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Design of Parallel Algorithms 

The Architecture of a Parallel Computer 



+ Trends in Microprocessor Architectures  

n  Microprocessor clock speeds are no longer increasing and have reached a 
limit of 3-4 Ghz 

n  Transistor counts still are doubling about every 2 years (Moore’s Law) 

n  Performance of computer architectures are now increasing by exploiting 
parallelism 
n  Deep pipelines 
n  Sophisticated instruction reordering hardware 
n  Vector like instruction sets (MMX,SSE, Advanced Vector Extensions (AVX)) 
n  Novel architectures (GPGPUs, FPGA) 
n  Multi-Core 

Implicit 
Parallelism 



+ Pipelining and Vector Execution  

n  Pipelining overlaps various stages of instruction execution to achieve 
performance.  
n  At a high level of abstraction, an instruction can be executed while the next one is 

being decoded and the next one is being fetched.  
n  This is akin to an assembly line for manufacture of cars.  

n  Vector execution is one where the same operation is performed on many 
different data elements, can be used for highly structured computations 
n  Usually compilers perform vectorizing analysis to identify computations that can be 

performed by vector instructions 
n  Very high performance libraries usually require some manual intervention to 

provide vectorization hints to the compiler 



+ Pipelining  
Architectural Challenges  
n  The speed of a pipeline is eventually limited by the slowest stage.  

n  For this reason, conventional processors rely on very deep pipelines (20 stage pipelines 
are common).  

n  However, in typical program traces, every 5-6th instruction is a conditional jump! 
n  Pipelines are fast but have high latency, a 20 stage pipeline will not be able to fill with 

the correct instructions if the conditional branch depends on a value currently in the 
pipeline! 

n  Branch prediction is used to mitigate this problem  
n  The penalty of a misprediction grows with the depth of the pipeline, since a larger 

number of instructions will have to be flushed.  
n  There is a limit to how much parallelism can be exploited using pipeline strategies 

n  Special hardware can make use of dynamic information to perform branch 
prediction and instruction reordering to keep pipelines full 

n  Does not require as much work for the compiler to exploit 



+ Vector Extensions 
Architectural Challenges 
n  Vector Extensions (modern version of superscalar) require much more compiler 

intervention 
n  Compiler must identify streams of computations that are well structured to coordinate computations 

on vector registers 
n  Loop unrolling is a typical approach, basically if loop accesses are independent, then execution of 

several loop iterations at once can be mapped to vector registers 
n  Memory alignment also can be a constraint on loading vector registers 

n  This requires compile-time knowledge of data-flow in programs 
n  Loop unrolling requires knowledge of data dependencies in loop.  If one iteration writes a to a 

memory location accessed by a subsequent iteration, then unrolled computations cannot be loaded 
into vector registers in advance 

n  Data-dependencies may be difficult to determine at compile-time, particularly in languages that 
allow aliasing (more than one way to access the same memory location, usually through pointers) 

n  Compiler directed vectorization becomes less effective as vector register sizes get larger 
(harder to do accurate data-dependency analysis) 



+ Multicore 
Architectural Challenges 
n  One solution to these problems is to develop multicore architectures 

n  Can automatically exploit task level parallelism from operating systems when 
multiple processes are running or when running multithreaded applications 

n  Automatic compilers for multicore architectures exist, but in general do not 
achieve good utilization.  Generally multicore parallelization requires even 
more robust dependency analysis than vectorizing optimizations require. 

n  Usually exploiting multicore architectures requires some level of manual 
parallelization 
n  Applications will need to be rewritten to fully exploit this architectural feature 
n  Unfortunately, this currently appears to be the best method to gain performance 

from the increased transistor densities provided by Moore’s Law 



+ Limitations of  
Memory System Performance  
n  Memory system, and not processor speed, is often the bottleneck for many 

applications.  

n  Memory system performance is largely captured by two parameters, latency 
and bandwidth.  

n  Latency is the time from the issue of a memory request to the time the data is 
available at the processor.  

n  Bandwidth is the rate at which data can be pumped to the processor by the 
memory system.  



