

Design of Parallel Algorithms

Parallel Dense Matrix Algorithms

- Matrix-Vector Multiplication

■ Matrix-Matrix Multiplication

- Solving a System of Linear Equations

Matix Algorithms: Introduction

- Due to their regular structure, parallel computations involving matrices and vectors readily lend themselves to data-decomposition.
- Typical algorithms rely on input, output, or intermediate data decomposition.
- Most algorithms use one- and two-dimensional block, cyclic, and block-cyclic partitionings.

Matrix-Vector Multiplication

- We aim to multiply a dense $n \times n$ matrix A with an $n \times 1$ vector x to yield the n $x 1$ result vector y.
- The serial algorithm requires n^{2} multiplications and additions.
$W=n^{2}$

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- The $n \times n$ matrix is partitioned among n processors, with each processor storing complete row of the matrix.
- The $n \times 1$ vector x is distributed such that each process owns one of its elements.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

(c) Entire vector distributed to each process after the broadcast

(d) Final distribution of the matrix and the result vector y

Multiplication of an $n \times n$ matrix with an $n \times 1$ vector using rowwise block 1-D partitioning. For the one-row-per-process case, $\mathrm{p}=\mathrm{n}$.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Since each process starts with only one element of x, an all-to-all broadcast is required to distribute all the elements to all the processes.
- Process P_{i} now computes $\quad y[i]=\sum_{j=0}^{n-1}(A[i, j] \times x[j])$
- The all-to-all broadcast and the computation of $y[i]$ both take time $\Theta(n)$. Therefore, the parallel time is $\Theta(n)$.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

- Consider now the case when $p<n$ and we use block 1D partitioning.
- Each process initially stores $n=p$ complete rows of the matrix and a portion of the vector of size $n=p$.
- The all-to-all broadcast takes place among p processes and involves messages of size $n=p$.
- This is followed by $n=p$ local dot products.
- Thus, the parallel run time of this procedure is

$$
T_{P}=\overbrace{\frac{n^{2}}{p}}+\overbrace{t_{s} \log p+t_{w} n}^{\text {all-to-all }}
$$

This is cost-optimal.

Matrix-Vector Multiplication: Rowwise 1-D Partitioning

Scalability Analysis:

- We know that $T_{0}=p T_{P}-W$, therefore, we have,

$$
T_{O}=t_{s} p \log p+t_{w} n p=t_{s} p \log p+t_{w} \sqrt{W} p
$$

■ For isoefficiency, we have $W=K T_{0}$ which the second term gives:

$$
W=K t_{w} \sqrt{W} p \Rightarrow \sqrt{W}=K t_{w} p \Rightarrow W=K^{2} t_{w}^{2} p^{2}
$$

- There is also a bound on isoefficiency because of concurrency. In this case, $p<n$, therefore, $W=n^{2}=\Omega\left(p^{2}\right)$.
- Overall isoefficiency is $W=O\left(p^{2}\right)$.

Matrix-Vector Multiplication: 2-D Partitioning

- The $n \times n$ matrix is partitioned among n^{2} processors such that each processor owns a single element.
- The $n \times 1$ vector x is distributed only in the last column of n processors.

Matrix-Vector Multiplication: 2-D Partitioning

(a) Initial data distribution and communication steps to align the vector along the diagonal

(c) All-to-one reduction of partial results

(b) One-to-all broadcast of portions of the vector along process columns

(d) Final distribution of the result vector

Matrix-vector multiplication with block 2-D partitioning. For the one-element-per-process case, $\mathrm{p}=\mathrm{n}^{2}$ if the matrix size is n x n .

Matrix-Vector Multiplication: 2-D Partitioning

- We must first align the vector with the matrix appropriately.
- The first communication step for the 2-D partitioning aligns the vector x along the principal diagonal of the matrix.
- The second step copies the vector elements from each diagonal process to all the processes in the corresponding column using n simultaneous broadcasts among all processors in the column.
- Finally, the result vector is computed by performing an all-to-one reduction along the columns.

Matrix-Vector Multiplication:
 2-D Partitioning (one element per processor)

- Three basic communication operations are used in this algorithm: one-to-one communication $\Theta(1)$ to align the vector along the main diagonal, one-to-all broadcast $\Theta(\log n)$ of each vector element among the n processes of each column, and all-to-one reduction $\Theta(\log n)$ in each row.
- Each of these operations takes at most $\Theta(\log n)$ time and the parallel time is $\theta(\log n)$.
- The cost (process-time product) is $\theta\left(n^{2} \log n\right)$; hence, the algorithm is not cost-optimal.

