
1 Introduction to Parallel Computing

1.1 Goals of Parallel vs Distributed Computing

Distributed computing, commonly represented by distributed services such as the
world wide web, is one form of computational paradigms that is similar but slightly
different from parallel computing. While the primary goal of parallel computing is
to reduce the turn-around time for computing problems, distributed computing has
a stronger emphasis on managing distributed resources, security, and reliability in
the face of distributed component failures. However, this course is on parallel
computing, and so performance plays a key role, while the issues of primary
importance to distributed computing remain important but subservient to the
fundamental goal of algorithm performance and efficiency.

1.2 An Introduction to Performance Metrics for Parallel

Computing

The most fundamental metric of performance in parallel algorithms is speedup,
or the ratio of sequential (p = 1) execution time to parallel processing execution
time,

S =
t1
tp

. (1)

If we assume that we have a parallel processor that is composed of a collection of
serial processors capable of processing a stream of instructions at rate k instructions
per second then we can execute W instructions on a single serial processor in
t1 = W

k
seconds. Similarly, if we assume that the instruction stream is independent

of temporal ordering constraints, then we can divide this instruction stream evenly
between p serial processors to obtain the same result tp = W

kp
seconds. This gives

us our theoretical ideal speedup (also called ‘linear speedup’) as

Sideal =
t1
tp

=
W/k

W/(kp)
= p. (2)

In theory this is an upper bound on parallel speedup since greater speedups
would violate our assumption that each processor instruction rate is given by k.
In practice, it is possible to exceed this speedup under circumstances where the
processing rate, k, is a function of the character of the instruction stream, such as in
cache based architectures. Generally these ‘super-linear’ speedups can be avoided
if careful choices are made in the selection of the serial algorithm timings, t1. For
example, if the instruction stream of the serial algorithm is blocked into segments

1

to make better use of cache, then the resulting serial timing measurements would
improve resulting in less optimistic speedup measurements.

The problem of choosing the serial time in speedup calculations is made more
difficult by the common fact that algorithms with the best potential for parallel
execution often are not the best sequential algorithms. Thus, it is common for
the time required for a given parallel algorithm executing on one processor to be
larger than the best serial algorithm time. Thus, a honest accounting of speedup
in parallel algorithms should use the best sequential running time. Using this
observation we can define an actual speedup given by

Sactual =
tbest
tp

=
t1
tp

tbest
t1

= SEa, (3)

where Ea is an efficiency factor due to algorithm selection that is bounded such
that 0 ≤ Ea ≤ 1.

Parallel Efficiency, Ep, provides a measure of the performance loss associated
with parallel execution. Parallel efficiency is a measure of the fraction of ideal
speedup actually obtained as given by

Ep =
S

Sideal

=
S

p
. (4)

Now the actual speedup can be expressed in terms of the ideal speedup and the
efficiencies of the parallel algorithm as in

Sactual = Sideal × Ep × Ea, (5)

where the overall efficiency of the algorithm, E = Ea × Ep, is simply composed of
contributions from the choice of algorithm, Ea, and intrinsic parallel (in)efficiencies,
Ep.

It is important to note that speedup, a measure of performance, and efficiency,
a measure of utilization, often play contradictory roles: for example, maximum
efficiency is obtained for the best sequential algorithm, which simultaneously
achieves the poor performance of unity speedup. On the other hand, once efficiency
falls below 1

p
we can do no better than unity speedup. In the end, parallel algorithm

design represents a careful balance between performance (speedup) and utilization
(efficiency).

2

2 Bag of Tasks

In parallel algorithms we would like to transform a single instruction stream into
multiple instruction streams executing on independent processing units. Although
this would seem straightforward at first glance, the dependence of instructions
on results of previous computations hinder the ability to distribute instructions to
processors. Parallel algorithms are distinguished from their sequential counterparts
in that they include some form of description that either describes or facilitates this
distribution. However, there is no single approach to describing or even conceiving
of parallel algorithms, instead there are a broad class of perspectives or design
patterns that work well to solve particular classes of problems, but fail in the
general case. At the core of these parallel algorithm design patterns are different
strategies for partitioning the instruction stream (and associated resources) for
allocation to processors. The first and perhaps simplest of these patterns is bag-
of-tasks.

