

Design of Parallel Algorithms

Parallel Dense Matrix Algorithms

Topic Overview

- Matrix-Vector Multiplication
- Matrix-Matrix Multiplication
- Solving a System of Linear Equations

Matix Algorithms: Introduction

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.
- Typical algorithms rely on input, output, or intermediate data decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

- We aim to multiply a dense n x n matrix A with an n x 1 vector x to yield the n x 1 result vector y.
- The serial algorithm requires n^2 multiplications and additions.

$$W = n^2$$

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- The $n \times n$ matrix is partitioned among n processors, with each processor storing complete row of the matrix.
- The $n \times 1$ vector x is distributed such that each process owns one of its elements.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, p = n.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Since each process starts with only one element of x, an all-to-all broadcast is required to distribute all the elements to all the processes.
- Process P_i now computes $y[i] = \sum_{j=0}^{n-1} (A[i,j] \times x[j])$
- The all-to-all broadcast and the computation of y[i] both take time $\Theta(n)$. Therefore, the parallel time is $\Theta(n)$.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Consider now the case when p < n and we use block 1D partitioning.
- Each process initially stores n=p complete rows of the matrix and a portion of the vector of size n=p.
- The all-to-all broadcast takes place among p processes and involves messages of size n=p.
- This is followed by n=p local dot products.
- Thus, the parallel run time of this procedure is *local operations*

$$T_{P} = \frac{n^{2}}{p} + t_{s} \log p + t_{w} n$$

This is cost-optimal.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Scalability Analysis:

■ We know that $T_0 = pT_P - W$, therefore, we have,

$$T_O = t_s p \log p + t_w np = t_s p \log p + t_w \sqrt{W} p$$

■ For isoefficiency, we have $W = KT_0$ which the second term gives:

$$W = Kt_w \sqrt{W} p \Rightarrow \sqrt{W} = Kt_w p \Rightarrow W = K^2 t_w^2 p^2$$

- There is also a bound on isoefficiency because of concurrency. In this case, p < n, therefore, $W = n^2 = \Omega(p^2)$.
- Overall isoefficiency is $W = O(p^2)$.

- The $n \times n$ matrix is partitioned among n^2 processors such that each processor owns a single element.
- The $n \times 1$ vector x is distributed only in the last column of n processors.

- (a) Initial data distribution and communication steps to align the vector along the diagonal
- (b) One-to-all broadcast of portions of the vector along process columns

- (c) All-to-one reduction of partial results
- (d) Final distribution of the result vector

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $p=n^2$ if the matrix size is $n\ x\ n$.

- We must first align the vector with the matrix appropriately.
- The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.
- The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using *n* simultaneous broadcasts among all processors in the column.
- Finally, the result vector is computed by performing an all-to-one reduction along the columns.

Matrix-Vector Multiplication: 2-D Partitioning (one element per processor)

- Three basic communication operations are used in this algorithm: one-to-one communication $\Theta(1)$ to align the vector along the main diagonal, one-to-all broadcast $\Theta(\log n)$ of each vector element among the n processes of each column, and all-to-one reduction $\Theta(\log n)$ in each row.
- Each of these operations takes at most $\Theta(\log n)$ time and the parallel time is $\Theta(\log n)$.
- The cost (process-time product) is $\Theta(n^2 \log n)$; hence, the algorithm is not cost-optimal.

- When using fewer than n^2 processors, each process owns an block of the matrix $(n/\sqrt{p}) \times (n/\sqrt{p})$.
- The vector is distributed in portions of (n/\sqrt{p}) elements in the last process-column only.
- In this case, the message sizes for the alignment, broadcast, and reduction are all (n/\sqrt{p}) .
- The computation is a product of an $(n/\sqrt{p}) \times (n/\sqrt{p})$ submatrix with a vector of length (n/\sqrt{p}) .

$$t_s + t_w \frac{n}{\sqrt{p}}$$

■ The broadcast and reductions take time

$$\left(t_s + t_w n / \sqrt{p}\right) \log \sqrt{p}$$

Local matrix-vector products take time

$$t_c n^2 / p$$

Total time is
$$T_P \approx \frac{n^2}{p} + t_s \log p + t_w \frac{n}{\sqrt{p}} \log p$$

$$T_O = pT_P - W = t_s p \log p + t_w \sqrt{W} \sqrt{p} \log p$$

■ Equating T_0 with W, term by term, for isoefficiency, we have the dominant term:

$$W = K^2 t_w^2 p \log^2 p$$

- The isoefficiency due to concurrency is O(p).
- The overall isoefficiency is $\Theta(p \log^2 p)$