+ Memory System Performance: Bandwidth 
and Latency  
n  It is very important to understand the difference between latency and 

bandwidth.  

n  Consider the example of a fire-hose. If the water comes out of the hose two 
seconds after the hydrant is turned on, the latency of the system is two 
seconds.  

n  Once the water starts flowing, if the hydrant delivers water at the rate of 5 
gallons/second, the bandwidth of the system is 5 gallons/second.  

n  If you want immediate response from the hydrant, it is important to reduce 
latency.  

n  If you want to fight big fires, you want high bandwidth.  



+ Memory Architecture Components 

n  Static Memory (SRAM) 
n  Uses active circuits (consumes power continuously) 
n  Large (6 transistors per memory element) 
n  High Power (uses power to maintain memory contents) 
n  High speed (low latency) 
n  Low density 

n  Dynamic Memory (DRAM) (Must actively refresh to maintain memory) 
n  Uses 1 transistor and capacitor per memory element 
n  Lower power 
n  Slow (high latency) 
n  High Density 



+ Design techniques to improve bandwidth 
and latency in memory systems 
n   To achieve the required bandwidth we can us parallelism in the memory 

system 
n  Example: If one DRAM chip can access 1 byte every 100ns, then 8 DRAM chips 

can access 8 bytes every 100ns increasing bandwidth 
n  Notice that this technique does not change the latency (access time) 

n  How do we improve latency?  We can’t make a 100ns memory go faster than 
it was designed for… 
n  Recognize that for most algorithms there are a set of memory locations that that 

are accessed frequently called a working set.  Use high speed SRAM to store just 
the working set.  This is called a CACHE memory 

n  Predict memory accesses and prefetch data before it is needed 
n  Use parallelism!  If one thread is waiting on memory, switch to other threads that 

were previously waiting on memory requests. (e.g. hyperthreading) 



+ Improving Effective Memory  
Latency Using Caches  
n  Caches are small and fast memory elements 

between the processor and DRAM.  

n  This memory acts as a low-latency high-
bandwidth storage.  

n  If a piece of data is repeatedly used, the 
effective latency of this memory system can 
be reduced by the cache.  

n  The fraction of data references satisfied by the 
cache is called the cache hit ratio of the 
computation on the system.  

n  Cache hit ratio achieved by a code on a 
memory system often determines its 
performance.  

DRAM Main Memory 

Cache 

CPU 



+ DRAM Internal Architecture 

Address Decoder/Line Drivers
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n  Each memory address request retrieves an entire 
line which is stored in a fast SRAM buffer. 

n  Once one word is loaded, then neighboring data 
can be accessed quickly in a burst mode. 

n  Since chip pin counts also are a limitation, this 
design allows more effective utilization of the 
available pins on a DRAM chip. 

n  Accessing contiguous segments of memory is 
highly  desirable, not only from a CACHE system 
perspective, but also from the DRAM architecture 
itself. 



+ Impact of Memory Bandwidth: Example  

Consider the following code fragment:  

 for (i = 0; i < 1000; i++)  

       column_sum[i] = 0.0; 

       for (j = 0; j < 1000; j++) 

            column_sum[i] += b[j][i]; 

 
The code fragment sums columns of the matrix b into a vector column_sum.  



Impact of Memory Bandwidth: Example  

n  The vector column_sum is small and easily fits into the cache  

n  The matrix b is accessed in a column order.  

n  The strided access results in very poor performance.  

Multiplying a matrix with a vector: (a) multiplying column-by-column, keeping a 
running sum; (b) computing each element of the result as a dot product of a row 

of the matrix with the vector. 



+ Impact of Memory Bandwidth: Example 
 
We can fix the above code as follows:  

 for (i = 0; i < 1000; i++) 

       column_sum[i] = 0.0; 

 for (j = 0; j < 1000; j++) 

       for (i = 0; i < 1000; i++) 

            column_sum[i] += b[j][i]; 
 
In this case, the matrix is traversed in a row-order and performance can be 

expected to be significantly better.  



