design

• Describing Data
G hi D– Graphing Data

– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing

– Analysis of Variance

– Power

21
• Graphical Data Analysis



Exploring Data with Graphs
• Histogram common data overview method

mode = 62median = 59 5 mean = 60 26 mode = 62median = 59.5 mean = 60.26 

 p
 2

1
ow

el
l 0

2]
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Classifying Data with Histograms
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From [Howell 02] p 28



Stem-and-Leaf: 
Histogram From Actual DataHistogram From Actual Data
] p
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Stem-and-Leaf: 
Histogram From Actual DataHistogram From Actual Data

25Grades from my fall 2011 Formal Languages class; first midterm



We Have Only Scratched the Surface…
• There are a vary large number of graphing techniques
• Tufte’s [83, 90] works are classic, and stat books show many 

more examples (e.g. [Howell 02]).p ( g [ ])

26From [Tufte 83], p 134, 62Lots of good examples…
And plenty of bad examples!



Descriptive Statistics
• Experimental Validity

• Experimental DesignExperimental Design

• Describing Data
G hi D– Graphing Data

– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing

– Analysis of Variance

– Power

27
• Graphical Data Analysis



Summary Statistics
• Many numbers  few numbers

• Measures of central tendency:
– Mean: average
– Median: middle data value
– Mode: most common data value

• Measures of variability / dispersion:
– Mean absolute deviationMean absolute deviation
– Variance
– Standard Deviation

28



Populations and Samples
• Population: 

– Set containing every possible element that we g y p
want to measure

– Usually a Platonic, theoretical construct
M V i 2 S d d d i i– Mean: μ Variance: σ2 Standard deviation: σ

Sample:• Sample:
– Set containing the elements we actually 

measure (our subjects)measure (our subjects)
– Subset of related population
– Mean:     Variance: s2 Standard deviation: sX

29

Number of samples: N



Measuring Variability / Dispersion

XX 

Mean absolute deviation:Mean:
X

N


m.a.d.

V i St d d d i ti

N
X

X 
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• Standard deviation uses same units as

1


N
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N
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  2 Standard deviation uses same units as 
samples and mean.

• Calculation of population variance σ2 is 
theoretical because μ almost never

 
N
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theoretical, because μ almost never 
known and the population size N would 
be very large (perhaps infinity).



Sums of Squares, Degrees of Freedom,
Mean SquaresMean Squares

• Very common terms and concepts:

 
squares)(mean  MS

freedom of degrees
squares of sumsSS

1

2

2 



 
dfN

XX
s

• Sums of squares: 
– Summed squared deviations from mean

• Degrees of freedom: 
– Given a set of N observations used in a calculation, how 

many numbers in the set may varymany numbers in the set may vary
– Equal to N minus number of means calculated

• Mean squares:
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– Sums of squares divided by degrees of freedom
– Another term for variance, used in ANOVA



Example: Degrees of Freedom
• Samples:  {6, 8, 10};  N = 3;  X = 8

If t i X 8• If mean must remain X = 8;
how many numbers may vary?

• Answer: 2 may vary 
– Example: let 6→4, 8→14, then (4 + 14 + a)/3 = 8p ( )
– a = 6 if X = 8; value of a is constrained

W th t t {6 8 10} h• We say that set {6, 8, 10} has 
N – 1 = 2 degrees of freedom (dof, df)

Generally equal to N minus 1 per mean calculated

32

– Generally equal to N minus 1 per mean calculated



Hypothesis Testing
• Experimental Validity

• Experimental DesignExperimental Design

• Describing Data
G hi D– Graphing Data

– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing

– Analysis of Variance

– Power

33
• Graphical Data Analysis



Hypothesis Testing
• Goal is to infer population characteristics 

from sample characteristics

samples

population

samples

population

34From [Howell 02], p 78



Testable Hypothesis
• General hypothesis: The research question 

that motivates the experiment.

• Testable hypothesis: The research 
ti d i th t bquestion expressed in a way that can be 

measured and studied.

• Generating a good testable hypothesis is a 
real skill of experimental design.p g
– By good, we mean contributes to experimental 

validity.
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– Skill best learned by studying and critiquing 
previous experiments.