The bag-of-tasks pattern is applicable in cases where algorithms can be
decomposed into many independent sub-programs. For example, applications
involving brute-force searches such as involved in the SETI project or code breaking
exercises. Bag of tasks is also useful for parametric studies or for fitness function
evaluation in genetic algorithms. A common theme in all of these applications
is that a dominant portion of the work can be decomposed into tasks that have
execution times significantly greater than the the time required to transfer task
data.

The general architecture of a bag-of-tasks approach consists of having a central
task server as illustrated in figure 1. This server manages a queue of tasks which
are distributed to processors as they become available. In addition to serving tasks
to client processors, the server is responsible for integrating the various task results
into the final solution. We will call the number of instructions that the server must
execute to create tasks and assemble the results Ws.

Tasks are independent, meaning they do not communicate with other tasks.
As such, a task can be described by initial data that is transfered to the client
processor. When a task completes it transmits its results back to the server
processor for final processing. For a task labeled k, we have an initial data packet
of size Ik, an amount of work, Wk, representing the amount of time required to
complete task k, and finally a result data packet of size Rk as illustrated in figure 2.

2.1 Analysis of the Bag-Of-Tasks Pattern

What is the single processor time for the bag-of-tasks algorithm? For a single
processor the server could queue all tasks to itself, resulting in an execution time

3

Server/ Task Master

Clients/ Worker Processors

Task
Queue

p-1 processors

Figure 1: Control model for centralized bag of tasks

Input (I)

Task k:
Performs W instructions
of work before generating

result

Result(R)k k
k

Figure 2: A Task is an independent computational subroutine.

4

given by

t1 = Ws +
∑

k∈Tasks

Wk, (6)

where time is measured in instruction cycles.
If we assume that the number of tasks is much greater than the number

of processors and that the communication times between server and client are
negligible then the execution time on p processors can be given by

tp = Ws +

(

∑

k∈Tasks

Wk

)

/p. (7)

Note that we can rewrite this equation if we observe that we can write a sequential
fraction as the fraction of the sequential work (assigned to the server) to the total
overall work as in

f =
Ws

Ws +
∑

k∈Tasks Wk

. (8)

Then the parallel execution time is given by

tp = (f + (1 − f)/p) × t1. (9)

This simple model of performance evaluation based on the sequential fraction of a
program is called Amdahl’s Law. The most fundamental result of Amdahl’s law is
a relationship between an upper bound on speedup given by the sequential fraction.
It can be observed that in the limit as p grows arbitrarily large, tp approaches f×t1
bounding speedup to

S ≤ 1/f. (10)

For example, if 10% of the work of a problem is performed by the server, it
is impossible to achieve a speedup greater than 10. Thus this illustrates the
fundamental limitation of the bag-of-tasks pattern: it is susceptible to server
bottlenecks, and can only be effective if the work the server does (including sending
and receiving messages) is only a very small fraction of the total amount of work.

2.1.1 Including Communication Overheads

The previous analysis assumed that information was exchanged between parallel
and serial tasks instantaneously. This assumption is obviously optimistic, but
the effects of communication delay can be accounted for with a rather simple
modification to the model. For the serial tasks, we can assume that there will be
some upper bound on the time required to communicate information to and from
these tasks given by Cs. Likewise, there will be a communication time required by

5

the parallel task k given by Ck. We can then rewrite equation (7) to account for
these extra parallel overheads to arrive at the equation:

tp = Ws + Cs +

∑

k∈Tasks (Wk + Ck)

p
. (11)

We note, that communication costs are not incurred by the original sequential
implementation. Thus we can show that the upper bound on performance when
including communication overhead is found by defining a new serial fraction that
includes the communication time of the sequential processes as given by:

f =
Ws + Cs

Ws +
∑

k∈Tasks Wk

. (12)

Thus, in a more practical setting, even if we can reduce the serial task time
to a very small fraction, the communication with that serial task will limit the
maximum speedup that the program can achieve. For very large scale bag-of-task
computations, communication with the server task becomes the major bottleneck.

6

