Number Theory &
Asymmetric Cryptography
Modular Arithmetic
Notations

\[\mathbb{Z} = \{-\infty, \cdots -2, -1, 0, 1, 2, \cdots, \infty\} \]

\[\mathbb{Z}_m = \{0, 1, 2, \cdots, m-2, m-1\} \]

\[a \equiv b \mod m \Rightarrow a = b + km, \text{ integer } k \]
Addition mod m

Given
\[a \equiv b \mod m \text{ and } c \equiv d \mod m \]
\[(a+c) \equiv (b+d) \mod m \]
\[a-b = km, c-d = lm, \text{ integers } k, l \]
\[(a+c) = b+d + (k+l)m = (b+d) + jm \]

Examples
\[(25+15) \equiv (1+3) \equiv 0 \mod 4 \]
\[(25+15) \equiv (4+1) \equiv 5 \mod 7 \]
Multiplication mod m

\[a \equiv b \mod m, \quad c \equiv d \mod m \]
\[ac \equiv bd \mod m \]
\[ac = (b+k\cdot m)(d+l\cdot m) = bd + (bl+kd+k\cdot lm)\cdot m \]

Example

\[26 \equiv 2 \mod 4, \quad 11 \equiv 3 \mod 4 \]
\[26 \cdot 11 = 286 \equiv 2 \mod 4 \]
\[2 \cdot 3 = 6 \equiv 2 \mod 4 \]
What about division?
Is division possible in \mathbb{Z}_m?
(A long detour necessary at this point)
Group, Abelian Group, Ring and Field
Group, Ring and Field

Group: Addition is closed, and associative, additive identity and additive inverse exist

Abelian group: Addition is also commutative

Ring: Multiplication is closed, associative, commutative, and distributive; multiplicative identity exists

Field: Every element except “additive identity” has multiplicative inverse

In \mathbb{Z}_m additive identity is 0, multiplicative identity is 1. Its a Ring.

Is \mathbb{Z}_m a Field?
Multiplicative Inverse

Consider m = 5, or \{0,1,2,3,4\}

- \[2 \times 3 \equiv 3 \times 2 \equiv 1 \mod 5\]. So 2 ↔ 3
 - (3 and 2 are multiplicative inverses in \(\mathbb{Z}_5\))
- \[4 \times 4 \equiv 1 \mod 5\], or 4 ↔ 4
- Obviously, 1 ↔ 1

\(\mathbb{Z}_5\) is clearly a field (all elements except additive identity have a multiplicative inverse)

Consider m = 6, or \{0,1,2,3,4,5\}

- 5 ↔ 5 , 1 ↔ 1
- No inverses for 2,3 and 4? (why?)
- \(\mathbb{Z}_6\) is not a Field (it is a Ring)
- (As we shall see soon) the reason for this is that 6 is not a prime number
Basic Theorems of Arithmetic

Any number can be represented as a product of powers of primes. Let p_i be the i^{th} prime

$$ n = \prod_{i=1}^{\infty} p_i^{e_i}, e_i \geq 0 $$

If $n = \prod_{i=1}^{\infty} p_i^{n_i}, m = \prod_{i=1}^{\infty} p_i^{m_i}$

$$ \text{lcm}(m, n) = \prod_{i=1}^{\infty} p_i^{\max(n_i, m_i)} $$

$$ \text{gcd}(m, n) = \prod_{i=1}^{\infty} p_i^{\min(n_i, m_i)} $$

$60 = 2^2 \cdot 3^1 \cdot 5^1, 18 = 2^1 \cdot 3^2$

$$ \text{lcm}(60, 18) = 2^2 \cdot 3^2 \cdot 5^1 = 180 $$

$$ \text{gcd}(60, 18) = 2^1 \cdot 3^1 \cdot 5^0 = 6 $$
GCD Definitions

- \(\text{gcd}(m,n) \) represented as \((m,n)\)
 - If \(a = kb \), where \(k \) is an integer, we say \(b \mid a \) (\(b \) divides \(a \))
 - \(s = (m,n) \) is the largest positive integer satisfying \(s \mid m \) and \(s \mid n \)
 - If \(s = (m,n) = 1 \), \(m \) and \(n \) are relatively prime
 - Euclidean algorithm used for finding \(\text{gcd} \)
GCD Properties

- If $(m,n)=1$, $m|a$, $n|a$ then $mn|a$

- Example $(5,6)=1$: a number divisible by both 5 and 6 has to be divisible by 30

- $(9,6)$ not equal to 1 : a number divisible by both six and 9 does **not** have to be divisible by 54 (example, 18)

- A useful result:
 - If $(m,n)=1$, $x=a \mod m$, and $x=a \mod n$, then $x=a \mod mn$
 - $(x-a)$ divisible by m and n. So it has to be divisible by mn
Bezout's Representation

\[s = (a, b) = ia + jb \] (where \(i \) and \(j \) are integers)