Testable Hypothesis Example
• General hypothesis: Stereo will make people more effective 

when navigating through a virtual environment (VE).

• Testable hypothesis: We measure time it takes for subjects 
to navigate through a particular VE, under conditions of 
stereo and mono viewing.  We hypothesis subjects will be g yp j
faster under stereo viewing.

• Testable hypothesis requires a measurable quantity:
– Time, task completion counts, error counts, etc.

• Some factors effecting experimental validity:
– Is VE representative of something interesting 

(e.g., a real-world situation)?
– Is navigation task representative of something interesting?

f f
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– Is there an underlying theory of human performance that can 
help predict the results?  Could our results contribute to this 
theory?



What Are the Possible Alternatives? 
• Let time to navigate be μs: stereo time; μm: mono time

– Perhaps there are two populations: μs – μm = d

μs μm μs μm(they could be 
close together)

(they could 
be far apart)

– Perhaps there is one population: μs – μm = 0

g ) p )

37μs,μm



Hypothesis Testing Procedure
1. Develop testable hypothesis H1: |μs – μm| = d 

– (E.g., subjects faster under stereo viewing)

2 D l ll h th i H | | 02. Develop null hypothesis H0: |μs – μm| = 0
– Logical opposite of testable hypothesis

3 Construct sampling distribution assuming H0 is true3. Construct sampling distribution assuming H0 is true.

4. Run an experiment and collect samples; yielding sampling 
statistic X.
– (E.g., measure subjects under stereo and mono conditions)

5. Referring to sampling distribution, calculate conditional 
probability of seeing X given H : p( X | H )probability of seeing X given H0: p( X | H0 ).
– If probability is low (p ≤ 0.05, p ≤ 0.01), we are unlikely to see X

when H0 is true.  We reject H0, and embrace H1.
– If probability is not low (p > 0.05), we are likely to see X when 
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p y (p ), y
H0 is true.  We do not reject H0.



Example 1: VE Navigation with Stereo Viewing
1. Hypothesis H1: |μs – μm| = d

– Subjects faster under stereo viewing.

2 Null hypothesis H : |μ μ | = 02. Null hypothesis H0: |μs – μm| = 0
– Subjects same speed whether stereo or mono viewing.

3. Constructed sampling distribution assuming H0 is true.3. Constructed sampling distribution assuming H0 is true.

4. Ran an experiment and collected samples:
– 32 subjects, collected 128 samples
– Xs = 36.431 sec; Xm = 34.449 sec; |Xs – Xm| = 1.983 sec

5. Calculated conditional probability of seeing 1.983 sec given 
H : p( 1 983 sec | H ) = 0 445 e

t a
l 0

3]

H0: p( 1.983 sec | H0 ) = 0.445.
– p = 0.445 not low, we are likely to see 1.983 sec when H0 is 

true.  We do not reject H0.  
– This experiment did not tell us that subjects were faster underom
 [S

w
an
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This experiment did not tell us that subjects were faster under 
stereo viewing.
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Example 2: Effect of Intensity on AR 
Occluded Layer Perceptiony p

1. Hypothesis H1: |μc – μd| = d
– Tested constant and decreasing intensity.  Subjects faster 

under decreasing intensity.

2. Null hypothesis H0: |μc – μd| = 0
– Subjects same speed whether constant or decreasing intensity.

3. Constructed sampling distribution assuming H0 is true.

4. Ran an experiment and collected samples:
8 subjects collected 1728 sampleset

 a
l 0

3]

– 8 subjects, collected 1728 samples
– Xc = 2592.4 msec; Xd = 2339.9 msec; |Xc – Xd| =  252.5 msec

5. Calculated conditional probability of seeing 252.5 msec

ng
 S

w
an

 e

given H0: p( 252.5 msec | H0 ) = 0.008.
– p = 0.008 is low (p ≤ 0.01); we are unlikely to see 252.5 msec

when H0 is true.  We reject H0, and embrace H1.
– This experiment suggests that subjects are faster underom
 [L

iv
in
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– This experiment suggests that subjects are faster under 
decreasing intensity.
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Some Considerations…
• The conditional probability p( X | H0 )

