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Design of Parallel Algorithms 

Parallel Sorting Algorithms 



+ Topic Overview  

n  Issues in Sorting on Parallel Computers  

n  Sorting Networks  

n  Bubble Sort and its Variants  

n  Quicksort  

n  Bucket and Sample Sort  

n  Other Sorting Algorithms  



+ Sorting: Overview  

n  One of the most commonly used and well-studied kernels.  

n  Sorting can be comparison-based or noncomparison-based.  

n  The fundamental operation of comparison-based sorting is compare-exchange.  

n  The lower bound on any comparison-based sort of n numbers is Θ(nlog n)  .  

n  We focus here on comparison-based sorting algorithms.  



+ Sorting: Basics  

 What is a parallel sorted sequence? Where are the input and output lists stored?  

 

n  We assume that the input and output lists are distributed.  

n  The sorted list is partitioned with the property that each partitioned list is sorted and each 
element in processor Pi's list is less than that in Pj's list if i < j.  



+ Sorting: Parallel Compare Exchange Operation 

A parallel compare-exchange operation. Processes Pi and Pj send their elements to each 
other. Process Pi keeps min{ai,aj}, and  Pj keeps max{ai, aj}.  



+ Sorting: Basics  

What is the parallel counterpart to a sequential comparator?  

 
n  If each processor has one element, the compare exchange operation stores the smaller 

element at the processor with smaller id. This can be done in ts + tw time.  
n  If we have more than one element per processor, we call this operation a compare split. 

Assume each of two processors have n/p elements.  
n  After the compare-split operation, the smaller n/p elements are at processor Pi and the 

larger n/p elements at Pj, where i < j.  
n  The time for a compare-split operation is (ts+ twn/p), assuming that the two partial lists 

were initially sorted.  



+ Sorting: Parallel Compare Split Operation  

A compare-split operation. Each process sends its block of size   n/p to the 
other process. Each process merges the received block with its own block 
and retains only the appropriate half of the merged block. In this example, 
process Pi retains the smaller elements and process Pi retains the larger 

elements.  



+ Sorting Networks  

n Networks of comparators designed specifically for sorting.  

n A comparator is a device with two inputs x and y and two outputs x' and y'. For 
an increasing comparator,  x' = min{x,y}  and y' = min{x,y}; and vice-versa.  

n The speed of the network is proportional to its depth.  



+ Sorting Networks: Comparators  
 

A schematic representation of comparators: (a) an increasing comparator, and (b) a 
decreasing comparator. 



+ Sorting Networks  

A typical sorting network. Every sorting network is made up of a series of 
columns, and each column contains a number of comparators connected 

in parallel.  



+ Sorting Networks: Bitonic Sort  
 

n  A bitonic sorting network sorts n elements in Θ(log2n)  time.  

n  A bitonic sequence has two tones - increasing and decreasing, or vice versa. Any cyclic 
rotation of such networks is also considered bitonic.  

n  〈1,2,4,7,6,0〉  is a bitonic sequence, because it first increases and then decreases. 
〈8,9,2,1,0,4〉 is another bitonic sequence, because it is a cyclic shift of 〈0,4,8,9,2,1〉.  

n  The kernel of the network is the rearrangement of a bitonic sequence into a sorted 
sequence.  



+ Sorting Networks: Bitonic Sort  

n  Let s = 〈a0,a1,…,an-1〉 be a bitonic sequence such that    a0 ≤ a1 ≤ ··· ≤ an/2-1 and an/2 ≥ 
an/2+1 ≥ ··· ≥ an-1.  

 

n  Consider the following subsequences of s:  

  s1 = 〈min{a0,an/2},min{a1,an/2+1},…,min{an/2-1,an-1}〉 

  s2 = 〈max{a0,an/2},max{a1,an/2+1},…,max{an/2-1,an-1}〉  

n  Note that s1 and s2 are both bitonic and each element of s1 is less than every element in 
s2.  

n  We can apply the procedure recursively on s1 and s2 to get the sorted sequence. 



