
+

Design of Parallel Algorithms

Introduction to the Message Passing Interface
MPI

+ Principles of
Message-Passing Programming
n  The logical view of a machine supporting the message-passing paradigm

consists of p processes, each with its own exclusive address space.

n  Each data element must belong to one of the partitions of the space; hence,
data must be explicitly partitioned and placed.

n  All interactions (read-only or read/write) require cooperation of two processes
- the process that has the data and the process that wants to access the
data. (Two Sided Communication Methods)

n  These two constraints, while onerous, make underlying costs very explicit to
the programmer.

+ Principles of
Message-Passing Programming
n  Message-passing programs are often written using the asynchronous or

loosely synchronous paradigms.

n  In the asynchronous paradigm, all concurrent tasks execute asynchronously.

n  In the loosely synchronous model, tasks or subsets of tasks synchronize to
perform interactions. Between these interactions, tasks execute completely
asynchronously.

n  Most message-passing programs are written using the single program
multiple data (SPMD) model.

+ The Building Blocks:
Send and Receive Operations
n  The prototypes of these operations are as follows:

 send(void *sendbuf, int nelems, int dest)

 receive(void *recvbuf, int nelems, int source)

n  Consider the following code segments:

 P0 P1

 a = 100; receive(&a, 1, 0)

 send(&a, 1, 1); printf("%d\n", a);

 a = 0;

n  The semantics of the send operation require that the value received by process P1 must be 100, not 0.

n  This motivates the design of the send and receive protocols.

+ Non-Buffered Blocking
Message Passing Operations
n  A simple method for forcing send/receive semantics is for the send operation

to return only when it is safe to do so.

n  In the non-buffered blocking send, the operation does not return until the
matching receive has been encountered at the receiving process.

n  Idling and deadlocks are major issues with non-buffered blocking sends.

n  In buffered blocking sends, the sender simply copies the data into the
designated buffer and returns after the copy operation has been completed.
The data is copied at a buffer at the receiving end as well.

n  Buffering alleviates idling at the expense of copying overheads.

+ Non-Buffered Blocking
Message Passing Operations

Handshake for a blocking non-buffered send/receive operation.
It is easy to see that in cases where sender and receiver do not

reach communication point at similar times, there can be considerable idling
overheads.

+ Buffered Blocking
Message Passing Operations
n  A simple solution to the idling and deadlocking problem outlined above is to

rely on buffers at the sending and receiving ends.

n  The sender simply copies the data into the designated buffer and returns
after the copy operation has been completed.

n  The data must be buffered at the receiving end as well.

n  Buffering trades off idling overhead for buffer copying overhead.

+ Buffered Blocking
Message Passing Operations

Blocking buffered transfer protocols: (a) in the presence of
communication hardware with buffers at send and receive ends; and (b) in the
absence of communication hardware, sender interrupts receiver and deposits

data in buffer at receiver end.

+ Buffered Blocking
Message Passing Operations

Bounded buffer sizes can have significant impact on performance.

 P0 P1

 for (i = 0; i < 1000; i++){ for (i = 0; i < 1000; i++){

 produce_data(&a); receive(&a, 1, 0);

 send(&a, 1, 1); consume_data(&a);

 } }

What if consumer was much slower than producer?

+ Buffered Blocking
Message Passing Operations

Deadlocks are still possible with buffering since receive

operations block.

 P0 P1

 receive(&a, 1, 1); receive(&a, 1, 0);

 send(&b, 1, 1); send(&b, 1, 0);

+ Non-Blocking
Message Passing Operations
n  The programmer must ensure semantics of the send and receive.

n  This class of non-blocking protocols returns from the send or receive
operation before it is semantically safe to do so.

n  Non-blocking operations are generally accompanied by a check-status
operation.

n  When used correctly, these primitives are capable of overlapping
communication overheads with useful computations.

n  Message passing libraries typically provide both blocking and non-blocking
primitives.