\(s \) (the gcd) is the \textit{smallest positive integer} that can be written \textit{as a combination of} \(a \) and \(b \)

Practical Implications:

- If coins are minted in only two denominations \(a \) and \(b \) can we accomplish \textit{any} transaction
- How can you measure 1 foot with two sticks – one 9 feet long and the other 7 feet long? We can because \((7, 9) = 1\).
- \(1 = 4 \times 7 + (-3) \times 9 \)
Euclidean Algorithm

\((a, b) = (b, c) \text{ if } a = qb + c\)

\((a_0, a_1), a_0 > a_1\)

Let \(a_0 = q_1 a_1 + a_2\)

\((a_0, a_1) = (a_1, a_2)\)

Let \(a_1 = q_2 a_2 + a_3\)

\((a_1, a_2) = (a_2, a_3)\)

\(\vdots\)

and so on until we can trivially find the GCD by inspection
Euclidean Algorithm

(457, 283)
Euclidean Algorithm

\((457, 283) \)

\[457 = 1 \times 283 + 174 \quad \text{or} \quad (457, 283) = (283, 174) \]
Euclidean Algorithm

\[(457, 283)\]

\[457 = 1 \times 283 + 174\]

\[283 = 1 \times 174 + 109\]

\[174 = 1 \times 109 + 65\]

\[109 = 1 \times 65 + 44\]

\[65 = 1 \times 44 + 21\]

\[44 = 2 \times 21 + 2\]

\[21 = 10 \times 2 + 1\]
Euclidean Algorithm

\[(457, 283)\]

\[457 = 1 \times 283 + 174\]
\[283 = 1 \times 174 + 109\]
\[174 = 1 \times 109 + 65\]
\[109 = 1 \times 65 + 44\]
\[65 = 1 \times 44 + 21\]
\[44 = 2 \times 21 + 2\]
\[21 = 10 \times 2 + 1\]
\[2 = 2 \times 1 + 0\]

or \[(457, 283) = (2, 1) = 1\]
Euclidean Algorithm

\((457, 283)\)
\[457 = 1 \times 283 + 174\]
\[283 = 1 \times 174 + 109\]
\[174 = 1 \times 109 + 65\]
\[109 = 1 \times 65 + 44\]
\[65 = 1 \times 44 + 21\]
\[44 = 2 \times 21 + 2\]
\[21 = 10 \times 2 + 1\]
\[1 = 21 - 10 \times 2\] (Bezout Representation)

\[2 = 2 \times 1 + 0\]

\((457, 283) = (283, 174) = (174, 109) = (109, 65) = (65, 44) = (44, 21) = (21, 2) = (2, 1) = 1\]
Backtracking for Bezout

\[(457, 283)\]
457 = 1*283+174
283 = 1*174+109
174 = 1*109+65
109 = 1*65 + 44
65 = 1*44 + 21
44 = 2*21 + 2 \quad 1 = 21-10*(44-2*21)
21 = 10*2 + 1 \quad 1 = 21-10*2
2 = 2*1 + 0 \quad \text{or} \quad (457,283) = (2,1) = 1
Backtracking Euclid

\[(457, 283)\]

\[457 = 1 \times 283 + 174\]
\[1 = 135 \times 457 + (-218) \times 283\]

\[283 = 1 \times 174 + 109\]

\[174 = 1 \times 109 + 65\]

\[109 = 1 \times 65 + 44\]

\[65 = 1 \times 44 + 21\]

\[44 = 2 \times 21 + 2\]
\[1 = 21 - 10 \times (44 - 2 \times 21)\]

\[21 = 10 \times 2 + 1\]
\[1 = 21 - 10 \times 2\]

\[2 = 2 \times 1 + 0\]

or \((457, 283) = (2, 1) = 1\)
Modular Inverse

Does inverse of a exist in \mathbb{Z}_m?

$$aa^{-1} \equiv 1 \mod m$$

Let $b = a^{-1}$

$$ab \equiv 1 \mod m \Rightarrow ab = 1 + km \Rightarrow 1 = (-b)a + km$$

$$(a, m) = 1$$

Inverse exists only if $(a, m) = 1$

Else we can not get a Bezout representation linking 1, a and m (like $1 = xa + ym$)

If $(a, m) = 1$ we can use extended Euclidean algorithm to find the inverse of a in \mathbb{Z}_m
Multiplicative Inverse of 283 in \mathbb{Z}_{457}

$(457, 283)$

$457 = 1 \cdot 283 + 174$ \quad 1 = 135 \cdot 457 + (-218) \cdot 283$

$283 = 1 \cdot 174 + 109$

$174 = 1 \cdot 109 + 65$

$109 = 1 \cdot 65 + 44$

$65 = 1 \cdot 44 + 21$

$44 = 2 \cdot 21 + 2$ \quad 1 = 21 - 10 \cdot (44 - 2 \cdot 21)$

$21 = 10 \cdot 2 + 1$ \quad 1 = 21 - 10 \cdot 2$

$2 = 2 \cdot 1 + 0$ \quad \text{or} \quad (457, 283) = (2, 1) = 1
Multiplicative Inverse of 283 in \mathbb{Z}_{457}

