
Loci : A Tutorial

May 31, 2019

Contents

1 An Introduction to Loci 1

2 Basic Concepts 3

2.1 Notation used in this document . 3

2.2 Compiling Loci Programs . 3

2.3 Loci Initialization . 3

2.4 Entities, Sets, and Sequences . 4

2.5 Loci Containers . 11

2.6 Loci Relations . 12

2.7 Databases within Loci . 13

2.8 Loci Helper Classes . 14

2.9 The options list class . 17

3 A Simple Example 21

3.1 A Finite Volume Solution . 22

3.2 On Problem Specification . 24

3.3 On Specification of Process . 24

3.4 On Interpreting the Problem Specification . 25

3.5 Creating the Fact Database . 26

3.6 Creating the rule database . 28

3.6.1 Specifying User Tunable Inputs . 29

3.6.2 Basic Rule Specification . 30

3.6.3 Boundary Conditions and Constraints 31

3

3.6.4 Specifying Iterating Algorithms . 31

3.6.5 Next Step: Global Reductions . 33

3.6.6 The Loci Generated Schedule . 34

3.6.7 Local Reductions: An Alternative . 36

3.6.8 Getting Sophisticated: Parametric Rules 37

3.6.9 Iterations and Parametric Rules . 39

4 A Three Dimensional Solver 43

4.1 Using the Loci finite-volume module . 44

4.1.1 Setting boundary conditions . 46

4.1.2 Creating matrix data-structures . 47

4.2 Computing the residual function . 47

4.3 Assembling the matrix . 49

4.3.1 And now the assembly . 51

4.4 Performing the time integration . 54

4.5 Closing the equations . 55

4.6 Creating plot files . 56

4.7 Running the solver . 58

5 Using storeVec and storeMat 59

6 Debugging Hints 61

A Makefile Example 63

B The fvm Module Services 65

B.1 Grid Metrics . 65

B.2 Spatial Gradients . 65

B.3 Face Extrapolations . 65

B.4 Nodal Interpolations . 66

B.5 Linear System Solvers . 66

B.6 Basic Norms . 66

C Datatypes 67

C.1 Introduction . 67

C.2 Classification of Datatypes . 67

C.3 Predefined Datatypes in Loci . 68

C.4 Creating your own compound datatypes . 69

C.5 Creating User Defined Datatype . 70

C.6 Inner Details about Compound Datatype . 73

C.6.1 Creating compound datatype with only atomic datatypes 73

C.6.2 Creating compound datatype with arrays 74

C.6.3 Creating compound datatype with nested compound datatypes 75

C.7 Array Datatype . 76

Chapter 1

An Introduction to Loci

Loci is a both a C++ library and a programming framework specifically designed for developing
computational simulations of physical fields, such as computational fluid dynamics. One ad-
vantage the framework provides is automatic parallelization. Once an application is described
within the Loci framework, the application can be executed in parallel without change, even
though the description within the framework included no explicit parallel directives. A par-
ticular advantage of the programming framework is that it provides a formal framework for
the development of simulation knowledge-bases using logic-relational abstractions. While the
approach will probably be alien to most who begin to use it, the programming model is ex-
tremely powerful and worth the patience required to adjust to a new way of thinking about
programming.

Several major components comprise the Loci framework and these include facilities for managing
sets of entities, containers that can associate values with entities, a database for managing user
provided facts, a database for managing user provided rules, and finally, a query system that
can generate programs that satisfy specific user requests. Most of these facilities are provided
as a C++ library. In addition to this library, Loci provides a preprocessor program that
translates high level descriptions into C++ code. The main purpose of this preprocessor is
to automate the more mundane aspects of the C++ interface and is not actually needed to
develop Loci programs. This tutorial will mainly focus on using the loci preprocessor. Loci
programs are provided with files using the .loci suffix to indicate these are files that contain
Loci preprocessor directives.

1

2

Chapter 2

Basic Concepts

2.1 Notation used in this document

In this document we use the typewriter font to distinguish actual Loci programming keywords,
classes, and data-structures.

2.2 Compiling Loci Programs

The most direct way to compile Loci programs is to use the Makefile template provided in this
tutorial. It is usually as simple as including the Loci.conf file that comes as part of your
Loci installation. See appendix A for an example makefile or refer to example Makefiles in the
tutorial directory.

2.3 Loci Initialization

Before any of the main Loci functionality can be used (that is the components that follow this
section), Loci must be initialized. Loci has an initialize function that must be called before
executing Loci functionality and a finalize method that must be called just before exiting
the program. Note, that the include file #include <Loci.h> includes all commonly used
components of the Loci framework, including definitions of the initialization routines. For
example, see below:

3

#include <Loci.h>

int main(int argc, char *argv[]) {

// Initialize Loci

Loci::Init(&argc, &argv) ;

// ...

// Loci Program

// ...

// Before exiting, call finalize to let Loci clean up.

Loci::Finalize() ;

return 0 ;

}

2.4 Entities, Sets, and Sequences

Probably the most fundamental concept of Loci is that of entities. In Loci, computations are
represented by associating values with entities. Although entities can be considered in rather
abstract terms, in Loci we often will often interchange the meaning of entity with the integer
identifier that is used to label a given entity. Thus we may talk of entity 1 when we are really
referring to the entity labeled 1. Note, that while the entity itself is immutable, its label may
change in the course of executing a Loci program, and in particular when Loci schedules parallel
programs. Generally the user is unaware of this fact, but it can become important in a few
cases that will be mentioned in later examples.

As important as the concept of entity is the concept of entity collections. Generally, it is useful
to consider groups of entities that have similar attributes. In Loci we have two provided types
for representing sets of entities: 1) the interval and 2) the entitySet. For example, if we wish
to represent the entities labeled from 1 to 100 we would use the Loci type interval(1,100).
On the other hand, the entitySet can be used to represent arbitrary collections of entities.
Once we have described a collection of entities using the entitySet class we can also create
new sets of entities using unions, intersections, and other useful set operations.

The entitySet class provides true set semantics. That is, ordering of insertion is not preserved
and there is no duplication. Either an entity is in the set or it is not. If we need to preserve the
order of entities for looping or other control then we use the sequence class. The sequence

class provides operations for concatenation and reversal and can be thought of as a list of entity
labels. It should be noted that users generally don’t create sequences in Loci, but rather the
scheduler generates sequence of entities for computations. However, if there is ever a need
to keep track of a particular ordering of entities, then sequences are the data-structure that
accomplishes this task.

The following program segment (included with the tutorial programs) provides examples of
how to create and use sets and sequence of entities in Loci.

4

// Example program illustrating how to manipulate Entity, entitySet,

// and sequence data structures in Loci

// Every Loci program includes the Loci header file.

#include <Loci.h>

// includes for standard C++ functions

#include <iostream>

using std::cout ;

using std::endl ;

#include <vector>

using std::vector ;

int main(int argc,char *argv[])

{

Loci::Init(&argc,&argv) ;

//

// The Entity class

//

// An Entity is labeled by an integer.

// The collections of entities discussed below are represented by

// collections of integers.

Entity e10 = Entity(10) ; // First, the entity labeled by integer 10

cout << "e10 = " << e10 << endl ;

//

// The interval (A collection of consecutively labeled entities)

//

// For example, onedigit is an interval of entity labels consisting of

// only one decimal digit.

interval onedigit = interval(0,9) ;

cout << "onedigit = " << "[0,9]" << endl ;

//

// Class entitySet provides facilities for general sets of entities.

//

// Initialization

// An entitySet can be initialized to an interval.

entitySet A = onedigit ;

entitySet B = interval(14,100) ;

entitySet C = interval(5,15) ;

entitySet F = interval(10,20) ;

cout << "A = " << A << endl ;

cout << "B = " << B << endl ;

cout << "C = " << C << endl ;

cout << "F = " << F << endl ;

5

//

// For efficiency, an entitySet is stored as an ordered set;

// more precisely, as an ordered set of ordered intervals.

// The class for an ordered set of ordered intervals is

// intervalSet. Lower-level methods and operators take intervalSet

// and interval arguments.

//

// Adjunction

//

// We can also add an individual entity to any existing entitySet using the

// += operator, for example we can include the entity e10 in set B:

B += e10 ;

// A = ([0,9])

// B = ([10,10][14,100])

// C = ([5,15])

cout << "A = " << A << endl ;

cout << "B = " << B << endl ;

cout << "C = " << C << endl ;

cout << "F = " << F << endl ;

///

// num_intervals

///

// The num_intervals() method returns the number of intervals in the

// internal representation of an entitySet as an intervalSet.

cout << "B = " << B << endl ;

// B.num_intervals() = 2

cout << "B.num_intervals() = " << B.num_intervals() << endl ;

//

// Neither order nor duplication matters to an entitySet.

// For example

entitySet E = B + C ;

// E = B union C = ([5,100])

// [gives the set ([5,100]) without duplicating 14 and 15]

cout << "E = B union C = " << E << endl ;

//

// Distinguished constants

//

// EMPTY is a distinguished constant for the empty set.

cout << "EMPTY = " << EMPTY << endl ;

// UNIVERSE_MAX and UNIVERSE_MIN are distinguished constants for the

// largest and smallest integers that may be used to label entities.

cout << "UNIVERSE_MAX = " << Loci::UNIVERSE_MAX << endl ;

cout << "UNIVERSE_MIN = " << Loci::UNIVERSE_MIN << endl ;

6

// Another useful derived constant is ~EMPTY or not EMPTY, the ’~’ operator

// provides the set complement with respect to the universal set, therefore

// ~EMPTY is the universal set (Set of all possible entities).

cout << "Universal Set = " << ~EMPTY << endl ;

//

// Set membership

//

// Method inSet tests whether an entity is an element of an

// entitySet.

// The argument to inSet is the integer label of the entity.

cout << "A.inSet(9) = " ;

if (A.inSet(9))

cout << "TRUE." ;

cout << endl ;

cout << "A.inSet(10) = " ;

if (! A.inSet(10))

cout << "FALSE." ;

cout << endl ;

//

// Set operations

//

// entitySet supports union, intersection, relative complement,

// and complement relative

// to the set of permitted identifiers.

//

// For example, entitySet D becomes the union of A and B

// That is D = ([0-9],[14-100])

entitySet D = A + B ;

// D = ([0,10][14,100])

cout << "D = " << D << endl ;

// A & C gives the intersection of A and C (the interval [5-9])

cout << "A intersect C = " << (A & C) << endl ;

// A - C gives the set difference (A take away C) (the interval [0-4])

cout << "relative complement of A in C = " << (A - C) << endl ;

cout << "A intersect (B union F) = " << (A & (B + F)) << endl ;

cout << "A union (B intersect F) = " << (A + (B & F)) << endl ;

//

// Explicit membership list

// We can also create an entitySet from an arbitrary list

// of entity identifiers.

// For example,

int values[] = {10,15,12,1,14,16,17} ;

entitySet vset = create_entitySet(values,values+7) ;

// vset = ([1,1][10,10][12,12][14,17])

cout << "vset = " << vset << endl ;

7

//

// Creating an entitySet from a vector of integers.

// create_entitySet works with std::vector and begin() and end().

// (See a standard C++ book for more details on using vector<> and other

// STL containers.)

vector<int> vec ;

for(int i=10;i>0;--i)

vec.push_back(i) ;

entitySet vecset = create_entitySet(vec.begin(),vec.end()) ;

// vecset = ([1,10])

cout << "vecset = " <<vecset << endl ;

//

// Iteration over an entitySet

// We can also iterate (loop) over an entitySet in a fashion similar to

// how we iterate over standard C++ containers. For example, to iterate

// over all of the entities in vset we would write a loop as follows.

// First we create an iterator ei for entity sets.

entitySet::const_iterator ei ;

// Then we use the iterator to loop over a given entitySet using the

// begin() and end() methods. For example to loop over the entities

// contained in vset we write:

cout << "looping over vset:" ;

for(ei = vset.begin(); ei != vset.end(); ++ei)

cout << " " << *ei ;

cout << endl ;

// above outputs:

// looping over vset: 1 10 12 14 15 16 17

//

// Min, Max, size, set membership

// Other useful methods include Min() and Max() which can be used to find

// the largest and smallest integer labels of entities contained in a given

// entitySet. For example, vset.Max() == 17 and vset.Min() == 1

// vset.Min() == 1, vset.Max() == 17

cout << "vset.Min() = " << vset.Min() << endl ;

cout << "vset.Max() = " << vset.Max() << endl ;

// Similarly, we can check the number of entities contained within an

// entitySet by using the size() method. For example

// vset.size() == 7

cout << "vset contains " << vset.size() << " entities" << endl ;

// We can also check to see if a particular entity label is in a

// entitySet using the inSet() method. For example

if(A.inSet(5))

cout << "entity labeled 5 is in entitySet A" << endl ;

8

//

// Equal, less_than, greater_than, Union (interval),

// Union (entitySet), Intersection (interval),

// Intersection (entitySet), [absolute] Complement,

// Print, Input

//

// The entitySet.Equal method tests whether the sets are equal.

if (A.Equal((A & C) + (A - C)))

cout << "A = ((A & C) + (A - C))." << endl ;

else

cout << "A != ((A & C) + (A - C))." << endl ;

// The entitySet.less_than and greater_than methods

// provide a linear ordering of entitySets.

// The linear ordering is lexical.

if (A.less_than (A & C))

cout << "A&C <= A." << endl ;

if (A.less_than (A))

cout << "A <= A." << endl ;

entitySet G = A - C ;

if (G.greater_than (A))

cout << "A >= A - C." << endl ;

// Methods for union and intersection, for intervals and for

// intervalSets. (Remember that an entitySet is currently

// implemented as an intervalSet.)

// Note that these methods modify the object to which they belong.

cout << "G = " << G << "." << endl ;

G.Union (interval(13,32)) ;

cout << "G Union [13,32] = " << G << "." << endl ;

cout << "G = " << G << "." << endl ;

G.Union (D) ;

cout << "G Union D = " << G << "." << endl ;

cout << "G = " << G << "." << endl ;

G.Intersection (interval(13,32)) ;

cout << "G Intersection [13,32] = " << G << "." << endl ;

cout << "G = " << G << "." << endl ;

G.Intersection (D) ;

cout << "G Intersection D = " << G << "." << endl ;

cout << "G = " << G << "." << endl ;

// Method for absolute complement of an entitySet.

// Note that the complement replaces the given set.

// G = ([14,32]).

G.Complement() ;

9

// G = ([#,13][33,#]).

// The first occurrence of "#" stands for Loci::UNIVERSE_MIN;

// the second occurrence of "#" stands for Loci::UNIVERSE_MAX.

cout << "Complement of G = " << G << endl ;

cout << "G = " << G << endl ;

//

// Sequences

//

// Sequences provide a way of storing ordered lists of entities.

// Usually, users don’t need to worry about creating sequences

// directly in Loci, but instead Loci creates sequences to describe

// the order in which calculations will be carried out. However,

// for completeness we will give some examples here of how to create

// sequences, and of how to iterate over sequences.

