
1

CS 3813: Introduction to Formal Languages
and Automata

Equivalence of NFAs and DFAs
Sec 2.3

Equivalent automata

Two finite automata M1 and M2 are equivalent if

L(M1) = L(M2),

that is, if they both accept the same language.

Equivalent DFAs

a

b

a,b

a,b

a,b

a,b

a

b

a,b a,b a,b a

b

a,b

a,b

a,b

a,bWhat language do they accept?

Equivalent NFA and DFA

b
a

a,b

λ

a

b

a

b

a,b

What language do they accept?

Equivalence of NFAs and DFAs
• We now show that DFAs and NFAs accept exactly the

same set of languages. That is, nondeterminism does
not make a finite automaton any more powerful.

• To show that NFAs and DFAs accept the same class of
languages, we show two things:
– any language accepted by a DFA can also be accepted

by some NFA (this is easy to show -- how?)
– any language accepted by a NFA can also be accepted

by some DFA (this is more difficult to show -- it will
take us the rest of class)

Proof strategy
• To show that any language accepted by a NFA is

also accepted by some DFA, we describe an
algorithm that takes any NFA and converts it into a
DFA that accepts the same language

• The algorithm is called the “subset construction
algorithm”

• We can use mathematical induction (on the length of
a string accepted by the automaton) to prove that the
DFA that is constructed accepts the same language
as the NFA. (See theorem 2.2)

• You don’t need to know the proof -- but you do need
to remember the algorithm!

2

Subset construction algorithm

• What does it do? Given a NFA, it constructs a
DFA that accepts the same language

• What is the key idea? The equivalent DFA
simulates the NFA by keeping track of the
possible states it could be in. Each state of the
DFA corresponds to a subset of the set of states of
the NFA -- hence, the name of the algorithm.

• If the NFA has n states, the DFA can have as
many as 2n states (why?), although it usually has
many less.

Steps of subset construction algorithm

• The initial state of the DFA is the set of all states
the NFA can be in without reading any input.

• For any state {qi,qj,…,qk} of the DFA and any input
a, the next state of the DFA is the set of all states of
the NFA that can result as next states if the NFA is
in any of the states qi,qj,…,qk when it reads a. This
includes states that can be reached by reading a
followed by any number of λ-transitions. Use this
rule to keep adding new states and transitions until
it is no longer possible to do so.

• The accepting states of the DFA are those states that
contain an accepting state of the NFA.

Example

0 1

2

a

λ

a

b
a

b

b

b

Here is a NFA that we want to convert to an
equivalent DFA.

{0,1}

The start state of the DFA is the set of states the
NFA can be in before reading any input. This
includes the start state of the NFA and any states
that can be reached by a e-transition.

{0,1}

a

b

{2}

For state {0,1}, we create a transition for each
possible input, a and b. In the process, we create
state {2}.

{0,1}

a

b

{2}

{1,2}

a b

For state {2}, we create a transition for each
possible input, a and b. In the process, we create
another state, {1,2}.

3

{0,1}

a

b

{2}

{1,2}

a b

a

b

For state {1,2}, we create a transition for each
possible input, a and b. At this point, a transition
is defined for every state-input pair.

{0,1}

a

b

{2}

{1,2}

a b

a

b

The last step is to mark the final states of the DFA.

Exercise

q0 q1 q2

0

0,1

1

1

0,λ

Use the subset construction algorithm to convert
this NFA to an equivalent DFA.

Exercise

q0 q1 q2

0

λ,1

1
1

0,1

0

Use the subset construction algorithm to convert
this NFA to an equivalent DFA.

Exercise

a b

a

a

c

λ

q0 q1

q2

Use the subset construction algorithm to convert
this NFA to an equivalent DFA.

Exercise

a

q0 q1 q2
a

b

b

Use the subset construction algorithm to
convert this NFA to an equivalent DFA.

