Symmetric Cryptography

Encryption/Decryption
Hashing
Stream Ciphers Using Pseudo Random Functions

Seeded by a key K the stream cipher generates a random bit-stream \vec{z}. A stream of plain-text bits \vec{p} is XORed with the pseudo-random stream to obtain the cipher text stream \vec{c}.

$$\vec{c} = \vec{p} \oplus \vec{z}_k \text{ and } \vec{p} = \vec{c} \oplus \vec{z}_k$$

\vec{c} cipher text stream
\vec{p} plain text stream
\vec{z}_k key stream derived from seed K

The same stream generator (using the same seed) is used for encryption and decryption.
Stream Ciphers: Need for IV

\[K \rightarrow \bar{z}_k \ (\text{Stream Generation}) \]

\[\bar{c}_i = \bar{p}_i \oplus \bar{z}_k \]
\[\bar{c}_j = \bar{p}_j \oplus \bar{z}_k \]

Attacker has access to \(\bar{c}_i \) and \(\bar{c}_j \)

\[\bar{c}_i \oplus \bar{c}_j = (\bar{p}_i \oplus \bar{z}_k) \oplus (\bar{p}_j \oplus \bar{z}_k) = \bar{p}_i \oplus \bar{p}_j \]

- XORing two cipher-texts encrypted using the same seed results in XOR of corresponding plain-texts
- Redundancy in plain-text structure can be easily used to determine both plain-texts (and the key stream)
- Never reuse seed? Impractical (key setup is expensive)
- Extend seed using an initial value (IV) which can be sent in the clear
- \(K' = K || IV \) used as the seed (\(|| \) denotes concatenation)
- Never reuse IV
Block Ciphers

- C=E(P,K)
- P=D(C,K)
- E() and D() are *algorithms*
- P is a block of “plain text” (m bits)
- C is the corresponding “cipher text” (also m bits)
- K is the key (k bits long)
- (k,m) block cipher – k-bit keysize, m-bit blocksize
- (m+k)-bit input, m-bit output
Desired Properties

• The most efficient attack should be the brute-force attack (attack complexity depends only on key length)

• Knowledge of any number of plain-cipher text pairs, still does not reveal any information regarding any bit of the key.
 – Even if attacker has the ability to choose plain-text/cipher-text
 – Think of the cipher as encryption/decryption black boxes (with key inside the boxes). Attacker with access to the black-boxes can input any plain text to encryption block to get cipher text, and can input any cipher text to get corresponding plain text
 • The attacker should still not be able to determine the key
Confusion and Diffusion

• Confusion is “making the relationship between the cipher-text and the symmetric key as complex and involved as possible.”

• Diffusion refers to “dissipating the statistical structure of plain-text over bulk of cipher-text.”

• A block cipher with good confusion and diffusion properties will meet the desired goals
Confusion and Diffusion: Another Perspective

\[C = E(P, K), \quad P = D(C, K) \]

\(m + k \) input bits

\(m \) output bits

Let \(p_{ij}, 1 \leq i \leq m+k, 1 \leq j \leq m \) be the probability that flipping input bit \(i \) flips output bit \(j \)

For a good cipher we desire \(p_{ij} \approx 0.5 \ \forall \ i, j \)
Block Cipher Construction

- Desire thorough mangling of plain-text and key
 - But, we also need to reverse the process
- Non reversible approaches can achieve better confusion and diffusion
 - Can we use non-reversible components in a reversible block cipher?
 - Feistel Structure.
Block Cipher Construction: Feistel Structure

Encryption
\[L_i = R_{i-1} \]
\[R_i = L_{i-1} \oplus F(R_{i-1}, K_i) \]

Decryption
\[R_{i-1} = L_i \]
\[L_{i-1} = R_i \oplus F(L_i, K_i) \]

- Block ciphers constructed from repeated Feistel rounds
- Plain-text block split into 2 halves (left and right)
- Each round has the same F block, but a different round key
- Trivially invertible (only red arrows flipped for decryption)
- \(F() \) need not be invertible for the block cipher to be invertible!
 - \(F() \) can be made as complex/non-linear as desired
- Example Feistel cipher: DES (Data Encryption Standard)
DES Uses 16 F-Rounds

\[P = L_0 \parallel R_0 \]

\[C = L_{16} \parallel R_{16} \]

K → K_1 \cdots K_{16} (round keys)
F-Block in DES

\[L_i = R_{i-1} \]
\[R_i = L_{i-1} \oplus F(R_{i-1}, K_i) \]

32 to 48 bits

8 S Boxes
6 to 4 bits

32 to 32
(Straight) Permutation

Expansion Permutation
S-Box Substitution
P-Box Permutation

\[L_i \]
\[R_{i-1} \]
\[K_i \]
\[L_{i-1} \]
\[R_i \]

\[L_0 \quad R_0 \]
\[L_1 \quad R_1 \]
\[L_2 \quad R_2 \]
\[L_{15} \quad R_{15} \]
\[L_{16} \quad R_{16} \]
DES – Round Key Generation

\[L_0 \rightarrow R_0 \rightarrow K_1 \]
\[L_1 \rightarrow R_1 \rightarrow K_2 \]
\[L_2 \rightarrow R_2 \]
\[L_{15} \rightarrow R_{15} \rightarrow K_{16} \]
\[L_{16} \rightarrow R_{16} \]