Matrix-Vector Multiplication: 2-D Partitioning

- When using fewer than n^{2} processors, each process owns an block of the matrix ($n / \sqrt{ }$ p)×($n / \sqrt{ }$ p).
- The vector is distributed in portions of ($n / / \mathrm{p}$) elements in the last processcolumn only.
- In this case, the message sizes for the alignment, broadcast, and reduction are all ($n / \vee p$).
- The computation is a product of an $(n / V p) \times(n / V p)$ submatrix with a vector of length ($n / \sim p$).

Matrix-Vector Multiplication: 2-D Partitioning

- The first alignment step takes time

$$
t_{s}+t_{w} \frac{n}{\sqrt{p}}
$$

- The broadcast and reductions take time

$$
\left(t_{s}+t_{w} n / \sqrt{p}\right) \log \sqrt{p}
$$

- Local matrix-vector products take time

$$
t_{c} n^{2} / p
$$

- Total time is

$$
T_{P} \approx \frac{n^{2}}{p}+t_{s} \log p+t_{w} \frac{n}{\sqrt{p}} \log p
$$

Matrix-Vector Multiplication: 2-D Partitioning

- Scalability Analysis:

$$
T_{O}=p T_{P}-W=t_{s} p \log p+t_{w} \sqrt{W} \sqrt{p} \log p
$$

■ Equating T_{0} with W, term by term, for isoefficiency, we have the dominant term:

$$
W=K^{2} t_{w}^{2} p \log ^{2} p
$$

- The isoefficiency due to concurrency is $O(p)$.
- The overall isoefficiency is $\theta\left(p \log ^{2} p\right)$

Matrix-Matrix Multiplication

- Consider the problem of multiplying two $n \times n$ dense, square matrices A and B to yield the product matrix $C=A \times B$.
- The serial complexity is $O\left(n^{3}\right)$.
- We do not consider better serial algorithms (Strassen's method), although, these can be used as serial kernels in the parallel algorithms.
- A useful concept in this case is called block operations. In this view, an $n \times n$ matrix A can be regarded as a $q \times q$ array of blocks $A_{i, j}(0 \leq i, j<q)$ such that each block is an $(n / q) \times(n / q)$ submatrix.
- In this view, we perform q^{3} matrix multiplications, each involving $(n / q) \times(n / q)$ matrices.

Matrix-Matrix Multiplication

- Consider two $n \mathrm{X} n$ matrices A and B partitioned into p blocks $A_{i, j}$ and $B_{i, j}$ $(0 \leq i, j<\sqrt{p})$ of size $(n / \sqrt{p}) \times(n / \sqrt{p})$ each.
- Process $P_{i, j}$ initially stores $A_{i, j}$ and $B_{i, j}$ and computes block $C_{i, j}$ of the result matrix.
- Computing submatrix $C_{i, j}$ requires all submatrices $A_{i, k}$ and $B_{k, j}$ for $0 \leq k<\sqrt{p}$.
- Naïve Algorithm:
- All-to-all broadcast blocks of A along rows and B along columns.
- Perform local submatrix multiplication.

Matrix-Matrix Multiplication

- The two broadcasts take time $2\left(t_{s} \log \sqrt{p}+t_{w}\left(n^{2} / p\right)(\sqrt{p}-1)\right)$
- The computation requires $\sqrt{ } p$ multiplications of $(n / / p) \times\left(n / V_{p}\right)$ sized submatrices.
- The parallel run time is approximately

$$
T_{P} \cong \frac{n^{3}}{p}+t_{s} \log p+2 t_{w} \frac{n^{2}}{\sqrt{p}}
$$

- The algorithm is cost optimal and the isoefficiency is $O\left(p^{1.5}\right)$ due to bandwidth term t_{w} and concurrency.
- Major drawback of the algorithm is that it is not memory optimal.

Matrix-Matrix Multiplication: Cannon's Algorithm

- In this algorithm, we schedule the computations of the \sqrt{p} processes of the i th row such that, at any given time, each process is using a different block $A_{i, k}$.
- These blocks can be systematically rotated among the processes after every submatrix multiplication so that every process gets a fresh $A_{i, k}$ after each rotation.