// We can create an arbitrary sequence from a list of integers

// in a fashion similar to the create_entitySet function. For

// example:

int listvals[] = {10,15,12,1,14,16,17} ;

sequence vseq = create_sequence(listvals,listvals+7) ;

// vseq = ([10,10][15,15][12,12][1,1][14,14][16,17])

cout << "vseq = " << vseq << endl ;

// Note that we can also create a sequence from an entitySet, however

// in this case the sequence will contain the contents of the entitySet

// in increasing order. For example

sequence Aseq = A ;

// Aseq = ([0-9])

cout << "Aseq = " << Aseq << endl ;

// Also we can append to sequences, for example:

sequence Cseq = Aseq + vseq;

// Cseq = ([0,10][15,15][12,12][1,1][14,14][16,17])

cout << "Cseq = " << Cseq << endl ;

// Similarly we can reverse the order of a sequence using the Reverse()

// method. For example

Cseq.Reverse() ;

// Cseq = ([17,16][14,14][1,1][12,12][15,15][10,0])

cout << "reversed Cseq = " << Cseq << endl ;

Loci::Finalize() ;

return 0 ;

}

10

2.5 Loci Containers

In Loci, containers are entity based. That is, a container provides an association between
entities and values. There are two basic types of containers: stores and parameters. Stores are
used to associate values with entities, while parameters are used to associate a value with a
sent of entities. For example, in a simulation each of the nodes of a mesh will have a position
vector, and this will be represented in Loci using a store container. However, the time-step of
a simulation is a single value that is shared by all of the simulation entities and this will be
represented using a parameter in Loci. The store is a templated container that can be used
to contain arbitrary types. For example:

// We create a store of floats

store<float> x ;

// We create a store of float vectors, this is OK also

store<std::vector<float> > particles ;

Once we create the store container we can use the allocate() method to allocate values over
some set of entities. For example, to allocate the above containers over 100 entities we would
use code such as:

// allocate stores x and particles

entitySet alloc_set = interval(1,100) ;

x.allocate(alloc_set) ;

particles.allocate(alloc_set) ;

After allocating the container, we can access the values of the container using the array operator.
In this sense a store looks like an array with array bounds that are general sets. For example,
if we want to initialize the contents of our containers we might use code that iterates over the
allocated set such as the following:

// initialize the container to the value zero

entitySet::const_iterator ei ;

for(ei = alloc_set.begin(); ei != alloc_set.end(); ++ei) {

x[*ei] = 0 ;

particles[*ei].push_back(0) ; // Calling vector method push_back()

}

Note, we can also query the domain, or defining set of entities, for any container by using the
domain() method. For example

// write out all of store x to cout

entitySet xdom = x.domain() ;

for(ei = xdom.begin(); ei != xdom.end(); ++ei)

cout << "x["<<*ei<<"]=" << x[*ei] << endl ;

For parameters Loci provides the param templated class. This class can also be used to hold
arbitrary types. It associates a given value with a collection of entities. By default this collection

11

of entities is the universal set, but there are methods for limiting this to any subset of entities.
We create a param similar to the store type with code such as:

// Create the timestep

param<float> timestep ;

We then can assign a value to the parameter using the dereferencing * operator. For example:

// Set the timestep to 1ms

*timestep = 1e-3 ;

Similarly we can assign a value for a subset of entities (such as a boundary entities) using the
parameters facility as well. By default the param associates a value with all possible entities,
but this association can be changed using the set entitySet() member function. For example:

param<real> Twall ; // Create wall temperature

Twall = 300 ;

// Constraint Twall to only apply to boundary entities (as given)

entitySet wallBoundary = interval(1000,1500) ;

Twall.set_entitySet(wallBoundary) ;

2.6 Loci Relations

In addition to containers, Loci provides ways of describing relationships between entities. The
simplest of these relationships is the constraint. The constraint simply identifies a grouping of
entities and is used to assign attributes to entities. For example, a boundary condition may
be specified by placing those entities in the boundary in a boundary constraint. For example,
suppose entities labeled 1, 2, and 3 are at an inflow boundary, we might construct such a
structure by creating a constraint and assigning these entities to the constraint. For example:

// set inflow constraint

constraint inflow ;

*inflow = entitySet(interval(1,3)) ;

Alternatively, constraints might be used to enable and disable some feature in the solver. In
this setting a constraint may either contain the empty set, or may contain all possible entities.
For example, we might use a constraint to select between having viscous terms or not using the
following type of setup:

constraint viscous ;

*viscous = EMPTY ; // default to not empty

if(mu_set) // If viscosity set, then enable viscous terms

*viscous = ~EMPTY ; // Constraint set to contain all entities

12

Note that in this setup we use the tilde to complement the EMPTY set to achieve the result of
identifying every entity. This set will contain all entities not in the empty set (e.g. everything).

Constraints can identify a group of entities are related, however it cannot provide a relationship
from one entity to another (e.g. how do faces relate to cells, what nodes make up a face, etc).
We use a Map container to describe these types of relationships. The Map is used to relate any
given entity with another. The map is analogous to a store that contains entities, and as
such can be allocated, and assigned values similar to a generalized array much like the store

container. For example, if we wanted to create a Map for all entities to the left of an entity in
a number line we might write code such as:

entitySet nodes = interval(0,10) ; // A number line from 0 to 10

entitySet left = (nodes >> 1) & nodes ; // Shift set to get nodes that

// have a left side

// Create Maping from current node to the node to the left

Map leftNode ;

leftNode.allocate(left) ; // Allocate over all entities that have a left side

// Assign left node by looping over left nodes and nodes at the same time

entitySet::const_iterator ni = nodes.begin() ;

for(entitySet::const_iterator li=left.begin();li!=left.end();++li,++ni)

leftNode[*li] = *ni ; // node *ni is to the left of node *li

Loci also includes other types of map containers such as mapVec and multiMap which provide
mechanisms for having multiple entity associations. They will be discussed later in the tutorial
as we get to more advanced topics.

2.7 Databases within Loci

One of the facilities that Loci provides is the management of fact and rule databases. The fact
database provides a repository for the containers described earlier. Once a container is put in
the fact database, it can be retrieved at a later time by its assigned name. For example, if we
wanted to store the leftNode map computed in the previous section into a Loci fact database
we would use the create fact() method. For example:

fact_db facts ; // Create the fact database

// Insert leftNode into the fact database

facts.create_fact("leftNode",leftNode) ;

The fact can later be retrieved from the fact database using the get fact() method. For
example, we can pass the fact database into a function and then use it to get a copy of the
leftNode map with code such as:

void worker(fact_db &facts) {

Map leftNode ; // Create Map container

leftNode = facts.get_fact("leftNode") ;

// ... code using leftNode follows

13

}

In addition to the fact database, Loci provides a facility for storing rules that describe computa-
tions that can generate new facts. We will describe rules more in the following section. Usually
the user doesn’t directly manipulate the rule database, but rather tells Loci when to install
rules into the rule database that the has been identified by the Loci framework. In general,
the user creates the rule database and fills it with rules that were registered with the system
automatically before main() executes. As in the following example:

rule_db rdb ; // create the rule database called rdb

rdb.add_rules(global_rule_list) ; // Add all registered rules to the database

Both the fact database and the rule database are fundamental to programming using the Loci

framework. The fact database describes what you know about a problem, the rule database
describes what you can derive. Both of these components are used to make Loci queries using
the Loci::makeQuery command. For example to query for the computed temperature one
would implement code such as:

// Query Loci for fact derived fact ’temperature’

if(!Loci::makeQuery(rdb,facts,"temperature")) {

cerr << "query failed!" << endl ;

}

In most Loci programs, the user queries for the generic variable “solution” which just indicates
that final solution to the problem. For most time dependent problems, the most interesting
information is the intermediate values obtained in the time evolution, not the final value.

2.8 Loci Helper Classes

Loci also provides a few helper classes that are often useful in numerical computations. One is
the Array template class which provides a mechanism for creating Arrays as first class objects
that are appropriate for using as classes used in templated containers. (Never use C arrays

in templated containers. Their semantics are different from other C++ objects and may break

templated code in unexpected ways.) In addition to the Array template class, classes for three
and two dimensional vectors are also provided. See the following example code to see how to
use these helper classes.

14

#include <Loci.h>

#include <iostream>

using std::cout ;

using std::endl ;

int main(int argc, char *argv[])

{

Loci::Init(&argc,&argv) ;

// Loci provides a helper class for creating Arrays as first class objects

// (Loci containers must contain first class objects, so if you want a

// store to contain an array, use this class.

// The array is a template class parameterized on the type and size of the

// array

Array<double,5> A ; // Analogous to double A[5]

// Otherwise Arrays act much like C arrays. The one exception is that

// unlike C arrays, if you pass these arrays to a function they will be

// passed by value not by reference!

for(int i=0;i<5;++i)

A[i] = double(i) ;

// Also Assignment works on the entire array

Array<double,5> B = A ;

// Other tricks are also added (mostly for compatibility with Loci reduction

// rules to be covered later.

B += A ; // Does element by element addition of array A to array B

// Operators +,-,*, and / are similarly overloaded

// Also Array supports STL iterator style access, e.g.

double total = 0;

for(Array<double,5>::const_iterator ii=B.begin();ii!=B.end();++ii)

total += *ii ;

cout << "total = " << total << endl ;

// 3d vectors are supported as types, templated by the type of x,y, and z

vector3d<double> v1(0.0,1.0,2.0),v2(1.0,2.0,0.0),v3(2.0,1.0,0.0) ;

// 3d vectors overload all of the expected algebraic operations in the usual

// way including scalar vector multiply. For example, the vector found by

// "averaging" the vectors v1, v2, and v3 is computed as follows.

vector3d<double> avg = (v1+v2+v3)/3.0 ;

// Also 3dvectors support cross and dot products

15

vector3d<double> cross_product = cross(v1,v2) ;

// Also dot and cross products can be nested...

double dotcross = dot(cross(v1,v2),v3) ;

// L2 norm is also provided

double areav1xv2 = norm(cross_product) ;

// Of course interaction with scalar values acts as expected.

// Normalize cross product

cross_product /= areav1xv2 ;

cout << "average vector = " << avg << endl ;

cout << "cross_product = " << cross_product << endl ;

cout << "areav1xv2 = " << areav1xv2 << endl ;

cout << "dotcross = " << dotcross << endl ;

// 2d vectors are supported as types, templated by the type of x and y

vector2d<double> v4(1.0,1.0),v5(-1.0,1.0),v6(2.0,3.0) ;

// 2d vectors also support cross and dot products similar to 3d vectors

// with the exception that cross products in 2d space are scalars (the z

// component of a 3d cross product).

double twodcross = cross(v4,v5) ;

double twoddot = dot(v5,v6) ;

// Of course all operators are overloaded as in the 3d vector case.

vector2d<double> twodavg = (v4+v5+v6)/3.0 ;

cout << "twodcross = " << twodcross << endl ;

cout << "twoddot = " << twoddot << endl ;

cout << "twodavg = " << twodavg << endl ;

Loci::Finalize() ;

return 0 ;

}

16

2.9 The options list class

In many circumstances the user needs to input complex optional information to a solver. These
parameters are usually provided as a part of the initial facts that are provided by the user
and may express several options to be used by a particular functional part of the system. To
help standardize the input of this information Loci provides a powerful system for inputting
complex and hierarchical information called the options list. This form of input allows named
assignment of data, specification of units that data is presented, input of lists and other complex
data forms. A common use of the options list is the assignment of boundary conditions in
Loci solvers. This section will discuss how to use the options list type to allow for more
powerful inputs to your Loci programs.

When a parameter type is an options list type, then the input in the ASCII version of the
initial facts (the vars file) will have a variable that is delimited by less-than and greater-than
symbols. For example the boundary conditions are input using an options list type:

boundary_conditions:<

BC_1=specified(Twall=500K),

BC_2=specified(Twall=300K),

BC_3=adiabatic, BC_4=adiabatic

>

The basic function of the options list is to give a way of specifying multiple parameters. In
this case the parameters are the boundary surface names which are assigned to the boundary
condition. The boundary conditions are represented by complex data types. For the specified
case the boundary conditions are represented by a named function type where the arguments
contain a named list of variables (which can be thought of as another nested options list).
The general structure of an options list variable will be as follows: First a ’¡’ character which
opens the options block, then a comma separated list of name = argument where argument can
be the following:

1. a floating point number

2. a floating point number with units annotation

3. a string value in “quotes”

4. a list of floating point numbers enclosed in ‘[’ and ‘]’

5. a list of name assignments enclosed in ‘[’ and ‘]’

6. a name

7. a name with arguments enclosed in (parenthesis)

The options list can be used in two modes: one where the names of the variable names are
limited to a preset list or the default mode where any name can be used on the input. The first
mode is enabled by passing a string to the constructor that contains a colon separated list of
allowable variable names. The simplest way to use options list for inputs is to simply put the
class in a param and allow it to be read in with a optional rule. For example:

17

$type param<options_list> boundary_conditions ;

$rule optional(boundary_conditions) {}

Once the option list is read in the following member functions can be used to interrogate the
values stored in the option list:

1. optionExists: This member function will return true if the variable name given in the
string argument is defined in the option list.

2. getOptionNameList: This member function returns a list of the names stored in the
option list using the type options list::option namelist.

3. getOptionValueType: This member function returns the value type associated with the
option passed in as the argument. The value type may be REAL, NAME, FUNCTION, LIST,
STRING, BOOLEAN, or UNIT VALUE.

4. getOption: This member function retrieves the value associated with the named option.
The second argument is the returned value and may be the types bool, double, string,
or options list::arg list.

5. getOptionUnits: This member function is passed the name, a requested unit, a double
variable where the returned value will be stored, or alternatively the last argument may
be a vector3d for retrieving 3d vector values.

For simple data input the options list type is straightforward to use. Some examples:

void extract_data(const options_list &ol,

double &alpha,

double &temperature,

string &name,

bool &adiabatic) {

// for nondimensional data just use getOption

ol.getOption("alpha",alpha) ;

// If we want a default value set it and check if the

// option is available

temperature = 300 ; // default value

if(ol.optionExists("temperature")) {

// for dimensional data specify what units you want

// to retrieve the data in. This will be the default

// units for this input

ol.getOptionUnits("temperature","kelvin",temperature) ;

}

// for other datatypes the input works the same

ol.getOption("filename",name) ;

ol.getOption("adiabatic",adiabatic) ;

}

For more complex types, for example lists of values which can occur in options lists for cases
such as:

18

valueList : < list = [1.0, 2.5, 1.0, 5.0],

funclist = funcname(1.0, 2.5, 1.0, 5.0) >

In these cases the list of values can be extracted by first extracting the arg list and then
looping over the list and extracting the data item associated with each term. For example, a
generic function that can extract a list of doubles assigned to a variable would be implemented
as:

void getList(const options_list &ol, std::string vname,

vector<double> &valuelist) {

if(ol.getOptionValueType(vname) == Loci::LIST) {

// It is a list so get list

Loci::options_list::arg_list list ;

ol.getOption(vname,list) ;

int size = list.size() ;

// loop over list and insert into valuelist

for(int i=0;i<size;++i) {

if(list[i].type_of() != Loci::REAL) {

cerr << "improper list for " << vname << endl ;

Loci::Abort() ;

}

double val = 0 ;

// get each list item with get_value call

list[i].get_value(val) ;

valuelist.push_back(val) ;

}

}

}

For more powerful use of the option lists it is possible to consider recursive specifications where
the contents of a list or an argument list of a function can be converted to an option list and
then queried further. For example, in the boundary condition example above the specified
boundary condition had arguments in the same form as the options list itself. In this case it
is possible to parse this structure by using the arg list to create another options list for the
purpose of parsing the structure. For example, one way to parse the options of the specified
boundary condition is as follows:

void parseBoundary(const options_list &ol, string bcname) {

if(ol.optionExists(bcname)) {

if(ol.getOptionValueType(bcname) == FUNCTION) {

string bctype ;

options_list.arg_list fvalues ;

// get the function and the arguments

ol.getOption(bcname,bctype,fvalues) ;

// create options list for function arguments

options_list fol ;

fol.Input(fvalues) ;

if(bctype == "specified") { // now it is a specified bc

// now check argument options (e.g. specified(Twall=300K))

19

if(fol.optionExists("Twall")) {

double Twall ;

fol.getOptionUnits("Twall","kelvin",Twall) ;

// ...

20

Chapter 3

A Simple Example

Before we begin describing how to create rules in the Loci framework, first lets consider a
simple example problem so we can show how the problem is decomposed into facts and rules.
In this case, let us consider the one-dimensional time-dependent diffusion equation as discretized
by a finite-volume method. A formal description of this problem is as thus: given the interval
x ∈ [0, 1] for a given diffusion constant ν, the one-dimensional time-dependent diffusion equation
is described by the equations

ut = νuxx, x ∈ (0, 1), t > 0, (3.1)

u(x, 0) = f(x), x ∈ [0, 1], (3.2)

ux(0, t) = g(t), where g(0) = fx(0), and (3.3)

u(1, t) = h(t), where h(0) = f(1). (3.4)

Equations (3.1) through (3.4) formally define the problem to be solved; however, the method-
ology of solution is left open. A complete specification for finding an analytical solution might
be stated as follows: using the Laplace transforms and associated algebraic identities, find the
value of the function u(x, t) such that the definitions given in equations (3.1) through (3.4)
are satisfied. Notice that this specification contains three distinct parts: 1) a definition of the
problem, 2) a collection of transformations, and 3) a goal that must be satisfied. For this
case, an analytic solution to the problem may be found for a few specific functions f(x), g(t),
and h(t). In general, however, analytical solutions to PDE problems of interest to engineering
are either impractical or impossible, due to the complexity of the geometries involved and the
non-linearity of the equations themselves. For this reason, approximate numerical methods are
often used to solve PDE based problems. However, the basic approach of problem and solution
specification through definitions, transformations, and goals applies equally well to numerical
solution methods. The question is, how does one formally specify the problem and solution
methodology for these numerical methods in this definition-transformation-goal style? Let us
explore this question as we derive a finite-volume discretization of the time-dependent diffusion
equation.