+ Non-Blocking
Message Passing Operations

Non-blocking non-buffered send and receive operations (a) in
absence of communication hardware; (b) in presence of

communication hardware.

+ Send and Receive Protocols

Space of possible protocols for send and receive operations.

+ MPI: the Message Passing Interface

n  MPI defines a standard library for message-passing that can be used to
develop portable message-passing programs using either C or Fortran.

n  The MPI standard defines both the syntax as well as the semantics of a core
set of library routines.

n  Vendor implementations of MPI are available on almost all commercial
parallel computers.

n  It is possible to write fully-functional message-passing programs by using
only the six routines.

MPI: the Message Passing Interface

The minimal set of MPI routines.

MPI_Init Initializes MPI.

MPI_Finalize Terminates MPI.
MPI_Comm_size Determines the number of processes.
MPI_Comm_rank Determines the label of calling process.
MPI_Send Sends a message.

MPI_Recv Receives a message.

+ Starting and Terminating the MPI Library

n  MPI_Init is called prior to any calls to other MPI routines. Its purpose is to
initialize the MPI environment.

n  MPI_Finalize is called at the end of the computation, and it performs
various clean-up tasks to terminate the MPI environment.

n  The prototypes of these two functions are:

 int MPI_Init(int *argc, char ***argv)

 int MPI_Finalize()

n  MPI_Init also strips off any MPI related command-line arguments.

n  All MPI routines, data-types, and constants are prefixed by “MPI_”. The
return code for successful completion is MPI_SUCCESS.

+ Communicators

n  A communicator defines a communication domain - a set of processes that
are allowed to communicate with each other.

n  Information about communication domains is stored in variables of type
MPI_Comm.

n  Communicators are used as arguments to all message transfer MPI routines.

n  A process can belong to many different (possibly overlapping) communication
domains.

n  MPI defines a default communicator called MPI_COMM_WORLD which
includes all the processes.

+ Querying Information

n  The MPI_Comm_size and MPI_Comm_rank functions are used to
determine the number of processes and the label of the calling process,
respectively.

n  The calling sequences of these routines are as follows:

 int MPI_Comm_size(MPI_Comm comm, int *size)

 int MPI_Comm_rank(MPI_Comm comm, int *rank)

n  The rank of a process is an integer that ranges from zero up to the size of the
communicator minus one.

+ Our First MPI Program
#include <mpi.h>

main(int argc, char *argv[])
{

 int npes, myrank;
 MPI_Init(&argc, &argv);
 MPI_Comm_size(MPI_COMM_WORLD, &npes);
 MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
 printf("From process %d out of %d, Hello World!\n",
 myrank, npes);
 MPI_Finalize();

}

+ Sending and Receiving Messages

n  The basic functions for sending and receiving messages in MPI are the MPI_Send and
MPI_Recv, respectively.

n  The calling sequences of these routines are as follows:

 int MPI_Send(void *buf, int count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm)

 int MPI_Recv(void *buf, int count, MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm,
 MPI_Status *status)

n  MPI provides equivalent datatypes for all C datatypes. This is done for portability reasons.

n  The datatype MPI_BYTE corresponds to a byte (8 bits) and MPI_PACKED
corresponds to a collection of data items that has been created by packing non-contiguous
data.

n  The message-tag can take values ranging from zero up to the MPI defined constant
MPI_TAG_UB.

MPI Datatypes

MPI Datatype C Datatype
MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE

MPI_PACKED

+ Sending and Receiving Messages

n  MPI allows specification of wildcard arguments for both source and tag.

n  If source is set to MPI_ANY_SOURCE, then any process of the
communication domain can be the source of the message.

n  If tag is set to MPI_ANY_TAG, then messages with any tag are accepted.

n  On the receive side, the message must be of length equal to or less than the
length field specified.