32 to 48 bits
8 S Boxes 6 to 4 bits
32 to 32

\[R_{i-1} \]

Expansion Permutation
S-Box Substitution
P-Box Permutation

\[R_i \]

Key
Shift
Compression
Permutation
56 to 48 bits

Key
DES – Initial and Final Permutation
DES – Algorithmic Overview

\(T \) – 64 bit input
\(K \) – 64 bit key with parity - leads to \(K_0 \) – 56 bit key
\(K_1, K_2, \ldots, K_{16} \) (generated by round key generation)

\[T_1 = IP(T) \] (Initial Permutation)

\[(L_0, R_0) = T_1 \] (split into two 32 bit quantities)

\((L_1, R_1) = (R_0, L_0 \oplus F(R_0, K_1)) \)

\((L_2, R_2) = (R_1, L_1 \oplus F(R_1, K_2)) \)

\[\vdots \]

\((L_{16}, R_{16}) = (R_{15}, L_{15} \oplus F(R_{15}, K_{16})) \)

\[C_1 = (R_{16}, L_{16}) \] (swapping)

\[C = FP(C_1) \] (Final Permutation)
IP and FP

Initial Permutation

<table>
<thead>
<tr>
<th></th>
<th>58</th>
<th>50</th>
<th>42</th>
<th>34</th>
<th>26</th>
<th>18</th>
<th>10</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>60</td>
<td>52</td>
<td>44</td>
<td>36</td>
<td>28</td>
<td>20</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>62</td>
<td>62</td>
<td>54</td>
<td>46</td>
<td>38</td>
<td>30</td>
<td>22</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
<td>56</td>
<td>48</td>
<td>40</td>
<td>32</td>
<td>24</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>57</td>
<td>57</td>
<td>49</td>
<td>41</td>
<td>33</td>
<td>25</td>
<td>17</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>59</td>
<td>59</td>
<td>51</td>
<td>43</td>
<td>35</td>
<td>27</td>
<td>19</td>
<td>11</td>
<td>3</td>
</tr>
<tr>
<td>61</td>
<td>61</td>
<td>53</td>
<td>45</td>
<td>37</td>
<td>29</td>
<td>21</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>63</td>
<td>63</td>
<td>55</td>
<td>47</td>
<td>39</td>
<td>31</td>
<td>23</td>
<td>15</td>
<td>7</td>
</tr>
</tbody>
</table>

Final Permutation

<table>
<thead>
<tr>
<th></th>
<th>40</th>
<th>8</th>
<th>48</th>
<th>16</th>
<th>56</th>
<th>24</th>
<th>64</th>
<th>32</th>
</tr>
</thead>
<tbody>
<tr>
<td>39</td>
<td>39</td>
<td>7</td>
<td>47</td>
<td>15</td>
<td>55</td>
<td>23</td>
<td>63</td>
<td>31</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
<td>6</td>
<td>46</td>
<td>14</td>
<td>54</td>
<td>22</td>
<td>62</td>
<td>30</td>
</tr>
<tr>
<td>37</td>
<td>37</td>
<td>5</td>
<td>45</td>
<td>13</td>
<td>53</td>
<td>21</td>
<td>61</td>
<td>29</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
<td>4</td>
<td>44</td>
<td>12</td>
<td>52</td>
<td>20</td>
<td>60</td>
<td>28</td>
</tr>
<tr>
<td>35</td>
<td>35</td>
<td>3</td>
<td>43</td>
<td>11</td>
<td>51</td>
<td>19</td>
<td>59</td>
<td>27</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
<td>2</td>
<td>42</td>
<td>10</td>
<td>50</td>
<td>18</td>
<td>58</td>
<td>26</td>
</tr>
<tr>
<td>33</td>
<td>33</td>
<td>1</td>
<td>41</td>
<td>9</td>
<td>49</td>
<td>17</td>
<td>57</td>
<td>25</td>
</tr>
</tbody>
</table>
DES – Round Function

\[R_1 = F(R_{0,k}) \]

\(R_0 \) – 32 bit round input

\(k \) – 48 bit round key

\(X = E(R_0) \) (Expansion Permutation)

\(X_1 = X \oplus k \) (XOR with round key)

\(X_2 = S(X_1) \) (apply S-Box substitution - output 32 bits)

\(R_1 = P(X_2) \) (apply round permutation)

E – Expansion Permutation

<table>
<thead>
<tr>
<th>32</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>12</td>
<td>13</td>
<td>14</td>
<td>15</td>
<td>16</td>
<td>17</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>20</td>
<td>21</td>
<td>22</td>
<td>23</td>
<td>24</td>
<td>25</td>
</tr>
<tr>
<td>24</td>
<td>25</td>
<td>26</td>
<td>27</td>
<td>28</td>
<td>29</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td>31</td>
<td>32</td>
<td>1</td>
</tr>
</tbody>
</table>

P – Round Permutation

<table>
<thead>
<tr>
<th>16</th>
<th>7</th>
<th>20</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>29</td>
<td>12</td>
<td>28</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>23</td>
<td>26</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>31</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>24</td>
<td>14</td>
</tr>
<tr>
<td>32</td>
<td>27</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>19</td>
<td>13</td>
<td>30</td>
<td>6</td>
</tr>
<tr>
<td>22</td>
<td>11</td>
<td>4</td>
<td>25</td>
</tr>
</tbody>
</table>
DES – S-Boxes

\[X \rightarrow Y \text{ 48 bit to 32-bit} \]
\[S_1 \cdots S_8 \text{ 8 S-Boxes} \]
\[X = X_1 \parallel X_2 \parallel \cdots \parallel X_8 \text{ (input)} \]
\[Y = (S_1(X_1) \parallel \cdots \parallel S_1(X_8)) \text{ (output)} \]