21

3.1 A Finite Volume Solution

The first step in any discretization method is to numerically approximate the function u(x, t)
as a discretization of the spatial domain (in this case the interval [0, 1]). For this example, the
finite-volume discretization method is chosen. Using this discretization approach, the interval
[0, 1] is divided into N sub-intervals, as illustrated in figure 3.1. To facilitate describing the
discretization process, the N sub-intervals, or cells, are labeled by c = N + 1, · · · , 2N , while
the interfaces at the boundaries of sub-intervals are labeled i = 0, · · · , N . Note that the typical
labeling used for theoretical purposes would include half step labels for the interfaces, while a
typical unstructured application code might label both cells and interfaces starting from zero
and use context to distinguish between the two cases. However, for the purposes of automating
reasoning about these entities of computations it is assumed that these labels are integers and
that independent computational sites (in this case, cells and interfaces) are labeled distinctly.
The proposed labeling satisfies both of these constraints.

x 2 x N-1 x = 1Nx = 00 x 1 x N-2x i x i+1

x , x0[1] x , x1[2]] x ,xN-1[N]x ,xN-2[N-1x , xc-N-1[c-N]
c = N+1 c = N+2 c = i+N+1 c = 2N-1 c = 2N

Figure 3.1: A Discretization of the Interval [0, 1]

As illustrated in figure 3.1, the discretization yields N + 1 interfaces which have the positions
given by

x = {(i, xi)|i ∈ [0, · · · , N], xi = i/N}. (3.5)

Notice that the variable x in this equation is described by a set of ordered pairs where the
first entry is the entity identifier, whereas the second entry is the value bound to that entity.
This is a more general abstraction of the array. For example x[i] is represented abstractly as
{xi|(i, xi) ∈ x}.

In addition, this discretization yields N intervals, or cells, which are represented by the map-
pings between cells and interfaces by way of the following relationships

il = {(c, l)|c ∈ [N + 1, · · · , 2N], l = c−N − 1},
ir = {(c, r)|c ∈ [N + 1, · · · , 2N], r = c−N}.

(3.6)

The mappings il and ir provide mappings from every cell to their left and right interfaces. The
domain of ir and il is [N + 1, · · · , 2N], or the cells in the discretization, while the ranges are
ran(ir) = [0, · · · , N−1] and ran(il) = [1, · · · , N]. This mapping is used to conveniently describe
subscripts, i.e. xc−N = ir → x, where the composition operator, →, defines the application of
the mapping, as in

il→ x = {(c, xl)|(c, l) ∈ il, (l, xl) ∈ x}. (3.7)

Using this notation, it is possible to conveniently describe cell based calculations. For example,
a generic description of each cell center is given by

xc = (ir → x+ il→ x)/2. (3.8)

22

Note that the definition of x provided by equation (3.8) is only applicable to cells since only
cells are in the domain of maps ir and il; however, this does not prevent the definition of x for
other entities (for example, interfaces) via other rules.

The mappings il and ir are used to describe the first step of the finite-volume discretization,
where integration of equation (3.1) over each cell produces the equation

d

dt

∫ ir→x

il→x

udx =

∫ ir→x

il→x

νuxxdx = ν(ir → ux − il→ ux). (3.9)

Equation (3.9) is an exact equation, which can be integrated numerically to obtain a numerical
solution algorithm. For example, when a second order mid-point rule is used to evaluate the
spatial integrations, these equations become:

d

dt
u =

ν

L
[ir → ux − il→ ux] , (3.10)

where

L =

∫ ir→x

il→x

dx = ir → x− il→ x. (3.11)

Equation (3.10) describes the numerical method for the spatial integrations, but it is not com-
plete. The gradient term, ux, located at the interfaces has not been defined as a numerical
approximation. The most straightforward approximation for ux is a central difference formula
using the values at the cell centers at either side of the interface. In order to perform this calcu-
lation it will be convenient to have a mapping from interfaces to cells similar to the development
of il and ir. These mappings are defined by the relations

cl = {(i, l)|i ∈ [1, · · · , N], l = i+N},
cr = {(i, r)|i ∈ [0, · · · , N − 1], r = i+N + 1}.

(3.12)

Using the definitions of cl and cr of (3.12), a numerical approximation to the gradient can be
given as

ux =
cr → u− cl→ u

cr → xc − cl→ xc

. (3.13)

Notice that this equation uses the x-coordinate at the cell centers that is computed by equation
(3.8). In addition, since this rule uses both maps cr and cl, it only defines ux on the intersection
of the domains of cr and cl, given by [1, · · · , N − 1]. By this reasoning, equation (3.13) only
provides gradients at the internal faces of the domain. The gradient at the boundary faces is
provided by the boundary conditions given in equations (3.3) and (3.4). The question is, how do
these boundary conditions specify ux at the boundaries without specifying ux everywhere in the
domain? Obviously additional information must be provided that constrains the application of
boundary condition gradients only to the boundary interfaces. A solution to this problem can
be found with the observation that the boundary interfaces have the distinction that either cl
is defined or cr is defined, but not both. Using this fact, the rules for calculating the boundary
gradients can be given by

ux = g(t), constraint{¬dom(cl) ∧ dom(cr)},

u = h(t), constraint{dom(cl) ∧ ¬dom(cr)}.
(3.14)

23

Here the constraint term added to the rule indicates a constraint on the application of the
rule. In this case it constrains the application of the boundary conditions to the appropriate
boundary faces.

At this point we have not selected the time integration method. For this simple example we will
use the explicit first order Euler time integration method which is expressed using the following
notation:

(un+1 − un)

∆t
= R(un), (3.15)

where

R(u) = ν
ir → ux − il→ ux

L
. (3.16)

Rearranging we arrive at the following time integration scheme:

un+1 = un +∆tR(un) (3.17)

At this point, the computation of un+1 from un is completely specified. However, before any
such iteration can begin, an initial value, or un=0, must be given. To be consistent with the
finite-volume formulation, the derivation of the initial conditions begins with the integral form
of equation (3.2), given by

∫ ir→x

il→x

un=0dx =

∫ ir→x

il→x

f(x)dx. (3.18)

Using a midpoint rule to numerically integrate this equation one obtains the rule

un=0 = f(x), constraint{(il, ir)→ x}. (3.19)

For this rule, the constraint is used to indicate that although the coordinates of the interfaces
cancel in the derivation, their existence is predicated by the integration. In other words, the
derivation assumed a cell perspective that includes left and right interface positions.

3.2 On Problem Specification

For an analytic solution method, equations (3.1) through (3.4) are sufficient to define the prob-
lem at hand. For numerical solution methods, additional definitions are required, due to the
fact that these are inexact methods. For example, there are often trade-offs between discretiza-
tion and accuracy that require additional specification. In addition, since discretization for
complex geometries (grid generation) is not a completely automatic process, the discretization
becomes part of the problem definition for numerical solution methods. For the example diffu-
sion problem already introduced, the definition of the numerical problem consists of spatially
independent information such as the diffusion constant ν, the initial condition function f(x),
the numerical time step ∆t, and a representation of the discretization of space. The discretiza-
tion of space is given by a set of positions, (3.5), and the collection of mappings given in (3.6)
and (3.12). Table 3.1 summarizes these formal definitions for the example diffusion problem.

24

Table 3.1: A Summary of Definitions for the Example Diffusion Problem

fact meaning
ν given diffusion constant
f(x) given initial condition
g(t) given left bc
h(t) given right bc
∆t given time-step
x {(i, xi)|i ∈ [0, · · · , N], xi = i/N}
il {(c, l)|c ∈ [N + 1, · · · , 2N], l = c−N − 1}
ir {(c, r)|c ∈ [N + 1, · · · , 2N], r = c−N}
cl {(i, l)|i ∈ [1, · · · , N], l = i+N}
cr {(i, r)|i ∈ [0, · · · , N − 1], r = i+N + 1}

3.3 On Specification of Process

Given the definition of the problem, the process of solving the problem is dictated by a pre-
scribed set of transformations. For example, consider equation (3.8) as an example of a trans-
formation that transforms x located at il and ir into a cell xc. To simplify discussions of the
structure of the calculations, the transformation rules are represented by a rule signature that
is denoted by a list of targets of the transformation delineated from the sources of the transfor-
mation by the left arrow symbol, ’←’. Thus the cell center position calculation is represented
by the rule signature xc ← (ir, il)→ x. This rule signature represents the augmentation of the
set of ordered pairs defined in equation (3.5) with the additional set given as

xc ← {(c, xc)|xc = (xl + xr)/2, (l, xl) ∈ x, (r, xr) ∈ x, (c, l) ∈ il, (c, r) ∈ ir}. (3.20)

For the moment, the augmentation of x with this set can be considered as a set union operation,
with the caveat that it will become more complex once issues of specification consistency are
considered. Given this notation, the specification of the finite-volume scheme derived in this
section can be summarized by eight rules given in table 3.2.

Table 3.2: A Summary of Rules Describing the Solution of the Example Diffusion Problem.

Rule Rule Signature Equation
Rule 1 xc ← (ir, il)→ x (3.8)
Rule 2 L← (ir, il)→ x (3.11)
Rule 3 ux ← (cr, cl)→ (u, xc) (3.13)
Rule 4 ux ← h, t, constraint{dom(cl) ∧ ¬dom(cr)} (3.14)
Rule 5 ux ← g, t, constraint{dom(cr) ∧ ¬dom(cl)} (3.14)
Rule 6 R← ν, L, (ir, il)→ ux (3.16)
Rule 7 un+1 ← un, Rn,∆t (3.17)
Rule 8 un=0 ← f, xc, constraint{(il, ir)→ x} (3.19)

25

3.4 On Interpreting the Problem Specification

The eight rules described in the preceding section form the basis of creating a Loci program.
Before we consider how to do this, lets first consider how the facts given in table 3.1 and the
computational elements described in table 3.2 can be composed to create a time dependent
simulation. Note, that the final values of interest are the values for un, n = 0, 1, · · · . It is
clear to see that rules 7 and 8 describe how to accomplish this computation. However, more
information is needed to complete the operation, specifically note that we need the residual R
evaluated at iteration level n, denoted by Rn. However, also note that the residual rule given
by rule 6 does not have a time notation (no superscript n). This rule is said to be described
at stationary time, that is the relationship is established as an invariant to iteration. That is,
R is defined as the same relationship among variables regardless of iteration identifier. In this
case, we know that we will need to compute R for every time-step because it is a function of
u which itself is dependent on the iteration. Usually when converting a paper description of
an algorithm a program implementation we need to make these determinations. In Loci, this
is automatically performed by time promotion deductions. That is, Loci will automatically
determine that the residual and gradients of u will need to be recomputed each time-step,
while xc and L will not. To accomplish this Loci will invoke either rule promotions or variable
promotions, that is that if we have a rule xc ← (ir, il) → x then Loci may either promote the
rule to the iteration (e.g xn

c ← (irn, iln) → xn, or promote the variable to the iteration (e.g.
xn
c ← xc), as needed to satisfy the computation. As a policy, Loci only schedules computations

at an iteration as required, all other computations are performed once and reused through
iterations using variable promotion.

3.5 Creating the Fact Database

Before we begin performing computations we have to describe how to express the information
in table 3.1 as a Loci fact database (fact db). The code we are about to describe is included in
the 1D-Diffusion directory in the Loci tutorial. The facts described in this table are essentially
the result of a one dimensional grid generation process that is handled by the generate grid

function as described below:

// Generate a 1d grid over the number line from [0,1] consiting of N segments

// The resulting grid is installed in the fact_db facts

void generate_grid(fact_db &facts, int N) {

The first step to generating this discretization of the interval [0, 1] is to allocate space for the
nodes and cells that will comprise the final grid. We ask the fact database to generate unique
entity numbers for these entities using the get allocation() method:

// Allocate the nodes and cells of the grid

entitySet nodes = facts.get_allocation(N+1) ;

entitySet cells = facts.get_allocation(N) ;

Now that we have these allocations we can first create the fact “x”. This fact use the store

container as it is an association of floating point values with entities. This container is first

26

allocated over the prescribed entities. The values are assigned by giving the lowest numbered
entity the value of x = 0, and then adding a delta x to subsequent values. The resulting values
are then placed in the fact database using the create fact method, as shown below:

// setup x coordinates for nodes

store<float> x ;

x.allocate(nodes) ;

float dx = 1./float(N) ; // Uniform delta x

entitySet::const_iterator ni ;

float xtmp = 0 ;

// iterate over nodes and assign positions by adding dx to

// preceeding x value

for(ni=nodes.begin();ni!=nodes.end();++ni) {

x[*ni] = xtmp ;

xtmp += dx ;

}

// Add node positions to facts

facts.create_fact("x",x) ;

Now we need to develop the connectivity relations between cells and nodes as described by cl

(cell left), cr (cell right), il (interface left), and ir (interface right). Note that while all cells
will have a value for il and ir, only the interior nodes will simultaneously have values for cl
and cr. To compute the nodes that will be used for these maps, we use the shifting operator
of the entity set which adds or subtracts values from all entity identifiers, as in:

// Find the nodes that are on the left and right side of cells

// by shifting the allocated numberings to the left or right by one

entitySet left_nodes = (nodes >> 1) & nodes ;

entitySet right_nodes = (nodes << 1) & nodes ;

We now have the sets needed to allocate these containers. Note that since we are describing a
relationship between various entities, the container that we use is a Map. A Map can be thought
of as a store that contains entity identifiers instead of values. The allocation is performed as
follows:

// Allocate maps for the left cell and right cell of a node

Map cl,cr,il,ir ;

cl.allocate(left_nodes) ;

cr.allocate(right_nodes) ;

il.allocate(cells) ;

ir.allocate(cells) ;

Now we are able to create these Maps. We use a technique of finding a correspondence between
left nodes and cells or right nodes and cells to establish this relationship. In addition, we build
both cl and ir at the same time recognizing that one map is simply the transpose of the other
as illustrated below:

27

entitySet::const_iterator ci ;

// Assign left nodes to cells in consecutive order

ci = cells.begin() ;

for(ni=left_nodes.begin();ni!=left_nodes.end();++ni,++ci) {

cl[*ni] = *ci ;

ir[*ci] = *ni ;

}

// Assign right nodes to cells in consecutive order

ci = cells.begin() ;

for(ni=right_nodes.begin();ni!=right_nodes.end();++ni,++ci) {

cr[*ni] = *ci ;

il[*ci] = *ni ;

}

We now install these relations in the fact database:

facts.create_fact("cl",cl) ;

facts.create_fact("cr",cr) ;

facts.create_fact("il",il) ;

facts.create_fact("ir",ir) ;

Now we must compute the entities that are on the boundaries. We do this by examining the
domain (entities for which a container has a definition) of the cl and cr maps, similar to
the previous specifications. There are two boundaries in this one dimensional problem, the
left boundary and the right boundary. They are represented by constraint containers which
are special data types used in Loci to give sets of entities special attributes. The boundary
condition constraints are specified below:

// Identify boundary conditions

constraint left_boundary ;

constraint right_boundary ;

*right_boundary = cl.domain() - cr.domain() ;

*left_boundary = cr.domain() - cl.domain() ;

facts.create_fact("left_boundary",left_boundary) ;

facts.create_fact("right_boundary",right_boundary) ;

Finally, for some computations it is useful to identify the geometric cells in the problem (for
example if ghost cells were employed.) Here we can easily create such an identification using a
constraint as in:

constraint geom_cells ;

*geom_cells = cells ;

facts.create_fact("geom_cells",geom_cells) ;

Now we have created a Loci implementation of the facts described in table 3.1. To complete
the Loci implementation we will need to describe the rules as well. This is discussed next.

28

3.6 Creating the rule database

To capture what is specified in the table 3.2 we will create a database of rules. To simplify
this process we use the Loci preprocessor that will convert rule specifications into standard
C++ code. A program that has a .loci postfix will automatically be compiled with the Loci

preprocessor if you use one of the provided example makefiles. Any valid C++ source file is
also a valid Loci preprocessor file, that is we are free to mix standard C++ code and Loci

specific directives in this file. The Loci preprocessor becomes activated through the use of the
“$” symbol as will be described in the following paragraphs.