ŧ

Matrix-Matrix Multiplication

- Consider the problem of multiplying two $n \times n$ dense, square matrices A and B to yield the product matrix $C = A \times B$.
- The serial complexity is $O(n^3)$.
- We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called *block* operations. In this view, an $n \times n$ matrix A can be regarded as a $q \times q$ array of blocks $A_{i,j}$ ($0 \le i, j < q$) such that each block is an $(n/q) \times (n/q)$ submatrix.
- In this view, we perform q^3 matrix multiplications, each involving (n/q) x (n/q) matrices.

Matrix-Matrix Multiplication

- Consider two $n \times n$ matrices A and B partitioned into p blocks $A_{i,j}$ and $B_{i,j}$ $(0 \le i, j < \sqrt{p})$ of size $(n/\sqrt{p}) \times (n/\sqrt{p})$ each.
- Process $P_{i,j}$ initially stores $A_{i,j}$ and $B_{i,j}$ and computes block $C_{i,j}$ of the result matrix.
- Computing submatrix $C_{i,j}$ requires all submatrices $A_{i,k}$ and $B_{k,j}$ for $0 \le k < \sqrt{P}$.
- Naïve Algorithm:
 - \blacksquare All-to-all broadcast blocks of A along rows and B along columns.
 - Perform local submatrix multiplication.

Matrix-Matrix Multiplication

- The computation requires \sqrt{p} multiplications of $(n/\sqrt{p}) \times (n/\sqrt{p})$ sized submatrices.
- The parallel run time is approximately

$$T_P \cong \frac{n^3}{p} + t_s \log p + 2t_w \frac{n^2}{\sqrt{p}}$$

- The algorithm is cost optimal and the isoefficiency is $O(p^{1.5})$ due to bandwidth term t_w and concurrency.
- Major drawback of the algorithm is that it is not memory optimal.

Matrix-Matrix Multiplication: Cannon's Algorithm

- In this algorithm, we schedule the computations of the \sqrt{p} processes of the ith row such that, at any given time, each process is using a different block $A_{i,k}$.
- These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh $A_{i,k}$ after each rotation.

Matrix-Matrix Multiplication: Cannon's Algorithm

(a) Initial alignment of A

(b) Initial alignment of B

(c) A and B after initial alignment

(d) Submatrix locations after first shift

$^{\rm A_{0,3}}_{\rm B_{3,0}}$	$\begin{array}{c} A_{0,0} \\ B_{0,1} \end{array}$	$\begin{array}{c} A_{0,1} \\ B_{1,2} \end{array}$	A _{0,2} B _{2,3}
A _{1,0}	$\begin{matrix} A_{1,1} \\ B_{1,1} \end{matrix}$	A _{1,2}	A _{1,3}
B _{0,0}		B _{2,2}	B _{3,3}
$A_{2,1}$ $B_{1,0}$	A _{2,2}	A _{2,3}	A _{2,0}
	B _{2,1}	B _{3,2}	B _{0,3}
A _{3,2}	A _{3,3}	A _{3,0}	A _{3,1}
B _{2,0}	B _{3,1}	B _{0,2}	B _{1,3}

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

Communication steps in Cannon's algorithm on 16 processes.

Matrix-Matrix Multiplication: Cannon's Algorithm

- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices $A_{i,j}$ to the left (with wraparound) by i steps and all submatrices $B_{i,j}$ up (with wraparound) by j steps.
- Do the following for \sqrt{p} steps:
 - Perform local block multiplication.
 - Each block of A moves one step left and each block of B moves one step up (again with wraparound).
 - Perform next block multiplication, add to partial result, repeat until all blocks have been multiplied.

Matrix-Matrix Multiplication: Cannon's Algorithm

- In the alignment step the two shift operations require a total of time of each processor communicating 1 block: $T_{align} = 2\left(t_s + t_w n^2 / p\right)$
- $I_{align} 2(\iota_s + \iota_w \iota_v + P)$
- Each of the single-step shifts in the compute-and-shift phase of the algorithm takes time.

$$T_{shiftCompute} = t_c \frac{n^3}{p^{3/2}} + 2(t_s + t_w n^2 / p)$$

■ The parallel time is approximately:

$$T_P = \frac{n^3}{p} + 2\sqrt{p}t_s + 2t_w \frac{n^2}{\sqrt{p}}$$

■ The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm, although with larger factors on communication time. This algorithm is memory optimal however!