Matrix-Matrix Multiplication: Cannon's Algorithm

(a) Initial alignment of A

(b) Initial aligrment of B

(c) A and B after initial alignment

(e) Submatrix locations after second shift (f) Submatrix locations after third shift

Communication steps in Cannon's algorithm on 16 processes.

Matrix-Matrix Multiplication: Cannon's Algorithm

- Align the blocks of A and B in such a way that each process multiplies its local submatrices. This is done by shifting all submatrices $A_{i, j}$ to the left (with wraparound) by i steps and all submatrices $B_{i, j}$ up (with wraparound) by j steps.
- Do the following for $\sqrt{ } p$ steps:
- Perform local block multiplication.
- Each block of A moves one step left and each block of B moves one step up (again with wraparound).
- Perform next block multiplication, add to partial result, repeat until all blocks have been multiplied.

Matrix-Matrix Multiplication: Cannon's Algorithm

- In the alignment step the two shift operations require a total of time of each processor communicating 1 block:

$$
T_{\text {align }}=2\left(t_{s}+t_{w} n^{2} / p\right)
$$

- Each of the single-step shifts in the compute-and-shift phase of the algorithm takes time.

$$
T_{\text {shiffcompute }}=t_{c} \frac{n^{3}}{p^{3 / 2}}+2\left(t_{s}+t_{w} n^{2} / p\right)
$$

- The parallel time is approximately:

$$
T_{P}=\frac{n^{3}}{p}+2 \sqrt{p} t_{s}+2 t_{w} \frac{n^{2}}{\sqrt{p}}
$$

- The cost-efficiency and isoefficiency of the algorithm are identical to the first algorithm, although with larger factors on communication time. This algorithm is memory optimal however!

Matrix-Matrix Multiplication: DNS Algorithm

- Uses a 3-D partitioning.
- Visualize the matrix multiplication algorithm as a cube . matrices A and B come in two orthogonal faces and result C comes out the other orthogonal face.
- Each internal node in the cube represents a single add-multiply operation (and thus the complexity).
- DNS algorithm partitions this cube using a 3-D block scheme.

Matrix-Matrix Multiplication: DNS Algorithm

- Assume an $n \mathrm{X} n \mathrm{X} n$ mesh of processors.
- Move the columns of A and rows of B and perform broadcast.
- Each processor computes a single add-multiply.
- This is followed by an accumulation along the C dimension.
- Since each add-multiply takes constant time and accumulation and broadcast takes $\log n$ time, the total runtime is $\log n$.
- This is not cost optimal. It can be made cost optimal by using $n / \log n$ processors along the direction of accumulation.

Matrix-Matrix Multiplication: DNS Algorithm

The communication steps in the DNS algorithm while multiplying 4×4 matrices A and B on 64 processes.

Matrix-Matrix Multiplication: DNS Algorithm

Using fewer than n^{3} processors.

- Assume that the number of processes p is equal to q^{3} for some $q<n$.
- The two matrices are partitioned into blocks of size $(n / q) \times(n / q)$.
- Each matrix can thus be regarded as a $q \times q$ two-dimensional square array of blocks.
- The algorithm follows from the previous one, except, in this case, we operate on blocks rather than on individual elements.

Matrix-Matrix Multiplication: DNS Algorithm

$$
\text { Using fewer than } n^{3} \text { processors. }
$$

- Assume running on $p=q^{3}$ procesors
- The first one-to-one communication step is performed for both A and B, and takes $t_{s}+t_{w}(n / q)^{2}$ time for each matrix.
- The two one-to-all broadcasts take $2\left(t_{s} \log q+t_{w}(n / q)^{2} \log q\right)$ time.
- The reduction takes time $t_{s} \log q+t_{w}(n / q)^{2} \log q$
- Multiplication of $(n / q) \times(n / q)$ submatrices is performed serially and takes $(n / q)^{3}$ time.
- Note that a 3-D block that is assigned to a given processor represents that matrix of a $(n / q) \times(n / q)$ sub-matrix of A and B (the third dimension represents the k loop of the sub-matrix multiply!)

