

Design of Parallel Algorithms

Bulk Synchronous Parallel
A Bridging Model of Parallel Computation

Need for a Bridging Model

■ The RAM model has been reasonable successful for serial programming

- The model provides a framework for describing the implementation of serial algorithms
- The model provides reasonably accurate predictions for algorithm running times
- A bridging model is a model that can be used to design algorithms and also make reliable performance predictions
- Historically, there has not been a satisfactory bridging model for parallel computations. Either the model is good at describing algorithms (PRAM) or is good at describing performance (network model) but not both.
- Leslie Valiant proposed the BSP model as a potential bridging model
- Basically an improvement on the PRAM model to incorporate more practical aspects of parallel hardware costs

What is the Bulk Synchronous Parallel (BSP) model?

- Processors are coupled to local memories
- Communications happen in synchronized bulk operations
- Data updates for the communications are inconsistent until the completion of a synchronization step
- All of the communications that occur at the synchronization step are modeled in aggregate rather than tracking individual message transit times
- For data exchange, a one-sided communication model is advocated
- E.g. data transfer through put or get operations that are executed by only one side of the exchange (as opposed to 2 sided where send-receive pairs must be matched up.)
- Similar to a coarse grained PRAM model, but exposes more realistic communication costs
- BSP provides realistic performance predictions

Bulk Synchronous Parallel Programming

- Parallel Programs are developed through a series of super-steps
- Each super-step contains:
- Computations that utilize local processor memory only
- A communication pattern between processors called an h-relation
- A barrier step whereby all (or subsets) of processors are synchronized
- The communication pattern is not fully realized until the barrier step is complete
- The h-relation:
- This describes communication pattern according to a single characteristic of the communication identified by the parameter called h
- h is defined as the larger of the number of incoming our outgoing interactions that occur during the communication step
- Time for communication is assumed to be $m g h+l$ where m is the message size, g is an empirically determined bulk bandwidth factor, and l is an empirically determined time for barrier synchronization

Architecture of a BSP Super-Step

- The super-step begins with local computations
- In some models, virtual processors are used to give the run-time system flexibility to balance load and communication
- Local computations are followed by a global communication step
- The global communications are completed with a barrier synchronization
- Since every super-step starts after the barrier, computations are time synchronized at the beginning of each
 super-step

Cost Model for BSP

- The network is defined by two bulk parameters
- The parameter \boldsymbol{g} represents the average per-processor rate of word transmission through the network. It is an analog to t_{w} in network models.
- The parameter l is the time required to complete the barrier synchronization and represents the bulk latency of the network. It is an analog to \boldsymbol{t}_{s} in network models.
- The cost of a super-step can be computed using the following formula
- $t_{\text {step }}=\max \left(\boldsymbol{w}_{i}\right)+\boldsymbol{m g} \max \left(h_{i}\right)+\boldsymbol{l}$
- $\boldsymbol{w}_{\boldsymbol{i}}$ is the time for local work on processor \boldsymbol{i}
- $\boldsymbol{h}_{\boldsymbol{i}}$ is the number of incoming or outgoing messages for processor \boldsymbol{i}
- \boldsymbol{m} is the message size
$\square g$ is the machine specific BSP bandwidth parameter
- l is the machine specific BSP latency parameter

Example of BSP implementations of broadcast (central scheme)

- Since there is no global shared memory in the BSP model, we need to broadcast a value before it can be used by all processors
- There are several ways to implement broadcast algorithms, a central scheme would perform the broadcast by using one super-step with one processor communicating with all other processors. This we call the central scheme.
- In this approach the \boldsymbol{h} relation will be \boldsymbol{p} - $\boldsymbol{1}$ since one processor will need to send a message to all other processors.
- The cost for this scheme is $\boldsymbol{t}_{\text {central }}=g h+\boldsymbol{l}=g(p-1)+\boldsymbol{l}$

Example: BSP broadcast using binary tree scheme

- Broadcast using a tree approach where the algorithm proceeds in $\boldsymbol{\operatorname { l o g } \boldsymbol { p }}$ steps
- Each step, every processor that presently has broadcast data sends to a processor that has no data
- Processors that have broadcast data doubles in each step
- Since each processor either sends or receives one or no data each step, the \boldsymbol{h} relation is always $\boldsymbol{h}=\boldsymbol{1}$
- The time for each step of this algorithm is $t_{\text {step }}=g+l$
- The time for the overall broadcast algorithm that includes all $\log p$ steps
- $t_{\text {tree }}=(g+l) \log p$

Optimizing broadcasts under BSP

- The central algorithm time:
- $t_{\text {central }}=g(p-1)+\boldsymbol{l}$
- The tree algorithm time:
- $t_{\text {tree }}=(g+l) \log p$
- If $l \gg g$ then for sufficiently small p, then $t_{\text {central }}<t_{\text {trree }}$
- Can we optimize broadcast for specific system where we know g and l ?
- There is no reason that we are constrained only double in each step, We could triple, quadruple, or more each step.
- Combining the central and tree algorithm can yield an algorithm that can be optimized for architecture parameters