$(457, 283)$

$457 = 1 \cdot 283 + 174$ \quad 1 = 135 \cdot 457 + (-218) \cdot 283$

$283 = 1 \cdot 174 + 109$ \quad (-218 \cdot 283) = 1 + (-135) \cdot 457$

$174 = 1 \cdot 109 + 65$ \quad (-218 \cdot 283) \equiv 1 \pmod{457}$

$109 = 1 \cdot 65 + 44$ \quad -218 \equiv 239 \pmod{457}$

$65 = 1 \cdot 44 + 21$ \quad (239 \cdot 283) \equiv 1 \pmod{457}$

$44 = 2 \cdot 21 + 2$

$21 = 10 \cdot 2 + 1$ \quad 1 = 21 - 10 \cdot 2$

$2 = 2 \cdot 1 + 0$ \quad or $(457, 283) = (2, 1) = 1$
Multiplicative Inverse of 283 in \mathbb{Z}_{457}

$$(457, 283)$$

$457 = 1 \cdot 283 + 174 \quad 1 = 135 \cdot 457 + (-218) \cdot 283$

$283 = 1 \cdot 174 + 109 \quad (-218 \cdot 283) = 1 + (-135) \cdot 457$

$174 = 1 \cdot 109 + 65 \quad (-218 \cdot 283) \equiv 1 \mod 457$

$109 = 1 \cdot 65 + 44 \quad -218 \equiv 239 \mod 457$

$65 = 1 \cdot 44 + 21 \quad (239 \cdot 283) \equiv 1 \mod 457$

239 is the inverse of 283 mod 457

Check: $239 \cdot 283 = 67637 = 1 + 148 \cdot 457$
Extended Euclid Algorithm

d=(a,b)=ak+bl
EE Algorithm returns d,k,l
u=[a 1 0];
v=[b 0 1];
while (v(0) != 0) do
 y=floor(u(0)/v(0));
 w=u-y*v;
 u=v; v=w;
endwhile

d=u(0); k=u(1); l=u(2);

\[
\begin{array}{cccccc}
 a&=457, b&=283 \\
 u(0) & u(1) & u(2) & v(0) & v(1) & v(2) \\
 457 & 1 & 0 & 283 & 0 & 1 \\
 283 & 0 & 1 & 174 & 1 & -1 \\
 174 & 1 & -1 & 109 & -1 & 2 \\
 109 & -1 & 2 & 65 & 2 & -3 \\
 65 & 2 & -3 & 44 & -3 & 5 \\
 44 & -3 & 5 & 21 & 5 & -8 \\
 21 & 5 & -8 & 2 & -13 & 21 \\
 2 & -13 & 21 & 1 & 135 & -283 \\
 1 & 135 & -218 & 0 & -283 & 457 \\
\end{array}
\]

1=135*457 + (-218)*283
End of Detour

Now we know why inverses do not exist for 2, 3 and 4 in \mathbb{Z}_6

Note that $(5, 6) = 1$

(That's why 5 has an inverse in \mathbb{Z}_6)
Prime Modulus

- What if m is prime?
- We have $Z_m = \{0,1,2,...,m-1\}$
- Every number is relatively prime to a prime number
- So every number 1 ... m-1 has an inverse
- Z_m is a FIELD if m is prime
- Normally we call it prime field Z_p
RECAP

$Z_m = \{0,1,2,...,m-1\}$

Z_m is a group, and ring

Multiplicative inverse of a exists only if $(a,m)=1$;
GCD computed using Euclidean algorithm
Multiplicative Inverse using Extended Euclidean Algorithm

If $m = p$ (a prime) then Z_p is a field

All elements (except additive identity 0) have a multiplicative inverse.
Why Modular Operations?

• No round off errors
 – For asymmetric cryptography we normally work with very large numbers (several hundred digits each)
 – We will frequently perform computations like $a^b \mod m$ where a,b, and m are large numbers
 – All computations will involve repeated modular multiplications (one multiplication followed by one division by the modulus m, to get the remainder)
 – If modulus m is a n-bit number the largest possible value after a multiplication is guaranteed to be less than 2^n-bits. After modular reduction the remainder is at most n bits long.
Square and Multiply Algorithm for Exponentiation

Compute $y = a^x \mod n$
Get binary representation of x
Let $b(r)b(r-1)\ldots b(0)$ represent bits of x

$z=1$;
for $i=r$ downto 0
 $z=z\cdot z \mod n$
 if ($b(i)==1$)
 $z=z\cdot a \mod n$
 endif
endfor
Example