DNS blocked algorithm

- For parallel running time we assemble the parts to get

$$
T_{P}=t_{s}+t_{w}(n / q)^{2}+3\left(t_{s}+t_{w}(n / q)^{2}\right) \log q+(n / q)^{3}
$$

- Recall that $p=q^{3}$ which we can substitute into the above equation to obtain

$$
T_{P}=\frac{n^{3}}{p}+\left(t_{s}+t_{w} \frac{n^{2}}{p^{2 / 3}}\right)(1+\log p)
$$

- This gives a parallel overhead function of

$$
T_{O}=\left(t_{s}+t_{w} \frac{W^{2 / 3}}{p^{2 / 3}}\right)(p+p \log p)=\Theta\left(W^{2 / 3} p^{1 / 3} \log p\right)
$$

Computing the Isoefficiency function of the blocked DNS algorithm

- Isoefficiency function is found to be $W=f\left(O\left(p(\log p)^{3}\right)\right.$ as shown below:

$$
\begin{aligned}
W & =K T_{O}(W, p) \\
W & =K W^{2 / 3} p^{1 / 3} \log p \\
W^{1 / 3} & =K p^{1 / 3} \log p \\
W & =K^{3} p(\log p)^{3}
\end{aligned}
$$

Solving a System of Linear Equations

- Consider the problem of solving linear equations of the kind:

- This is written as $A x=b$, where A is an $n \times n$ matrix with $A[i, j]=a_{i, j}, b$ is an $n \mathrm{X} l$ vector $\left[b_{0}, b_{1}, \ldots, b_{n}\right]^{\mathrm{T}}$, and x is the solution.

Solving a System of Linear Equations

Two steps in solution are: reduction to triangular form, and back-substitution. The triangular form is as:

$$
\begin{array}{rlcl}
x_{0}+u_{0,1} x_{1}+u_{0,2} x_{2}+\cdots & +u_{0, n-1} x_{n-1} & =y_{0} \\
x_{1}+u_{1,2} x_{2}+\cdots & +u_{1, n-1} x_{n-1} & =y_{1} \\
& & & \\
& & x_{n-1} & =y_{n-1}
\end{array}
$$

We write this as: $U x=y$.
A commonly used method for transforming a given matrix into an upper-triangular matrix is Gaussian Elimination.

Gaussian Elimination

```
procedure GAUSSIAN_ELIMINATION \((A, b, y)\)
begin
    for \(k:=0\) to \(n-1\) do \(\quad\) * Outer loop */
    begin
        for \(j:=k+1\) to \(n-1\) do
        \(A[k, j]:=A[k, j] / A[k, k] ; \quad{ }^{*}\) Division step */
        \(y[k]:=b[k] / A[k, k]\);
        \(A[k, k]:=1\);
        for \(i:=k+1\) to \(n-1\) do
        begin
            for \(j:=k+1\) to \(n-1\) do
            \(A[i, j]:=A[i, j]-A[i, k] \times A[k, j] ; /^{*}\) Elimination step */
            \(b[i]:=b[i]-A[i, k] \times y[k] ;\)
            \(A[i, k]:=0 ;\)
            endfor; /* Line 9*/
        endfor; /* Line 3*/
    end GAUSSIAN_ELIMINATION
```

Serial Gaussian Elimination

Gaussian Elimination

- The computation has three nested loops - in the k th iteration of the outer loop, the algorithm performs $(n-k)^{2}$ computations. Summing from $k=1$..n, we have roughly ($n^{3} / 3$) multiplications-subtractions.

A typical computation in Gaussian elimination.

Parallel Gaussian Elimination

- Assume $p=n$ with each row assigned to a processor.
- The first step of the algorithm normalizes the row. This is a serial operation and takes time $(n-k)$ in the k th iteration.
- In the second step, the normalized row is broadcast to all the processors. This takes time $\left(t_{s}+t_{w}(n-k-1)\right) \log n$
- Each processor can independently eliminate this row from its own. This requires (n -$k-1)$ multiplications and subtractions.
- The total parallel time can be computed by summing from $k=1 \ldots n-1$ as

$$
T_{P}=\frac{3}{2} n(n-1)+t_{s} n \log n+\frac{1}{2} t_{w} n(n-1) \log n .
$$

- The formulation is not cost optimal because of the t_{w} term.

Parallel Gaussian Elimination

P_{0}	1			(0.2)	(6,3)	(0,0) (0,5)	(0,0)	(0.7)
P_{1}	0		1	(1.2)	(1.3)	(1.4) (1.9)	(1.9)	
P_{2}	0		0	1	(2.3)	(2,4) (2.9)	(2.)	
P	${ }^{0}$		6	0	(3)	Q,4) (3.9	(3)	
P_{4}	0		6	0	(4,3)	(4,0) (4,5)	(1,0)	
P_{5}	0		0	0	(53)	(5,4) (5.9)	(5.9)	(8)
P_{6}	0		6	0	(6,3)	(6,4) (6.5)	(6,9)	(6,)
P_{7}	0		6	0	(7,3)	(0,0 (7,9)	(7, $)^{\text {a }}$	(7.)