Each S-box converts 6-bits to 4-bits
Each S-Box has 4 rows and 16 columns
Each row is a permutation of 0 to 15
\(b_1 b_6 \) of \(X_i \) chooses the row of \(S_i \)
\(b_2 b_3 b_5 b_4 \) of \(X_i \) chooses the column of \(S_i \)

\[
\begin{array}{cccccccccccccccc}
14 & 4 & 13 & 1 & 2 & 15 & 11 & 8 & 3 & 10 & 6 & 12 & 5 & 9 & 0 & 7 \\
0 & 15 & 7 & 4 & 14 & 2 & 13 & 1 & 10 & 6 & 12 & 11 & 9 & 5 & 3 & 8 \\
4 & 1 & 14 & 8 & 13 & 6 & 2 & 11 & 15 & 12 & 9 & 7 & 3 & 10 & 5 & 0 \\
15 & 12 & 8 & 2 & 4 & 9 & 1 & 7 & 5 & 11 & 3 & 14 & 10 & 0 & 6 & 13 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
15 & 1 & 8 & 14 & 6 & 11 & 3 & 4 & 9 & 7 & 2 & 13 & 12 & 0 & 5 & 10 \\
3 & 13 & 4 & 7 & 15 & 2 & 8 & 14 & 12 & 0 & 1 & 10 & 6 & 9 & 11 & 5 \\
0 & 14 & 7 & 11 & 10 & 4 & 13 & 1 & 5 & 8 & 12 & 6 & 9 & 3 & 2 & 15 \\
13 & 8 & 10 & 1 & 3 & 15 & 4 & 2 & 11 & 6 & 7 & 12 & 0 & 5 & 14 & 9 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
10 & 0 & 9 & 14 & 6 & 3 & 15 & 5 & 1 & 13 & 12 & 7 & 11 & 4 & 2 & 8 \\
13 & 7 & 0 & 9 & 3 & 4 & 6 & 10 & 2 & 8 & 5 & 14 & 12 & 11 & 15 & 1 \\
13 & 6 & 4 & 9 & 8 & 15 & 3 & 0 & 11 & 1 & 2 & 12 & 5 & 10 & 14 & 7 \\
1 & 10 & 13 & 0 & 6 & 9 & 8 & 7 & 4 & 15 & 14 & 3 & 11 & 5 & 2 & 12 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
7 & 13 & 14 & 3 & 0 & 6 & 9 & 10 & 1 & 2 & 8 & 5 & 11 & 12 & 4 & 15 \\
13 & 8 & 11 & 5 & 6 & 15 & 0 & 3 & 4 & 7 & 2 & 12 & 1 & 10 & 14 & 9 \\
10 & 6 & 9 & 0 & 12 & 11 & 7 & 13 & 15 & 1 & 3 & 14 & 5 & 2 & 8 & 4 \\
3 & 15 & 0 & 6 & 10 & 1 & 13 & 8 & 9 & 4 & 5 & 11 & 12 & 7 & 2 & 14 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
2 & 12 & 4 & 1 & 7 & 10 & 11 & 6 & 8 & 5 & 3 & 15 & 13 & 0 & 14 & 9 \\
14 & 11 & 2 & 12 & 4 & 7 & 13 & 1 & 5 & 0 & 15 & 10 & 3 & 9 & 8 & 6 \\
4 & 2 & 1 & 11 & 10 & 13 & 7 & 8 & 15 & 9 & 12 & 5 & 6 & 3 & 0 & 14 \\
11 & 8 & 12 & 7 & 1 & 14 & 2 & 13 & 6 & 15 & 0 & 9 & 10 & 4 & 5 & 3 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
12 & 1 & 10 & 15 & 9 & 2 & 6 & 8 & 0 & 13 & 3 & 4 & 14 & 7 & 5 & 11 \\
10 & 15 & 4 & 2 & 7 & 12 & 9 & 5 & 6 & 1 & 13 & 14 & 0 & 11 & 3 & 8 \\
9 & 14 & 15 & 5 & 2 & 8 & 12 & 3 & 7 & 0 & 4 & 10 & 1 & 13 & 11 & 6 \\
4 & 3 & 2 & 12 & 9 & 5 & 15 & 10 & 11 & 14 & 1 & 7 & 6 & 0 & 8 & 13 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
4 & 11 & 2 & 14 & 15 & 0 & 8 & 13 & 3 & 12 & 9 & 7 & 5 & 10 & 6 & 1 \\
13 & 0 & 11 & 7 & 4 & 9 & 1 & 10 & 14 & 3 & 5 & 12 & 2 & 15 & 8 & 6 \\
1 & 4 & 11 & 13 & 12 & 3 & 7 & 14 & 10 & 15 & 6 & 8 & 0 & 5 & 9 & 2 \\
6 & 11 & 13 & 8 & 1 & 4 & 10 & 7 & 9 & 5 & 0 & 15 & 14 & 2 & 3 & 12 \\
\end{array}
\]