Cost of the hybrid broadcast algorithm

- Each step of the algorithm, processors that have data will communicate with $\boldsymbol{k}-\mathbf{1}$ other processors, therefore $\boldsymbol{h}=\boldsymbol{k}-\mathbf{1}$ in each step
- After $\log _{k} \boldsymbol{p}$ steps, all processors will have shared the broadcast data
- Therefore the cost of each step of the hybrid algorithm is $(\boldsymbol{k}-\mathbf{1}) \boldsymbol{g}$ and so the cost of the hybrid algorithm is $t_{\text {hybrid }}=((k-1) g+l) \log _{k} p$
- To optimize set \boldsymbol{k} such that $\boldsymbol{t}_{\text {hybrid }}{ }^{\prime}(\boldsymbol{k})=\mathbf{0}$, from this we find optimal \boldsymbol{k} set by
- $l / g=1+k *(\ln (k)-1)$
- For a general message of m words, the broadcast algorithm can be shown to be $\boldsymbol{t}_{\text {hybrid }}=(\boldsymbol{m}(k-1) \boldsymbol{g}+\boldsymbol{l}) \log _{k} \boldsymbol{p}$, and the optimal setting for \boldsymbol{k} becomes
- $V /(m g)=1+k^{*}(\ln (k)-1)$

Practical application of BSP

- Several parallel programming environments have been developed based on the BSP model
- The second generation of the MPI standard, MPI-2, has an extended its API to include a one-sided communication structure that can emulate the BSP model (e.g. it is one-sided + barrier synchronization)

■ Even when using two sided communications, parallel programs are often developed as a sequence of super-steps. Using the BSP model, these can be analyzed using a bulk view of communications.

- The BSP model assumes that network is homogenous, but architectural changes, such as multi-core architectures, present challenges
- Currently model is being extended to support hierarchical computing structures

Discussion Topic

- Implementation of summing \boldsymbol{n} numbers using BSP model
- Serial Implementation:

```
int sum = 0 ;
for(int i=0;i<n;++i)
    sum = sum + a[i] ;
```


Dependency graph for serial summation

Problems with parallelizing the serial code

- The dependency graph does not allow one to perform subsequent operations.
- It is not possible, as the algorithm is formulated, to execute additions in parallel
- We note that the addition operation is associative
- NOTE! This is not true for floating point addition!
- Although floating point addition is not associative, it is approximately associative
- Accurately summing large numbers of floating point values, particularly in parallel, is a deep problem
- For the moment we will assume floating point is associative as well, but note that in general an optimizing compiler cannot assume associativity of floating point operations!
- We can exploit associativity to increase parallelism

How does associativity help with parallelization?

- We can recast the problem from a linear structure to a tree:
- $(((a 0+a 1)+a 2)+a 3)=((a 0+a 1)+(a 2+a 3))$
- Now $a 0+a 1$ and $a 2+a 3$ can be performed concurrently!

What are the costs of this transformation

- Using operator associativity we are able to reveal additional parallelism, however there are costs
- For the serial summing algorithm only one register is needed to store intermediate results (we used the sum variable)
■ For the tree based summing algorithm we will need to store $n / 2$ intermediate results for the first concurrent step
- For summing where $2 \boldsymbol{n} \gg \boldsymbol{p}$, maximizing concurrency may introduce new problems:
- Storing extra intermediate results increase memory requirements of algorithm and may overwhelm available registers
- Assigning operations to processors (graph partitioning) is needed to parallelize the summation. Some mappings will introduce significantly more inter-processor communication than others

Mapping Operators to Processors
Round Robin Allocation

BSP model for round robin allocation of the tree

- Since there is communication for each level of the tree, there will be $\log \boldsymbol{n}$ super-steps in the algorithm
- For level \boldsymbol{i} in the tree, the algorithm will perform $\max (\boldsymbol{n} /(2 \boldsymbol{i p}), 1)$ operations on at least one processor.
- For level \boldsymbol{i} in the tree, the algorithm will utilize an \boldsymbol{h} relation where $\boldsymbol{h}=$ $\max (n /(2 i p), 2)$
- Therefore the running time to sum n numbers on p processors using the BSP model is

$$
t_{\text {sum }}=\sum_{i=1}^{\log n}\left\{\left\lceil\frac{n}{2 i p}\right\rceil t_{c}+\left\lceil\frac{n}{4 i p}\right\rceil 2 g+l\right\} \cong \frac{n}{p}\left(t_{c}+g\right)+l \log n
$$

Mapping Operators to Processors

 Communication Minimizing Allocation

BSP model for optimized allocation sum

- Notice that only the last $\log \boldsymbol{p}$ levels of the tree will require communication between processors, therefore there will be only $\log \boldsymbol{p}$ super-steps
- The first step will require $n / p-1$ operations per processor, and the remaining steps will only require 1 operation
- During these final $\log p$ steps, at most a processor either receives or send one piece of information, and so $\boldsymbol{h}=1$ for the h-relation
- From this the BSP model running time can be derived:

$$
t_{\text {sum }}=\left(\frac{n}{p}-1\right) t_{c}+\sum_{i=1}^{\log p}\left\{t_{c}+g+l\right\}=\left(\frac{n}{p}-1\right) t_{c}+\left(t_{c}+g+l\right) \log p
$$

Comments on BSP analysis

- Obviously, in the BSP model, different allocations of work to processors can have radically different running times even though the work is equally balanced.
- For a PRAM model, both allocations would have had the same cost which is unrealistic.
- The cost structure of the BSP algorithms favors algorithms that have greater locality
- Even if we do not explicitly use a BSP model, we typically think of our algorithm going through a sequence of steps even if the implementation never explicitly enforces a barrier to get all processors to a unified state. Therefore the BSP model closely matches how we typically think about practical parallel programs.

Q\&A