+ Sending and Receiving Messages

n  On the receiving end, the status variable can be used to get information
about the MPI_Recv operation.

n  The corresponding data structure contains:
 typedef struct MPI_Status {

 int MPI_SOURCE;
 int MPI_TAG;

 int MPI_ERROR; };

n  The MPI_Get_count function returns the precise count of data items
received.

 int MPI_Get_count(MPI_Status *status, MPI_Datatype
 datatype, int *count)

+ Avoiding Deadlocks
Consider:

int a[10], b[10], myrank;
MPI_Status status;
...
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) {
 MPI_Send(a, 10, MPI_INT, 1, 1, MPI_COMM_WORLD);
 MPI_Send(b, 10, MPI_INT, 1, 2, MPI_COMM_WORLD);
}
else if (myrank == 1) {
 MPI_Recv(b, 10, MPI_INT, 0, 2, MPI_COMM_WORLD);
 MPI_Recv(a, 10, MPI_INT, 0, 1, MPI_COMM_WORLD);
}
...

If MPI_Send is blocking, there is a deadlock.

+ Avoiding Deadlocks
Consider the following piece of code, in which process i sends a
message to process i + 1 (modulo the number of processes) and
receives a message from process i - 1 (module the number of
processes).

int a[10], b[10], npes, myrank;
MPI_Status status;
...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,

 MPI_COMM_WORLD);
MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,

 MPI_COMM_WORLD);
...

Once again, we have a deadlock if MPI_Send is blocking.

+ Avoiding Deadlocks
We can break the circular wait to avoid deadlocks as follows:

int a[10], b[10], npes, myrank;
MPI_Status status;
...
MPI_Comm_size(MPI_COMM_WORLD, &npes);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank%2 == 1) {

 MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,
 MPI_COMM_WORLD);
 MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,
 MPI_COMM_WORLD);

}
else {

 MPI_Recv(b, 10, MPI_INT, (myrank-1+npes)%npes, 1,
 MPI_COMM_WORLD);
 MPI_Send(a, 10, MPI_INT, (myrank+1)%npes, 1,
 MPI_COMM_WORLD);

}
...

+ Sending and Receiving
Messages Simultaneously

To exchange messages, MPI provides the following function:

 int MPI_Sendrecv(void *sendbuf, int sendcount,

 MPI_Datatype senddatatype, int dest, int
 sendtag, void *recvbuf, int recvcount,
 MPI_Datatype recvdatatype, int source, int recvtag,
 MPI_Comm comm, MPI_Status *status)

The arguments include arguments to the send and receive
functions. If we wish to use the same buffer for both send and
receive, we can use:

 int MPI_Sendrecv_replace(void *buf, int count,

 MPI_Datatype datatype, int dest, int sendtag,
 int source, int recvtag, MPI_Comm comm,
 MPI_Status *status)

+ Overlapping Communication
with Computation
n  In order to overlap communication with computation, MPI provides a pair of

functions for performing non-blocking send and receive operations.
int MPI_Isend(void *buf, int count, MPI_Datatype datatype,
 int dest, int tag, MPI_Comm comm,
 MPI_Request *request)
int MPI_Irecv(void *buf, int count, MPI_Datatype datatype,
 int source, int tag, MPI_Comm comm,
 MPI_Request *request)

n  These operations return before the operations have been completed.
Function MPI_Test tests whether or not the non-blocking send or receive
operation identified by its request has finished.
int MPI_Test(MPI_Request *request, int *flag,
 MPI_Status *status)

n  MPI_Wait waits for the operation to complete.
int MPI_Wait(MPI_Request *request, MPI_Status *status)

+ Collective Communication and Computation
Operations
n  MPI provides an extensive set of functions for performing common collective

communication operations.

n  Each of these operations is defined over a group corresponding to the
communicator.

n  All processors in a communicator must call these operations.