Compute $y = 36^{43} \mod 87$

$43 = 101011_b; r=5; a=36; n=87; z=1$

<table>
<thead>
<tr>
<th>Step</th>
<th>Beginning</th>
<th>End of step</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>$b_5=1, z=1$</td>
<td>$z = z^2 \cdot a = 36 \mod 87$</td>
</tr>
<tr>
<td>2.</td>
<td>$b_4=0, z=36$</td>
<td>$z = z^2 = 78 \mod 87$</td>
</tr>
<tr>
<td>3.</td>
<td>$b_3=1, z=78$</td>
<td>$z = z^2 \cdot a = 45 \mod 87$</td>
</tr>
<tr>
<td>4.</td>
<td>$b_2=0, z=45$</td>
<td>$z = z^2 = 24 \mod 87$</td>
</tr>
<tr>
<td>5.</td>
<td>$b_1=1, z=24$</td>
<td>$z = z^2 \cdot a = 30 \mod 87$</td>
</tr>
<tr>
<td>6.</td>
<td>$b_0=1, z=30$</td>
<td>$z = z^2 \cdot a = 36 \mod 87$</td>
</tr>
</tbody>
</table>

$36^{43} = 36 \mod 87$
Why Prime Modulus?

- It is a Field!
- Rich mathematical operations
- We can pretty much solve any equation as we do in regular math (without concern of overflow)
 - Even square roots
Public Key Cryptography

• Symmetric cryptography requires every pair of interacting entities to share a secret

• Asymmetric cryptography is useful in establishing pair-wise secrets

• Every entity begins by generating a key pair
 – Let Alice's key pair be \((R_A, U_A)\)
 • The private key \(R_A\) is a secret known only to Alice
 • The public key \(U_A\) is made known to everyone
Public key Algorithms

- Two algorithms (E() and D()) were defined for symmetric ciphers
- A “public key algorithm” (for example, RSA) refers to a “system” with up to 6 different sub-algorithms
 - Key pair generation algorithm
 - Encryption algorithm
 - Decryption algorithm
 - Signing algorithm
 - Verification algorithm
 - Key-exchange algorithm
- Not all 6 by necessary for every public-key system
 - Key pair generation is necessary for all.
 - Some do only encryption and decryption,
 - some do only signing/verification,
 - some do only key-exchange
Key Generation Algorithm

- Alice chooses a random private key R_A
- And computes the corresponding public U_A
- It should be impractical for anyone to compute the private key given the public key
 - Even while the relationship between (R_A, U_A) is one-to-one
 - Example:
 - Private key is two randomly chosen large primes p and q
 - The public key is $n=pq$
Encryption Algorithm

• Any one with knowledge of Alice's public key can send a secret message to Alice

• To send a secret P, the sender (say, Bob)
 – Uses an encryption algorithm $C = Enc(P, U_A)$
 – Cipher-text C sent to Alice
Decryption Algorithm

• Only the entity with the corresponding private key can decrypt the cipher-text

• \(C = Enc(P, U_A) \) can be decrypted using the \(Dec() \) algorithm as

 - \(P = Dec(C, R_A) \)

 - As only Alice is privy to her private key \(R_A \), only Alice can decrypt \(C \)

 - Can Alice confirm the identity of the sender?
Signing/Verification Algorithms

- To sign a message (typically the hash of a message) Alice uses the signing algorithm $\text{Sig}()$
- Let M be the message hash to be signed
- The signature S is computed as
 - $S = \text{Sig}(M, R_\alpha)$
- Anyone with access to Alice's public key can verify the signature using algorithm $\text{Ver}()$
- Algorithm $\text{Ver}(M, S, U_\alpha)$ returns TRUE only if S was computed using the corresponding private key, and the same message.
- If TRUE, the verifier concludes that the message was signed by Alice.
Inputs and Outputs

- In symmetric cryptography the inputs and outputs (to $E()/D()$) were bit-strings of fixed sizes, with no special interpretation.
- In asymmetric cryptography the inputs and outputs to the five algorithms are seen as numbers belonging to a finite field/ring/group.
- The sizes of inputs/outputs are also more substantial (typically few thousand bits).
Field, Ring, and Group

- Finite sets (of numbers/elements)

- Group:
 - Addition is closed, associative
 - Additive inverse exists; additive identity exists

- Abelian Group are subsets of Groups, where
 - Addition is also commutative

- Rings are subsets of Abelian Groups
 - Multiplication is closed, associative, distributive, and commutative
 - A multiplicative identity exists

- Fields are subsets of Rings
 - Every element except the additive identity has a *multiplicative inverse*
Rings and Fields

• We limit ourselves to one type of finite sets
 – Set of integers modulo m
 – $\mathbb{Z}_m = (0,1,2,...,m-1)$
 – With \textit{modular} addition and multiplication
 – \mathbb{Z}_m is a
 • Field if m is prime;
 • Ring if m is not prime
Examples of Modular Operations in Z_7

$Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$

$5 + 6 \equiv 4 \pmod{7}$

$5.6 \equiv 2 \pmod{7}$

$4 + 0 \equiv 4 \pmod{7}$ (0 is additive identity)

$3.1 \equiv 3 \pmod{7}$ (1 is multiplicative identity)

$5.3 \equiv 1 \pmod{7}$ (3 and 5 are multiplicative inverses)

$17^3 \equiv 3^3 \equiv 6 \pmod{7}$
Prime Numbers

• Prime Number Theorem
 – Number of prime numbers less than \(n \) is \(\text{approx. } n / \log(n) \)
 – \(\Psi(n) \approx n / \log(n) \)
 – Prime numbers are \textit{dense}

• Any number can be represented as a product of powers of primes
 – \(n = \prod_{i=1}^{\infty} p_i^{a_i} \)
 – For example
 \[
 10 = 2^1 3^0 5^1
 \]
 \[
 12 = 2^2 3^1
 \]
 \[
 148 = 2^2 \ldots 37^1
 \]
Euler Totient

- Two numbers are **relatively prime** if they have no common factors
 - their GCD is 1.
 - example (9,14)=1,(7,22)=1, etc
- Positive integers $<n$ (or elements of \mathbb{Z}_n) that are **relatively prime** to n are **totatives** of n
- The **Euler Totient Function** $\Phi(n)$ is the **count** of the totatives of n

$$\text{If } n = \prod_{i=1}^{\infty} p_i^{a_i} \text{ then } \Phi(n) = \prod_{i=1}^{\infty} p_i^{a_i - 1} (p_i - 1)$$
Euler Totient

\[n = \prod_{i=1}^{\infty} p_i^{a_i} \quad \Phi(n) = \prod_{i=1}^{\infty} p_i^{a_i-1}(p_i-1) \]

\[n = 12 = 2^2 3 \quad \Phi(12) = 2^1(2-1)3^0(3-1) = 4 \]

\[n = 15 = 3^1 5^1 \quad \Phi(15) = (3-1)(5-1) \]

\[n = 13 = 13 \quad \Phi(13) = (13-1) \]

• We are particularly interested in two cases
 • Case 1: \(n \) is a prime \(p \)
 • the Euler totient is \(p-1 \)
 • all elements in \(Z_p \) except 0 are totatives
 • Case 2:
 • \(n=pq \) where \(p \) and \(q \) are primes:
 • the Euler totient is \((p-1)(q-1) \)
 • Only \((p-1)(q-1) \) of \(n=pq \) elements of \(Z_p \) are totatives
Example, \(m=35 = 5 \times 7 \)

- \(\mathbb{Z}_m = \{0, 1, 2, 3, \ldots, 34\} \)
- 7 multiples of 5, and 5 multiples of 7, are obviously not totatives
- 7 multiples of 5 are 0, 5, 10, 15, 20, 25, 30
- 5 multiples of 7 are 0, 7, 14, 21, 28
- 0 is in both
- \(7+5-1 = 11 \) numbers are not totatives
- \(35-11 = 24 = (5-1)(7-1) \) numbers are totatives
- \(\{1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 16, 17, 18, 19, 22, 23, 24, 26, 27, 29, 31, 32, 33, 34\} \) are the 24 totatives of 35.
For General $m=pq$

- More generally
- p multiples of q are not totatives
- q multiples of p are not totatives
- 0 is in both
- $p+q-1$ are not totatives
- $pq-(p+q-1) = (p-1)(q-1)$ numbers are totatives
Multiplicative Inverses

- All totatives of \(\mathbb{Z}_m \) have multiplicative inverses modulo \(m \)
- Totatives of 35
 \{01,02,03,04,06,08,09,11,12,13,16,17,18,19,22,23,24,26,27,29,31,32,33,34\}
- (Corresponding) Multiplicative inverses
 \{01,18,12,09,06,22,04,16,03,27,11,33,02,24,08,32,19,31,13,29,26,23,17,34\}
- \((1,1),(2,18),(3,12)\ldots\) are inverses mod 35
- If \(m \) is prime are numbers in \(\mathbb{Z}_m \) (except 0) have multiplicative inverses
- If \(m=pq \) then only the \((p-1)(q-1)\) totatives have multiplicative inverses

\[
\begin{align*}
4.9 & \equiv 36 \equiv 35.1 + 1 \equiv 1 \mod 35 \\
11.16 & \equiv 176 \equiv 35.5 + 1 \equiv 1 \mod 35 \\
a \cdot a^{-1} & \equiv 35k + 1 \equiv 1 \mod 35 \text{ where } k \text{ is some integer}
\end{align*}
\]
Set of Totatives

Consider the set of $\Phi(m)$ totatives $\{a_1, a_2, \cdots, a_{\Phi(m)}\}$ of m.

What happens when you multiply a totative with another? The result has to be a totative. Why?

\[a_i \cdot a_j = x \] can NOT have any factor common with m

x too has to be a totative.