– Much of statistics involves how to calculate this 
probabilit so rce of most of statistic’s comple itprobability; source of most of statistic’s complexity

– Logic of hypothesis testing the same regardless of how 
p( X | H0 ) is calculated

– If you can calculate p( X | H0 ), you can test a hypothesis

• The null hypothesis H00
– H0 usually in form f(μ1, μ2,…) = 0
– Gives hypothesis testing a double-negative logic:

assume H0 as the opposite of H1, then reject H0assu e 0 as t e oppos te o 1, t e eject 0

– Philosophy is that can never prove something true, but 
can prove it false

– H1 usually in form f(μ1 μ2 ) ≠ 0; we don’t know what

41

H1 usually in form f(μ1, μ2,…) ≠ 0; we don t know what 
value it will take, but main interest is that it is not 0



When We Reject H0
• Calculate α = p( X | H0 ), when do we reject H0?

– In psychology, two levels: α ≤ 0.05; α ≤ 0.01
Other fields have different values– Other fields have different values

• What can we say when we reject H0 at α = 0.008?
“If H is true there is only an 0 008 probability of getting– “If H0 is true, there is only an 0.008 probability of getting 
our results, and this is unlikely.”
• Correct!

– “There is only a 0.008 probability that our result is in 
error.”
• Wrong, this statement refers to p( H0 ), but that’s not what we 

calculated.

– “There is only a 0.008 probability that H0 could have been 
true in this experiment ”
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true in this experiment.
• Wrong, this statement refers to p( H0 | X ), but that’s not what 

we calculated.



When We Don’t Reject H0
• What can we say when we don’t reject H0 at 
α = 0.445?
– “We have proved that H0 is true.”
– “Our experiment indicates that H0 is true.”

• Wrong, statisticians agree that hypothesis testing cannot 
prove H0 is true.

• Statisticians do not agree on what failing to reject 
H0 means.
– Conservative viewpoint (Fisher): 

• We must suspend judgment, and cannot say anything aboutWe must suspend judgment, and cannot say anything about 
the truth of H0.

– Alternative viewpoint (Neyman & Pearson): 
• We “accept” H0, and act as if it’s true for now…
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We accept  H0, and act as if it s true for now…
• But future data may cause us to change our mind

From [Howell 02], p 99



Probabilistic Reasoning
If h th i t ti b l t• If hypothesis testing was absolute:
– If H0 is true, then X cannot occur…however, X has 

occurred…therefore H0 is false.
If i M ti th th t b f– e.g.: If a person is a Martian, then they are not a member of 

Congress (true)…this person is a member of 
Congress…therefore they are not a Martian. (correct result)

– e g : If a person is an American then they are not ae.g.: If a person is an American, then they are not a 
member of Congress (false)…this person is a member of 
Congress…therefore they are not an American. (if-then 
false, so correct result)

• However, hypothesis testing is probabilistic:
– If H0 is true, then X is highly unlikely…however, X has 

d th f H i hi hl lik l] occurred…therefore H0 is highly unlikely.
– e.g.: If a person is an American, then they are probably not 

a member of Congress (true, right?)…this person is a 
member of Congress therefore they are probably not anC

oh
en

 9
4]
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member of Congress…therefore they are probably not an 
American. (incorrect result, but correct hypothesis testing 
reasoning)

Fr
om

 [C



Hypothesis Testing Outcomes
D i iDecision

Reject H0 Don’t reject H0
correct wrong

True 
state 

H0 false
correct
a result!

p = 1 – β = power

wrong
type II error

p = β
tof the 

world H0 true
wrong

type I error
p = α

correct
(but wasted time)

p = 1 – α
• p( X | H0 ) compared to α, so hypothesis testing involves setting 
α (typically 0.05 or 0.01)

• Two ways to be right:

p p

Two ways to be right:
– Find a result
– Fail to find a result and waste time running an experiment

• Two ways to be wrong:
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y g
– Type I error: we think we have a result, but we are wrong
– Type II error: a result was there, but we missed it



When Do We Really Believe a Result?
• When we reject H0, we have a result, but:

– It’s possible we made a type I error
It’ ibl fi di i t li bl– It’s possible our finding is not reliable 
• Just an artifact of our particular experiment

So when do we really believe a result?• So when do we really believe a result?
– Statistical evidence

• α level: (p < .05, p < .01, p < .001)(p , p , p )
• Power

– Meta-statistical evidence
• Plausible explanation of observed phenomena

– Based on theories of human behavior:
perceptual, cognitive psychology, control theory, etc.