+ Sorting Networks: Bitonic Sort  
 

Merging a   16-element bitonic sequence through a series of log 16 bitonic splits.  



+ Sorting Networks: Bitonic Sort  

n  We can easily build a sorting network to implement this bitonic merge algorithm.  

n  Such a network is called a bitonic merging network.  

n  The network contains log n columns. Each column contains n/2 comparators and 
performs one step of the bitonic merge.  

n  We denote a bitonic merging network with n inputs by +BM[n].  

n  Replacing the + comparators by - comparators results in a decreasing output 
sequence; such a network is denoted by -BM[n].  



+ Sorting Networks: Bitonic Sort  

A bitonic merging network for n = 16. The input wires are numbered 0,1,…, n - 1, and the 
binary representation of these numbers is shown. Each column of comparators is drawn 

separately; the entire figure represents a ⊕BM[16] bitonic merging network. The 
network takes a bitonic sequence and outputs it in sorted order.  



+ Sorting Networks: Bitonic Sort  

How do we sort an unsorted sequence using a bitonic merge? 

  

n  We must first build a single bitonic sequence from the given sequence.  

n  A sequence of length 2 is a bitonic sequence.  

n  A bitonic sequence of length 4 can be built by sorting the first two elements using +BM[2] 
and next two, using -BM[2].  

n  This process can be repeated recursively to generate larger bitonic sequences.  



+ Sorting Networks: Bitonic Sort  

A schematic representation of a network that converts an input sequence into 
a bitonic sequence. In this example, ⊕BM[k] and ӨBM[k] denote bitonic 

merging networks of input size k   that use ⊕ and Ө comparators, 
respectively. The last merging network (⊕BM[16]) sorts the input. In this 

example, n = 16.  



+ Sorting Networks: Bitonic Sort  

The comparator network that transforms an input sequence of 16 unordered numbers 
into a bitonic sequence.  



+ Sorting Networks: Bitonic Sort  

n  The depth of the network is Θ(log2 n).  

n  Each stage of the network contains n/2 comparators. A serial implementation of the 
network would have complexity Θ(nlog2 n). 



+ Mapping Bitonic Sort to Hypercubes  

n  Consider the case of one item per processor. The question becomes one of how the wires 
in the bitonic network should be mapped to the hypercube interconnect.  

n  Note from our earlier examples that the compare-exchange operation is performed 
between two wires only if their labels differ in exactly one bit!  

n  This implies a direct mapping of wires to processors. All communication is nearest 
neighbor!  



+ Mapping Bitonic Sort to Hypercubes  

Communication during the last stage of bitonic sort. Each wire is mapped to a 
hypercube process; each connection represents a compare-exchange between 

processes.  



+ Mapping Bitonic Sort to Hypercubes  

Communication characteristics of bitonic sort on a hypercube. During each 
stage of the algorithm, processes communicate along the dimensions 

shown.  



+ Mapping Bitonic Sort to Hypercubes  

Parallel formulation of bitonic sort on a hypercube with n = 2d   processes.  



+ Mapping Bitonic Sort to Hypercubes  

n  During each step of the algorithm, every process performs a compare-
exchange operation (single nearest neighbor communication of one word).  

n  Since each step takes Θ(1) time, the parallel time is  

     Tp = Θ(log2n)         

n  This algorithm is cost optimal w.r.t. its serial counterpart, but not w.r.t. the best 
sorting algorithm.  



+ Mapping Bitonic Sort to Meshes  

n  The connectivity of a mesh is lower than that of a hypercube, so we must 
expect some overhead in this mapping.  

n  Consider the row-major shuffled mapping of wires to processors.  



+ Mapping Bitonic Sort to Meshes  

Different ways of mapping the input wires of the bitonic sorting network to a mesh of 
processes: (a) row-major mapping, (b) row-major snakelike mapping, and (c) row-

major shuffled mapping.  