Example 9.12 $\equiv 96 \equiv 3 \pmod{35}$, 19.32 $\equiv 13 \pmod{35}$

Any power of a totative also has to be a totative.

For e.g. in mod 35, $32^2 \equiv 9$, $32^3 \equiv 8$, $32^4 \equiv 11$, $32^5 \equiv 2$
Permutation of Totative Set

Set of $\Phi(m)$ totatives $\{a_1, a_2, \cdots a_{\Phi(m)}\}$ of m
Choose any $a = a_i$ from the set
Multiply every number in the set by a to get $\{a_1 a, a_2 a, \cdots a_{\Phi(m)} a\}$
Now $\{a_1 a, a_2 a, \cdots a_{\Phi(m)} a\}$ is a PERMUTATION of $\{a_1, a_2, \cdots a_{\Phi(m)}\}$.
Why?
Pick two indexes $i, j \in \{1 \cdots \Phi(m)\}$
\[a_i a \equiv a_j a \Rightarrow (a_i - a_j) a \equiv 0 \mod m \]
Or m divides $(a_i - a_j) a$.
As a has no common factors with m we need m to divide $a_i - a_j$
Which can only happen if $a_i - a_j = 0$ or $i = j$
Permutation of Totative Set

Set of $\Phi(m)$ totatives $\{a_1, a_2, \cdots a_{\Phi(m)}\}$ of m

Choose any $a = a_i$ from the set

Multiply every number in the set by a to get $\{a_1a, a_2a, \cdots a_{\Phi(m)}a\}$

Now $\{a_1a, a_2a, \cdots a_{\Phi(m)}a\}$ is a PERMUTATION of $\{a_1, a_2, \cdots a_{\Phi(m)}\}$.

Why?

Pick two indexes $i, j \in \{1 \cdots \Phi(m)\}$

$$a_ia \equiv a_ja \Rightarrow (a_i - a_j)a \equiv 0 \mod m$$

Or m divides $(a_i - a_j)a$.

As a has no common factors with m we need m to divide $a_i - a_j$

Which can only happen if $a_i - a_j = 0$ or $i = j$
Permutation of Totative Set

Set of $\Phi(m)$ totatives $\{a_1, a_2, \cdots a_{\Phi(m)}\}$ of m

Choose any $a = a_i$ from the set

Multiply every number in the set by a to get $\{a_1a, a_2a, \cdots a_{\Phi(m)}a\}$

Now $\{a_1a, a_2a, \cdots a_{\Phi(m)}a\}$ is a PERMUTATION of $\{a_1, a_2, \cdots a_{\Phi(m)}\}$.

Why?

Pick two indexes $i, j \in \{1 \cdots \Phi(m)\}$

$$a_ia \equiv a_ja \Rightarrow (a_i - a_j)a \equiv 0 \mod m$$

Or m divides $(a_i - a_j)a$.

As a has no common factors with m we need m to divide $a_i - a_j$

Which can only happen if $a_i - a_j = 0$ or $i = j$
Euler Fermat's Theorem

\[\Phi(m) \text{ Totatives } \{a_1, a_2, \cdots a_{\Phi(m)}\} \text{ of } m \]

\[\{a_1 a, a_2 a, \cdots a_{\Phi(m)} a\} \text{ is a PERMUTATION of } \{a_1, a_2, \cdots a_{\Phi(m)}\} \]

Multiply all elements together in both sides. The result in both sides should be the same if one side is a permutation of the other

\[\{a_1 a \times a_2 a \times \cdots \times a_{\Phi(m)} a\} \equiv \{a_1 a_2 \times \cdots \times a_{\Phi(m)}\} \mod m \]

\[a^{\Phi(m)} \{a_1 a_2 \times \cdots \times a_{\Phi(m)}\} \equiv \{a_1 a_2 \times \cdots \times a_{\Phi(m)}\} \mod m \]

\[a^{\Phi(m)} \equiv 1 \mod m . \text{ if } a \text{ is relatively prime to } m \]

Fermat's Theorem (special case of Euler-Fermat Theorem)

\[a^{p-1} \equiv 1 \mod p \text{ if } p \text{ is prime} \]
Euler Fermat's Theorem

Fermat's Theorem

\[a^{p-1} \equiv 1 \mod p \quad \forall a \]
\[a^{k(p-1)} \equiv 1 \mod p \quad \forall a \]
\[a^{k(p-1)+1} \equiv a \mod p \quad \forall a \]

Euler Fermat's Theorem

\[a^{\varphi(m)} \equiv 1 \mod m. \text{ if } (a,m)=1 \]
\[a^{k \varphi(m)} \equiv 1 \mod m. \text{ if } (a,m)=1 \]
\[a^{k \varphi(m)+1} \equiv a \mod m. \text{ if } (a,m)=1 \]