Matrix-Matrix Multiplication: DNS Algorithm

- Uses a 3-D partitioning.
- Visualize the matrix multiplication algorithm as a cube . matrices A and B come in two orthogonal faces and result C comes out the other orthogonal face.
- Each internal node in the cube represents a single add-multiply operation (and thus the complexity).
- DNS algorithm partitions this cube using a 3-D block scheme.

Matrix-Matrix Multiplication: DNS Algorithm

- \blacksquare Assume an $n \times n \times n$ mesh of processors.
- \blacksquare Move the columns of A and rows of B and perform broadcast.
- Each processor computes a single add-multiply.
- This is followed by an accumulation along the C dimension.
- Since each add-multiply takes constant time and accumulation and broadcast takes $\log n$ time, the total runtime is $\log n$.
- This is not cost optimal. It can be made cost optimal by using $n / \log n$ processors along the direction of accumulation.

Matrix-Matrix Multiplication:

DNS Algorithm

The communication steps in the DNS algorithm while multiplying 4 x 4 matrices A and B on 64 processes.

Matrix-Matrix Multiplication: DNS Algorithm

- Assume that the number of processes p is equal to q^3 for some q < n.
- The two matrices are partitioned into blocks of size $(n/q) \times (n/q)$.
- Each matrix can thus be regarded as a *q* x *q* two-dimensional square array of blocks.
- The algorithm follows from the previous one, except, in this case, we operate on blocks rather than on individual elements.

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n^3 processors.

- Assume running on p=q³ procesors
- The first one-to-one communication step is performed for both A and B, and takes $t_s + t_w (n/q)^2$ time for each matrix.
- The two one-to-all broadcasts take $2(t_s \log q + t_w (n/q)^2 \log q)$ time.
- The reduction takes time $t_s \log q + t_w (n/q)^2 \log q$
- Multiplication of $(n/q) \times (n/q)$ submatrices is performed serially and takes $(n/q)^3$ time.
 - Note that a 3-D block that is assigned to a given processor represents that matrix of a (n/q)×(n/q) sub-matrix of A and B (the third dimension represents the k loop of the sub-matrix multiply!)

DNS blocked algorithm

$$T_{P} = t_{s} + t_{w} (n/q)^{2} + 3(t_{s} + t_{w} (n/q)^{2}) \log q + (n/q)^{3}$$

■ Recall that $p=q^3$ which we can substitute into the above equation to obtain

$$T_{P} = \frac{n^{3}}{p} + \left(t_{s} + t_{w} \frac{n^{2}}{p^{2/3}}\right) (1 + \log p)$$

This gives a parallel overhead function of

$$T_O = \left(t_s + t_w \frac{W^{2/3}}{p^{2/3}}\right) (p + p \log p) = \Theta(W^{2/3} p^{1/3} \log p)$$

Computing the Isoefficiency function of the blocked DNS algorithm

■ Isoefficiency function is found to be $W = f(O(p (log p)^3))$ as shown below:

$$W = KT_O(W, p)$$

$$W = KW^{2/3}p^{1/3}\log p$$

$$W^{1/3} = Kp^{1/3}\log p$$

$$W = K^3p(\log p)^3$$

Solving a System of Linear Equations

Consider the problem of solving linear equations of the kind:

■ This is written as Ax = b, where A is an $n \times n$ matrix with $A[i, j] = a_{i,j}$, b is an $n \times 1$ vector $[b_0, b_1, \dots, b_n]^T$, and x is the solution.

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and back-substitution. The triangular form is as:

We write this as: Ux = y.

A commonly used method for transforming a given matrix into an upper-triangular matrix is Gaussian Elimination.