+ Memory System Performance: Summary  

n  The series of examples presented in this section illustrate the following 
concepts:  
n  Exploiting spatial and temporal locality in applications is critical for amortizing 

memory latency and increasing effective memory bandwidth.  
n  The ratio of the number of operations to number of memory accesses is a good 

indicator of anticipated tolerance to memory bandwidth.  
n  Memory layouts and organizing computation appropriately can make a significant 

impact on the spatial and temporal locality.  



+ Explicitly Parallel Platforms  

n  Parallelism occurs implicitly throughout modern computer designs ranging 
from pipelines and multiple data paths (vector instructions) in the chip to 
parallelism in the memory system where many memory chips are accessed 
simultaneously. 
n  This parallelism is managed by the system and compilers and not directly observed 

by the system programmer 

n  Parallel clusters and multicore architectures make use of explicit parallelism 
n  System programmers are responsible for creating many tasks that can execute 

simultaneously and be mapped to parallel components of the parallel system by 
specifying a concurrent control structure. 

n  Concurrent tasks must coordinate and share information by way of a 
communication model. 



+ Control Structure of Parallel Programs  

n  Parallelism can be expressed at various levels of granularity - from instruction 
level to processes.  

n  Between these extremes exist a range of models, along with corresponding 
architectural support.  



+ Control Structure of Parallel Programs  

n  Processing units in parallel computers either operate under the centralized 
control of a single control unit or work independently.  

n  If there is a single control unit that dispatches the same instruction to various 
processors (that work on different data), the model is referred to as single 
instruction stream, multiple data stream (SIMD).  

n  If each processor has its own control control unit, each processor can 
execute different instructions on different data items. This model is called 
multiple instruction stream, multiple data stream (MIMD).  



+ SIMD and MIMD Processors 

A typical SIMD architecture (a) and a typical MIMD architecture (b). 



+ SIMD Processors  

n  Some of the earliest parallel computers such as the Illiac IV, MPP, DAP, CM-2, and 
MasPar MP-1 belonged to this class of machines.  

n  Variants of this concept have found use in co-processing units such as the MMX 
units in Intel processors and DSP chips such as the Sharc.  

n  SIMD relies on the regular structure of computations (such as those in image 
processing).  

n  It is often necessary to selectively turn off operations on certain data items. For this 
reason, most SIMD programming paradigms allow for an ``activity mask'', which 
determines if a processor should participate in a computation or not.  



+ Conditional Execution in SIMD Processors  

Executing a conditional statement on an SIMD computer with four processors: (a) the 
conditional statement; (b) the execution of the statement in two steps. 



+ MIMD Processors 

n  In contrast to SIMD processors, MIMD processors can execute different 
programs on different processors.  

n  A variant of this, called single program multiple data streams (SPMD) 
executes the same program on different processors.  

n  It is easy to see that SPMD and MIMD are closely related in terms of 
programming flexibility and underlying architectural support.  

n  Examples of such platforms include almost all modern parallel machines 



+ SIMD-MIMD Comparison  

n  SIMD computers require less hardware than MIMD computers (single control 
unit).  

n  However, since SIMD processors are specially designed, they tend to be 
expensive and have long design cycles.  

n  Not all applications are naturally suited to SIMD processors.  

n  In contrast, platforms supporting the SPMD paradigm can be built from 
inexpensive off-the-shelf components with relatively little effort in a short 
amount of time.  



+ Communication Model  
of Parallel Platforms  
n  There are two primary forms of data exchange between parallel tasks - 

accessing a shared data space and exchanging messages.  

n  Platforms that provide a shared data space are called shared-address-space 
machines or multiprocessors.  

n  Platforms that support messaging are also called message passing platforms 
or multicomputers.  



+ Shared-Address-Space Platforms  

n  Part (or all) of the memory is accessible to all processors.  

n  Processors interact by modifying data objects stored in this shared-address-
space.  

n  If the time taken by a processor to access any memory word in the system 
global or local is identical, the platform is classified as a uniform memory 
access (UMA), else, a non-uniform memory access (NUMA) machine.  