(a) Computation:
(i) $A\left[k_{j}\right]=A\left[k_{j}\right] / A[k, k]$ for $k<j<n$
(ii) $A[\mathrm{k}, \mathrm{k}]:=1$
(b) Communication:

One-to-3ll brodcast of row A[k, ${ }^{*}$]
(c) Computation:
(i) $A\left[i_{i}\right]=A\left[[i, j]-A[i, k] \times A\left[k_{j}\right]\right]$
for $\mathrm{k}<\mathrm{i}<\mathrm{n}$ and $\mathrm{k}<\mathrm{j}<\mathrm{n}$
(ii) $A[i, k]:=0$ for $k<i<n$

Gaussian elimination steps during the iteration corresponding $\mathrm{k}=3$ for an 8×8 matrix partitioned rowwise among eight processes.

Parallel Gaussian Elimination: Pipelined Execution

- In the previous formulation, the $(k+1)$ st iteration starts only after all the computation and communication for the kth iteration is complete.
- In the pipelined version, there are three steps - normalization of a row, communication, and elimination. These steps are performed in an asynchronous fashion.
- A processor P_{k} waits to receive and eliminate all rows prior to k.
- Once it has done this, it forwards its own row to processor $P k+1$.

Parallel Gaussian Elimination:

 Pipelined Exprution| $0,0,0)(0,1)(0,2)(0.3)(0.0)$ |
| :---: |
| (1,8) (0,1) (1,2) (1.3) (1,4) |
| (2,8) (2.1) (2,2) (23) (2, 1) |
| (0,0) 0,1) 0,2) (3) (0,4 |
| $(4,8)(4,1)(4,2)(43)(0,4)$ |

(d)

1	(0,1) (0,2) (03) (0,4)
0	(1,1) (1,2) (1.3) (1.4)
(2,8) (2,1) 2.28$)(23)(2,4)$	

1		(0,2) (03) (0,4
${ }^{0}$	1	(1.2) (1.3) (1.4)
${ }^{0}$	0	
${ }^{\circ}$	(3,1) (3,2) (3) (3, 4,	
${ }_{0}$	(4,1) (4,2) (4,) (0,4)	

(1)

1	(0,1) (0,2) (03) (0,4,		
${ }^{\circ}$	1		(13) 0.4
0	6	1	(23) $(2,4)$
${ }_{0}$	0	。	(3) (3, 4
0	0	(4,2) (4,5) (4,4)	

(mi) Iteration $\mathrm{k}=3$ starts

(n)

(0) Iteration $\mathrm{k}=3$ ends

(p) Iteration $\mathrm{k}=4$
......- Communication for $\mathrm{k}=0,3$
\longrightarrow Communication for $k=1$
$-\rightarrow$ Communication for $k=2$Compatation for $\mathrm{k}=0,3$Compatation for $\mathrm{k}=1.4$
Compatation for $\mathrm{k}=2$
Pipelined Gaussian elimination on a 5×5 matrix partitioned withone row per process.

Parallel Gaussian Elimination: Pipelined Execution

- The total number of steps in the entire pipelined procedure is $\Theta(n)$.
- In any step, either $O(n)$ elements are communicated between directlyconnected processes, or a division step is performed on $O(n)$ elements of a row, or an elimination step is performed on $O(n)$ elements of a row.
- The parallel time is therefore $O\left(n^{2}\right)$.
- This is cost optimal.