Gaussian Elimination

```
1.
         procedure GAUSSIAN_ELIMINATION (A, b, y)
2.
         begin
3.
            for k := 0 to n-1 do
                                           /* Outer loop */
4.
            begin
5.
               for i := k + 1 to n - 1 do
6.
                  A[k,j] := A[k,j]/A[k,k]; /* Division step */
7.
               y[k] := b[k]/A[k, k];
8.
               A[k, k] := 1;
9.
               for i := k + 1 to n - 1 do
10.
               begin
11.
                  for i := k + 1 to n - 1 do
12.
                     A[i,j] := A[i,j] - A[i,k] \times A[k,j]; /* Elimination step */
                  b[i] := b[i] - A[i, k] \times y[k];
13.
14.
                  A[i,k] := 0;
15.
               endfor; /* Line 9 */
                     /* Line 3 */
16.
            endfor:
17.
         end GAUSSIAN_ELIMINATION
```

Serial Gaussian Elimination

÷

Gaussian Elimination

■ The computation has three nested loops - in the kth iteration of the outer loop, the algorithm performs $(n-k)^2$ computations. Summing from k = 1..n, we have roughly $(n^3/3)$ multiplications-subtractions.

A typical computation in Gaussian elimination.

Parallel Gaussian Elimination

- Assume p = n with each row assigned to a processor.
- The first step of the algorithm normalizes the row. This is a serial operation and takes time (n-k) in the kth iteration.
- In the second step, the normalized row is broadcast to all the processors. This takes time $(t_s + t_w(n-k-1))\log n$
- Each processor can independently eliminate this row from its own. This requires (n-k-1) multiplications and subtractions.
- The total parallel time can be computed by summing from $k = 1 \dots n-1$ as

$$T_P = rac{3}{2}n(n-1) + t_s n \log n + rac{1}{2}t_w n(n-1) \log n.$$

■ The formulation is not cost optimal because of the t_w term.

Parallel Gaussian Elimination

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_i	0	1	(1,2)	(1,3)	0.40	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	0.49	(2,5)	(2,6)	(2,7)
P_3	0	0	0	(3,3)	0.40	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4.4)	(4,5)	(4,6)	(4,7)
P ₅	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P ₇	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
Pi	0	1	(1,2)	(1,3)	0.40	(1,5)	(1,6)	(1,7)
P ₂	0	0	1	(2,3)	0.49	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P _s	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P _y	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

P_0	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
P_2	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₃	0	0	0	1	0.49	(3,5)	(3,6)	(3,7)
P ₄	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P _s	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₆	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P _y	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

- (a) Computation:
 - (i) A[k,j] := A[k,j]/A[k,k] for $k \le j \le n$
 - (ii) A[k,k] := 1

(b) Communication:

One-to-all brodcast of row A[k,*]

- (c) Computation:
 - (i) A[i,j] := A[i,j] A[i,k] × A[k,j] for k ≤ i ≤ n and k ≤ j ≤ n
 - (ii) A[i,k] := 0 for $k \le i \le n$

Gaussian elimination steps during the iteration corresponding k = 3 for an 8 x 8 matrix partitioned rowwise among eight processes.

Parallel Gaussian Elimination: Pipelined Execution

- In the previous formulation, the (k+1)st iteration starts only after all the computation and communication for the kth iteration is complete.
- In the pipelined version, there are three steps normalization of a row, communication, and elimination. These steps are performed in an asynchronous fashion.
- \blacksquare A processor P_k waits to receive and eliminate all rows prior to k.
- Once it has done this, it forwards its own row to processor Pk+1.

Parallel Gaussian Elimination:

Pipelined Execution

(0,0) (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,0	1 (0,1) (0,2) (0,3) (0,4)
(1.5) (1.1) (1.2) (1.3) (1.4)	(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)	(1,0) (1,1) (1,2) (1,3) (1,4)
(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)	(2,0) (2,1) (2,2) (2,3) (2,4)
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0), (3,1), (3,2), (3,3), (3,4)
(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)
(a) Iteration k = 0 starts	(b)	(c)	(d)
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0.1) (0.2) (0.3) (0.4)	1 (0.1) (0.2) (0.3) (0.4)
0 (1.1) (1.2) (1.3) (1.4)	0 1 (1,2) (1,3) (1,4)	0 (1.1) (1.2) (1.3) (1.4)	0 1 (1.2) (1.3) (1.4)
(2,0) (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,4)	0 (2,1) (2,2) (2,3) (2,0)	0 (2.1) (2.2) (2.3) (2.4)
(3,0) (3,1) (3,2) (3,3) (3,4)	(3,0) (3,1) (3,2) (3,3) (3,4)	0 (3.1) (3.2) (3.3) (3.4)	0 (3.1) (3.2) (3.3) (3.4)
(4,0); (4,1); (4,2); (4,3); (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	(4,0) (4,1) (4,2) (4,3) (4,4)	0 (4.1) (4.2) (4.3) (4.4)
(e) Iteration k = 1 starts	(f)	(g) Iteration k = 0 ends	(h)
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)
0 0 (2,2) (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)
0 (3,1) (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)	0 0 (3,2) (3,3) (3,4)
0 (4,1) (4,2) (4,3) (4,4)	0 (4,1) (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)	0 0 (4,2) (4,3) (4,4)
(i) Iteration k = 2 starts	(j) Iteration k = 1 ends	(k)	(1)
1 (0,1) (0,2) (0,3) (0,4)	1 (0,1) (0,2) (0,3) (0,4)	1 (0.1) (0.2) (0.3) (0.4)	1 (0.1) (0.2) (0.3) (0.4)
0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)	0 1 (1,2) (1,3) (1,4)
0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)	0 0 1 (2,3) (2,4)
0 0 0 (3,3) (3,4)	0 0 0 1 (3,4)	0 0 0 1 (3,0	0 0 0 1 (3,4)
0 0 (4,2) (4,3) (4,4)	0 0 0 (4,3) (4,4)	0 0 0 (4,3) (4,4)	0 0 0 0 (4.4)
(m) Iteration k = 3 starts	(n)	(o) Iteration k = 3 ends	(p) Iteration k = 4
(III) INCLUSION IN - 3 SIMICS	(11)	(o) resolution a - 5 enais	(p) nerodou a - 4
····• Communicatio	on for $k = 0, 3$	Computatio	on for $k = 0, 3$
- Communicatio	n for k = 1	Computatio	on for k = 1, 4
Communicatio	on for k = 2	Computatio	on for k = 2

Pipelined Gaussian elimination on a 5 x 5 matrix partitioned withone row per process.

Parallel Gaussian Elimination: Pipelined Execution

- The total number of steps in the entire pipelined procedure is $\Theta(n)$.
- In any step, either O(n) elements are communicated between directly-connected processes, or a division step is performed on O(n) elements of a row, or an elimination step is performed on O(n) elements of a row.
- The parallel time is therefore $O(n^2)$.
- This is cost optimal.

Parallel Gaussian Elimination: Pipelined Execution

P ₀	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P ₁	0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
ъ	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P ₂	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
P ₃	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

The communication in the Gaussian elimination iteration corresponding to k = 3 for an 8 x 8 matrix distributed among four processes using block 1-D partitioning.

Parallel Gaussian Elimination: Block 1D with p < n

- The above algorithm can be easily adapted to the case when p < n.
- In the kth iteration, a processor with all rows belonging to the active part of the matrix performs (n k -1) / np multiplications and subtractions.
- In the pipelined version, for n > p, computation dominates communication.
- The parallel time is given by: $2(n/p)\Sigma_{k=0}^{n-1}(n-k-1)$ or approximately, n^3/p .
- While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the sequential run time by a factor of 3/2.

Parallel Gaussian Elimination: Block 1D with p < n

n	1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
P_0	0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
D	0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
P_1	0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
D.	0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
P_2	0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
	0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
P_3	0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(a) Block 1-D map	ping
-------------------	------

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)	P_0
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)	
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)	$\mathbf{P}_{\!\scriptscriptstyle 1}$
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)	1
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)	P_2
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)	-2
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)	D
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)	P_3

(b) Cyclic 1-D mapping

Computation load on different processes in block and cyclic 1-D partitioning of an 8 x 8 matrix on four processes during the Gaussian elimination iteration corresponding to k = 3.

Parallel Gaussian Elimination: Block 1D with p < n

- The load imbalance problem can be alleviated by using a cyclic mapping.
- In this case, other than processing of the last *p* rows, there is no load imbalance.
- This corresponds to a cumulative load imbalance overhead of $O(n^2p)$ (instead of $O(n^3)$ in the previous case).

Parallel Gaussian Elimination: 2-D Mapping

- \blacksquare Assume an $n \times n$ matrix A mapped onto an $n \times n$ mesh of processors.
- Each update of the partial matrix can be thought of as a scaled rank-one update (scaling by the pivot element).
- In the first step, the pivot is broadcast to the row of processors.
- In the second step, each processor locally updates its value. For this it needs the corresponding value from the pivot row, and the scaling value from its own row.
- This requires two broadcasts, each of which takes $\log n$ time.
- This results in a non-cost-optimal algorithm.