+ NUMA and UMA Shared-Address-Space 
Platforms  

Typical shared-address-space architectures: (a) Uniform-memory access shared-
address-space computer; (b) Uniform-memory-access shared-address-space 

computer with caches and memories; (c) Non-uniform-memory-access shared-
address-space computer with local memory only. 



+ NUMA and UMA  
Shared-Address-Space Platforms  
n  The distinction between NUMA and UMA platforms is important from the point of 

view of algorithm design. NUMA machines require locality from underlying 
algorithms for performance.  

n  Programming these platforms is easier since reads and writes are implicitly 
visible to other processors.  

n  However, read-write data to shared data must be coordinated (this will be 
discussed in greater detail when we talk about threads programming).  

n  Caches in such machines require coordinated access to multiple copies. This 
leads to the cache coherence problem.  

n  A weaker model of these machines provides an address map, but not 
coordinated access. These models are called non cache coherent shared 
address space machines.  



+ Shared-Address-Space   vs.  
Shared Memory Machines  

n  It is important to note the difference between the terms shared address space 
and shared memory.  

n  We refer to the former as a programming abstraction and to the latter as a 
physical machine attribute.  

n  It is possible to provide a shared address space using a physically distributed 
memory.  



+ Message-Passing Platforms  

n  These platforms comprise of a set of processors and their own (exclusive) 
memory.  

n  Instances of such a view come naturally from clustered workstations and 
non-shared-address-space multicomputers.  

n  These platforms are programmed using (variants of) send and receive 
primitives.  

n  Libraries such as MPI and PVM provide such primitives.  



+ Message Passing vs.  
Shared Address Space Platforms  

n Message passing requires little hardware support, other than a 
network.  

n Shared address space platforms can easily emulate message 
passing. The reverse is more difficult to do (in an efficient 
manner).  



+ Physical Organization  
of Parallel Platforms  

We begin this discussion with an ideal parallel machine called 
Parallel Random Access Machine, or PRAM.  

Natural extension of the RAM architecture which is the traditional 
serial execution model 
n Operations can access memory locations in random order in O(1) 

time 
n Count operations and memory access to model running time 



+ Architecture of an  
Ideal Parallel Computer  
n  A natural extension of the Random Access Machine (RAM) serial architecture is 

the Parallel Random Access Machine, or PRAM.  

n  This is a theoretical model.  Useful for describing parallelization of a program, but 
many times predicted running times for a PRAM algorithm are highly optimistic. 

n  PRAMs consist of p processors and a global memory of unbounded size that is 
uniformly accessible to all processors.  

n  Processors share a common clock but may execute different instructions in each 
cycle.  (synchronization is implicit) 

n  Programs usually expressed as loops over processors where array addresses 
are indexed using processor number.  These loops are executed in parallel. 



+ Architecture of an  
Ideal Parallel Computer 
n  Depending on how simultaneous memory accesses are handled, PRAMs can 

be divided into four subclasses.  
n  Exclusive-read, exclusive-write (EREW) PRAM.  
n  Concurrent-read, exclusive-write (CREW) PRAM.  
n  Exclusive-read, concurrent-write (ERCW) PRAM.  
n  Concurrent-read, concurrent-write (CRCW) PRAM.  

 



+ Architecture of an  
Ideal Parallel Computer 
n  Depending on how simultaneous memory accesses are handled, PRAMs can 

be divided into four subclasses.  
n  Exclusive-read, exclusive-write (EREW) PRAM.  
n  Concurrent-read, exclusive-write (CREW) PRAM.  
n  Exclusive-read, concurrent-write (ERCW) PRAM.  
n  Concurrent-read, concurrent-write (CRCW) PRAM.  

n  What does concurrent write mean, anyway?  
n  Common: write only if all values are identical.  
n  Arbitrary: write the data from a randomly selected processor.  
n  Priority: follow a predetermined priority order.  
n  Sum: Write the sum of all data items.  