+ Mapping Bitonic Sort to Meshes  

The last stage of the bitonic sort algorithm for n = 16  on a mesh, using the row-major 
shuffled mapping. During each step, process pairs compare-exchange their 

elements. Arrows indicate the pairs of processes that perform compare-exchange 
operations.  



+ Mapping Bitonic Sort to Meshes  

n  In the row-major shuffled mapping, wires that differ at the ith least-significant bit are 
mapped onto mesh processes that are 2⎣(i-1)/2⎦  communication links away.  

n  The total amount of communication performed by each process 
is                                   .   The total computation performed by each process is 
Θ(log2n).  

n  The parallel runtime is:  

   

 

n  This is not cost optimal w.r.t bitonic sort algorithm!  
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+ Block of Elements Per Processor  

n  The parallel bitonic sort algorithm is not cost optimal with respect to the 
fastest serial algorithm.  To find a cost optimal algorithm, consider changing 
algorithm to support n/p elements per processor as follows: 
n  Each process is assigned a block of n/p elements.  

n  The first step is a local sort of the local block.  

n  Each subsequent compare-exchange operation is replaced by a compare-split 
operation.  

n  We can effectively view the bitonic network as having (1 + log p)(log p)/2 steps.  



+ Block of Elements Per Processor: Hypercube  

n  Initially the processes sort their n/p elements (using merge sort) in time             
Θ((n/p)log(n/p)) and then perform   Θ(log2p) compare-split steps.  

n  The parallel run time of this formulation is  

   

 

n  Overhead function driven by comparison and communication terms and can be 
found to be 
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+ Blocks of elements per processor 
Scalability analysis 
n  The isoefficiency function for the bitonic sort can be found: 

n logn
W

=Θ n log2 p( )
KTO W ,p( )  

logn =Θ log2 p( )
n =Θ 2log p( )

log p( )
n =Θ plog p( )

n logn =Θ plog p log 2 p( )
W = f Θ plog p log2 p( )( )



+ Bubble Sort and its Variants  

The sequential bubble sort algorithm compares and exchanges adjacent 
elements in the sequence to be sorted:  

 

 

 

 

 

Sequential bubble sort algorithm. 

 

 



+ Bubble Sort and its Variants  

n  The complexity of bubble sort is Θ(n2).  

n  Bubble sort is difficult to parallelize since the algorithm has no concurrency.  

n  A simple variant, though, uncovers the concurrency.  



+ Odd-Even Transposition  
 

Sequential odd-even transposition sort algorithm.  



+ Odd-Even Transposition  

Sorting n = 8 elements, using the odd-even transposition sort algorithm. 
During each phase, n = 8 elements are compared.  



+ Odd-Even Transposition  

n  After n phases of odd-even exchanges, the sequence is sorted.  

n  Each phase of the algorithm (either odd or even) requires Θ(n) 
comparisons.  

n  Serial complexity is Θ(n2).  



+ Parallel Odd-Even Transposition  

n  Consider the one item per processor case.  

n  There are n iterations, in each iteration, each processor does one compare-
exchange.  

n  The parallel run time of this formulation is Θ(n).  

n  This is cost optimal with respect to the base serial algorithm but not the 
optimal one.  



+ Parallel Odd-Even Transposition  

Parallel formulation of odd-even transposition.  



+ Parallel Odd-Even Transposition  

n  Consider a block of n/p elements per processor.  

n  The first step is a local sort.  

n  In each subsequent step, the compare exchange operation is replaced by the 
compare split operation.  

n  The parallel run time of the formulation is 



+ Parallel Odd-Even Transposition  

n  The parallel formulation is cost-optimal for p = O(log n).  

n  The isoefficiency function of this parallel formulation      is Θ(p 2p).  



+ Quicksort  

n  Quicksort is one of the most common sorting algorithms for sequential 
computers because of its simplicity, low overhead, and optimal average 
complexity.  

n  Quicksort selects one of the entries in the sequence to be the pivot and 
divides the sequence into two - one with all elements less than the pivot and 
other greater.  

n  The process is recursively applied to each of the sublists.  