÷

Parallel Gaussian Elimination: 2-D Mapping

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4.4)	(4,5)	4	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	l(6,3)		(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(a) Rowwise broadcast of A[i,k] for (k - 1) ≤ i ≤ n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	1	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4.4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7.4)	(7,5)	(7,6)	(7,7)

(c) Columnwise broadcast of A[k,j] for k < j < n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	0	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(b) A[k,j] := A[k,j]/A[k,k]for $k \le j \le n$

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	٥	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	۰	0	1	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	٥	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	٥	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(d) A[i,j] := A[i,j]-A[i,k] × A[k,j] for k ≤ i ≤ n and k ≤ j ≤ n

Various steps in the Gaussian elimination iteration corresponding to k = 3 for an 8 x 8 matrix on 64 processes arranged in a logical two-dimensional mesh.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- We pipeline along two dimensions. First, the pivot value is pipelined along the row. Then the scaled pivot row is pipelined down.
- Processor $P_{i,j}$ (not on the pivot row) performs the elimination step A[i,j] := A[i,j] A[i,k] A[k,j] as soon as A[i,k] and A[k,j] are available.
- The computation and communication for each iteration moves through the mesh from top-left to bottom-right as a ``front."
- After the front corresponding to a certain iteration passes through a process, the process is free to perform subsequent iterations.
- Multiple fronts that correspond to different iterations are active simultaneously.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- If each step (division, elimination, or communication) is assumed to take constant time, the front moves a single step in this time. The front takes $\Theta(n)$ time to reach $P_{n-1,n-1}$.
- Once the front has progressed past a diagonal processor, the next front can be initiated. In this way, the last front passes the bottom-right corner of the matrix $\Theta(n)$ steps after the first one.
- The parallel time is therefore O(n), which is cost-optimal.

2-D Mapping with Pipelining

Pipelined Gaussian elimination for a 5 x 5 matrix with 25 processors.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and p < n

- In this case, a processor containing a completely active part of the matrix performs n^2/p multiplications and subtractions, and completely active part of the matrix words along its row and its column.
- The computation dominates communication for n >> p.
- The total parallel run time of this algorithm is $(2n^2/p)$ x n, since there are n iterations. This is equal to $2n^3/p$.
- This is three times the serial operation count!

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and p < n

	<		n
	1	(0,1)	(0,2) (0,3)(0,4) (0,5) (0,6) (0,7)
	0	1	(1,2) (1,3) (1,4) (1,5) (1,6) (1,7)
	0	0	1 (2,3) (2,4) (2,5) (2,6) (2,7)
	0	0	0 (3,3) (3,4) (3,5) (3,6) (3,7)
n	0	0	0 (4,4) (4,5) (4,6) (4,7)
\sqrt{p}	0	0	0 (5,3) (5,4) (5,5) (5,6) (5,7)
	0	0	0 (6,3) (6,4) (6,5) (6,6) (6,7)
	0	0	0 1(7,3) (7,4) (7,5) (7,6) (7,7)

(a) Rowwise broadcast of A[i,k] for i = k to (n - 1)

				← ' >	•	
1	(0,1)	(0,2)	(0,3)	(0,4) (0,5)	(0,6) (0,7)	٨
0	1	(1,2)	(1,3)	(1,4) (1,5)	(1,6) (1,7)	
0	0	1	(2,3)	(2,4) (2,5)	(2,6) (2,7)	
0	0	0	1	(3,4) (3,5)	(3,6) (3,7)	$\frac{1}{n}$
0	0	0	(4,3)	(4,4) (4,5)	(4,6) (4,7)	
0	0	0	(5,3)	(5,4) (5,5)	(5,6) (5,7)	
0	0	0	(6,3)	(6,4) (6,5)	(6,6) (6,7)	
0	0	0	(7,3)	(7,4) (7,5)	(7,6) (7,7)	V

(b) Columnwise broadcast of A[k,j] for j = (k + 1) to (n - 1)

The communication steps in the Gaussian elimination iteration corresponding to k = 3 for an 8 x 8 matrix on 16 processes of a two-dimensional mesh.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and p < n