\[
\begin{array}{cccccccccccccccc}
13 & 2 & 8 & 4 & 6 & 15 & 11 & 1 & 10 & 9 & 3 & 14 & 5 & 0 & 12 & 7 \\
1 & 15 & 13 & 8 & 10 & 3 & 7 & 4 & 12 & 5 & 6 & 11 & 0 & 14 & 9 & 2 \\
7 & 11 & 4 & 1 & 9 & 12 & 14 & 2 & 0 & 6 & 10 & 13 & 15 & 3 & 5 & 8 \\
2 & 1 & 14 & 7 & 4 & 10 & 8 & 13 & 15 & 12 & 9 & 0 & 3 & 5 & 6 & 11 \\
\end{array}
\]
DES – Key Schedule

\[K \] 64 bit key
\[r_i \] left shifts in round \(i \)
\[r_i=1 \] for \(i=1,2,9,16 \)
\[r_1=2 \] for all other \(i \)

\[K_1 = PC_1(K) \] (Permuted Choice)

(Effective Key length is 56)

\[(C_0,D_0) = K_1 \]
\[(C_1,D_1) = (r_1(C_0), r_1(D_0)) \]

\[k_1 = CP(C_1,D_1) \] (Compression Permutation)

\[(C_2,D_2) = (r_2(C_1), r_2(D_1)) \]
\[k_2 = CP(C_2,D_2) \]
\[\vdots \]
\[k_{16} = CP(C_{16}, D_{16}) \]
DES – At a glance

T 64 bit input
K₀ 64 bit key - leads to K – 56 bit key
K₁, K₂, ..., K₁₆ generated by round key generation
T₁=IP(T) Initial Permutation
(L₀, R₀)=T₁ split into two 32 bit quantities
(L₁, R₁)=(R₀, L₀ ⊕ F(R₀, K₁))
(L₂, R₂)=(R₁, L₁ ⊕ F(R₁, K₂))
⋮
(L₁₆, R₁₆)=(R₁₅, L₁₅ ⊕ F(R₁₅, K₁₆))
C₁=(R₁₆, L₁₆) (swapping)
C=FP(C₁) Final Permutation

S-Box Function
X input - 48 bit data
S₁⋯S₈ 8 S-Boxes
(X₁, X₂, ⋯, X₈) split X
Y=(S₁(X₁), ⋯, S₁(X₈))
Each S-Box has 4 rows and 16 columns
Each row is a permutation of 0 to 15
b₁b₆ of Xᵢ chooses the row of Sᵢ
b₂b₃b₅b₄ of Xᵢ chooses the column of Sᵢ

Round function R₁=F(R₀,k)
R₀ 32 bit round input
k 48 bit round key
X=E(R₀) Expansion Permutation
X₁=X ⊕ k XOR with round key
X₂=S(X₁) apply S-Box substitution
(output 32 bits)
R₁=P(X₂) apply round permutation

Key Schedule
K₀ 64 bit key
rᵢ left shift in round i
r₁=1 for i=1,2,9,16 and 2 for all other i
K=PC(K₀)=(C₀, D₀)
K is 56 bits
(C₁, D₁)=(r₁(C₀), r₁(D₀))
k₁=CP(C₁, D₁)
(C₂, D₂)=(r₂(C₁), r₂(D₁))
k₂=CP(C₂, D₂)
⋮
k₁₆=CP(C₁₆, D₁₆)
DES Description & History

Current standard for encryption is AES

AES (Advanced Encryption Standard) is not a Fiestel cipher

https://en.wikipedia.org/wiki/Advanced_Encryption_Standard
Encrypting Bulk Data

- For example, a file, or a packet
- Segment data into blocks of size m bits (block size)
- Encrypt each block using the same key
 - As key set-up is expensive
- Important Considerations
 - Encrypted file/packet should reveal as little information as possible regarding the contents of the file/packet
 - What happens if there is a transmission error?
 - Accidental error?
 - Deliberate error?
 - What happens to the encrypted blocks if one-bit of some input block is changed?
Block Cipher Modes

- Electronic Codebook (ECB)
- Cipher Block-chaining (CBC)
- Cipher Feedback (CFB)
- Output Feedback (OFB)
- Counter mode (CTR)

- CBC and CFB modes are also used for key based message authentication code (MAC)
Key Based MAC

- CBC and CFB modes also used for key based message authentication code (MAC)

- For a message M (of any size)
 - $a=MAC(M,K)$ is a MAC with key K
 - Size of a is the block-size m
 - If the sender and receiver share a key K sender can send message M along with MAC a
 - The receiver can verify that $a=MAC(M,K)$ and thus be assured of
 - The integrity of the message M, and
 - The message M came from an entity with knowledge of key K
$$C_i = E(P_i)$$

Sender to receiver: n blocks C_1 to C_n

Identical plain-text blocks produce identical cipher-text blocks

This can reveal some information regarding the plain text

Encryption/Decryption can be parallelized
CBC Mode

\[C_i = E(P_i \oplus C_{i-1}) \text{ where } C_0 = IV \]

\[P_i = D(C_i) \oplus C_{i-1} \text{ where } C_0 = IV \]
\[C_i = E(P_i \oplus C_{i-1}) \text{ where } C_0 = IV \]

\[P_i = D(C_i) \oplus C_{i-1} \text{ where } C_0 = IV \]