R t d lt
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• Repeated results
– Especially by others



Analysis of Variance
• Experimental Validity

• Experimental DesignExperimental Design

• Describing Data
G hi D– Graphing Data

– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing

– Analysis of Variance

– Power

47
• Graphical Data Analysis



ANOVA: Analysis of Variance
• t-test used for comparing two means 

– (2 x 1 designs)

• ANOVA used for factorial designs
– Comparing multiple levels (n x 1 designs)
– Comparing multiple independent variablesComparing multiple independent variables 

(n x m, n x m x p), etc.
– Can also compare two levels (2 x 1 designs);

ANOVA can be considered a generalization of a t-test

• No limit to experimental design size or complexity

• Most widely used statistical test in psychological• Most widely used statistical test in psychological 
research

• ANOVA based on the F distribution;

48

ANOVA based on the F distribution; 
also called an F-Test



How ANOVA Works
H0 likely

true
H0 likely

false

• Null hypothesis H : μ = μ = μ = μ ; H : at least one mean differs• Null hypothesis H0: μ1 = μ2 = μ3 = μ4; H1: at least one mean differs
• Estimate variance between each group: MSbetween

– Based on the difference between group means
If H i t t ti ti– If H0 is true, accurate estimation

– If H0 is false, biased estimation: overestimates variance
• Estimate variance within each group: MSwithin

– Treats each group separately
– Accurate estimation whether H0 is true or false

• Calculate F critical value from ratio: F = MSbetween / MSwithin

49

– If F ≈ 1, then accept H0

– If F >> 1, then reject H0



ANOVA Example
• Hypothesis H1: 

–Platform (Workbench, Desktop, Cave, or 
Wall) will affect user navigation time in 

45

50

55

60

ds
)

± 95% Confidence Intervals

a virtual environment.
• Null hypothesis H0: μb = μd = μc = μw.

–Platform will have no effect on user 
navigation time 30
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e 
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d

navigation time.
• Ran 32 subjects, each subject used 

each platform, collected 128 data 
points.

20

25

30

Workbench Desktop Cave Wall

Platform

Source SS df MS F p
Between (platform) 1205.8876 3 401.9625 3.100* 0.031(p )
Within (P x S) 12059.0950 93 129.6677

*p < .05
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• Reporting in a paper: F( 3, 93 ) = 3.1, p < .05

Data from [Swan et al 03], calculations shown in [Howell 02], p 471 



Main Effects and Interactions
• Main Effect• Main Effect

– The effect of a single independent variable
– In previous example, a main effect of platform on user 

navigation time: users were slower on the Workbench relativenavigation time: users were slower on the Workbench, relative 
to other platforms

• Interaction
– Two or more variables interact
– Often, a 2-way interaction can describe main effects

51
From [Howell 02], p 431



Example of an Interaction
• Main effect of drawing style:

– F(2,14) = 8.84, p < .01
– Subjects slower with wireframe 

t l 3600style

• Main effect of intensity:
– F(1,7) = 13.16, p < .01 3000

3200

3400

3600

lli
se

co
nd

s)

const
±1 std errorIntensity

mean( , ) , p
– Subjects faster with decreasing 

intensity

• Interaction between drawing 2400

2600

2800

3000

se
 T

im
e 

(M
il

decr

mean

• Interaction between drawing 
style and intensity:

– F(2,14) = 9.38, p < .01
– The effect of decreasing 

2000

2200

2400

wireframe fill wire+fill

R
es

po
ns

g
intensity occurs only for the 
wireframe drawing style; for fill 
and wire+fill, intensity had no 
effect

Drawing Style
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– This completely describes the 
main effects discussed above

Data from [Living Swan et al 03]



Power
• Experimental Validity

• Experimental DesignExperimental Design

• Describing Data
G hi D– Graphing Data

– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing

– Analysis of Variance

– Power
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• Graphical Data Analysis