1	(0,1)	(0,2)	(0,3)	(0,4)	(0,5)	(0,6)	(0,7)
0	1	(1,2)	(1,3)	(1,4)	(1,5)	(1,6)	(1,7)
0	0	1	(2,3)	(2,4)	(2,5)	(2,6)	(2,7)
0	0	0	(3,3)	(3,4)	(3,5)	(3,6)	(3,7)
0	0	0	(4,3)	(4,4)	(4,5)	(4,6)	(4,7)
0	٥	0	(5,3)	(5,4)	(5,5)	(5,6)	(5,7)
0	0	0	(6,3)	(6,4)	(6,5)	(6,6)	(6,7)
0	0	0	(7,3)	(7,4)	(7,5)	(7,6)	(7,7)

(a) Block-checkerboard mapping
--

Γ	1	(0,4)	(0,1)	(0,5)	(0,2)	(0,6)	(0,3)	(0,7)
L	0	(4,4)	٥	(4,5)	0	(4,6)	(4,3)	(4,7)
Γ	0	(1,4)	1	(1,5)	(1,2)	(1,6)	(1,3)	(1,7)
L	0	(5,4)	0	(5,5)	0	(5,6)	(5,3)	(5,7)
	0	(2,4)	0	(2,5)	1	(2,6)	(2,3)	(2,7)
L	0	(6,4)	0	(6,5)	0	(6,6)	(6,3)	(6,7)
l	0	(3,4)	0	(3,5)	0	(3,6)	(3,3)	(3,7)
L	0	(7,4)	0	(7,5)	0	(7,6)	(7,3)	(7,7)

(b) Cyclic-checkerboard mapping

Computational load on different processes in block and cyclic 2-D mappings of an 8 x 8 matrix onto 16 processes during the Gaussian elimination iteration corresponding to k = 3.

Parallel Gaussian Elimination: 2-D Cyclic Mapping

- The idling in the block mapping can be alleviated using a cyclic mapping.
- The maximum difference in computational load between any two processes in any iteration is that of one row and one column update.
- This contributes $\Theta(n\sqrt{p})$ to the overhead function. Since there are n iterations, the total overhead is $\Theta(n^2\sqrt{p})$.

Gaussian Elimination with Partial Pivoting

- For numerical stability, one generally uses partial pivoting.
- In the k th iteration, we select a column i (called the *pivot* column) such that A[k, i] is the largest in magnitude among all A[k, i] such that $k \le j < n$.
- The k th and the i th columns are interchanged.
- Simple to implement with row-partitioning and does not add overhead since the division step takes the same time as computing the max.
- Column-partitioning, however, requires a global reduction, adding a $\log p$ term to the overhead.
- Pivoting precludes the use of pipelining.

Gaussian Elimination with Partial Pivoting: 2-D Partitioning

- Partial pivoting restricts use of pipelining, resulting in performance loss.
- This loss can be alleviated by restricting pivoting to specific columns.
- Alternately, we can use faster algorithms for broadcast.

Solving a Triangular System: Back-Substitution

■ The upper triangular matrix U undergoes back-substitution to determine the vector x.

```
1. procedure BACK_SUBSTITUTION (U, x, y)

2. begin

3. for k := n - 1 downto 0 do /* Main loop */

4. begin

5. x[k] := y[k];

6. for i := k - 1 downto 0 do

7. y[i] := y[i] - x[k] \times U[i, k];

8. endfor;

9. end BACK_SUBSTITUTION
```

A serial algorithm for back-substitution.

Solving a Triangular System: Back-Substitution

- The algorithm performs approximately $n^2/2$ multiplications and subtractions.
- Since complexity of this part is asymptotically lower, we should optimize the data distribution for the factorization part.
- Consider a rowwise block 1-D mapping of the *n* x *n* matrix U with vector *y* distributed uniformly.
- The value of the variable solved at a step can be pipelined back.
- Each step of a pipelined implementation requires a constant amount of time for communication and $\Theta(n/p)$ time for computation.
- The parallel run time of the entire algorithm is $\Theta(n^2/p)$.

Solving a Triangular System: Back-Substitution

- If the matrix is partitioned by using 2-D partitioning on a logical mesh of $\sqrt{p} \times \sqrt{p}$ processes, and the elements of the vector are distributed along one of the columns of the process mesh, then only the \sqrt{p} processes containing the vector perform any computation.
- Using pipelining to communicate the appropriate elements of U to the process containing the corresponding elements of y for the substitution step (line 7), the algorithm can be executed in $\Theta(n^2/\sqrt{p})$ time.
- While this is not cost optimal, since this does not dominate the overall computation, the cost optimality is determined by the factorization.