CBC Mode

- Sender to Receiver: IV, and \(C_1 \) to \(C_n \)
- When used for MAC, IV, \(C_n \) is sent with plain text
- Tx error in \(C_k \) affects decryption of \(P_k \) and \(P_{k+1} \)
- Encryption/decryption can not be parallelized
- A change in any bit of any plain-text block will dramatically modify the all following cipher text blocks
 - Desirable property for MAC.
- What happens if a bit of the IV is modified in transit?
- IV should be encrypted in ECB mode (recommended)
CFB Mode

\[C_i = E(C_{i-1}) \oplus P_i, \quad C_0 = IV \]

\[P_i = E(C_{i-1}) \oplus C_i, \quad C_0 = IV \]
\[C_i = E(C_{i-1}) \oplus P_i, \quad C_0 = IV \]

- Sender to Receiver: IV, and C_1 to C_n
- When used for MAC, IV, C_n sent with plain-text
- Tx error in C_k affects decryption of P_k and P_{k+1}
- Encryption/decryption can not be parallelized
- A change in any bit of any plain-text block will dramatically modify the all following cipher text blocks
- Block cipher used in encryption mode for both encryption and decryption (advantages?)
OFB Mode

\[O_i = E(O_{i-1}), O_0 = IV \]

\[C_i = P_i \oplus O_i \]

\[P_i = C_i \oplus O_i \]
• Converts a block cipher into a stream cipher
• Not parallelizable
• If a bit of any cipher text is inverted the corresponding plain-text bit will be inverted.
• Preferable for encrypting streaming data over noisy channels
• If data integrity is crucial then some additional mechanism should be used to ensure that.
CTR Mode

- Can be parallelized (like ECB)
- Same plain-text will not produce same cipher text (unlike ECB)
- Two of the most recommended modes are currently CTR and CBC

\[C_i = P_i \oplus E(X + i) \]

\[P_i = C_i \oplus E(X + i) \]
Block Cipher Modes: Key Concerns

• For all modes
 - Encryption
 • Input: P_1, P_2, \ldots, P_n, IV (IV for all modes except ECB)
 • Output: C_1, C_2, \ldots, C_n
 - C_1, C_2, \ldots, C_n and IV sent over a open channel
 - Decryption
 • Input: C_1, C_2, \ldots, C_n, and IV
 • Output: P_1, P_2, \ldots, P_n

• Concerns
 - What happens if there are repetitions in plain-text blocks?
 - What happens if there is a random channel error? What is the result of a bit error in block C_k?
 - Can attackers take advantage of their ability to perpetrate *deliberate* errors?
 - What happens if any plain-text block is modified?
Block Cipher Modes: Key Concerns

Concerns

- What happens if there are repetitions in plain-text blocks?
 - In all modes except ECB this is not an issue. Same plaintext blocks produce different cipher text blocks.

- What happens if there is a random bit error in block C_k?
 - In CBC and CFB two plain text blocks (P_k and P_{k+1}) will be affected.
 - In OFB (stream cipher) only the same bit of P_k will be affected.

- Can attackers take advantage of their ability to perpetrate deliberate errors?
 - Yes, in OFB, CTR, and first block in CBC.
 - To a lesser extent in CFB as changing a specific bit in P_k will affect the same bit in C_k but affects C_{k+1} in an unpredictable manner.

- What happens if any plain-text block is modified?
 - In CBC and CFB a change in P_k unpredictably affects all blocks C_k and later.
Summary

- **ECB**: Random access, reveals plain-text patterns
- **CBC**: Useful for MAC. Encrypt IV
- **CFB**: Useful for MAC.
- **OFB**: Stream Cipher
- **CTR**: Random access, does not reveal plain-text patterns.
Useful Thumb Rules

- Do not use stream cipher if integrity is crucial
 - Attacker can modify specific bits
 - Use only if noise resiliency is important
 - If integrity is also necessary an additional mechanism should be used
- For the same reason watch out for CTR mode
 - Use only if random access is necessary
 - If integrity is also essential it can be achieved with an extra cost
 - An additional block cipher operation instead of XOR
 - Use $E(X+i)$ as a key for encrypting block i.
- CBC/CFB for message authentication
Brute-force Attacks on Ciphers

\[C = E(P,K) \]. Attacker has \(C \), no \(K \)

Try every possible key \(K \)

\[P_i = D(C,K_i) \]

How do we know when to stop? Under any key there will be some \(P_i \)

How do we know that a particular \(P_i \) is the correct plain-text?

Does this mean brute force attacks are not possible?
Brute-force Attacks are Always On-the-Table

- Natural redundancy of plain-text
- Deliberately introduced redundancy for authentication (for example, MACs)
- Known plaintext-ciphertext pairs
Redundancy in Plain-Text

Think of all possible 100 character strings that “make sense”

For example, say a billion books, each with 1 billion “strings that make sense” - still makes it only 10^{18} possible phrases!

How many total strings of length 100?

26^{100}. That is more than 3×10^{141}!

Say we encrypt a meaningful string with a 64 bit key, the cipher-text is decrypted with another key. What is the probability that the wrong key results in a string that makes sense?

$2^{64} \times 10^{18}/(3\times10^{141}) < 6 \times 10^{-105}$

Which is good news for the attacker...
Vernam Cipher

What if we make the *number of possible keys* the same as the *number of possible plain text messages*?