However, if \(m = pq \) then we can show that
\[a^{k \varphi(m)+1} \equiv a \mod m, \text{ EVEN IF } (a,m) \neq 1 \]
Proof

\[a^{k \Phi(m)+1} \equiv a \mod m \quad \forall a \text{ if } \Phi(m) = (p-1)(q-1). \]

\[a^{k \Phi(m)+1} = a^{k(p-1)(q-1)+1} \equiv a \mod p \]

\[a^{k \Phi(m)+1} = a^{k(p-1)(q-1)+1} \equiv a \mod q \]

Thus, \[a^{k \Phi(m)+1} \equiv a \mod m = pq \]
Summary

\[a^{k\Phi(m)+1} \equiv a \mod m \text{forall } a : \text{Useful for RSA} \]
\[a^{p-1} \equiv 1 \mod p \text{ Fermat's Little Theorem} \]
Simplifying Modular Expressions

Given \(x^y \mod m \), simplifying involves removing all multiples of \(m \) from \(x \) removing all multiples of \(\Phi(m) \) from the exponent \(y \)

\[
x^y \mod m = (x \mod m)^{y \mod \Phi(m)} \mod m
\]

Examples

\[
241^{456} \mod 23 \\
\Phi(23)=22; \ 241 \mod 23 = 11; \ 456 \mod 22 = 16 \\
241^{456} \mod 23 = 11^{16} \mod 23
\]

\[
241^{456} \mod 119 \quad (\Phi(119=7.17)=6.16=96) \\
241 \mod 119 = 3; \ 456 \mod 96 = 72 \\
241^{456} \mod 119 = 3^{72} \mod 119
\]
Difficult Inverse Problems

Factorization Problem
Given two primes p, q trivial to compute $n = pq$
Difficult to find p or q given n

Discrete logarithm Problem
prime p, g generator of Z_p
Given $p, g, \alpha \equiv g^a \mod p$
Infeasible to find a
Choosing a Prime

We know factorization is a difficult problem
Given a number p
Can we say if it is a prime w/o factorizing? Yes
How? Probabilistic Primality Testing
We can confirm if a number is a prime with
a vanishingly small probability of failure

Choosing a prime is NOT a hard problem
Probabilistic Primality Check (PPC)

Given a number p'
If p' is a prime we know
$$a^{p'-1} \mod p' \equiv 1 \forall a$$
But, if $a^{p'-1} \mod p' \equiv 1$ for some a
we can not say it will be true for all a
Solution: Choose n random a's for the test
if the test passes every time
probability that p' is NOT a prime is $<1/2^n$
Why?
If the test fails for even for one $a \in \mathbb{Z}_p$, it should fail for
atleast half the possible elements in \mathbb{Z}_p.
Assume test passes for $a = a_1 \cdots a_n$ and fails for $a = x$

$$a_1^{p'-1} \equiv a_2^{p'-1} \equiv \cdots \equiv a_n^{p'-1} \equiv 1 \mod p'$$
$$x^{p'-1} \not\equiv 1 \mod p'$$

In this case the test should also fail for

$$x a_1, x a_2, \cdots, x a_n$$

If the test fails even once it should fail at least as many times as it passes!

The probability of false choice with one test is $1/2$ with n tests it reduces to $1/2^n$
PPC Algorithm

IsPrime(p)
 count =0
 while (count < n)
 a=rand()
 if $a^p \mod p \equiv a$
 count+=1
 else
 break
 endif
 endwhile
 if (count=n) return TRUE
Algorithm to Pick n-digit Prime

Generate random n-bit odd number p
while (!IsPrime(p))
 $p+=2; //next odd number$
return p
Diffie-Helman Key Exchange

prime $p, g \in \mathbb{Z}_p$ generator: both known to all
Alice chooses random $a \in \mathbb{Z}_p$
Bob chooses random $b \in \mathbb{Z}_p$
Alice to Bob $\alpha \equiv g^a \mod p$
Bob to Alice $\beta \equiv g^b \mod p$
Alice computes $K_{AB} \equiv \beta^a \equiv g^{ab}$
Bob computes $K_{AB} \equiv \alpha^b \equiv g^{ab}$
RSA

Key Pair Generation
1. Choose two large primes p, q
2. Compute $n = pq, \varphi(n) = (p - 1)(q - 1)$
3. Choose a small e such that $(e, \varphi(n)) = 1$
4. Find d where $de \equiv 1 \mod \varphi(n)$
5. Destroy $p, q, \varphi(n)$
 public (modulus and exponent) n, e
 private (exponent) d
RSA Encryption/Decryption

Alice's public keys n, e, private exponent d
To send a secret P to Alice, Bob computes
$$C \equiv P^e \mod n$$
Alice decrypts C as
$$P \equiv C^d \mod n$$
Why does this work?
$$C^d \equiv (P^e)^d \equiv P^{ed} \equiv P^{k\varphi(n) + 1} \equiv P \mod n$$
As d and e are multiplicative inverses mod $\varphi(n)$
RSA Signing / Verification