+ Summing p numbers in log(p) time using 
recursive doubling 

Log p 
steps 

p inputs 



+ Example, Summing p numbers with p 
processors on a EREW PRAM machine  
int delta = 2 

while(delta < p) { 

 for each processor i, in parallel 

  if(i%delta == 0) 

   sum[i] = sum[i] + sum[i+delta] 

 delta = delta * 2 

} 

 



+ Interconnection Networks  
for Parallel Computers  
n  Interconnection networks carry data between processors and to memory.  

n  Interconnects are made of switches and links (wires, fiber).  

n  Interconnects are classified as static or dynamic.  

n  Static networks consist of point-to-point communication links among 
processing nodes and are also referred to as direct networks.  

n  Dynamic networks are built using switches and communication links. 
Dynamic networks are also referred to as indirect networks.  



+ Interconnection Networks  

n Switches map a fixed number of inputs to outputs.  

n The total number of ports on a switch is the degree of the 
switch.  

n The cost of a switch grows as the square of the degree of the 
switch, the peripheral hardware linearly as the degree, and the 
packaging costs linearly as the number of pins.  



+ Network Topologies  

n A variety of network topologies have been proposed and 
implemented.  

n These topologies tradeoff performance for cost.  

n Commercial machines often implement hybrids of multiple 
topologies for reasons of packaging, cost, and available 
components.  



+ Network Topologies: Buses  

n Some of the simplest and earliest parallel machines used buses.  

n All processors access a common bus for exchanging data.  

n The distance between any two nodes is O(1) in a bus. The bus 
also provides a convenient broadcast media.  

n However, the bandwidth of the shared bus is a major bottleneck.  

n Typical bus based machines are limited to dozens of nodes. Sun 
Enterprise servers and Intel Pentium based shared-bus 
multiprocessors are examples of such architectures.  



+ Network Topologies: Buses  

Bus-based interconnects (a) with no local caches; (b) with local memory/
caches. 

 Since much of the data accessed by processors is local to the 
processor, a local memory can improve the performance of bus-based 
machines. 



+ Network Topologies: Crossbars 
 

A completely non-blocking crossbar network connecting p processors to b memory 
banks. 

A crossbar network uses an p×m grid of switches to connect p inputs 
to m outputs in a non-blocking manner. 



+ Network Topologies: Crossbars 

n The cost of a crossbar of p processors grows as O(p2). 

n This is generally difficult to scale for large values of p. 

n High end shared-memory servers employ cross-bar switches to 
reduce inter-processor memory latency. 

n Not used in modern large scale parallel system due to high cost 
at large scales 



+ Network Topologies:  
Multistage Networks  

n Crossbars have excellent performance scalability but poor cost 
scalability.  

n Buses have excellent cost scalability, but poor performance 
scalability.  

n Multistage interconnects strike a compromise between these 
extremes.  



+ Network Topologies:  
Multistage Networks 
 

The schematic of a typical multistage interconnection network. 



Network Topologies: Multistage Omega Network 
 

n One of the most commonly used multistage interconnects is the 
Omega network. 

n This network consists of log p stages, where p is the number of 
inputs/outputs. 

n At each stage, input i is connected to output j if: 



+ Network Topologies:  
Multistage Omega Network 
 Each stage of the Omega network implements a perfect shuffle as 
follows: 

A perfect shuffle interconnection for eight inputs and outputs. 



Network Topologies:  
Multistage Omega Network 
n The perfect shuffle patterns are connected using 2×2 switches. 

n The switches operate in two modes – crossover or passthrough. 

Two switching configurations of the 2 × 2 switch:  
(a) Pass-through; (b) Cross-over. 



+ Network Topologies:  
Multistage Omega Network 
 

A complete omega network connecting eight inputs and eight outputs. 
 

 An omega network has p/2 × log p switching nodes, and the 
cost of such a network grows as (p log p). 

 A complete Omega network with the perfect shuffle 
interconnects and switches can now be illustrated: 



+ Network Topologies:  
Multistage Omega Network – Routing 

n Let s be the binary representation of the source and d be that of 
the destination processor. 

n The data traverses the link to the first switching node. If the most 
significant bits of s and d are the same, then the data is routed 
in pass-through mode by the switch else, it switches to 
crossover. 

n This process is repeated for each of the log p switching stages. 

n Note that this is not a non-blocking switch. 