In the beginning you will want to tell the Loci preprocessor what the types of the Loci variables
that you will be working with. For example, the Loci preprocessor will need to know what
the types of the facts that were created earlier to describe the one-dimensional mesh. We can
describe the types to the preprocessor using the $type keyword. This first argument after this
keyword is the variable name, while the second argument is the type. The statement ends with
a semicolon. For example, the type definitions for the initial fact database are given by:

// Setup Types for initial facts

$type il Map ; // interface left

$type ir Map ; // interface right

$type cl Map ; // cell left

$type cr Map ; // cell right

$type x store<float> ; // node positions

Generally we would like to share types between separate files to simplify compilation and source
code management. It is possible to do this with the Loci preprocessor. For example, the above
definition can be put into a header file, say the file "mesh.lh" and then included into the Loci

program using the keyword $include. NOTE: this must be $include not the C preprocessor
directive #include! For example, to include the above type information file use the line:

$include "mesh.lh"

3.6.1 Specifying User Tunable Inputs

Before we begin specifying the Loci rules as described in table 3.2, lets discuss feature of Loci
that allow the user to easily change some of the facts used to describe the simulation. In this
case, the user may want to change the viscosity, the number of cells in the discretization, or
the number of time-steps to simulate. All of these parameters can be given default values
using special Loci rules, and then the user can change these default values by providing a
special “vars” file. For example, we can specify the default values for these parameters with
the following lines of code:

29

// Input parameters

$type N param<int> ; // How many nodes

$type nu param<float> ; // diffusion coefficient

$rule default(N) {

$N=50 ;

}

$rule default(nu) {

$nu = 1.0 ;

}

In these lines of code we can see our first Loci rules. The rules are preceded with $type

specifiers so that Loci will know the types of the variables. Then the $rule specifier tells the
Loci preprocessor that a rule is about to be defined. Immediately after the $rule specifier is the
rule type that specifies the type of the rule. The rule signature is provided in the parenthesized
region, while the braces enclose the code actually executed when the rule is required. The
default rule type is specifically to provide a mechanism for users to change a given value in
the fact database, but also to provide a default value if the user does not specify one. Note
the use of the “$ ” to identify the Loci variables in the computational part that is enclosed in
braces. We also note that we provide the optional rule type to specify values that the user
can provide, but for which no default value will be provided if the user provides no value. In
this case, the facts will simply not contain this attribute.

To utilize these default and optional rule types, the user must specifically read in values
from a user provided file. For example, we read in the user provided values from a file called
heat.vars in the file main.cc with the following code:

string varsFile = "heat.vars" ;

facts.read_vars(varsFile,rdb) ;

The user provided vars file consists of a braces delimited list of variable assignments. For
example, a typical heat.vars file might look something like:

{

N: 10

nu: 10.0

}

3.6.2 Basic Rule Specification

Now we can begin with the implementation of the rules described in table 3.2 in Loci. The
first of these rules is the computation of the cell center, denoted by the variable xc which is
represented in Loci by the following code:

30

// Rule 1: compute the cell center from node positions

$rule pointwise(xc<-(il,ir)->x) {

$xc = .5*($il->$x + $ir->$x) ;

}

In this specification, the $rule directive tells the loci preprocessor that we are about to describe
a Loci rule. The keyword pointwise that follows indicates that the rule represents a point by
point computation. The parenthesis that follow describe the rule signature which documents
what the rule will use for inputs and outputs. Note that the comma in the rule signature
binds most tightly, so we use parenthesis to group items. For example, (il,ir)->x means
the same thing as il->x,ir->x. Similarly, il->(x,y) would mean il->x and il->y, whereas
il->x,y would mean il->x and y. Note, when several variables are listed on both the sides
of the “->” operator, then all combinations are implied. Thus (il,ir)->(x,y) is equivalent
to il->x and ir->x and il->y and ir->y. The code that follows the signature is the actual
implementation of equation (3.8) where the “$” is used to identify the use of Loci variables.
NOTE: It is important that the rule signature match the implementation: if $il->$x is in the
implementation then il->x needs to be in the rule signature. If not, then Loci may schedule
the rule incorrectly.

3.6.3 Boundary Conditions and Constraints

Rule 3 provides a method for computing interface gradients. However, this rule only provides
values for the internal interfaces as these are the only interfaces that have both cl and cr

attributes. Boundary conditions are used to define ux at the left and right boundaries. For
example, at the left boundary ux = h(t). If we simply defined a rule to define ux in this way,
how do we limit the specification to only apply to the left boundary? To do this we use a
rule constraint. The rule constraint is a set of entities that constrain the rule application. A
constraint applied to the rule makes two assertions: 1) the rule can only be applied for entities
in found in the constraint set, and 2) all inputs to the rule must be available for the entire
set of entities found in the constraint. Thus, we can use the left boundary constraint that
was placed in the fact database to apply this boundary condition as illustrated in the following
code:

// Neumann boundary condition at left boundary, ux = h(t)

$rule pointwise(ux<-h), constraint(left_boundary) {

$ux = $h ;

}

3.6.4 Specifying Iterating Algorithms

The implementation of rules 2-6 follow a similar procedure as rule 1, and can be found in
the tutorial under the file “heat.loci”. The time-stepping rules 7 and 8 require a bit more
discussion. First we need to discuss how we represent the superscripts in this rule notation.
For example, how is un represented in Loci code? The superscript is represented in a brace
delimited region that follows the variable name, so that un becomes u{n} in a Loci rule signature
and $u{n} in the implementation. Also note that the type specifications don’t include the
superscript, therefore the type statement for this variable will be:

31

$type u store<float> ; // Solution variable

Now we can specify rules 7 and 8 in a straightforward manner as follows:

// Rule 7: initialization of iteration (build rule)

$rule pointwise(u{n=0}<-xc) {

$u{n=0} = f($xc) ;

}

// Rule 8: time advance using explicit Euler time integration algorithm

$rule pointwise(u{n+1}<-u{n},dt{n},R{n}) {

$u{n+1} = $u{n}+$dt{n}*$R{n} ;

}

Note that the above to rules play different roles in describing the iteration. Rule 7 is called a
“build” rule in Loci. It describes how to build the initial values of an iteration. It is distinguished
by having an output at with a time specification that includes the “=” operator. Rule 7 is
called an “advance” rule in Loci. The advance rule describes how to advance a variable to the
next iteration. It is characterized by having an output that is at an advanced time level from
its inputs. These two rules tell Loci how to iterate the variable u forward in time, but does not
describe how, or when, to end the iteration. For this we need a collapse rule which is a rule
that tells Loci how to compute a value that results from the iteration. For example, we might
have a collapse rule that computes a variable called “solution” that represents the solution of
the time integration problem. Such a rule would be represented as:

$rule pointwise(solution<-u{n}),conditional(simulation_finished{n}) {

$solution = $u{n} ;

}

Notice that this rule has an additional “conditional” clause. This clause is used to tell Loci
when it is OK to terminate or “collapse” the iteration. This termination condition will be
provided by another rule as described next. For the moment we will use the criterion that
when the iteration variable n reaches a predetermined value, the loop will terminate. This is
accomplished with the following code:

$type max_iteration param<int> ;

$type simulation_finished param<bool> ;

// Condition that determines when iteration is complete

$rule singleton(simulation_finished<-$n,max_iteration) {

$simulation_finished = ($$n >= $max_iteration) ;

}

First notice that the type of simulation finished is a bool parameter. This is a single boolean
value shared by all of the iterating entities. The loop will terminate when this value evaluates
to true. Also notice that this rule is a singleton rule. This means that the rule is computing a
single value. Singleton rules are used to compute parameters from other parameters, and thus

32

apply to single values rather than collections arrayed over entities. Finally, notice that we can
access the value of the iterating superscript by using the “$n” variable name. This is a special
variable (always typed as an integer parameter) that contains the current iteration number.
Also, notice that when using this variable in the implementation, two “$” symbols appear.
The purpose of this rule should be clear at this point: when $n is equal to max iteration

then simulation finished is true, otherwise it is false. Thus this specifies when Loci should
terminate the iteration.

3.6.5 Next Step: Global Reductions

The above specification is nearly complete. However we have left out one important detail
and that is the specification of the time-step, ∆t. How do we arrive at this time-step size?
One approach would be to have the user specify this parameter by providing a default rule.
This would allow the user to input a specific time-step. However, since the explicit Euler time-
stepping algorithm has a stability bound, it might be better if the solver computed a stable
time-step. The stability limit for this algorithm is given by the equation:

∆t =
1

2

L2

ν
. (3.21)

However, since it is possible for the mesh to be non-uniform in our formulation, we would like
to find out what is the smallest possible time-step by applying this equation to all possible
cells. We can accomplish this operation by using a global reduction. For a global reduction,
the output of the rule is a parameter, indicating that there will be a single value shared by
many entities. Reductions in Loci are specified using two different rule types: unit and apply.
A reduction is always defined with respect to some operator that 1) has an identity, 2) is
associative, and 3) is commutative. In this example we will use the minimum operator that an
identity (the largest possible number) and is associative and commutative. The computation
of the global stable time-step is given by the following Loci code:

$type dt param<float> ; // simulation timestep

$rule unit(dt), constraint(UNIVERSE) {

$dt = std::numeric_limits<float>::max() ; // largest allowble timestep

}

$rule apply(dt<-L,nu)[Loci::Minimum] {

float local_dt = $L*$L/(2.*$nu) ; // Stable timestep

join($dt,local_dt) ; // Set dt = min(dt,local_dt)

}

Here we see the unit rule being applied to compute the identity of the operator. In this specific
case we use the C++ standard to query the maximum floating point value to assign to dt.
Notice that we provide a constraint of UNIVERSE which indicates that dt will be associated
with all entities in the simulation. The rule that follows is the apply rule that specifies that the
Loci::Minimum operator will be used. Loci provides the following operators: Loci::Summation,
Loci::Product, Loci::Maximum, and Loci::Minimum. Other operations can be defined by the
user as will be described in later sections. Here the apply rule uses the join operator to combine
the local stable time-steps with the global time-step. The first argument to the join operator

33

is the variable that is being reduced, while the second argument is the variable that is being
combined.

Note, there are some important cautions that should be mentioned here. First, it is important
that the unit rule assigns the identity value because it is possible that this rule may be computed
and combined multiple times (particularly in the parallel), therefore it is not OK, for example,
to have the unit rule assign a partial sum expecting that the value will only be added once.
Second, it can be deceptively easy to violate the associative and commutative properties of the
operator. For example, consider the following Loci code:

$rule apply(sum<-terms)[Loci::Summation] {

if($sum < 1) // Error! Result depends on order terms are summed!

join($sum,$terms) ;

}

Note, it is not the if statement that is wrong, but rather the conditional on the partially summed
result. For example, the following code is OK:

$rule apply(sum<-terms)[Loci::Summation] {

if($terms < 1) // OK, result is independent of summing order

join($sum,$terms) ;

}

3.6.6 The Loci Generated Schedule

The one dimensional heat solver that is provided with the tutorial can be used to see how Loci

will create a program from the rules we have described to create a heat solver. An execution
schedule is generated by Loci automatically when the user issues a Loci::makeQuery() function
call. The last argument of this function call is the name of the variable that you desire. By
default, we usually query for a variable called “solution” which represents the generic solution
of a problem and plays a similar role to main in C programs. Since the collapse rule of our Euler
time-step algorithm generates the variable “solution”, a query for this variable will produce a
schedule that solves the time-dependent heat equation. By default, this schedule is not provided
to the users of Loci, but Loci can be instructed to print this schedule in human understandable
form. For example, to see the schedule generated by the heat solver, you can execute:

./heat --scheduleoutput --nochomp

The --scheduleoutput instructs Loci to write out the generated schedule into a file called
“.schedule” (on a single processor). The --nochomp instructs Loci to not perform the chomping
optimization on the program. This will make the schedule a little bit easier to read and
understand.

Before we look at the entire program, lets first consider what happens if we query for a variable
that is easier to compute, for example the time-step control, dt. The heat program contains
code for the user to specify a query different from “solution” by using the -q flag. Thus we can
query for the stable time-step using the command:

34

./heat --scheduleoutput --nochomp -q dt

In addition to computing the stable time-step, this command generates a file called .schedule

that contains the execution schedule:

dt<-CONSTRAINT(UNIVERSE) over sequence ([0,20])

L<-(il,ir)->x over sequence ([11,20])

dt<-L,nu over sequence ([11,20])

Here we see first that the unit rule for the dt computation is called. The sequence is the set
of entities that requested dt. Then L is computed because this will be needed by the dt apply
rule that follows. Notice, both of these rules execute over the sequence [11,20] which are the
entity identifiers for the cells in the problem. Once this is computed, the dt is successfully
computed and the execution schedule terminates. Now lets see what happens when we query
for solution:

dt<-CONSTRAINT(UNIVERSE) over sequence ([0,20])

ub<-g,CONSTRAINT(right_boundary) over sequence ([10,10])

xc<-(il,ir)->x over sequence ([11,20])

L<-(il,ir)->x over sequence ([11,20])

dt<-L,nu over sequence ([11,20])

promote:cr{n}<-cr

promote:left_boundary{n}<-left_boundary

promote:h{n}<-h

promote:ub{n}<-ub

promote:cl{n}<-cl

promote:xc{n}<-xc

promote:x{n}<-x

promote:max_iteration{n}<-max_iteration

promote:L{n}<-L

promote:ir{n}<-ir

promote:il{n}<-il

promote:nu{n}<-nu

promote:dt{n}<-dt

ux{n}<-h{n},CONSTRAINT(left_boundary{n}) over sequence ([0,0])

u{n=0}<-xc over sequence ([11,20])

generalize:u{n}<-u{n=0}

Iteration Loop{n} {

simulation_finished{n}<-$n{n},max_iteration{n} over sequence ([11,20])

if(simulation_finished{n}) {

solution<-u{n},CONDITIONAL(simulation_finished{n}) over sequence ([11,20])

} // if(simulation_finished{n})

-------------- Exit of Loop{n}

if(simulation_finished{n}) break ;

ux{n}<-(cl{n},cr{n})->(u{n},xc{n}) over sequence ([1,9])

ux{n}<-cl{n}->(u{n},xc{n}),ub{n},x{n} over sequence ([10,10])

R{n}<-(il{n},ir{n})->ux{n},L{n},nu{n} over sequence ([11,20])

35

u{n+1}<-R{n},dt{n},u{n} over sequence ([11,20])

} // {n}

While this schedule is similar to the previous schedule, we observe many new features that
weren’t present in the previous example. First we see that in the beginning several variables
are computed that will be used during the time-stepping portion of the algorithm. This is
followed by a sequence of variable promotion operations indicated by lines such as:

promote:cr{n}<-cr

This line indicates that the variable cr will be used unchanged during the n iteration. In essence
it is basically indicating that cr and cr{n} are the same variable. This will allow rules that
have been promoted to the time-stepping iteration to access these variables. We then notice
that the initial conditions are then computed followed by a variable generalization given by:

generalize:u{n}<-u{n=0}

This indicates that for the first iteration u{n} is the same as u{n=0}. Note that after the first
iteration, Loci sets u{n} to the previous iteration value that was computed for u{n+1}.

After the generalize rule, we begin the iteration loop. The first operation performed is to
compute the condition for collapsing (terminating) the loop. If this is true, the schedule executes
the collapsing code and then exits the loop. Otherwise, the loop continues to compute the next
iteration value, u{n+1} using the provided rules. First the gradients are computed (with the
exception of the Neumann BC that was computed in advance). Then the residual is computed
using these gradients. And finally, the Euler time integration rule is used to advance the variable
u to the next iteration. Once this is complete, Loci advances n and begins again.

Notice that everything Loci needed to form this schedule could be inferred from the rules that
were provided in the previous sections. Looking at the schedule generated by Loci can be
helpful in learning how to use Loci. Experiment with changing how rules are implemented,
what they input, for example, and examine how this changes the schedule. For example, what
happens if the stable time-step computation input the variable u? What changes would Loci

need to make to the schedule?