Parallel Gaussian Elimination: Pipelined Execution

P_{0}	1 0		$(0,1)$ 1			$\begin{aligned} & \text { 8) }(0,4) \\ & \text { 8) }(1,4) \end{aligned}$	$\begin{aligned} & (0,5) \\ & (1,5) \end{aligned}$	$\begin{aligned} & (0,6) \\ & (1,6) \end{aligned}$	$\begin{aligned} & (0,7) \\ & (1,7) \end{aligned}$
	0		0	1	$(2,3)$) $(2,4)$	$(2,5)$	$(2,6)$	$(2,7)$
P_{1}	0		0						
P_{2}	0		0 0		$\begin{aligned} & \hline(4,3) \\ & (5,3) \end{aligned}$	$\begin{aligned} & \text { 3) }(4,4) \\ & \text { 3) }(5,4) \end{aligned}$	$\begin{aligned} & (4,5) \\ & v(5,5) \end{aligned}$	$\begin{aligned} & (4,6) \\ & (5,6) \end{aligned}$	$\begin{aligned} & (4,7) \\ & \text { f) }(5,7) \end{aligned}$
P_{3}	0 0		0		$\begin{aligned} & (6,3) \\ & (7,3) \end{aligned}$	$\begin{aligned} & \text { 3) }(6,4) \\ & \text { 3) }(7,4) \end{aligned}$	$\begin{aligned} & (6,5) \\ & v(7,5) \end{aligned}$	$\begin{aligned} & (6,6) \\ & (7,6) \end{aligned}$	$\begin{aligned} & (6,7) \\ & 5(7,7) \end{aligned}$

The communication in the Gaussian elimination iteration corresponding to $\mathrm{k}=3$ for an 8×8 matrix distributed among four processes using block 1-D partitioning.

Parallel Gaussian Elimination: Block 1D with $p<n$

- The above algorithm can be easily adapted to the case when $p<n$.
- In the k th iteration, a processor with all rows belonging to the active part of the matrix performs ($n-k-1$) / $n p$ multiplications and subtractions.
- In the pipelined version, for $n>p$, computation dominates communication.
- The parallel time is given by: $2(n / p) \Sigma_{k=0}^{n-1}(n-k-1)$ or approximately, n^{3} / p.
- While the algorithm is cost optimal, the cost of the parallel algorithm is higher than the sequential run time by a factor of $3 / 2$.

Parallel Gaussian Elimination:
 Block 1D with $p<n$

P_{0}	0						$\begin{aligned} & (0,5) \\ & (1,5) \end{aligned}$	$\begin{aligned} & (0,6) \\ & (1,6) \end{aligned}$	$\begin{aligned} & \hline(0,7) \\ & (1,7) \end{aligned}$
	0			1	$(2,3)$		$(2,5)$	$(2,6)$	$(2,7)$
P_{1}	0	0	0	0	$(3,3)$	$(3,4)$	(3,5)	$(3,6)$	$(3,7)$
	0		0	0	$(4,3)$	$(4,4)$	$(4,5)$	$(4,6)$	$(4,7)$
P_{2}	0		0	0	$(5,3)$	$(5,4)$	$(5,5)$	$(5,6)$	$(5,7)$
			0	0	$(6,3)$	$(6,4)$	$(6,5)$	$(6,6)$	$(6,7)$
P_{3}	0			0				$(7,6)$	$(7,7)$

(a) Block 1-D mapping

(b) Cyclic 1-D mapping

Computation load on different processes in block and cyclic 1-D partitioning of an 8×8 matrix on four processes during the Gaussian elimination iteration corresponding to $\mathrm{k}=3$.

Parallel Gaussian Elimination: Block 1D with $p<n$

- The load imbalance problem can be alleviated by using a cyclic mapping.
- In this case, other than processing of the last p rows, there is no load imbalance.
- This corresponds to a cumulative load imbalance overhead of $O\left(n^{2} p\right)$ (instead of $O\left(n^{3}\right)$ in the previous case).

Parallel Gaussian Elimination: 2-D Mapping

- Assume an $n \mathrm{X} n$ matrix A mapped onto an $n \mathrm{X} n$ mesh of processors.
- Each update of the partial matrix can be thought of as a scaled rank-one update (scaling by the pivot element).
- In the first step, the pivot is broadcast to the row of processors.
- In the second step, each processor locally updates its value. For this it needs the corresponding value from the pivot row, and the scaling value from its own row.
- This requires two broadcasts, each of which takes $\log n$ time.
- This results in a non-cost-optimal algorithm.

Parallel Gaussian Elimination:

2-D Mapping

(a) Rowwise broodcast of $\mathrm{A}[\mathrm{i}, \mathrm{k}]$ for $(\mathrm{k}-1)<\mathrm{i}<\mathrm{n}$

1	(0.1)	(0,2)	(0,3)	(0,0)	(as)	(0,0)	(0,7)
0	1	(1,2)	(1,3)	(1.0)	(1,S	(1,6	(1)
0	0	1	(2.)	(2)	(2)		
0	${ }^{\circ}$	0	1				
0	${ }^{\circ}$	0					
0	0	0					
0	0	0					
0	0	0					