To sign a hash M, Alice computes

$$S \equiv M^d \mod n$$

Any one can verify

$$M \equiv S^e \mod n$$
RSA Example

Key Pair Generation
\[p = 1009, \quad q = 503 \]
\[n = pq = 507527, \quad \varphi(n) = (p-1)(q-1) = 506016 \]
\[e = 5, \quad d = 404813 \quad (5 \times 404813 \mod 506016 = 1) \]
public (modulus and exponent) \(n = 507527, e = 5 \)
private (exponent) \(d = 404813 \)

Encryption
\[P = 423621 \]
\[C = P^e \mod n = 423621^5 \mod 5070527 = 32110 \]
\[P = C^d \mod n = 32110^{404813} \mod 5070527 = 423621 \]
El Gamal Key Generation

\[p, g, \text{ known to all} \]

Alice chooses random private key \(a \)

Public key is \(\alpha = g^a \mod p \)

Example \(p = 79, g = 7 \)

Alice chooses \(a = 43, \alpha \equiv g^a \equiv 7^{43} \equiv 48 \mod 79 \)

Alice's private key 43,

Alice's public key 48
El Gamal Encryption/Decryption

To send a secret value P to Alice
Bob chooses random $k \in \mathbb{Z}_p$

$$C \equiv P \alpha^k \mod p, \quad \mu \equiv g^k \mod p$$

C, μ sent to Alice who can compute

$$x \equiv \mu^a \equiv \alpha^k \mod p$$

$$P \equiv Cx^{-1} \mod p$$
El Gamal Encryption/Decryption

Example \(p = 79, \ g = 7, \ a = 43, \ \alpha = 48, \ P = 21, \ k = 5 \)

\[\mu \equiv g^k \equiv 7^5 \equiv 59 \mod 79 \]

\[\alpha^k \equiv 48^5 \equiv 54 \mod 79 \]

\[C \equiv P \alpha^k \equiv 21 \cdot 54 \equiv 28 \mod 79 \]

Alice computes \(\mu^a \equiv 59^{43} \equiv 54 \mod p \)

and \(54^{-1} \equiv 60 \mod p \)

and \(P \equiv C(\mu^a)^{-1} \equiv 28 \cdot 60 \equiv 21 \mod p \)
El Gamal Signing/Verification

To sign a hash M Alice chooses random $k \in \mathbb{Z}_p$

$$\mu \equiv g^k \mod p$$

$$S \equiv (M - a\mu)k^{-1} \mod p - 1$$

Anyone can verify relationship between (M, S, μ, α)

$$\alpha^\mu \mu^S \equiv g^{a\mu} g^{k(M - a\mu)k^{-1}} \equiv g^M \mod p$$

Example $p = 79, a = 43, \alpha = 48, M = 12, k = 5$

$$\mu \equiv g^k \equiv 7^5 \equiv 59 \mod 79$$

$$k^{-1} \equiv 47 \mod p - 1$$

$$S \equiv (M - a\mu)k^{-1} \equiv (12 - 43.59).47 \equiv 41 \mod 78.$$
Complexity

- Computing exponent: Order of r (r to $2r$) modular multiplications (MM), where r is the number of bits in the exponent
- Computing multiplicative inverse (n-bit modulus) is order of n MMs
Complexity of El Gamal

- Encryption, Decryption, signing, verification, key generation are all order of p (p is the modulus)
- Typically p is a 1000-2000 bit number
- Each operation will involve a few thousand MMs
Complexity of RSA

- Modulus n is a 1000-2000 bit number
- For encryption and signature verification the exponent (public exponent) is small (typically 3-4 bits)
- Encryption and signature verification will involve a small number (less than 10) MMs
- For decryption and signing (operation with private exponent) we will require order of thousands of MMs
- How about key generation?
 - A lot more expensive
Complexity of RSA Key Generation

- If modulus n is a 2000 bit number it is advisable to choose a 1001 bit and a 999 bit prime for p and q.
- Choosing a prime is a lot more expensive
 - To pick a 1000 bit prime we might have to try a few hundred odd numbers before we land on a prime
 - For most numbers the PPC test will fail in the first attempt
 - For the number that is finally chosen we might do the check a few hundred times
 - As each test involves one exponentiation (order of 1000 MMs) and we have to choose two primes, RSA key generation can be 3 orders of magnitude more expensive than EL Gamal key generation
Summary of Complexity: Increasing Order

- RSA encryption/signature verification, say 3-5 MMs
- RSA decryption/signing, EL Gamal encryption/signing/decryption/verification/key generation are all a thousand times higher – few thousand MMs
- RSA key generation is 1000 times higher than El Gamal – few million MMs
- All of the above are very much practical though (that's why we use them). The truly difficult problems like factorization/solving discrete log will be off the charts.