+ Network Topologies:  
Multistage Omega Network – Routing 

An example of blocking in omega network: one of the messages  
(010 to 111 or 110 to 100) is blocked at link AB. 



+ Network Topologies:  
Completely Connected Network 

n Each processor is connected to every other processor. 

n The number of links in the network scales as O(p2). 

n While the performance scales very well, the hardware 
complexity is not realizable for large values of p. 

n  In this sense, these networks are static counterparts of 
crossbars. 



+ 
Network Topologies: Completely Connected and Star 
Connected Networks 

Example of an 8-node completely connected network. 

(a) A completely-connected network of eight nodes;  
(b) a star connected network of nine nodes. 



+ Network Topologies:  
Star Connected Network 
 
n Every node is connected only to a common node at the center. 

n Distance between any pair of nodes is O(1). However, the 
central node becomes a bottleneck. 

n  In this sense, star connected networks are static counterparts of 
buses. 



+ Network Topologies:  
Linear Arrays, Meshes, and k-d Meshes 
 
n  In a linear array, each node has two neighbors, one to its left and one to its 

right. If the nodes at either end are connected, we refer to it as a 1-D torus or 
a ring. 

n  A generalization to 2 dimensions has nodes with 4 neighbors, to the north, 
south, east, and west. 

n  A further generalization to d dimensions has nodes with 2d neighbors. 

n  A special case of a d-dimensional mesh is a hypercube. Here, d = log p, 
where p is the total number of nodes. 



+ Network Topologies: Linear Arrays 
 

Linear arrays: (a) with no wraparound links; (b) with wraparound link. 



+ Network Topologies:  
Two- and Three Dimensional Meshes 
 

Two and three dimensional meshes: (a) 2-D mesh with no wraparound; (b) 2-D 
mesh with wraparound link (2-D torus); and (c) a 3-D mesh with no wraparound. 



+ Network Topologies:  
Hypercubes and their Construction 
 

Construction of hypercubes from hypercubes of lower dimension. 



+ Network Topologies:  
Properties of Hypercubes 
 
n The distance between any two nodes is at most log p. 

n Each node has log p neighbors. 

n The distance between two nodes is given by the number of bit 
positions at which the two nodes differ. 



+ Network Topologies: Tree-Based Networks 
 

Complete binary tree networks: (a) a static tree network; and (b) a dynamic 
tree network. 



+ Network Topologies: Tree Properties  

n The distance between any two nodes is no more than 2logp.  

n Links higher up the tree potentially carry more traffic than those 
at the lower levels.  

n For this reason, a variant called a fat-tree, fattens the links as 
we go up the tree.  

n Trees can be laid out in 2D with no wire crossings. This is an 
attractive property of trees.  



+ Network Topologies: Fat Trees 
 

A fat tree network of 16 processing nodes. 



Evaluating  
Static Interconnection Networks 
n  Diameter: The distance between the farthest two nodes in the network. The 

diameter of a linear array is p − 1, that of a mesh is 2(     − 1), that of a tree 
and hypercube is log p, and that of a completely connected network is O(1). 

n  Bisection Width: The minimum number of wires you must cut to divide the 
network into two equal parts. The bisection width of a linear array and tree is 
1, that of a mesh is      , that of a hypercube is p/2 and that of a completely 
connected network is p2/4. 

n  Cost: The number of links or switches (whichever is asymptotically higher) is 
a meaningful measure of the cost. However, a number of other factors, such 
as the ability to layout the network, the length of wires, etc., also factor in to 
the cost. 



Evaluating  
Static Interconnection Networks 

Network  Diameter  Bisection
Width  

Arc 
Connectivity  

Cost  
(No. of links)  

Completely-connected  

Star  

Complete binary tree  

Linear array  

2-D mesh, no wraparound  

2-D wraparound mesh  

Hypercube  

Wraparound k-ary d-cube  



Evaluating Dynamic Interconnection Networks 
 

Network  Diameter  Bisection 
Width  

Arc 
Connectivity  

Cost  
(No. of links)  

Crossbar  

Omega Network  

Dynamic Tree  



+ Communication Costs  
in Parallel Machines  
n  Along with idling and contention, communication is a major overhead in 

parallel programs.  

n  The cost of communication is dependent on a variety of features including the 
programming model semantics, the network topology, data handling and 
routing, and associated software protocols.  