3.6.7 Local Reductions: An Alternative

The fact database described in this example included two sets of maps. One set of maps
provided an association from cells to interfaces (il,ir), and another provided an association
from interfaces to cells (cl,cr). However, these maps are intrinsically related to one another
in that il is the transpose of cr and ir is the transpose of cr. Since these maps represent a
storage overhead, it is reasonable to ask if they are both necessary. In fact, we can eliminate one
pair of maps if we reorganize some of our computations so that they shift from being cell centric
to being interface centric. Note, that this represents a common trade-off found in unstructured
solver algorithms, and Loci provides techniques that allows us to develop algorithms that can
reduce the amount of connectivity storage required.

For example, consider the computation of the cell centers described by the rule:

36

$rule pointwise(xc<-(il,ir)->x) { $xc = .5*($il->$x + $ir->$x) ; }

This rule is cell centric: the context of the rule (where computations occur) is cells, as cells
are the entities that have attributes il and ir. Can we transform this rule so that it uses
the face centric maps cl and cr? Yes, we can. But the resulting computation is somewhat
less straightforward. Essentially the computation is transformed whereby we visit all of the
interfaces in the line and each interface will add half of its position to each side. When all
interfaces add their parts, then the final total will be the cell center. This computation is
similar to the global reduction described earlier with one important difference: this computation
results in many cell centers, not just one. This many-to-many reduction process is called a local
reduction. A local reduction is described in the same way as a global reduction in Loci, the
only difference is that the result of the local reduction is a store rather than a parameter. Thus,
we use a unit/apply combination to describe the computation much like the previous example.
Here is an example of three rules that can replace the cell center computation using cl and cr

maps:

$rule unit(xc), constraint(geom_cells) { $xc = 0 ; }

$rule apply(cl->xc <- x)[Loci::Summation] { join($cl->$xc,.5*$x) ; }

$rule apply(cr->xc <- x)[Loci::Summation] { join($cr->$xc,.5*$x) ; }

First note that we have a unit rule that assigns the value of the cell center to the identity
of summation (zero). Also note that the rule is constrained to exist only for geometric cells
(we put this constraint geom cells in the fact database, as described earlier). This constraint
keeps this rule from defining values for entities that are not cells. Now to compute the cell
center we look at each interface and add half its position to both the left and right sides. These
three rules are equivalent to Rule 1, but use the maps cl and cr instead. Note that the map
appears in the output of the rule rather than the input, and this is essentially how the map
becomes transposed. In fact, as a rule of thumb, usually pointwise rules have mappings in the
inputs, while apply rules have mappings in their outputs for exactly this reason. Applying this
technique to other rules that use il and ir it is possible to completely eliminate the need for
these maps.

Note: it would be tempting to combine these two rules into one adding to both the left and right

sides at the same time. However, the boundary faces would be left out in this case, since they

don’t have both a left and right side.

3.6.8 Getting Sophisticated: Parametric Rules

When developing Loci rules, one quickly will notice patterns that are repeated in many different
rules. In such cases it would be useful to define a family of rules that can be called upon to act
on different variables. For example, it would be useful to define a gradient operator that could
apply to different variables, then rather than have variable ux and an associated rule to compute
this specific gradient, it would be useful to have a way of specifying grad(u) instead. We can
do this using parametric rules. For this one dimensional heat equation, there are several cases
where it would be useful to have a parametric rules to capture these common structures. One
example is the integration of fluxes that results in a difference between interfaces. It would be
useful to have a cell integral function to perform this common operation. In addition, specifying
this as a parametric rule will simplify the process of converting to using the cl and cr maps.

37

Parametric rules are defined when parametric variables are used in their outputs. A parametric
variable is one that has parameters as defined by a parenthesized list of substitution keys.
Thus, for example, if we want to create a cell integration of some variable, we can provide that
using the parametric variable cellIntegrate(X). How Loci interprets the parametric variables
depends on where the variable occurs in the rule signature. If the parametric variable is in
the output of a rule, then the rule is parametric and describes a family of rules that can be
obtained by performing substitutions of the keys listed in the argument list. However, if the
parametric variable is in the input, then it becomes a request for an instantiation of a specific
version of the parametric rule that is obtained by substituting the provided arguments for the
substitution keys given in the parametric rules. This may seem somewhat confusing, but it is
actually very straightforward once you see it in action.

For example, suppose that we wished to create rule that could integrate from the bounding
interfaces of a cell as is obtained from flux integrations used in the residual equation. We could
create a parametric rule to describe an arbitrary integration such as the following code segment:

$type cellIntegrate(X) store<float> ;

$type X store<float> ;

$rule pointwise(cellIntegrate(X)<-(il,ir)->X) {

$cellIntegrate(X) = $ir->$X - $il->$X ;

}

What this rule represents is that for some arbitrary variable X, cellIntegrate can be computed
for a given variable, say R, by substituting X for R in the above rule. Thus once we have the
rule above we can compute the residual with the following rule:

// The 1d diffusion residue

$rule pointwise(R<-nu,cellIntegrate(ux),L) { $R = $nu*$cellIntegrate(ux)/$L ;}

Note, that once we have defined this integral, we can use it in other places which could be
described in terms of this form of definite integral. For example the length of a cell can actually
be represented as an integral of this form, thus we can also use the parametric rule to compute
L as follows:

// We find the length of an interval by integrating the position x

$rule pointwise(L<-cellIntegrate(x)) { $L = $cellIntegrate(x) ; }

Parametric rules behave somewhat like subroutines and share many of the same advantages.
One advantage is that because many related functions share the same implementation, it is
possible to replace one method of computation with another that is transparent to other parts
of the computations. In the same way, the use of the cellIntegrate parametric rule will
allow us to change fewer parts of the program to transform from a cell centric integration as
described earlier, to a face centric integration that uses local reductions. Note that parametric
rules are compatible with all types for rule specifications and can be used with unit and apply
rules. Thus, we can replace the earlier cellIntegrate formulation with the following set of rules
to eliminate the use of the il and ir mappings, as is demonstrated with the following code:

38

// A general function for integrating over a cell boundary

$rule unit(cellIntegrate(X)),constraint(geom_cells) {

$cellIntegrate(X) = 0 ;

}

$rule apply(cl->cellIntegrate(X)<-X)[Loci::Summation] {

join($cl->$cellIntegrate(X),$X) ;

}

$rule apply(cr->cellIntegrate(X)<-X)[Loci::Summation] {

join($cr->$cellIntegrate(X),-$X) ;

}

3.6.9 Iterations and Parametric Rules

It is reasonable to ask if we can build iterative algorithms using parametric rules. The answer is:
yes we can. For example, if we could build the explicit Euler time integration using parametric
rules, then we could employ this time integration method with other residual equations to
build various different types of solvers. Here, let us demonstrate how to build a parametric
explicit Euler solver to show how it is done. First we need to define what parameters are
needed to define the integration method. We select two parameters, the first is the function
to be integrated, and the second is the variable of integration. With such a specification we
would only need to query for EulerIntegrate(R,u) to perform the integration of the diffusion
equation described earlier. Now lets see how we accomplish this goal. First we will need to
define the types of the variables we will use:

$type EulerIntegrate(X,Y) store<float> ;

$type X store<float> ;

$type Y store<float> ;

$type Y_ic store<float> ;

Note the variable Y ic will be used for setting the initial conditions. We do that by defining
the build rule as follows:

// Initialize the iteration using the initial conditions

$rule pointwise(EulerIntegrate(X,Y){n=0}<-Y_ic) {

$EulerIntegrate(X,Y){n=0} = $Y_ic ;

}

Notice that here the special role that the underscore character plays in parametric rules. That
is a variable YY will not be substituted as it is different from Y. However, when the underscore
is present, the substitution occurs on each part between the underscore characters. Thus when
a rule asks for the variable EulerIntegrate(R,u) the above rule will instantiate the rule with
the signature

EulerIntegrate(R,u){n=0}<-u_ic

Thus, we have a mechanism for providing the initial conditions for a specific variable.

39

Now that we have initialized the iteration, we need to specify when to terminate the iteration.
This is accomplished in the same way as previously described, only now using parametric
variables instead:

// Collapse iteration when finished

$rule pointwise(EulerIntegrate(X,Y)<-EulerIntegrate(X,Y){n}),

conditional(eulerTimestepFinished{n}) {

$EulerIntegrate(X,Y) = $EulerIntegrate(X,Y){n} ;

}

// Condition for terminating the timestepping algorithm

$rule singleton(eulerTimestepFinished<-$n,max_iteration) {

$eulerTimestepFinished = ($$n >= $max_iteration) ;

}

We can now describe how to advance the integrated variable to the next time-step by creating
a parametric advance rule as that will input the function to be integrated, Y. This is performed
as follows:

// Advance the timestep to the next value

$rule pointwise(EulerIntegrate(X,Y){n+1}<-EulerIntegrate(X,Y){n},dt{n},X{n}) {

$EulerIntegrate(X,Y){n+1} = $EulerIntegrate(X,Y){n}+$dt{n}*$X{n} ;

}

However, we now have a problem: when we try to use this integrator with the rules we have
provided before, then the residual function will eventually need the variable “u”. However, in
this parametric form, the variable EulerIntegrate(R,u) is playing the same role. How do we
make u available in the iteration? Since this variable would be the output of the rule, the rule
wouldn’t be identified as a parametric rule by Loci so we have no way of specifying this step.
In this case, we have to explicitly inform Loci that we intend for the rule to be a parametric
rule using the parametric keyword as shown:

// Extract integration variable so that the residual function can use it

$rule pointwise(Y<-EulerIntegrate(X,Y)),parametric(EulerIntegrate(X,Y)) {

$Y = $EulerIntegrate(X,Y) ;

}

Now with this rule available, the time integration loop will create a variable u that can be used
by the residual function, R.

Now that we have the parametric rules defined, how do we use them to solve the heat equation
described earlier? We only need to specify two rules: 1) we need to define the initial conditions,
and 2) we need a rule that will instantiate EulerIntegrate(R,u), as shown here:

// Setup the initial conditions

$rule pointwise(u_ic<-xc) {

$u_ic = initialCondition($xc) ;

}

40

// Ask to solve the problem by using the Euler Integration on the function

// residual, integrating the variable u

$rule pointwise(solution<-EulerIntegrate(R,u)) {

$solution = $EulerIntegrate(R,u) ;

}

Now we can see how things get assembled by looking at the resulting schedule:

Iteration Loop{n} {

eulerTimestepFinished{n}<-$n{n},max_iteration{n} over sequence ([11,20])

if(eulerTimestepFinished{n}) {

EulerIntegrate(R,u)<-EulerIntegrate(R,u){n},CONDITIONAL(eulerTimestepFinished{n}) over

} // if(eulerTimestepFinished{n})

-------------- Exit of Loop{n}

if(eulerTimestepFinished{n}) break ;

cellIntegrate(ux){n}<-CONSTRAINT(geom_cells{n}) over sequence ([11,20])

u{n}<-EulerIntegrate(R,u){n} over sequence ([11,20])

ux{n}<-(cl{n},cr{n})->(u{n},xc{n}) over sequence ([1,9])

ux{n}<-cl{n}->(u{n},xc{n}),ub{n},x{n} over sequence ([10,10])

cr{n}->cellIntegrate(ux){n}<-ux{n} over sequence ([0,9])

cl{n}->cellIntegrate(ux){n}<-ux{n} over sequence ([1,10])

R{n}<-L{n},cellIntegrate(ux){n},nu{n} over sequence ([11,20])

EulerIntegrate(R,u){n+1}<-EulerIntegrate(R,u){n},R{n},dt{n} over sequence ([11,20])

} // {n}

solution<-EulerIntegrate(R,u) over sequence ([11,20])

Note, we have provided these advanced examples in the heat solver directory under the file
"heat2.loci".

41

42

Chapter 4

A Three Dimensional Solver

To get into some more practical applications of Loci, lets consider the development of a three di-
mensional implicit heat equation solver. For this example we will use the finite-volume module
that is included as part of the Loci framework that provides utilities for reading three dimen-
sional unstructured meshes, applying boundary conditions to these meshes, and facilities for
computing standard operators and integrations used in finite-volume discretizations. Before we
begin, lets state the problem that we wish to solve, namely the time dependent heat equation
in three dimensions which is given by the equation

∂

∂t
(ρe) = ∇ · (k∇T), (4.1)

where ρ is the material density, e is the heat energy, k is the material conductivity, and T is
the temperature. If we assume a constant heat capacity, cp, then temperature is given by the
equation T = e ∗ cp.

This is equation is solved using a finite-volume discretization by integrating the equation above
over each mesh cell (using the divergence theorem on the right-hand-side). Thus we can rewrite
this equation as

∫

Ωc

∂

∂t
(ρe) dV =

∫

∂Ωc

k∇T · dS, (4.2)

where Ωc represents the volume occupied by cell c, and ∂Ωc represents its respective surface.
We can then derive a second order finite-volume scheme by employing a midpoint numerical
integration to arrive at the discrete equation

Vc
d

dt
(ρe) =

∑

f∈faces

[Afk (∇Tf · ~nf)] . (4.3)

To arrive at a final scheme, we must select a method for integrating this equation in time.
For this example, we will employ an implicit backward Euler time integration method which is
written as

Vc
Qn+1 −Qn

∆t
= R(Qn+1), (4.4)

where Q = ρe and the residual function, R(Q), is given by

R =
∑

f∈faces

[Afk (∇Tf · ~nf)] . (4.5)

43

We can then linearize the equation by using Taylors theorem to arrive at

R(Qn+1) = R(Qn) +
∂R(Q)

∂Q
∆Q+O(∆t2), (4.6)

where ∆Q = Qn+1−Qn. Now we can now rearrange these equations to state an implicit scheme
for solving the heat equation as

[

Vc
∆t

I −
∂R(Q)

∂Q

]

∆Q = R(Q). (4.7)

Thus we can solve this problem by combining equation (4.7) and (4.5). Note that the term in
square brackets on the right of equation (4.7) is a matrix, and thus the overall equation forms
a linear system that must be solved to determine the change in Q, given by ∆Q.

Now we can begin to describe how to solve this equation using the Loci framework. First we
need to construct a fact database that contains a representation of the finite-volume mesh as
will be described in the following sections.

4.1 Using the Loci finite-volume module

Loci provides a finite-volume module that provides common facilities for building finite-volume
methods. The first step to using this module is to load the rules from the finite-volume module
into the rule database. This is accomplished with the following code:

rule_db rdb ; // Create the rule database

rdb.add_rules(global_rule_list) ; // Add any user defined rules ;

// Load in the finite-volume module called "fvm"

Loci::load_module("fvm",rdb) ;

The finite-volume module provides facilities for computing cell and face centroids, finding gradi-
ents, performing integrations, interpolating from cell to nodal values, and solving linear systems.
The types for these rules are defined in the Loci include file “FVM.lh” which can be included
using the Loci preprocessor by including the following line at the beginning of your .loci

program file:

$include "FVM.lh"

In addition to a collection of rules for performing finite volume computations, Loci provides
a function for reading in parallel a finite-volume mesh file and creating the appropriate data-
structures in the Loci fact database. Before reading in the grid, we read in the user defined
facts using the read vars method of the fact database. Once we have done this, we can read
in the mesh file with the function called Loci::setupFVMGrid which gets passed the filename
and the fact database. This subroutine will place the finite-volume data-structures into the
provided fact database. For example, we can read the mesh file heat.xdr with the following
code:

44

// First read in user defined facts

string varsFile = "heat.vars" ;

facts.read_vars(varsFile,rdb) ;

// Next read in the grid file

string file = "heat.xdr"

if(!Loci::setupFVMGrid(facts,file)) {

cerr << "unable to read grid file ’" << file << "’" << endl ;

Loci::Abort() ;

}

At this stage a set of facts have been installed in the fact database (facts) that describes
the unstructured finite-volume mesh. These facts are summarized in table 4.1 shown below.
These include the variable pos which contains the 3d vector positions of the nodes, the variable
face2node which contains the nodes in a right-hand-rule order that form the faces. The
variables cl and cr contain the cells to the left and right side of the face respectively as
is illustrated in figure 4.1. Note that the face2node map provides a very specific ordering.
Namely, when using the right-hand rule, the normal of the face points away from the left cell
and into the right cell. In addition, all boundary faces have a normal pointing out of the
boundary which means that the left cell is the cell next to the boundary and the right cell is a
“ghost” or fictitious cell which might be used to implement certain boundary conditions (such
as periodic boundaries). Another important aspect of the orientation of the face2node map
is that it relates to a coloring of the cells such that the left cell is a lower numbered “color”.
Thus, if one follows faces from left to right, it is impossible to end up back where one began.
This fact will be used in later sections when matrix assembly is required.

face2node

cr

cl

n

Figure 4.1: The face2node map and its relationship to neighboring cells

All boundary faces have a map variable called ref that refers to a common entity that represents
the boundary surface. The name of each boundary surface is provided in the the boundary name

fact. These two variables can be used to assign boundary conditions as will be described in
the following section. Finally the constraint geom cells is a set that contains all geometrically
defined (i.e. physical) cells in the grid, while the constraint cells contains all cells including
non-physical “ghost” cells created at the boundary.