+ Quicksort  

The sequential quicksort algorithm.  



+ Quicksort  

Example of the quicksort algorithm sorting a sequence of size  n = 8.  



+ Quicksort  

n  The performance of quicksort depends critically on the quality of the pivot.  

n  In the best case, the pivot divides the list in such a way that the larger of the 
two lists does not have more than   αn elements (for some constant α).  

n  In this case, the complexity of quicksort is O(nlog n).  



+ Parallelizing Quicksort  

n  Lets start with recursive decomposition - the list is partitioned serially and 
each of the subproblems is handled by a different processor.  

n  The time for this algorithm is lower-bounded by Ω(n)!  

n  Can we parallelize the partitioning step - in particular, if we can use n 
processors to partition a list of length n around a pivot in O(1) time, we have 
a winner.  

n  This is difficult to do on real machines, though.  



+ Parallelizing Quicksort: PRAM Formulation  

n  We assume a CRCW (concurrent read, concurrent write) PRAM with concurrent 
writes resulting in an arbitrary write succeeding.  

n  The formulation works by creating pools of processors. Every processor is assigned 
to the same pool initially and has one element.  

n  Each processor attempts to write its element to a common location (for the pool).  

n  Each processor tries to read back the location. If the value read back is greater than 
the processor's value, it assigns itself to the `left' pool, else, it assigns itself to the 
`right' pool.  

n  Each pool performs this operation recursively.  

n  Note that the algorithm generates a tree of pivots. The depth of the tree is the 
expected parallel runtime. The average value is O(log n).  



+ Parallelizing Quicksort: PRAM Formulation  

A binary tree generated by the execution of the quicksort algorithm. Each level of the 
tree represents a different array-partitioning iteration. If pivot selection is optimal, 

then the height of the tree is Θ(log n), which is also the number of iterations.  



+ Parallelizing Quicksort: PRAM Formulation  

The execution of the PRAM algorithm on the array shown in (a).  



+ Parallelizing Quicksort: Shared Address Space Formulation  

n  Consider a list of size n equally divided across p processors.  
n  A pivot is selected by one of the processors and made known to all 

processors.  
n  Each processor partitions its list into two, say Li and Ui, based on the 

selected pivot.  
n  All of the Li lists are merged and all of the Ui lists are merged separately.  
n  The set of processors is partitioned into two (in proportion of the size of lists 

L and U). The process is recursively applied to each of the lists.  



+ Shared Address Space Formulation  



+ Parallelizing Quicksort: Shared Address Space Formulation  

n  The only thing we have not described is the global reorganization (merging) of local 
lists to form L and U.  

n  The problem is one of determining the right location for each element in the merged 
list.  

n  Each processor computes the number of elements locally less than and greater than 
pivot.  

n  It computes two sum-scans to determine the starting location for its elements in the 
merged L and U lists.  

n  Once it knows the starting locations, it can write its elements safely.  



+ Parallelizing Quicksort: Shared Address Space Formulation  

Efficient global rearrangement of the array.  



+ Parallelizing Quicksort: Shared Address Space Formulation  

n  The parallel time depends on the split and merge time, and the quality of the 
pivot.  

n  The latter is an issue independent of parallelism, so we focus on the first 
aspect, assuming ideal pivot selection.  

n  The algorithm executes in four steps: (i) determine and broadcast the pivot; 
(ii) locally rearrange the array assigned to each process; (iii) determine the 
locations in the globally rearranged array that the local elements will go to; 
and (iv) perform the global rearrangement.  

n  The first step takes time Θ(log p), the second, Θ(n/p) , the third, Θ(log p) , and 
the fourth, Θ(n/p).  

n  The overall complexity of splitting an n-element array is Θ(n/p) + Θ(log p). 