+ Message Passing Costs in  
Parallel Computers 
n  The total time to transfer a message over a network comprises of the 

following: 
n  Startup time (ts): Time spent at sending and receiving nodes (executing the routing 

algorithm, programming routers, etc.). 
n  Per-hop time (th): This time is a function of number of hops and includes factors 

such as switch latencies, network delays, etc. 
n  Per-word transfer time (tw): This time includes all overheads that are determined by 

the length of the message. This includes bandwidth of links, error checking and 
correction, etc. 



Store-and-Forward Routing  

n  A message traversing multiple hops is completely received at an intermediate 
hop before being forwarded to the next hop. 

n  The total communication cost for a message of size m words to traverse l 
communication links is 

n  In most platforms, th is small and the above expression can be approximated by 

   



+ Routing Techniques 

Passing a message from node P0 to P3 (a) through a store-and-forward 
communication network; (b) and (c) extending the concept to cut-through routing. 
The shaded regions represent the time that the message is in transit. The startup 

time associated with this message transfer is assumed to be zero. 



Packet Routing 

n  Store-and-forward makes poor use of communication resources.  

n  Packet routing breaks messages into packets and pipelines them through the 
network.  

n  Since packets may take different paths, each packet must carry routing information, 
error checking, sequencing, and other related header information.  

n  The total communication time for packet routing is approximated by:  

 

n  The factor tw accounts for overheads in packet headers.  

 



+ Cut-Through Routing  

n  Takes the concept of packet routing to an extreme by further dividing 
messages into basic units called flits.  

n  Since flits are typically small, the header information must be minimized.  

n  This is done by forcing all flits to take the same path, in sequence.  

n  A tracer message first programs all intermediate routers. All flits then take the 
same route.  

n  Error checks are performed on the entire message, as opposed to flits.  

n  No sequence numbers are needed.  



Cut-Through Routing  

n The total communication time for cut-through routing is 
approximated by:  

n This is identical to packet routing, however, tw is typically much 
smaller.  



Simplified Cost Model for Communicating 
Messages 
n  The cost of communicating a message between two nodes l hops away using 

cut-through routing is given by 

n  In this expression, th is typically smaller than ts and tw. For this reason, the 
second term in the RHS does not show, particularly, when m is large. 

n  Furthermore, it is often not possible to control routing and placement of tasks. 

n  For these reasons, we can approximate the cost of message transfer by 



+ Simplified Cost Model for Communicating 
Messages 
n  It is important to note that the original expression for communication time is 

valid for only uncongested networks.  

n  If a link takes multiple messages, the corresponding tw term must be scaled 
up by the number of messages.  

n  Different communication patterns congest different networks to varying 
extents.  

n  It is important to understand and account for this in the communication time 
accordingly.  



+ Cost Models for  
Shared Address Space Machines  
n  While the basic messaging cost applies to these machines as well, a number 

of other factors make accurate cost modeling more difficult.  

n  Memory layout is typically determined by the system.  

n  Finite cache sizes can result in cache thrashing.  

n  Overheads associated with invalidate and update operations are difficult to 
quantify.  

n  Spatial locality is difficult to model.  

n  Prefetching can play a role in reducing the overhead associated with data 
access.  

n  False sharing and contention are difficult to model.  



+ Routing Mechanisms  
for Interconnection Networks  
n  How does one compute the route that a message takes from source to 

destination?  
n  Routing must prevent deadlocks - for this reason, we use dimension-ordered or e-

cube routing.  
n  Routing must avoid hot-spots - for this reason, two-step routing is often used. In 

this case, a message from source s to destination d is first sent to a randomly 
chosen intermediate processor i and then forwarded to destination d.  



+ Routing Mechanisms  
for Interconnection Networks 

Routing a message from node Ps (010) to node Pd (111) in a three-dimensional 
hypercube using E-cube routing. 