(c) Colnmnwise broadcast of $\mathrm{A}[\mathrm{k}, \mathrm{j}]$ for $k<j<n$

(b) $A[k, j]:=A[k, j] / A[k, k]$ for $k<j<n$

1	(0,)	(0,2)	(0)	(0, 1	(0)	(0,6)	(0.7)
${ }^{\circ}$	1	(1,2)	(1)3	(1,4	(1,5)	(1,0)	(1.7)
0	。	1	(23)	(2, 4	(2,5)	(2)	(2)
-	。	0	t	(s)	Q, 5	(36)	
0	-	0	(43)	(4,4)	(4,	(4)	(4)
0	-	0	(53)	(S.4.	(5,5	(5)	
0	-	0	(6)3	(6,0)	(6,5)	(6,	(6,
0	-	0	(3)	(7,4)	(,)	(3)	

(d) $A[i, \mathrm{j}]:=A[\mathrm{i}, \mathrm{j}]-\mathrm{A}[\mathrm{i} \mathrm{k}] \times \mathrm{A}[\mathrm{k}, \mathrm{j}]$ for $\mathrm{k}<\mathrm{i}<\mathrm{n}$ and $\mathrm{k}<\mathrm{j}<\mathrm{n}$

Various steps in the Gaussian elimination iteration corresponding to $\mathrm{k}=3$ for an 8×8 matrix on 64 processes arranged in a logical twodimensional mesh.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- We pipeline along two dimensions. First, the pivot value is pipelined along the row. Then the scaled pivot row is pipelined down.
- Processor $P_{i, j}$ (not on the pivot row) performs the elimination step $A[i, j]$:= $A[i, j]]-A[i, k] A[k, j]$ as soon as $A[i, k]$ and $A[k, j]$ are available.
- The computation and communication for each iteration moves through the mesh from top-left to bottom-right as a "front."
- After the front corresponding to a certain iteration passes through a process, the process is free to perform subsequent iterations.
- Multiple fronts that correspond to different iterations are active simultaneously.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining

- If each step (division, elimination, or communication) is assumed to take constant time, the front moves a single step in this time. The front takes $\Theta(n)$ time to reach $P_{n-1, n-1}$.
- Once the front has progressed past a diagonal processor, the next front can be initiated. In this way, the last front passes the bottom-right corner of the matrix $\Theta(n)$ steps after the first one.
- The parallel time is therefore $O(n)$, which is cost-optimal.

2-D Mapping with Pipelining

(e)

(i)

(m) Iteration $\mathrm{k}=2$ starts

$$
\begin{aligned}
& \cdots \rightarrow \text { Communication for } \mathrm{k}=0 \\
& \rightarrow \text { Communication for } \mathrm{k}=1 \\
& \rightarrow \text { Commmication for } \mathrm{k}=2
\end{aligned}
$$

(c)

(g) Iteration $\mathrm{k}=1$ starts

(k)

(0)

(d)

(h)

(I)Computation for $\mathrm{k}=0$
\square Computation for $\mathrm{k}=1$
Computation for $\mathrm{k}=2$

Pipelined Gaussian elimination for a 5×5 matrix with 25 processors.

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and $p<n$

- In this case, a processor containing a completely active part of the matrix performs n^{2} / p multiplications and subtractions, anchcpmamunicates words along its row and its column.
- The computation dominates communication for $n \gg p$.
- The total parallel run time of this algorithm is $\left(2 n^{2} / p\right) \times n$, since there are n iterations. This is equal to $2 n^{3} / p$.
- This is three times the serial operation count!

Parallel Gaussian Elimination: 2-D Mapping with Pipelining and $p<n$

(a) Rowwise broadcast of $\mathrm{A}[\mathrm{i}, \mathrm{k}]$ for $\mathrm{i}=\mathrm{k}$ to $(\mathrm{n}-1)$

(b) Columnwise broadcast of $\mathrm{A}[\mathrm{k}, \mathrm{j}]$ for $\mathrm{j}=(\mathrm{k}+1)$ to $(\mathrm{n}-1)$

The communication steps in the Gaussian elimination iteration corresponding to $\mathrm{k}=3$ for an 8×8 matrix on 16 processes of a twodimensional mesh.