45

Table 4.1: A Summary of Facts Describing the 3-D finite-volume mesh.

Fact Type Location Description

pos store<vector3d> nodes Node Positions
face2node multiMap faces Nodes that form a face
cl Map faces cell left of face
cr Map faces cell right of face
ref Map boundary faces map to referring category
boundary names store<string> boundary categories boundary category name
geom cells constraint physical cells set of actual cells
cells constraint cells cells including ghost cells

4.1.1 Setting boundary conditions

When developing solvers for unstructured grids, it is useful for the user to specify information
that will be associated with various boundary conditions. For example, in the heat solver we
may wish to provide an adiabatic and a specified temperature (Dirichlet) boundary condition.
This can be accomplished by using the boundary conditions variable in the vars file. This
variable will assign boundary conditions to the various boundary names. For example, the vars
file input

boundary_conditions: <

BC_1=adiabatic, BC_2=adiabatic, // opposing slice faces

BC_3=adiabatic, BC_4=adiabatic, // Two symmetry planes

BC_5=specified(Twall=300K), // inner surface

BC_6=specified(Twall=3000K) // outer surface

>

would specify that some of the boundary surfaces, namely those identified as BC 1, BC 2, BC 3,
and BC 4 will be have adiabatic boundary conditions, while two boundary surfaces, BC 5 and
BC 6 will be given specified temperatures. Loci provides the setupBoundaryConditions sub-
routine for parsing this vars file input to create constraints that can be used by Loci rules to
apply boundary conditions. This is created by calling the subroutine as follows:

setupBoundaryConditions(facts) ;

This routine parses the boundary conditions variable and sets up constraints with the name
of the assigned boundary condition with an appended “ BC”. Thus after this routine is called
the constraints adiabatic BC is created that contains all of the faces of BC 1 through BC 4,
while the constraint specified BC is created to contain all of the faces of BC 5 and BC 6. In
addition, a constraint is created called Twall BCoption that contains the surface entities

associated with BC 5 and BC 6. These constraints indicate that it will be safe to extract these
values from the options list that is created called BC options. Thus, we can extract the value
of Twall by using a rule such as the following:

46

// Extract Twall from boundary condition options

$rule pointwise(Twall<-BC_options),constraint(Twall_BCoption) {

$BC_options.getOptionUnits("Twall","kelvin",$Twall) ;

}

Once we have extracted the boundary option specified by the user, this value can then be used
to enforce the boundary condition. For example, if we wanted to set the face temperature,
temperature f, for the specified boundary conditions we would use the following:

// Temperature at wall set to specified condition

$rule pointwise(temperature_f<-ref->Twall),constraint(specified_BC) {

$temperature_f = $ref->$Twall ;

}

4.1.2 Creating matrix data-structures

Before we begin to make a query, we will need to setup the matrix data-structures that will be
used by the linear system solvers. We do that with the following call:

createLowerUpper(facts) ;

This subroutine call will install the multiMaps “upper” and “lower” into the fact database that
are created by transposing the “cl” and “cr” maps respectively. These two data-structures
represent the upper and lower triangular portions of the matrix as will be explained in the
matrix assembly section that follows. We would also mention that many utilities in the finite-
volume module make use of these maps, so it would be a good idea to make this call when you
plan on using the “fvm” module as we are in this example.

4.2 Computing the residual function

The first step in computing the residual function, R(Q) is to compute the integrated flux
through any given face. This is the term inside of the summation of equation (4.5). This
equation can easily be evaluated using the rules available through the “fvm” module which can
provide the areas, normal vectors, and gradients required. The variable area provides both the
normal vector ($area.n) and the magnitude ($area.sada - sada stands for square root of area
dot area). The gradient at a face is provided by the parametric variable (grads f(X), thus the
heat flux through a face (qdot) is computed using the following Loci rule:

// Compute the heat flux through faces

$rule pointwise(qdot<-conductivity,grads_f(temperature),area) {

$qdot = $area.sada*$conductivity*dot($grads_f(temperature),$area.n) ;

}

Note that this will compute fluxes at the face and boundaries. However, if we know the flux a
particular kind of boundary face (e.g. adiabatic walls) then we need to provide an alternative

47

computation. This can present a problem for Loci: if there are two ways to compute qdot,
which one is correct? Loci will generate an error about conflicting rules when such ties exist.
However, we can tell Loci how to resolve such a conflict by using a priority specifier in the
signature. For example, if we use adiabatic::qdot in the output of the signature, then Loci
will know that this form of qdot is a specialized form that is preferred over the general qdot.
Thus we can override the above rule for adiabatic boundaries, setting the flux identically to
zero here, using the rule:

// Handle Boundary Conditions

// Adiabatic Wall, qdot = 0, grad(temperature) = 0

$rule pointwise(adiabatic::qdot),constraint(adiabatic_BC) {

$qdot = 0 ;

}

Another note about priority specification. Priorities form a hierarchy so that a priority specifica-
tion overrides any rule without priority specification. And we can then override one priority with
another by adding additional names with “::” separators. For example, new::adiabatic::qdot
could be used to override adiabatic::qdot. However, specified::qdot would not override
adiabatic::qdot because both have the same priority level.

Note that we have computed the fluxes for each face, however the computation described in
equation (4.5) is a sum for each cell over all the faces of that given cell. However, we have
computed values located at the faces in the mesh, not the cells. How do we perform the cell
based sum? For this operation we use a local reduction to reduce the face values to sums over
cells. The basic idea is to visit all faces and sum the fluxes to their corresponding left and
right cells. As with all reductions in Loci, this operation starts with a unit rule that assigns
the initial value of the residual to the identity of our reduction operator. In this case, we will
use the summation operator, and so this identity is zero. So we begin the summation with the
following unit rule:

// Add up contributions from all faces, only define qresidual for geom_cells

$rule unit(qresidual),constraint(geom_cells) {

$qresidual = 0 ;

}

To complete the summation, we must now visit each cell and add its contribution to the left and
right sides. For each face we use the join method to add qdot to the left cell residual. Then
we do the same for the right side of faces. However, we note that since the face is oriented such
that the normal points into the right side, we must change the sign of qdot before adding into
the residual on this side. Also note that we could have used the += operator instead of using
join, however using join is preferred as it guarantees that we are using the selected operator
(in this case Loci::Summation). If you aren’t consistent in the use of operators with apply
rules, you may get inconsistent results, particularly when running in parallel.

// Add to left cell

$rule apply(cl->qresidual<-qdot)[Loci::Summation],

constraint(cl->geom_cells) {

join($cl->$qresidual,$qdot) ;

}

48

// Add to right cell, note sign change due to normal pointing into cell

$rule apply(cr->qresidual<-qdot)[Loci::Summation],

constraint(cr->geom_cells) {

join($cr->$qresidual,-$qdot) ;

}

Note that in order to compute the gradient of temperatures as is required in the first rule that
computes qdot, that we need to also provide values for temperatures at the boundary faces.
This is provided through the variable temperature f. Note, that in general if we want to find
the gradient of variable X, then the variable X f needs to also be defined at the boundary faces.
We derive the boundary temperature based on the boundary condition. For an adiabatic wall
we just use the cell temperature inside as the wall temperature. Since the temperature of the cell
next to the boundary is on the left side of the boundary face (all boundary faces have normals
pointing out of the domain), then we simply set the wall temperature to cl->temperature, as
we do in the following rule:

// Compute boundary temperatures

// adiabatic, dT/dx = 0, so copy temperature from cell to face

$rule pointwise(temperature_f<-cl->temperature),constraint(adiabatic_BC) {

$temperature_f = $cl->$temperature ;

}

For a temperature specified wall, we simply set the boundary face temperature to the user
specified value. We can get this value using the ref map, provided that a rule to extract this
from BC options has already been provided (see previous section on boundary conditions).
Thus for the specified temperature boundary condition, we compute the temperature with the
following rule:

// Temperature Specified Wall

$rule pointwise(temperature_f<-ref->Twall),constraint(specified_BC) {

$temperature_f = $ref->$Twall ;

}

We have now described how to compute the residual. Now we need to assemble the matrix
on the left-hand-side of equation (4.7) to complete the solver. This is described in the next
section.

4.3 Assembling the matrix

Before describing the assembly of the matrix, lets first begin with the computation of derivatives
of the face fluxes with respect to the variables at each side. However, to properly describe the
matrix, we will need to have some idea of how the gradient function is implemented. For
the purpose of assembling the Jacobian, we will use the following approximation of the flux
function, which will be a reasonable approximation for most grids of reasonable quality. Note

49

the flux function is expressed as

q̇ = Afk (∇Tf · ~nf) ≈ Afk

(

Tl − Tr

(~xl − ~xr) · ~nf

)

, (4.8)

where Tl, xl, Tr, and xr are the temperatures and cell centroids of the left and right side of the
face respectively. Given this, we can then determine the derivatives of this flux with respect to
the left and right conservative variable values. Thus we arrive at the following derivatives:

∂q̇

∂Ql

=
∂q̇

∂Tl

∂Tl

∂Ql

=
Afk

(~xl − ~xr) · ~nf

∂Tl

∂Ql

, (4.9)

and
∂q̇

∂Qr

=
∂q̇

∂Tr

∂Tr

∂Qr

= −
Afk

(~xl − ~xr) · ~nf

∂Tr

∂Qr

. (4.10)

These derivatives are easily implemented as Loci rules such as the following:

// Derivative of flux from left side

$rule pointwise(dqdotdQl<-conductivity,(cl,cr)->cellcenter,area,cl->dTdQ) {

real distance = dot($cl->$cellcenter-$cr->$cellcenter,$area.n) ;

$dqdotdQl = $area.sada*$conductivity*$cl->$dTdQ/distance ;

}

// Derivative of flux from right side

$rule pointwise(dqdotdQr<-conductivity,(cl,cr)->cellcenter,area,cr->dTdQ) {

real distance = dot($cl->$cellcenter-$cr->$cellcenter,$area.n) ;

$dqdotdQr = -$area.sada*$conductivity*$cr->$dTdQ/distance ;

}

Note, however, that these derivatives only apply at the interior faces where cellcenter exists
on both sides of the face. We need separate derivations for the derivatives of the flux at the
boundary faces. here we implement two obvious boundary conditions flux derivatives that
follow easily from the above formulations:

// derivatives of boundary flux for specified temperature wall

$rule pointwise(dqdotdQl<-conductivity,facecenter,cl->(cellcenter,dTdQ),area),

constraint(specified_BC) {

real distance = dot($cl->$cellcenter-$facecenter,$area.n) ;

$dqdotdQl = $area.sada*$conductivity*$cl->$dTdQ/distance ;

}

// derivative of boundary flux for adiabatic wall (zero)

$rule pointwise(dqdotdQl),constraint(adiabatic_BC) {

$dqdotdQl = 0 ;

}

Before describing how to assemble these derivatives into a system matrix, we should spend a
little more time describing data-structures that were created by the call to setupFVMGrid and

50

to createLowerUpper. While the topology of the face2node map has already been discussed, it
should be noted that the selection of the local face coordinates could be considered arbitrarily.
However, in the Loci finite-volume tools, we have a specific method of choosing this ordering:
specifically the faces are oriented so that the normals point from a lower equation number to a
higher equation number. This allows us to associate the matrix non-zero structure directly with
the mesh data-structure. Thus, when we invert the cr map we get a map that corresponds to
the lower triangular part of the system matrix, where the off-diagonal components are stored at
the faces. Similarly, the inverse of the cl map provides us with the upper triangular part of the
system matrix. We can now describe the system matrix using the left and right flux derivatives
located at the faces that form the L and U components of the system matrix, supplementing
this with a diagonal element, D, stored at the cells. This is illustrated in figure 4.2 which shows
the flux Jacobians from the left and right sides (denoted as fjp and fjm respectively) located
at the cells, and the D entries associated with the cell. Alternatively, one can look at figure
4.3 to get the matrix assembly view. Here we see that along a row the lower map can be used
to access the lower non-zero elements, while the corresponding cl map can be used to find the
corresponding equation with that non-zero entry. A similar procedure is used to describe the
upper matrix, only using the upper map and ⁀cr to accomplish the same goal. This provides us
with a convenient representation of the assembled matrix.

lower

upper

D

D

D

upper
D

D

upper

D D

D

lower
cl

cr cl

cr

cl

cr

cl

cr

crcl

crcl cr cl

cr cl

lower

upper

upper

upper

lower

fjp,fjm

D

fjp,fjm

fjp,fjm

fjp,fjm

crcl

cl

cr

crcl

cl

cr

lower

upper

Figure 4.2: Upper and lower maps viewed from the cell

4.3.1 And now the assembly

Now we can describe the procedure for assembling the linear system. First we provide the
overall linear system with a name that will be used to collect the different parts of the system.
For example, lets call this system the heat system of equations. Then we form the linear system
by creating the variables heat B for the right-hand-side, and heat L, heat U, and heat D for
the system matrix, A = L+D+U . First the creation of heat B is straightforward as it is just
the residual function. This is easily implemented as:

$rule pointwise(heat_B<-qresidual) {

$heat_B = $qresidual ;

}

51

D

D

fjm

fjp

D

D

D

cr
cl

fjm

fjp

fjm

fjp lower
cr

cr

cr

upper
cl

cl

lower

cl

Row

Column

cr
lower

cl
upper

cl

upper

cl fjm

upper

cr

fjp

cr

cl

lower
cr

upper
cl

upper
cl

cr cr

Figure 4.3: Matrix Data-Structure as used by the finite-volume module

52

The computation of the diagonal term is somewhat more complex. The diagonal term will
involve the derivatives of the fluxes (with appropriate sign changes to account for normal vector
orientation), plus the term that appears due to the time derivative. We perform this operation
with two steps. First we compute the sum of all diagonal contributions from the flux derivatives
using a local reduction similar to what was done for the residual evaluation. However, in this
case we have to select the derivative side so that it results in a diagonal contribution. This is
accomplished with the following code:

// To compute the diagonal term, we first must sum the diagonal

// contributions from the flux derivatives.

$type sumDiagonal store<real> ;

// Add up diagonal contributions from flux derivatives

$rule unit(sumDiagonal), constraint(geom_cells) {

$sumDiagonal = 0 ;

}

// Add contribution from face to left cells

// (e.g. d R(Ql,Qr)/d Ql goes to diagonal of the left cell)

$rule apply(cl->sumDiagonal<-dqdotdQl)[Loci::Summation],

constraint(cl->geom_cells) {

join($cl->$sumDiagonal,$dqdotdQl) ;

}

// Add contribution from face to right cells

// (e.g. d R(Ql,Qr)/d Qr goes to diagonal of the right cell)

// Note sign change due to normal pointing into the cell

$rule apply(cr->sumDiagonal<-dqdotdQr)[Loci::Summation],

constraint(cr->geom_cells) {

join($cr->$sumDiagonal,-$dqdotdQr) ;

}

We can now form the diagonal term of the matrix with the straightforward Loci pointwise rule:

$rule pointwise(heat_D<-sumDiagonal,deltaT,vol) {

$heat_D = $vol/$deltaT - $sumDiagonal ;

}

Note, that it would be tempting to put the term $vol/$deltaT into the unit rule of sumDiagonal
to save a rule implementation. However such an approach would be incorrect as Loci expects
the unit rule to initialize the variable to the identity of the reduction operator. Since this value
would not be the identity, some of the reasoning that Loci uses to prove programs, in particular
parallel programs, would be incorrect. Note, that it would be possible to combine this with the
reduction by having another apply rule add in the vol/deltaT term. However, this would be
provided by an additional apply rule, not the unit rule.