One-time pad – Vernam Cipher

Cannot try out keys any more! There is always a key which maps cipher text to *every possible* plain text

No way an attacker can eliminate any message – all messages are equally likely

The attacker learns NOTHING!

Perfect Secrecy

Not very practical. Why?
Good Cipher vs Strong Cipher

• A good cipher meets its design goals
 – Only possible attack is the brute-force attack (determined by key-length k)

• A strong cipher is a good cipher with sufficiently large key-length k

• Can we get a strong cipher from a good cipher?
 – Yes, multiple encryption
 – A good cipher with key length k can be converted to a strong cipher with key length nk by performing $(n+1)$ repeated encryptions with $(n+1)$ independent keys.
Multiple Encryption

• Double Encryption

• \(C = E_{K_1}(E_{K_2}(P)) \)

• Is there a \(K_3 \) such that \(C = E_{K_3}(P) \)

• If there is, there is no point doing multiple encryption
 - Useless for Caeser cipher
 - Or any cipher based on permutation or substitution

• Multiple encryption is indeed useful for modern ciphers
Double Encryption

- Why is it impractical to find K3?
- Consider a k-bit block cipher with b-bit blocks
- Each of the 2^k keys defines a random one-to-one mapping between two tables of size 2^b
- Total number of possible mappings is $\text{factorial}(2^b)$
 - which is an impossibly large number (for example, $\text{factorial}(2^{64}) > 10^x$ where x is a 20-digit number!)
- Only 2^k out of $\text{factorial}(2^b)$ possible mappings are used by the cipher
- Likelihood that a composite mapping (mapping twice) is the same as one of the permitted mappings is $\frac{2^k}{\text{factorial}(2^b)}$
Meet-in-the-Middle

An attack that weakens the strength of multiple encryption (n+1 encryptions with n+1 independent keys required to increase strength by factor n)

\[C = E_{K_1}(E_{K_2}(P)) \]

Let us assume attacker knows some P-C pairs

Compute \(D_{K_2}(C_1) \) for all \(2^k \) possible \(K_2 \)

Compute \(E_{K_1}(P_1) \) for all \(2^k \) possible \(K_1 \)

Values for which \(E_{K_1}(P_1) = D_{K_2}(C_1) \) are possible candidates

On an average \(2^{2k}/2^b \) key-pairs will work for a specific \(P_1, C_1 \)

With two known P-C pairs prob. of false alarm falls to \(2^{2k}/(2^b)^2 \)

With n known P-C pairs false alarm probability is \(2^{2k}/(2^b)^n \)
Meet-in-the-Middle

On an average $2^{2k}/2^b$ key-pairs will work for a specific P_1, C_1

Why? Given P_1, 2^{2k} possible keys can produce only 2^b outcomes

In DES with $k=56, b=64, 2^{112}$ keys can produce only 2^{64} different outputs

So several keys will map P_1 to the same C_1,

$2^{112-56} = 2^{48}$ keys will yield the same C_1 for a given P_1

Given 2 pairs the possible outcomes are $(2^b)^2$

With two known P-C pairs prob. of false alarm falls to $2^{2k}/(2^b)^2$

With n known P-C pairs false alarm probability is $2^{2k}/(2^b)^n$
Triple Encryption

- Triple DES is widely used
- $C = E_{K3}(D_{K2}(E_{K1}(P)))$
 - Using decryption with an independent key does not compromise security in any way
 - Backward compatibility with single DES (Triple DES with all three keys the same becomes single DES)
- Triple DES with two keys also used (less widely)
- $C = E_{K1}(D_{K2}(E_{K1}(P)))$
- Estimated strength of triple DES is 112-bit security. 80-bit security for triple DES with 2 keys.
Good Cipher to Strong Cipher

• You can design a strong good cipher
• Or design a simple “weak good cipher” and use multiple encryption
• The latter may actually be a good idea
• Simple ciphers may be easier to test thoroughly to make sure there are no weaknesses
Hash Functions

- $d = H(M)$; $H()$ is a one-way function
- M is can be of any size; d is the digest of M, and is of a fixed size (say, n-bits)
- Several possible inputs will yield the same n-bit digest
- M is called the pre-image of digest d
- What is the difference between a “hash function” and a “cryptographic hash function”?
 - Pre-image resistance and collision resistance
Pre-image Resistance

- Given pre-image x, with digest $d=H(x)$, it is impractical to find for another pre-image $x' \neq x$ that yields the same digest ($d=H(x')$)
 - Even while several candidates for x' surely exist, the only way to find one is by brute-force search
 - pick some x' and check if $H(x')=d$. If not try again till you find one that satisfies the requirement
 - Before you actually compute $H(x')$, every n-bit digest is an equally likely output.
 - Probability that a given x' will yield the sought digest is $1/2^n$
 - On an average we need to make $2^{(n-1)}$ attempts before we find a suitable x'.
- This property is more aptly called second pre-image resistance
Collision Resistance

- A collision is finding two pre-images with the same digest (whatever the common digest may be)

- For an ideal hash function with n-bit digest the only way to find a collision is by brute-force search
 - Pick a random pre-image and compute and store the digest
 - Pick another and compute and store the digest (check if it is the same as the previous. If not continue)
 - Pick another and check if it the same as either of the previous two
 - And so on
Collision Resistance

- Finding a collision is a lot simpler than finding a pre-image

- The brute force complexity for finding a collision in a hash function with \(n \)-bit digest is \(1/2^{n/2} \)

- Brute force complexity \(1/2^{80} \) for \(n=160 \): We need make a million billion billion attempts to succeed.