Interpreting α, β, and Power
Decision

Reject H0 Don’t reject H0

T a result! type II errorTrue 
state 

of the 
world

H0 false
a result!

p = 1 – β = power
type II error

p = β

H0 true
type I error

p = α
wasted time

p = 1 – α

• If H0 is true:
i b bilit k

world 0 p = α p = 1 – α

H0 H1

– α is probability we make a 
type I error: we think we have a 
result, but we are wrong

• If H is true:

power =
1 – β

• If H1 is true:
– β is probability we make a 

type II error: a result was there, 
but we missed it αβ

54

– Power is a more common term 
than β

μ1μ0



Increasing Power by Increasing α

• Illustrates α / power

H0 H1

• Illustrates α / power
tradeoff power

• Increasing α:
– Increases power
– Decreases type II error

α
μ1μ0

β

Decreases type II error
– Increases type I error

• Decreasing α:

H0 H1

• Decreasing α:
– Decreases power
– Increases type II error

power
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– Decreases type I error αβ
μ1μ0



Increasing Power by Measuring 
a Bigger Effecta Bigger Effect

• If the effect size is 
large:

H0 H1

– Power increases
– Type II error

decreases

power

– α and type I error stay 
the same α

μ1μ0

β

• Unsurprisingly, large 
effects are easier to 
detect than small

H0 H1

detect than small 
effects

power
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α
μ1μ0

β



Increasing Power by 
Collecting More DataCollecting More Data

H0 H1 H0 H1

power

I i l i (N)

α
μ1μ0

β power

• Increasing sample size (N):
– Decreases variance
– Increases power

Decreases type II error– Decreases type II error
– α and type I error stay the 

same
• There are techniques that α

μ1μ0

β
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q
give the value of N required 
for a certain power level.

• Here, effect size remains the same, 
but variance drops by half.

μ1μ0



Increasing Power by 
Decreasing NoiseDecreasing Noise

H0 H1 H0 H1

power

D i i t l

α
μ1μ0

β power

• Decreasing experimental 
noise:
– Decreases variance
– Increases powerIncreases power
– Decreases type II error
– α and type I error stay the 

same α
μ1μ0

β
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• More careful experimental 
results give lower noise.

• Here, effect size remains the same, 
but variance drops by half.

μ1μ0



Using Power
• Need α, effect size, and sample size for power: 

power = f( α, |μ0 – μ1|, N )

• Problem for Visualization: 
– Effect size |μ0 – μ1| hard to know in our fieldEffect size |μ0 μ1| hard to know in our field

• Population parameters estimated from prior studies
• But our field is so new, not many prior studies

– Can find effect sizes in more mature fields– Can find effect sizes in more mature fields 

• Post-hoc power analysis:
effect size = |X0 – X1|

– Estimate from sample statistics
– But this makes statisticians grumble
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But this makes statisticians grumble 
(e.g. [Howell 02] [Cohen 88])



Other Uses for Power
1. Number samples needed for certain power level:

N = f( power, α, |μ0 – μ1| or |X0 – X1| )
– Number extra samples needed for more powerful result
– Gives “rational basis” for deciding N [Cohen 88]

2. Effect size that will be detectable:
|μ0 – μ1| = f( N, power, α )

3. Significance level needed:
α = f( |μ0 – μ1| or |X0 – X1|, N, power )α  f( |μ0 μ1| or |X0 X1|, N, power )

(1) is the most common power usage
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Arguing the Null Hypothesis
• Cannot directly argue H0: μs – μm = 0.  But 

we can argue that |μ0 – μ1| < d.g | 0 1|
– Thus, we have bound our effect size by d.  
– If d is small, effectively argued null hypothesis.