To finish the assembly of the linear system we need to describe the upper and lower triangular
portions of the matrix. Note that for the description of these terms we need to carefully consider
the signs of the resulting system. Recall that the system matrix subtracts the flux derivatives,

53

and we also need to take into consideration the sign changes due to normal vector compatibility
with the divergence theorem. Here is the logic: The lower portion of the matrix consists of
derivatives of fluxes that were summed into the current cell through it’s cr map with respect
to the cell Q on the left side of this face. Because this was summed with a change of sign due
to the normal pointing into the cell, and the subtraction in the system matrix, this term is
−(−(∂q̇

∂Ql

)). The upper off-diagonal terms, by similar argument, will be −(∂q̇
∂Qr

). The following
rules define the off-diagonal parts of the matrix and complete the assembly of the linear system.

// Compute matrix lower term from flux derivatives

// Note, we are subtracting del R/del Q in the matrix so there is an extra

// sign change here

$rule pointwise(heat_L<-dqdotdQl) {

$heat_L = $dqdotdQl;

}

// Compute matrix upper term from flux derivatives

$rule pointwise(heat_U<-dqdotdQr) {

$heat_U = -$dqdotdQr;

}

Now that we have formed the linear system, we can use a parametric rule from the “fvm”
module to use the PETSc toolkit to solve the linear system by using the following rule:

// Solve linear system described by heat_B, heat_D, heat_L, heat_U

$rule pointwise(deltaQ<-petscScalarSolve(heat)) {

$deltaQ = $petscScalarSolve(heat) ;

}

4.4 Performing the time integration

Now we have nearly all of the components in place to build the implicit time integration method.
The completion of this process follows the same lines as the explicit Euler integration provided
in the one-dimensional example. We begin this time-stepping method by building the first
iteration value for the conservative variable. This is accomplished using the following “build”
rule:

// Initial Conditions

$rule pointwise(Q{n=0}<-Density,Cp,T_initial) {

$Q{n=0} = $Density*$Cp*$T_initial ;

}

Now that we have Qn=0 defined, we can iterate by simply defining how to get from Qn to Qn+1.
This step is trivial using the deltaQ computed in the previous section. The “advance” rule
that does this is specified as:

54

// Advance the timestep using linear system solution

$rule pointwise(Q{n+1}<-Q{n},deltaQ{n}), constraint(geom_cells) {

$Q{n+1} = $Q{n}+ $deltaQ{n} ;

}

The specification so far gives us the ability to iterate forward in time, but provides no provisions
for terminating the iteration. We must provide the conditions of termination and a “collapse”
rule that tells Loci what to do in the event of termination. We compute the condition for ter-
mination by detecting when a user provided stop iteration has been reached with the following
rule:

// Determine when we will finish timestepping

$rule singleton(finishTimestep<-$n,stop_iter) {

$finishTimestep = ($$n > $stop_iter) ;

}

We can now specify how to collapse the iteration. In this case, we collapse to the variable
solution which is the generic query that we usually make for Loci applications. This query
plays the same sort of role as main in a C program in that it provides us a standard place to
start a Loci program. The collapse rule is simply implemented as described below:

// Collapse to solution when we are finished iterating

$rule pointwise(solution<-Q{n}),conditional(finishTimestep{n}),

constraint(geom_cells) {

$solution = $Q{n} ;

}

4.5 Closing the equations

At this stage, the solution to the time dependent heat equation is not quite in place. While we
have described how to compute deltaQ, the computation of this variable requires the computa-
tion of qdot, which in turn requires a definition for temperature. So far we have described how
the conservative variable Q = ρe evolves in time, but we have not related this to temperature.
We can do this by using the relationship that e = CpT , thus T = Q/(ρCp). We can use this
relationship to establish the temperature as a function of Q with the rule:

// Compute temperature from energy

$rule pointwise(temperature<-Q,Density,Cp), constraint(geom_cells) {

$temperature = $Q/($Density*$Cp) ;

}

In addition to the temperature, we also needed the transformational derivative ∂T
∂Q

in order to
compute the system matrix. This is provided by the following rule:

55

// Compute transformation derivative from temperature to Q

$rule singleton(dTdQ<-Density,Cp) {

$dTdQ = 1./($Cp*$Density) ;

}

At this point, we will be able to solve the three-dimensional heat equation in a form that is
automatically parallelizable.

4.6 Creating plot files

So far we have developed a solver, but even though the solution is time-dependent, we only
get to see the final “solution” that is placed in the fact database, when we would like to view
the time evolution of the solution. Loci provides a facility whereby rules can be executed as
the time-stepping algorithm proceeds. We can do this by creating a variable that computes a
special variable called OUTPUT. The variable OUTPUT is a special variable that is automatically
requested in all iteration loops. If the variables that are input to the rule are being evaluated
in the iteration, then this rule will be executed. For example, suppose that we wish to display
the steady residual each time-step, then we could implement a rule such as:

$rule singleton(OUTPUT<-L2Norm(qresidual),$n),

option(disable_threading) {

$[Once] { // output only from one thread/processor

cout << "R" << $$n << ": " << $L2Norm(qresidual) << endl ;

}

}

Lets note several important artifacts about this rule. First note that the signature indicates that
the result of the computation is a variable called OUTPUT which indicates that the main purpose
of this rule will be to have some effect on the outside world. The rule is inputing the variable
L2Norm(qresidual) which results in the computation of the volume integrated L2-norm of the
steady state residual, qresidual. The rule also inputs the current time-step $n so that it can
report it along with the residual output. Also note the conditional on Loci::MPI rank equal
to zero. This conditional statement is there to prevent multiple outputs from each processor
when running in parallel. Also note the use of the option disable threading. This option
tells Loci that this rule is sensitive to the order that computations occur, and to make sure not
to do any optimizations that would cause the computation to be called multiple times.

Now we can see how to print simple output to the screen, but how do we get a chance to make
a plot of the simulated temperature field? We can perform a similar operation by using Loci’s
built in facility to read/write containers (in parallel or serial) to a portable HDF5 file. An
example of such a rule follows:

56

$rule pointwise(OUTPUT<-cell2node(temperature),$n,plot_modulo),

constraint(pos),conditional(doPlot), option(disable_threading),

prelude {

int iter = *$$n % *$plot_modulo ;

ostringstream oss ;

string varname = "temperature" ;

oss << "output/" << varname << "_hdf5." << iter ;

string filename = oss.str() ;

$[Once] {

cout << "writing file " << filename << endl ;

}

// Create an hdf5 file

hid_t file_id = Loci::hdf5CreateFile(filename.c_str(),H5F_ACC_TRUNC,

H5P_DEFAULT,H5P_DEFAULT) ;

// Write the values of the nodal temperatures into the file

Loci::writeContainer(file_id,varname,$cell2node(temperature).Rep()) ;

// Close the hdf5 file

Loci::hdf5CloseFile(file_id) ;

} ;

In this rule we output the special variable OUTPUT which indicates that this rule will be executed
if the inputs are being computed in the given iteration. The rule inputs the parametric variable
cell2node(temperature) which will interpolate from the cell values of temperature and the
boundary face values temperature f. We constrain the rule to apply to all entities that have
a value for pos (which are the nodes in the mesh), and we add the option disable threading

which makes sure that all processors will act on this rule in a synchronized and indivisible man-
ner. An important thing to note is the existence of the prelude keyword is indicating that we
are describing activities that operate on the containers (usually as a prelude to computations),
rather than the values contained within the containers. We need this keyword because we are
about to write the containers to a file. In the prelude, when we access a particular variable, we
are not accessing the contents, but rather the container itself. Thus, to access the value of the
parameter plot modulo we use the * operator (e.g. *$plot modulo. In this particular case,
we write the file out into the “output” directory with a name that is compatible with using
the “extract” post processing utility. We write the container out using the writeContainer

function, and note that we use the .Rep() method to get the abstract representation of the
container to pass to this routine. Finally, note that we have placed a conditional execution ar-
gument on this rule (conditional execution statements can be placed on collapse rules that end
iterations or rules that output the variable OUTPUT). This conditional statement is to allow us
to only occasionally write out this file. We provide a separate rule to compute the conditional
variable (doPlot) as implemented below:

57

// Compute when we want to make plot files

$type doPlot param<bool> ;

$rule singleton(doPlot<-$n,plot_freq) {

$doPlot = (($$n % $plot_freq) == 0) ;

}

4.7 Running the solver

The heat solver described can be used to solve the heat equation on general unstructured grids,
and can exploit massively parallel distributed memory clusters. The source code to a complete
heat solver is provided in the heat directory of the tutorial. A test grid and vars file has been
included in the directory for your experimentation. To run the example case use the command

mpirun -np 1 ./heat test

Note you can also look at the schedule that is generated by Loci using the --scheduleoutput
option. The –nochomp option disables the chomping optimization which may make the schedule
easier to understand. For example to see the schedule generated by Loci run

mpirun -np 1 ./heat --scheduleoutput --nochomp test

The heat solver will dump plot files into the output subdirectory. A post-processing tool called
extract can be used to convert these files into a format that can be visualized by various
visualization packages including ensight, fieldview, and tecplot. For example to see the results
of the simulation after 10 iterations using ensight, one enters the command:

extract -en test 10 temperature

This creates a directory ensight test that contains an ensight case file for visualization of the
solution results. The argument temperature tells extract that you want to extract the nodal
plot variable temperature that is stored in the output directory. Use extract -help for
more information.

58

Chapter 5

Using storeVec and storeMat

Loci provides facilities for having vectors and matricies that have a size that is not known
until the program executes. This facility would be used, for example, when the number of
chemical species is not known until specified by the user, or other applications where the size
of inforation stored at each entity could be specified by user input. For these applications we
have the containers storeVec and storeMat. These containers have a method setVecSize()

that must be called before values are written to the container. Generally this method will be
required for pointwise and unit rules that are responsible for creating storeVec or storeMat
containers. Below is an example of a rule that computes a storeVec:

$type Ivec storeVec<double> ;

$type numBands param<int> ;

$type Omegas param<vector<double> > ;

$rule pointwise(Ivec{n=0}<-numBands,Omegas),constraint(geom_cells),

prelude {

$Ivec{n=0}.setVecSize(*$numBands*(*$Omegas).size()) ;

} compute {

$Ivec{n=0} = mk_Scalar(0) ;

}

Note that this code includes a prelude block and a compute block. The prelude block operates
on the containers and is executed before the compute block. The compute block describes, like
most Loci rules, what to do for each entity that satisfies the rule signature. In other words, the
compute block operates on values, while the prelude block operates on the containers.

The storeVec container creates array of values for each entity. In general you can assign or
use the +=, -=, =, or /= operators with these arrays. The mk Scalar() function in the above
code converts a scalar value to a vector with the same scalar value repeated for each entity.
These operators facilitate a straightforward approach to operating on arrays and matricies.
However, it is also perfectly acceptable to operate on the individual vector entries using the
array operator, ([]), such as demonstrated with a rewrite of the above rule shown below:

59

// An equivalent variation of the above code

$rule pointwise(Ivec{n=0}<-numBands,Omegas),constraint(geom_cells),

prelude {

$Ivec{n=0}.setVecSize(*$numBands*(*$Omegas).size()) ;

} compute {

const int vs = $numBands*$Omegas.size() ;

for(int i=0;i<vs;++i) // Loop over vector and set each entry to zero

$Ivec{n=0}[i] = 0 ;

}

60

Chapter 6

Debugging Hints

Debugging techniques for Loci programming is both similar to and different from standard
programming methods. First you can use debuggers such as gdb on Loci programs, although you
may want to edit the Makefile to include a line to enable the debugging option and recompile.
The line you will add is given as:

COPT = -g

In addition, after Loci::Initialize() you can call the function set fpe abort() which will
cause floating point exceptions to abort the program. In addition, for parallel programs, you
can get Loci to automatically create terminal windows with debuggers running on any processes
that aborted if you call the program with the following options:

heat --display $DISPLAY --debug gdb test

In Loci programs, you frequently need to understand why a rule isn’t being included in a
schedule, or why a schedule is not being formed. There are several techniques that are useful
for figuring out what is going on in the Loci schedule. Probably the most useful file in this
regard is the files dumped into the debug/ directory. These files contain descriptions of rules
that were removed from the schedule with an explanation of why (e.g. what information was
missing that made it impossible to execute that rule). This is often very useful in determining
what is going on. In addition, it is usually helpful to examine the schedule files created when
using the option --scheduleoutput. Usually this is more useful when combined with the
--nochomp option that disables some optimizations that may make the schedule hard to read.
Usually inspections of the schedule are targeted in that we are looking for a particular rule,
when it is executed and over what entities.

In addition to the above techniques, there are several ways that we can use the Loci scheduler
to help identify problems. The first is to use constraints. If a rule is being used in a schedule,
but not over the entities expected, it can be useful to temporarily add a constraint to force the
rule to be executed over a particular set of entitites. For example, if a value should be available
for all faces, adding constraint(area) will force Loci to tell you what variables kept the rule
from satisfying the constraint. However, in general it is a good idea to use constraints in a

61

limited fashion, as in the end a constraint limits the way in which a rule might be used. So,
once the debugging is finished it is a good idea to remove any unnecessary constraints.

Another approach is to add dummy rules to shortcut part of the computations. For example, in
the heat solver if we are wondering why the advance rule isn’t being called, we could add rules
that we know can be scheduled to fill in part of the code. For example, we could shortcircuit
the deltaQ computation with the rule:

$rule pointwise(deltaQ<-Q) {

// Dummy rule to check for schedule consistency

}

If Loci is able to generate a reasonable schedule, you can then change the inputs to the rule
to discover where the computations were having trouble. For example changing the rule to the
following would check to see that we were able to derive the variable heat B:

$rule pointwise(deltaQ<-heat_B) {

// Dummy rule to check for schedule consistency

}

62

Appendix A

Makefile Example

Compiling Loci programs is easy if you copy the make file from the heat example directory in
the tutorial and adapt it to your application. All that is needed is to edit LOCI BASE to point
to the directory where Loci is installed, let OBJS point to a list of the object files that will
be compiled into your final executable. Finally, use the TARGET variable to set the executable
name. The makefile is given as a reference on the following page.

63

This is the Loci base directory.

LOCI_BASE ?= /Users/lush/Work/Loci/OBJ

List your object files here

OBJS = main.o residual.o matrix.o euler.o varFileInputs.o plot.o

List the name of your compiled program here

TARGET = heat

###

No changes needed below this line

include $(LOCI_BASE)/Loci.conf

default:

$(MAKE) $(TARGET)

$(TARGET): $(OBJS)

$(LD) -o $(TARGET) $(OBJS) $(LOCAL_LIBS) $(LIBS) $(LDFLAGS)

clean:

rm -fr $(OBJS) $(TARGET)

Junk files that are created while editing and running cases

JUNK = $(wildcard *~) $(wildcard crash_dump.*) core debug output $(wildcard .schedule*)

".cc" files created from .loci files

LOCI_INTERMEDIATE_FILES = $(subst .loci,.cc, $(wildcard *.loci))

distclean:

rm -fr $(OBJS) $(TARGET) $(JUNK) $(LOCI_INTERMEDIATE_FILES) $(DEPEND_FILES)

DEPEND_FILES=$(subst .o,.d,$(OBJS))

#include automatically generated dependencies

-include $(DEPEND_FILES)

64

Appendix B

The fvm Module Services

B.1 Grid Metrics

cellcenter Cell Centroid
vol Cell Volume
facecenter Face Centroid
area Face Area and Normal
grid vol Total Grid Volume

B.2 Spatial Gradients

grads(X) Scalar Gradient at Cell
gradv(X) Vector (array) Gradient at Cell
gradv3d(X) 3-D Vector Gradient at Cell
grads f(X) Scalar Gradient at Face
gradv f(X) Vector (array) Gradient at Face
gradv3d f(X) 3-D Vector Gradient at Face

B.3 Face Extrapolations

lefts(X) Scalar Extrapolation to Face Left Side
rights(X) Scalar Extrapolation to Face Right Side
leftsP(X,M) Bounded Scalar Extrapolation to Face Left Side
rightsP(X,M) Bounded Scalar Extrapolation to Face Right Side
leftvM(X) Mixture Extrapolation to Face Left Side
rightvM(X) Mixture Extrapolation to Face Right Side
leftv3d(X) 3-D vector Extrapolation to Face Left Side
rightv3d(X) 3-D vector Extrapolation to Face Right Side

65

B.4 Nodal Interpolations

cell2node(X) interpolate scalar to mesh nodes
cell2node v(X) interpolate vector to mesh nodes
cell2node v3d(X) interpolate 3-D vector to mesh nodes
cell2nodeMax(X) mesh nodes get maximum neighbor value
cell2nodeMin(X) mesh nodes get minimum neighbor value
cell2nodeMaxMag(X) mesh nodes get maximum magnitude neighbor value
cell2nodeMaxv3d(X) Maximum neighboring 3d value

B.5 Linear System Solvers

petscScalarSolve(X) solve linear system one dof per cell
petscBlockedSolve(X) solve linear system with many dof per cell (double input)
petscBlockedSSolve(X) solve linear system with many dof per cell (float input)

B.6 Basic Norms

L1Norm(X) Volume Integrated L1-norm
L2Norm(X) Volume Integrated L2-norm
LinfNorm(X) Infinity Norm

66

Appendix C

Datatypes

C.1 Introduction

For the purpose of I/O and communication, datatypes can be considered as abstract representa-
tions of the state of an object. Usually this is represented by the memory locations where data
is stored. In the Loci framework, we gave to specify how to save and restore the state of new ob-
ject types explicitly to facilitate interprocessor communication in heterogeneous environments
or portable file I/O. This information is provided to Loci using the traits mechanism.