- Birthday paradox:
 - In a room of 50 randomly chosen people what is the probability that at least one of them was born on Jan 1\(^{st}\)?
 - In a room of 50 randomly chosen people what is the probability that at least two people have the same birthday?
Digest is a Commitment

- The digest $d=H(X)$ is a **commitment** to X
 - Suppose I want to prove to you that I know X **now**
 - But I am only allowed to reveal X tomorrow
 - I can give you the digest d today. When I release X tomorrow you will know that I had to have known X today
 - There is no way I can find an X given d. I should have known X to compute d
 - This is the property that makes hash functions useful in practice
Hash Functions vs Ciphers

• As long as we can guarantee integrity of the digest d (a succinct commitment to X)
 - We can guarantee the integrity of X

• Encryption schemes can be used to assure the privacy of an unlimited number of values (by repeated use of block ciphers using the same key)
 - Hash functions are used to guarantee the integrity of a large number of values (by assuring integrity of the commitment)

• Both cater for trust-amplification
Compression Function

- Hash functions are implemented using *compression functions*

- A compression function with *n*-bit output has the form \(d = c(p, B) \)
 - Input \(p \) (previous state) and output \(d \) (next state) are \(n \)-bits long
 - Input \(B \) is a block of fixed size (say \(b \)-bits)
 - Typically \(n = 160 \)-bits; \(b = 512 \) bits

- Looks very similar to a block cipher with \(d \) and \(p \) as cipher-text and plain-text and \(B \) as key?
 - Except that we do **not** need reversibility
Merkle-Damagard Construction

- Compression function “compresses” a \((n+b)\)-bit input to \(n\)-bit digest

- Hash function \(H()\) (with unlimited input size and output size \(n\)-bits) constructed by repeated use of a compression function

- Merkle-Damagard construction ensures that if the compression function \(c()\) is pre-image resistance and collision resistant, the hash function \(H()\) will be too.

- Easier to analyze the security properties of \(c()\) (with fixed size inputs/outputs) than that of \(H()\)
Merkle-Damagard Construction

- Let the input size be L-bits
- Digest size n, block size be b
- Divide the input into $u b$-bit blocks such that $ub>L+64$
- The last block will include
 - $L-(n-1)b$ remaining bits of the input,
 - Zero padding (at least 1 bit, at most b-bits)
 - 64 bits to represent the actual length L of the input,
- Compression function is applied to each block sequentially
Hash Function Construction

Message

Block 1 | Block 2 | Block 3 | Block 4

IV

SHA-1

SHA-1

SHA-1

SHA-1

d

Standard Compression Blocks

SHA-1 (b=512, n=160)
MD5SUM (b=512, n=128)
SHA-2 (b=512, n=256)

Last Block

Remaining message bits (can be 0)
Zero pad (1 to b bits)
Message Length (64 bits)
Merkle-Damagard Construction

- The (next state) output of one block is the (previous state) input to the next block.
- The next-state output of the final block is the desired digest.
- The previous state input to the first block is a standard fixed value (IV).
- The bit-crunching operations inside the compression function blocks are similar to operations in block-ciphers.
 - Also need to satisfy confusion and diffusion properties to achieve pre-image and collision resistance.
Other Useful Constructions

- Hash trees
- Instead of large continuous chunk of bits (like a file) we sometimes want to deal with tons of discrete independent pieces of data (like a data-base with several records)
- Hash functions \((H())\) allow one to compute a commitment for the former
- How do we compute the commitment for a database of records?
Merkle Binary Hash Tree

• Assume the database has N records
• And a way of computing a commitment (a digest) d for the entire database
• Once the digest d has been computed
 – Any one should be able to easily verify that a specific record R belongs to a database with commitment d (without having to bother with the other $N-1$ records)
 – If there is a reason to change a record R, we should be able to update the digest accordingly to d' (again, without worrying about other records)
• As long as we can guarantee the integrity of the commitment d, we can guarantee the integrity of every record in the database.
Binary Tree

- A tree of commitments (hashes)
- \(N \) “leaf hashes” at the lowest level of the tree (level 0). Each hash corresponds to a record
- At the next higher level (level 1) we have \(\frac{N}{2} \) hashes. Each hash in level 1 computed by combining two hashes in level 0
 - **Extending** one hash with another
- At level 2 we have \(\frac{N}{4} \) hashes obtained by hashing together two hashes from level 1, and so on
- At level \(r \) we have \(\frac{N}{2^r} \) hashes
- At level \(L \) where \(L = \log_2(N) \), we have a single hash (**root of the tree**), which is a commitment to the entire tree (every record in the database)
Merkle Tree

Begin with N leaf (level-0) nodes
In this example $N=8$
N/2=4 Level-1 Nodes

\(h(c_0\|c_1) \) can be a compression function \(c(p, B) \)
where \(B=(c_0\|c_1)\|pad \), \(p=\text{constant} \)

\[c_{01} = h(c_0\|c_1) \]
\[c_{23} = h(c_2\|c_3) \]
\[c_{45} = h(c_4\|c_5) \]
\[c_{67} = h(c_6\|c_7) \]

\(c_{01} = h(c_0\|c_1) \) is
1. Right hash extension of \(c_0 \) with \(c_1 \)
or
2. Left hash extension of \(c_1 \) with \(c_0 \)
\[h(c_0\|c_1) \neq h(c_1\|c_0) \]
$c_{03} = h(c_{01} \parallel c_{23})$

$N/4=2$ Level-2 Nodes

$c_{47} = h(c_{45} \parallel c_{67})$
A tree with N=8 nodes has \(L = \log_2(8) = 3 \) levels.