H0 H1

power =p
1 – β

αβ
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From [Cohen 88], p 16 

α
μ1μ0

β



Graphical Data Analysis
• Experimental Validity

• Experimental DesignExperimental Design

• Describing Data
G hi D– Graphing Data

– Descriptive Statistics

• Inferential Statistics
– Hypothesis Testing

– Analysis of Variance and Factorial Experiments

– Power

62
• Graphical Data Analysis



Exploratory Data Analysis (EDA)
• EDA is:

– A set of data analysis tools and techniques
– A philosophy of how to investigate data– A philosophy of how to investigate data

• EDA philosophy: data should be explored, with an open mind
– Contrary to then-popular view: statistical tests should be plannedContrary to then popular view: statistical tests should be planned 

before data collected
– Data may reveal more than anticipated, other than anticipated
– Emphasizes images that yield rapid insightp g y p g
– Greatest value “when it forces us to notice what we never expected 

to see.” [Tukey 77]

nt
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e 
93

]

• EDA workflow:
– 1st: explore the data (descriptive statistics)
– 2nd: confirm the findings (hypothesis testing)m

ith
 P

re
n
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• EDA is visualization philosophy applied to data analysis
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EDA and Median Statistics
• EDA emphasizes median statistics:

– median
hi l hi

outliers

– upper hinge, lower hinge
– upper extreme, lower extreme

• 5 values often drawn as a boxplot:

upper
extreme

5 values often drawn as a boxplot:

• Calculation of hinges and extremes depends 
on software upper

• Median statistics insensitive to
– Data distribution median

pp
hinge

– Outliers

• Use mean statistics once distribution is 
t bli h d d tli d

lower
hinge

64

established and outliers removed lower
extreme



Example Histogram and Boxplot from Real Data
min value

median = 1453

25th 75th upper fence max values (outliers)

mean = 2355ea 355

t a
l 0

3]
g 
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t
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Boxplots Displaying Groups

• Emphasizes variation and relationship to mean

• Because narrow, can be used to display side-by-side groups

66

• EDA includes many other innovative graphical techniques…

Data from [Swan et al 06]



Mean +/– SEM Plots
• Most important 

considerations:
– Size of difference 

between means
– Distance between error 

bars 
(separation / overlap)

• Graphical indication of 
powerpower

– Size of smallest 
meaningful interval on 
y-axisy axis

• Note that 
considerations are all

67

considerations are all 
graphical

Data from [Jones Swan et al 08]



Mean +/– SEM Bar Graphs
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• Error bars give much more context to the results
• Always use error bars if bars showing means



Mean +/– SEM Interaction Plots
et

 a
l 0

7]

• Again, error bars give much more context to the resultsm
 [S

w
an
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• Here, error bars suggest where to group and separate the 
means
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XY Mean +/– SEM Plots

• Error bars are against both axes

70

g
• Suggests a clear speed / accuracy tradeoff



Are Plots All You Need?

• Two plots from [Bülthoff et al 98], Nature Neuroscience
• Small error bars relative to 

(1) effect sizes,  
(2) smallest meaningful interval → large amount of power

• Paper contains no hypothesis testing!

71

p yp g
• In some fields (e.g., psychophysics) hypothesis testing culturally 

unnecessary if plots convincingly show enough power



My Data Analysis Work Flow
• Create MS Word data analysis file

– Can throw in text and graphics
Can organize using headings and outliner– Can organize using headings and outliner

• In a very non-linear fashion:
Draw histograms and boxplots; understand distributions– Draw histograms and boxplots; understand distributions

– Remove outliers
– Draw mean +/– SEM plots

E l i d d t l l ti– Explain dependent measures calculations
– Hypothesize as to what we (might have) found and why
– Perform hypothesis testing on interesting results

P h ll t d t if lt l k i i b t– Perhaps collect more data if results look promising but 
are not yet powerful

• Eventually determine what is the overall story of

72

• Eventually determine what is the overall story of 
the data; what graphs to show



Example of My Analysis Document

73



Final Thoughts on Experimental Design 
and Data Analysisy

• In the end, what matters are:
(1) the results, and 
(2) how they relate to what’s being studied.

• …not hypothesis testing (e.g., [Bülthoff et al 98])

f• Paraphrased quote from many applied statistics texts:
“Data analysis is an art, not a science”

• When applying data analysis to results:
– There is no one way to be right
– There is no one way to be wrong

• The best way to learn data analysis and experimental 
design: read and critique existing papers, both in 
visualization and in other fields

74

visualization and in other fields.
“A month in the lab will save you a day in the library”
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