In Loci, the datatype information is encapsulated in data schema traits template class. A
user will need to provide a specialized template for his/her own datatypes before they can be
used with Loci containers such as store.

C.2 Classification of Datatypes

Datatypes could be classified according to the their relationship between computer memory
representation and data which they hold. The basic distinction depends on the way C++
stores the object in memory. If the object is represented in a continuous segment of memory
with a fixed layout, then then the memory layout is consistent with the schemas used to send
messages or write data to files. If, instead the objects data is scattered through memory or
has a size that is determined at run time, then the object must be serialized before it can be
sent as a message or placed in file storage. An object whose memory layout is compatible with
the contiguous memory schema uses an IDENTITY SCHEMA CONVERTER for serialization. Other
objects must also specify a schema converter. The specifics of this will be specified in the below
examples:

typedef struct My_Type_t {

int iScalar;

float fScalar;

char cScalar;

double dScalar;

67

} My_Type1;

typedef struct My_Type_t {

int iScalar;

float fScalar;:

char cScalar;

double *dScalar;

} My_Type2;

For My Type1 C/C++ guarantees that the members of a structure are stored in contiguous
memory locations with some padding, so the bitwise copy of My Type1 will pack the data
correctly, whereas for My Type2 the address of dScalar and not the data will be copied. In the
first case, the memory schema and the file schema is handled by an Identity Function called
the IDENTITY SCHEMA CONVERTER

In the second case, we need to explicitly convert between memory schema and the file schema
by specifying USER DEFINED CONVERTER.

It should be mentioned here, that pointers are not the only source of difference between these
two datatype. STL container like vector, list, queues, maps and virtual classes, all would need
user to serialize the state they contains, therefore, they also fall under the category of user
defined converter type.

C.3 Predefined Datatypes in Loci

Loci provides some of the frequently used datatypes so that user need not write for them-
selves.These are

1. Atomic Datatype As the name implies, these datatypes are indivisible types. These
type are supported by all machines. These are building blocks for all other datatypes.
All native C/C++ datatypes are atomic datatypes in Loci. The following table provides
all the atomic datatypes support by the Loci.

Loci Datatype Native C++ Datatype

BOOL bool
CHAR signed char
UNSIGNED CHAR unsigned char
SHORT short
UNSIGNED SHORT unsigned short
INT int
UNSIGNED unsigned
LONG long
UNSIGNED LONG unsigned long
FLOAT float
DOUBLE double

2. Array class Loci, provides template version of constant size array

68

template <class T, unsigned int n>

class Array {

public:

.

.

private:

T x[n];

};

3. Vector class Loci, has 2D/3D vesions of vector class(mathematical vectors)

template<T>

struct vector3d {

T x,y,z ;

}

template<T>

struct vector2d {

T x,y ;

}

4. STL containers parameterized by types using the IDENTITY SCHEMA CONVERTER

All standard STL containers with predefined identity schema types are supported.

(a) vector

(b) list

(c) queue

(d) set

(e) map

C.4 Creating your own compound datatypes

Loci, uses data schema traits template class to determine the datatype of an object. The
generic behavior of template class is not suitable for identifying or creating new datatype, so
we use template Specialization technique to customize or create new datatypes . This
data schema traits class has one static member function get type() in which user specifies
the information about new datatype. A general skeleton for creating new datatype look as
follows

namespace Loci {

// Skelton for datatype having identity schema

template <>

struct data_schema_traits <My_New_Type1 > {

typedef IDENTITY_CONVERTER Schema_Converter;

static DatatypeP get_type() {

CompoundDatatypeP cmpd = CompoundFactory(My_New_Type1());

69

LOCI_INSERT_TYPE(cmpd, My_New_Type1, member);

.

.

return DatatypeP(cmpd);

}

};

}

Where CompoundFactory is one of the software design pattern for creating a new compound
datatype object. Since the allocation of this object is done inside the functions, the question
will always arise, who is responsible for deleting the object ? To destroy the objects when
they are not needed, we use reference counting and the CompoundDatatypeP class stands for
Reference Counting version of CompoundDatatype class.

If your C/C++ structures contains members of predefined Loci datatypes, then it is fairly easy
to create corresponding Loci datatype. For example

typedef struct My_Compound_Type_t {

float fScalar;

vector3d<double> vect3d;

Array<double,2> array1d;

Array<Array<double,2>,4> array2d;

} My_Compound_Type;

namespace Loci {

template <> struct data_schema_traits <My_Compound_Type > {

typedef IDENTITY_CONVERTER Schema_Converter;

static DatatypeP get_type() {

CompoundDatatypeP cmpd = CompoundFactory(My_Compound_Type());

LOCI_INSERT_TYPE(cmpd, My_Compound_Type, fScalar);

LOCI_INSERT_TYPE(cmpd, My_Compound_Type, vect3d);

LOCI_INSERT_TYPE(cmpd, My_Compound_Type, array1d);

LOCI_INSERT_TYPE(cmpd, My_Compound_Type, array2d);

return DatatypeP(cmpd);

}

};

}

C.5 Creating User Defined Datatype

As explained earlier, whenever the memory allocation in any object is not contiguous, it is the
users responsibility to serialize the data contained in the objects. The skeleton of user defined
schema type will look as follows

// Skelton for datatype having user defined schema

template <>

struct data_schema_traits <My_New_Type2 > {

70

typedef USER_DEFINED_CONVERTER Schema_Converter;

typedef char Converter_Base_Type;

typedef MyObject_SchemaConverter Converter_Type;

};

Note : Converter Base Type could be any datatype with identity schema

Following steps must be taken in order to define your own datatype for Loci

1. Specialize the data schema traits class

• Specialize data schema traits template class with your class

• declare in data schema traits class

typedef USER DEFINED CONVERTER Schema Converter

• specify what datatype will be used in conversion. This should be datatype with
identity schema defined which means, that we can use any valid Loci atomic or
compound datatype.

• specify the class which has the responsibility of conversion (Serialize class)

2. Specifying Serialize class

• Specify object reference in the constructor.

• getSize() member function returns the number of atomic datatypes used in this
object.(It is not the size of the object in bytes)

• getState() member function gets the state of an object into a contiguous buffer.

• setState() member function sets the state of an object from a contiguous buffer.

3. Overload input/output stream functions. Both atomic and compound datatypes have
already been overloaded with input/output streams in Loci.It is required that these

function are overloaded even if the a user doesn’t have intention of using

them.

Now we shall give one simple example to show how things work. We define one structure with
STL list inside it. Since list may not have contiguous memory, we define it is defined with user
defined schema

namespace Loci {

///

// This is an example of conventional C/C++ structure

///

struct My_Type {

list<int> alist;

friend ostream& operator << (ostream &, const My_Type &);

friend istream& operator >> (istream &, My_Type &);

};

71

//--/

class My_Type_SchemaConverter; // Forward Declaration of class

//--/

// Specialize the data_schema_traits class with "My_Type" class

//--/

template <>

struct data_schema_traits<My_Type> {

// This class has user defined schema

typedef USER_DEFINED_CONVERTER Schema_Converter ;

// Since list contains "int" we use it directly for our converion

typedef int Converter_Base_Type ;

// Here we specify the class used for serialization/deserialization

// purpose

typedef My_Type_SchemaConverter Converter_Type ;

};

//--/

// Define a class which has the responsibity of serialization and deserialization

// of "My_Type" class

//--/

class My_Type_SchemaConverter {

// For the schema converter, we always store a reference to the object

// we are converting schmata for.

My_Type &RefObj ;

public:

explicit My_Type_SchemaConverter(My_Type &new_obj): RefObj(new_obj) {}

//

// This member function returns number of elements of type defined

// in Converter_Base_Type. It is not the size in bytes.

//

int getSize() const {

return RefObj.alist.size() ;

}

// Get the state of an object "RefObj" into an array and also size of

// array. This is a serialization step.

void getState(int *buf, int &size) {

size = getSize() ;

int ii=0;

list<int> :: const_iterator ci;

list<int> :: const_iterator begin = RefObj.alist.begin();

list<int> :: const_iterator end = RefObj.alist.end();

for(ci = begin; ci != end; ++ci)

buf[ii++] = *ci;

}

72

//

// From a given array, construct the object. This is "Deserialization Step"

//

void setState(int *buf, int size) {

RefObj.alist.clear();

list<int> :: iterator ci;

for(int i=0;i<size;++i)

RefObj.alist.push_back(buf[i]);

}

};

}

//--/

C.6 Inner Details about Compound Datatype

Compound datatypes are similar to structures in C/C++. These datatypes are a collection of
heterogeneous atomic or fixed sized array datatypes. Every member of these datatype has a
unique name within the datatype and they occupy non-overlapping memory locations.

In Loci, this datatype is declared in CompoundType class. The corresponding counted pointer
class is CompoundDatatypeP.

A new member can be inserted into the new datatype in either way

• Using member function of CompoundType class

insert(member name, offsetof(type, member-designator), member datatype);

where offsetof is a standard C/C++ function which provides offset of any member
(designated by member-designator) in C/C++ structure (designated by type). mem-

ber datatype could be any valid Loci datatype.

• Using predefined macro

LOCI INSERT TYPE(compound object, compound class, insert member);

where compound object is the compound datatype for compound class and insert member

is the required member of compound class which is inserted into new datatype.

In order to use the macro insert member must be a first class object and and its own type
should be identified by data schema traits class.

In the following sections we shall gives some examples of creating different Loci datatypes.

C.6.1 Creating compound datatype with only atomic datatypes

The following is a very simple C/C++ structure, which contains only native datatypes. For
this structure, we would like to create Loci datatype, which is also described below.

73

typedef struct My_Compound_Type_t {

int iScalar;

float fScalar;

char cScalar;

double dScalar;

} My_Compound_Type;

// data_scheme_traits should be defined in Loci namespace

namespace Loci {

// Specialize the class with the new class

template <>

struct data_schema_traits <My_Compound_Type > {

// Specify that ideneity Schema will be used for this class

typedef IDENTITY_CONVERTER Schema_Converter;

// define the member function

static DatatypeP get_type() {

// Create a new product "cmpd" from the factory pattern

CompoundDatatypeP cmpd = CompoundFactory(My_Compound_Type());

// Insert a new member into the new compound datatype

LOCI_INSERT_TYPE(cmpd, My_Compound_Type, iScalar);

LOCI_INSERT_TYPE(cmpd, My_Compound_Type, fScalar);

LOCI_INSERT_TYPE(cmpd, My_Compound_Type, cScalar);

LOCI_INSERT_TYPE(cmpd, My_Compound_Type, dScalar);

// return pointer to the base class

return DatatypeP(cmpd);

}

};

}

C.6.2 Creating compound datatype with arrays

In the following example, we have inserted a two dimensional array into the structure and define
corresponding Loci datatype.

namespace Loci {

typedef struct My_Compound_Type_t {

int iScalar;

float fScalar;

double dScalar;

Array<double,10> dArray1D;

Array<Array<double,3>,5> dArray2D;

} My_Compound_Type;

template<>

struct data_schema_traits<My_Compound_Type> {

typedef IDENTITY_CONVERTER Schema_Converter ;

74

static DatatypeP get_type() {

CompoundDatatypeP ct = CompoundFactory(My_Compound_Type()) ;

LOCI_INSERT_TYPE(ct,My_Compound_Type, iScalar) ;

LOCI_INSERT_TYPE(ct,My_Compound_Type, fScalar) ;

LOCI_INSERT_TYPE(ct,My_Compound_Type, dScalar) ;

LOCI_INSERT_TYPE(ct,My_Compound_Type, dArray1D) ;

LOCI_INSERT_TYPE(ct,My_Compound_Type, dArray2D) ;

return DatatypeP(ct) ;

}

} ;

}

C.6.3 Creating compound datatype with nested compound datatypes

In this example, we would demonstrate that any member with valid datatype could be inserted
into compound datatype in an hierarchal fashion. There is no restriction on number of levels
used to define a datatype.

namespace Loci {

struct Velocity {

Array<double,3> comp;

};

// Define traits for "Velocity" structure

template <>

struct data_schema_traits<Velocity> {

typedef IDENTITY_CONVERTER Schema_Converter ;

static DatatypeP get_type() {

Velocity v;

return getLociType(v.comp);

}

};

// A structure contains another structure

struct CellAttrib {

int local_id;

double density;

double pressure;

Velocity vel;

};

// Define traits for "CellAttrib" class. Notice that "vel" is a structure

// and since its type is already defined, we can insert it similar to other

// members.

template <>

struct data_schema_traits<CellAttrib> {

typedef IDENTITY_CONVERTER Schema_Converter ;

static DatatypeP get_type() {

CompoundDatatypeP cmpd = CompoundFactory(CellAttrib());

LOCI_INSERT_TYPE(cmpd, CellAttrib, local_id);

75

LOCI_INSERT_TYPE(cmpd, CellAttrib, density);

LOCI_INSERT_TYPE(cmpd, CellAttrib, pressure);

LOCI_INSERT_TYPE(cmpd, CellAttrib, vel);

return DatatypeP(cmpd);

}

};

}

C.7 Array Datatype

Array datatype consists of homogeneous collection of both compound and atomic datatypes.
We can defined array datatypes for standard C/C++ arrays. In order to create array datatype,
a user need to provide

• the rank of the array, i.e. number of dimensions

Note At present, Loci can support arrays with maximum rank of 4. This limitation comes

from HDF5 library. If the user wants higher ranked arrays, using Array class is one

solution

• the size of each dimension

• the datatype of each element of the array

In Loci, this datatype is declared in ArrayType class. The corresponding counted pointer class
is ArrayDatatypeP.

• Create 1 D dimensional array datatype

dims[0]= 100;

ArrayType atype(Loci::DOUBLE, 1, dims);

• Create 2 D dimensional array datatype

dims[0] = 10;

dims[1] = 20;

ArrayType atype(Loci::DOUBLE, 2, dims);

• Create 3 D dimensional array datatype

dims[0] = 10;

dims[1] = 20;

dims[2] = 30;

ArrayType atype(Loci::DOUBLE, 3, dims);

• Create 4 D dimensional array datatype

76

dims[0] = 10;

dims[1] = 20;

dims[2] = 30;

dims[3] = 40;

ArrayType atype(Loci::DOUBLE, 4, dims);

For example

typedef struct My_Compound_Type_t {

int iScalar;

float fScalar;

char cScalar;

double dScalar[10][5][2];

}My_Compound_Type;

This datatype has multidimensional array, which is not first class objects. We can use ArrayDatatype
to specify the Loci Datatype as

int rank = 3;

int dim[] = {10, 5, 2};

int sz = 100*sizeof(double);

My_Compound_Type type;

CompoundDatatypeP cmpd = CompoundFactory(My_Compound_Type());

DatatypeP atom = getLociType(type.dScalar[0][0][0]);

ArrayDatatypeP array_t = ArrayFactory(atom, sz, rank, dim);

cmpd->insert("dScalar", offsetof(My_Compound_Type, dScalar), DatatypeP(array_t));

This is definitely cumbersome, Instead of using array in this way, if we had used

typedef Array < double, 10 > Array1D;

typedef Array < Array1D, 5 > Array2D;

typedef Array < Array2D, 2 > Array3D;

typedef struct My_Compound_Type_t {

int iScalar;

float fScalar;

char cScalar;

Array3D dScalar;

} My_Compound_Type;

then we can use LOCI INSERT TYPE macro to insert dScalar into new compound datatype.

77