+ Collective Communication Operations

n  The barrier synchronization operation is performed in MPI using:
 int MPI_Barrier(MPI_Comm comm)

 The one-to-all broadcast operation is:
 int MPI_Bcast(void *buf, int count, MPI_Datatype
datatype, int source, MPI_Comm comm)

n  The all-to-one reduction operation is:
 int MPI_Reduce(void *sendbuf, void *recvbuf, int count,

 MPI_Datatype datatype, MPI_Op op, int target,
 MPI_Comm comm)

Predefined Reduction Operations

Operation Meaning Datatypes
MPI_MAX Maximum C integers and floating point
MPI_MIN Minimum C integers and floating point
MPI_SUM Sum C integers and floating point
MPI_PROD Product C integers and floating point
MPI_LAND Logical AND C integers
MPI_BAND Bit-wise AND C integers and byte
MPI_LOR Logical OR C integers
MPI_BOR Bit-wise OR C integers and byte
MPI_LXOR Logical XOR C integers
MPI_BXOR Bit-wise XOR C integers and byte
MPI_MAXLOC max-min value-location Data-pairs
MPI_MINLOC min-min value-location Data-pairs

+ Collective Communication Operations

n  If the result of the reduction operation is needed by all processes, MPI
provides:

 int MPI_Allreduce(void *sendbuf, void *recvbuf,
 int count, MPI_Datatype datatype, MPI_Op
op, MPI_Comm comm)

n  To compute prefix-sums, MPI provides:
 int MPI_Scan(void *sendbuf, void *recvbuf, int
count, MPI_Datatype datatype, MPI_Op op,

 MPI_Comm comm)

+ Collective Communication Operations

n  The gather operation is performed in MPI using:
 int MPI_Gather(void *sendbuf, int sendcount,
 MPI_Datatype senddatatype, void *recvbuf,
 int recvcount, MPI_Datatype recvdatatype,
 int target, MPI_Comm comm)

n  MPI also provides the MPI_Allgather function in which the data are gathered at all
the processes.

 int MPI_Allgather(void *sendbuf, int sendcount,
 MPI_Datatype senddatatype, void *recvbuf,

 int recvcount, MPI_Datatype recvdatatype,
 MPI_Comm comm)

n  The corresponding scatter operation is:
 int MPI_Scatter(void *sendbuf, int sendcount,
 MPI_Datatype senddatatype, void *recvbuf,
 int recvcount, MPI_Datatype recvdatatype,
 int source, MPI_Comm comm)

+ Collective Communication Operations

n  The all-to-all personalized communication operation is performed by:
 int MPI_Alltoall(void *sendbuf, int sendcount,

 MPI_Datatype senddatatype, void
*recvbuf,

 int recvcount, MPI_Datatype
recvdatatype, MPI_Comm comm)

n  Using this core set of collective operations, a number of programs can be
greatly simplified.

+ Groups and Communicators

n  In many parallel algorithms, communication operations need to be restricted
to certain subsets of processes.

n  MPI provides mechanisms for partitioning the group of processes that belong
to a communicator into subgroups each corresponding to a different
communicator.

n  The simplest such mechanism is:
 int MPI_Comm_split(MPI_Comm comm, int color, int
key, MPI_Comm *newcomm)

n  This operation groups processors by color and sorts resulting groups on the
key.

+ Groups and Communicators

Using MPI_Comm_split to split a group of processes in a
communicator into subgroups.

+ Groups and Communicators

n  In many parallel algorithms, processes are arranged in a virtual grid, and in
different steps of the algorithm, communication needs to be restricted to a
different subset of the grid.

n  MPI provides a convenient way to partition a Cartesian topology to form
lower-dimensional grids:

 int MPI_Cart_sub(MPI_Comm comm_cart, int *keep_dims,
 MPI_Comm *comm_subcart)

n  If keep_dims[i] is true (non-zero value in C) then the ith dimension is
retained in the new sub-topology.

n  The coordinate of a process in a sub-topology created by MPI_Cart_sub
can be obtained from its coordinate in the original topology by disregarding
the coordinates that correspond to the dimensions that were not retained.

+ Groups and Communicators

Splitting a Cartesian topology of size 2 x 4 x 7 into (a) four
subgroups of size 2 x 1 x 7, and (b) eight subgroups of size 1 x 1 x 7.

+