Every node has a sibling and 'ancestors' in the path to root.

The root \(c_{07} \) is the end-point for all N=8 nodes.
Every leaf node has L complementary nodes.
Path from c_2: $\{c_2, c_{23}, c_{03}\}$
Their respective siblings $\{c_3, c_{01}, c_{47}\}$ are the complementary nodes of c_2
Hash Extension Using Complementary Hashes

C_{07}

C_{03}

C_{01}

C_0

C_1

C_2

C_{23}

C_3

C_{47}

C_{45}

C_4

C_5

C_6

C_7

$c_2 \Rightarrow c_3, c_{01}, c_{47}$

Perform $L = 3$ hash extensions of c_2

first with c_3, the result with c_{01} then with $c_{47} \cdots$

$x = h(c_2 \parallel c_3), x = h(c_{01} \parallel x), x = h(x \parallel c_{47})$

to reach the root (final value of $x = c_{07}$)
Verifying Records

- The records and the entire tree can be stored in an open (untrusted) database server
 - The tree has $2N-1$ hashes including the root
- The leaf nodes are (regular) hashes of records $c_2 = H(R_2)$
- The root (commitment c_{07}) is protected in a secure location
- To a user who requests record R_2, the database server provides
 - record R_2 (with hash c_2)
 - the L complementary nodes of c_2
Verifying a Record

- Hash the record \(R_2 \) to get the leaf node \(c_2 \)
- Use the \(L=3 \) commitments \(c_3, c_{01} \) and \(c_{47} \)
- Set \(tmp = c_2 \) and perform \(L=3 \) hash extensions
- Iterate
 - \(tmp = h(tmp || c_3) \) (right extension)
 - \(tmp = h(c_{01}||tmp) \) (left extension)
 - \(tmp = h(tmp||c_{47}) \) (right extension)
- Only if \(tmp = c_{07} \) accept record \(R_2 \) as genuine
Right vs Left Hash Extension

- Note that $h(x,y) \neq h(y,x)$
- Right extension is not the same as left extension
- Server can also send what extension to use (1 additional bit for each complementary hash)
- Or send the index of the record in the tree
 - Flipped binary representation of record index tells us when to do right / left extension (0-right, 1-left)

\[
\begin{align*}
 c_6 \Rightarrow c_7, c_{45}, c_{03} & & c_3 \Rightarrow c_2, c_{01}, c_{47} \\
 6 = 110 & \leftarrow (\text{right, left, left}) & 3 = 011 & \leftarrow (\text{left, left, right}) \\
 tmp = c_6 & & tmp = c_3 \\
 tmp = h(tmp || c_7) & \text{right extension} & tmp = h(c_2 || tmp) & \text{left extension} \\
 tmp = h(c_{45} || tmp) & \text{left extension} & tmp = h(c_{01} || tmp) & \text{left extension} \\
 tmp = h(c_{03} || tmp) & \text{left extension} & tmp = h(tmp || c_{47}) & \text{right extension}
\end{align*}
\]
Scalability of Hash tree

• What about a database with 1000 records? L=10
• Million (L=20); Billion (L=30); Trillion (L=40)
• We simply need to perform 30 hashes to verify any record in a database with a billion records
• Only one hash (root) needs to be protected
What about Intermediate hashes?

• Do they need to be protected?
 – No. Pre-image resistance of hash functions guarantees that it is not possible fabricate a set of complementary nodes for a leaf hash.

• After we successfully verify a leaf against the root we can be
 – Assured of the integrity of the leaf node
 – Assured of the integrity of all complementary nodes

• The latter is very important for updating the database
Updating a Record

- Given a leaf node x, its index, and its set of L complementary nodes $v_1, v_2, ..., v_L$
 - starting with the leaf node we can reach the root by L hash extensions
- If we want to modify x to x' (to modify a record) all we need to do is to start with x' and do the same hash extensions with the same complementary nodes $v_1, v_2, ..., v_L$ to compute the new root
- All other records will still be consistent with the root. Why?
 - The complementary nodes are actually commitments to all other nodes.
Hashed Message Authentication Code (HMAC)

- MACs using hash function instead of block cipher modes like CBC and CFB
- \(M = H(M || K) \) (simplistic representation)
- Standard HMAC
 - \(\text{HMAC} = H((K + \text{opad})||H((K+\text{ipad})||M)) \)
 - \(\text{opad}=0x5c5c...\ 5c5c \)
 - \(\text{ipad}=0x3636...\ 3636 \)
HMAC Properties

- Brute force strength depends only on length of key
 - (not on collision resistance of hash function)
 - Not on the size of the MAC (usually the MAC is truncated)

- General MAC related issues
 - How does MAC length affect security?