+ Parallelizing Quicksort: Shared Address Space Formulation  

n  The process recurses until there are p lists, at which point, the lists are sorted 
locally.  

n  Therefore, the total parallel time is:  

 

 
 

 

n  The corresponding isoefficiency is Θ(plog2p) due to broadcast and scan 
operations.  
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+ 
Parallelizing Quicksort: Message Passing Formulation  

n A simple message passing formulation is based on the recursive halving of the 
machine.  

n Assume that each processor in the lower half of a p processor ensemble is 
paired with a corresponding processor in the upper half.  

n A designated processor selects and broadcasts the pivot.  

n Each processor splits its local list into two lists, one less (Li), and other greater 
(Ui) than the pivot.  

n A processor in the low half of the machine sends its list Ui to the paired processor 
in the other half. The paired processor sends its  list Li.  

n  It is easy to see that after this step, all elements less than the pivot are in the low 
half of the machine and all elements greater than the pivot are in the high half.  



+ 
Parallelizing Quicksort: Message Passing Formulation  

n  The above process is recursed until each processor has its own local list, which is 
sorted locally.  

n  The time for a single reorganization is Θ(log p) for broadcasting the pivot element,   
Θ(n/p) for splitting the locally assigned portion of the array, Θ(n/p) for exchange and 
local reorganization.  

n  We note that this time is identical to that of the corresponding shared address space 
formulation.  

n  It is important to remember that the reorganization of elements is a bandwidth sensitive 
operation.  



+ Bucket and Sample Sort  

n  In Bucket sort, the range [a,b] of input numbers is divided into m equal sized 
intervals, called buckets.  

n  Each element is placed in its appropriate bucket.  

n  If the numbers are uniformly divided in the range, the buckets can be expected to 
have roughly identical number of elements.  

n  Elements in the buckets are locally sorted.  

n  The run time of this algorithm is Θ(nlog(n/m)).  



+ Parallel Bucket Sort  

n  Parallelizing bucket sort is relatively simple. We can select m = p.  
n  In this case, each processor has a range of values it is responsible for.  
n  Each processor runs through its local list and assigns each of its elements to the 

appropriate processor.  
n  The elements are sent to the destination processors using a single all-to-all 

personalized communication.  
n  Each processor sorts all the elements it receives.  



+ Parallel Bucket and Sample Sort  

n  The critical aspect of the above algorithm is one of assigning ranges to processors. 
This is done by suitable splitter selection.  

n  The splitter selection method divides the n elements into  m blocks of size n/m each, 
and sorts each block by using quicksort.  

n  From each sorted block it chooses m – 1 evenly spaced elements.  
n  The m(m – 1) elements selected from all the blocks represent the sample used to 

determine the buckets.  
n  This scheme guarantees that the number of elements ending up in each bucket is 

less than 2n/m.  



+ Parallel Bucket and Sample Sort  

An example of the execution of sample sort on an array with 24 elements on three 
processes.  



+ Parallel Bucket and Sample Sort  

n  The splitter selection scheme can itself be parallelized.  

n  Each processor generates the p – 1 local splitters in parallel.  

n  All processors share their splitters using a single all-to-all broadcast 
operation.  

n  Each processor sorts the p(p – 1) elements it receives and selects p – 1 
uniformly spaces splitters from them.  



+ Parallel Bucket and Sample Sort: Analysis  

n The internal sort of n/p elements requires time Θ((n/p)log(n/p)), and the 
selection of p – 1 sample elements requires time Θ(p).  

n The time for an all-to-all broadcast is Θ(p2), the time to internally sort the 
p(p – 1) sample elements is Θ(p2log p), and selecting p – 1 evenly spaced 
splitters takes time Θ(p).  

n Each process can insert these p – 1splitters in its local sorted block of size 
n/p by performing p – 1 binary searches in time Θ(plog(n/p)).  

n The time for reorganization of the elements is O(n/p).  



+ Parallel Bucket and Sample Sort: Analysis  

n  The total time is given by:  

 

 

 

 

n  The isoefficiency of the formulation is Θ(p3log p).  
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