Parallel Gaussian Elimination:
 2-D Mapping with Pipelining and $p<n$

1	$\begin{gathered} (0,1) \\ 1 \end{gathered}$			$(0,4)$ (0.5) (1.4) (1.5)	(0.6) (0.7)
0	-		(2)	(2.4) (2.5)	(2.0) (2, 7
0	-	0	(3)	(3,4) (3,5)	(1) (8)
	-		3)	(4,4) (4,5)	(40)
0	-		(53)	(5,4) (5.5)	(50) (5, S_{7}
6	-		33	(6,4) (6,5)	(6.0) (6.7)
0	-		(73)	(7,4) (3,5)	(7,0) (7,7)

(a) Block-checkerboard mapping

	(0,4)	(0,1) (0,5)		(0,2)	(0.8)	(0,3) (5,7$)$
0	(4,4)		$(4,5)$	8	(4,8)	(4,3) (4,7)
0	(1.4)		(1.5)	(1.2)	(1.8)	(1,3) (1,7)
0	(5,4)	6	(5,5)	6	(58)	(5,3) (5,7)
0	24)	0	(2,5)	1	(2,8)	(2,3) (2,7)
0	(6.4)	0	(6,5)	\bigcirc	(6.8)	(6,3) (6,7)
0	(3,4)	0	(3,5)	\bigcirc	(3, 8)	(3,3) (3,7)
0	(2,4)	6	(1,5)	0	(7, 8)	(7,3) $(7,7)$

(b) Cyclic-checkerbourd mapping

Computational load on different processes in block and cyclic 2-D mappings of an 8×8 matrix onto 16 processes during the Gaussian elimination iteration corresponding to $\mathrm{k}=3$.

Parallel Gaussian Elimination: 2-D Cyclic Mapping

- The idling in the block mapping can be alleviated using a cyclic mapping.
- The maximum difference in computational load between any two processes in any iteration is that of one row and one column update.
- This contributes $\Theta(n \sqrt{p})$ to the overhead function. Since there are n iterations, the total overhead is $\Theta\left(n^{2} \sqrt{p}\right)$.

Gaussian Elimination with Partial Pivoting

- For numerical stability, one generally uses partial pivoting.
- In the k th iteration, we select a column i (called the pivot column) such that $A[k, i]$ is the largest in magnitude among all $A[k, i]$ such that $k \leq j<n$.
- The k th and the i th columns are interchanged.
- Simple to implement with row-partitioning and does not add overhead since the division step takes the same time as computing the max.
- Column-partitioning, however, requires a global reduction, adding a $\log p$ term to the overhead.
- Pivoting precludes the use of pipelining.

Gaussian Elimination with Partial Pivoting: 2-D Partitioning

- Partial pivoting restricts use of pipelining, resulting in performance loss.
- This loss can be alleviated by restricting pivoting to specific columns.
- Alternately, we can use faster algorithms for broadcast.

Solving a Triangular System: Back-Substitution

- The upper triangular matrix U undergoes back-substitution to determine the vector x.

1. procedure BACK_SUBSTITUTION (U, x, y)
2.
3.
4.
5.
6.
7.
8.
9.

procedure BACK_SUBSTITUTION (U, x, y)
begin
for $k:=n-1$ downto 0 do /* Main loop */
begin
$x[k]:=y[k] ;$
for $i:=k-1$ downto 0 do
$y[i]:=y[i]-x[k] \times U[i, k] ;$
endfor;
end BACK_SUBSTITUTION

A serial algorithm for back-substitution.

Solving a Triangular System: Back-Substitution

■ The algorithm performs approximately $n^{2} / 2$ multiplications and subtractions.

- Since complexity of this part is asymptotically lower, we should optimize the data distribution for the factorization part.
- Consider a rowwise block 1-D mapping of the $n \times n$ matrix U with vector y distributed uniformly.
- The value of the variable solved at a step can be pipelined back.
- Each step of a pipelined implementation requires a constant amount of time for communication and $\Theta(n / p)$ time for computation.
- The parallel run time of the entire algorithm is $\Theta\left(n^{2} / p\right)$.

Solving a Triangular System: Back-Substitution

- If the matrix is partitioned by using 2-D partitioning on a logical mesh of $\sqrt{p} \times \sqrt{p}$ processes, and the elements of the vector are distributed along one of the columns of the process mesh, then only the \sqrt{p} processes containing the vector perform any computation.
- Using pipelining to communicate the appropriate elements of U to the process containing the corresponding elements of y for the substitution step (line 7), the algorithm can be executed in $\Theta\left(n^{2} / \sqrt{p}\right)$ time.
- While this is not cost optimal, since this does not dominate the overall computation, the cost optimality is determined by the factorization.

