
A Tutorial for Loci

Edward Luke

May 31, 2019

What is Loci?

Loci was originally developed in 1999 as part of National
Science Foundation funding supporting the development of
advanced multidisciplinary simulation software.
Loci is a sophisticated auto-parallelizing framework that
simplifies the task of constructing complex simulation
software.
Loci is free software available under the Lesser GNU
Public License.
The Loci paradigm is domain specific but powerful and able
to capture a wide range of numerical application software.

Discrete
Model

S
ta

b
ility

 a
n
d

 N
o
n
lin

ea
rity

C
o
n
stra

in
 C

o
u
p
lin

g

Implementation Fortran
C

C++

MPI
OpenMP

MatLab

Coupling through perfomance requirements

M
ore A

bstract
M
ore C

oncrete

PDE ODE
Statistical/Conditional Probabilities

Integro-DifferentialContinuous
Models

Finite
Volum

e

Finite
Elem

ent

Finite
D

ifference

D
iscontinuous

G
alerkin

M
onte

C
arlo

Fluctuation
Splitting

M
eshless

Sm
ooth Particle

H
ydrodynam

ics

?Discrete
Model
Tranform

L(u) = 0

gradient based:
Newton, Taylors Expansion...

non-gradient based:
Picard Iteration, ...

stochastic based:
Monte Carlo, Baysian, ...

NonLinear
Solver

Loci
Papers

Formalisms

NotesHigh Level
Description

Parallelism
Streaming Computation

Bandwidth LimitationsHardware
Architecture

Loci and C++

The Loci framework is built using the C++ language.
A preprocessor (lpp) translates Loci code into the native
C++ code
Generally users of Loci only need to know a small amount
of C++ to be effective
It is possible to interface to external applications and
subroutines such as Fortran, however this is an advanced
topic and there can be many limitations particularly when
executing in parallel

What is a declarative programming model?

Most traditional programming models are imperative, that
is they are implicitly a list directions that will be performed
in a specified order (e.g. How to solve a problem)
Declarative programming models work by declaring
properties of objects without specifying a recipe for
solution. (e.g. focusing on describing the components that
will solve the problem, but not how they will be used)
In the declarative approach the assembly of components to
solve the problem (the how) is determined by the
application of logical inferences from the component
specification.
Getting used to thinking about problems in a declarative
way is the main learning curve for Loci programming.

Declarative Programming in Loci

Mesh Topology

Mesh Topology

Input:
Mesh and Problem Description

User Input:
Find Goal: solution

Rule Database

Fact Database

schedule

Solution

Compute Flux

Terminate

 Mesh Positions

Compute Volume

Compute Flux

Compose Jacobian

Solve Matrix

 Mesh Positions

Compute Volume

Compose Jacobian

Solve Matrix

Loci programming preliminaries

Most Loci programs will include “Loci.h”
All Loci programs will need to be initialized and finalized
When using MPI, calls to MPI initialization/finalization are
not needed

Loci Initialization Code

#include <Loci.h>

int main(int argc, char *argv[]) {
// Initialize Loci
Loci::Init(&argc, &argv) ;

// ...
// Loci Program
// ...

// Call finalize for Loci clean up.
Loci::Finalize() ;
return 0 ;

}

Entities, Sets, and Sequences

Entities are an important concept in Loci
Entities are what gives an object an identity in Loci
All entities have a unique identifier and can be used to see
which object we are addressing
Groups of entities can be represented efficiently as a set
called an entitySet

A group of consecutively numbered entities can be
represented in a compact form as an interval

A ordered sequence of entities is called a sequence

Entity Sets

entitySet stores sets in a compressed form as a sorted
sequence of non-overlapping intervals
Thus the set A = 1,2,3,5,6,7,8,9,10,100 will be
represented in an entitySet as
([1,3],[5,10],[100,100]).
The UNIVERSAL set which includes all possible entities is
represented with the special notation ([#,#]).
The EMPTY set is represented as ()
Set operations supported are Union (+), Intersection (&),
Difference (-), Complement (˜) (show EXAMPLE)

Loci Containers

Loci provides methods for associating values with entities
or associating entities with other entities.
The data types that perform this association are called
containers.
Four main types of containers types include store,
parameter, map, and constraint

parameter
relates many indices
to a single value

store
relates indices
to values

A 11 A 1n

constraint
specifies a subset
of indices

index map
relates indices
to indices

n mA

Container Themes

store<T> : associates value type T with entities
storeVec<T>: associates n value types
T with entities
multiStore<T>: associates variable number of types
with entities
Map: associates 1 entity per entity
mapVec<n>: associates n entities per entity
multiMap : associates variable number of entities per
entity

Container Examples

// We create a store of floats
store<float> x ;
// We create a store of std::vectors
store<std::vector<float> > particles ;
// allocate stores x and particles
entitySet alloc_set = interval(1,100) ;
x.allocate(alloc_set) ;
particles.allocate(alloc_set) ;
// initialize the container to the value zero
for(int i=0;i<101;++i) {
x[i] = 0 ;
particles[i].push_back(0) ;

}

Parameter Example

param<real> Twall ; // Create wall temperature
Twall = 300 ;
// Constraint Twall to only apply to
// boundary entities (as given)
entitySet wallBoundary = interval(1000,1500) ;
Twall.set_entitySet(wallBoundary) ;

Constraint Example

// set inflow constraint
constraint inflow ;

*inflow = entitySet(interval(1,3)) ;
constraint viscous ;

*viscous = EMPTY ; // default not set
if(mu_set) // if viscous set to

*viscous = ˜EMPTY ; // UNIVERSE

The Fact Database

The fact database is a repository for containers in the Loci
Framework
The fact database is used to define the initial facts that
define the problem setup
It is defined by the fact db data type in Loci
Containers are added to the fact db using the
create fact member function
Containers can be retrieved from the fact db using the
get fact member function.
The fact database does a “shallow copy” of the containers.
E.g. the reference to the container (called a storeRep) is
what is actually stored.

What Are Rules?

Rules are ways to express how one set of facts can be
transformed into another set of facts
Rules come in several forms:

default Default rules are used to define parameters that
can be redefined in the vars file (text version of the fact
database)
optional Optional rules tell Loci about the type of data
that may be placed in the vars file. Since they do not have a
default value their existence implies entry in the vars file.
pointwise A point by point application entity by entity
singleton Used to perform computations on the single
values of parameters
unit and apply are used to form reductions

The Rule Database

In Loci rules are used to define transformations from on set
of values to another.
Users develop applications in Loci by defining
transformation rules (Much more on this later!)
The rule database is used to create combined sets of rules
that you wish to use to solve your problem.
When rules are created in Loci they are automatically
added to a list of rules to be processed. This list is called
the global rule list.
Rules can be added to the rule database by using the
add rules member function. Typically this will look like
rdb.add rules(global rule list) ;

The Query

In Loci applications are developed through making queries
to the fact database using a prescribed set of rules.
The application that is created as a result of the query
depends on the data provide in the fact database (also
called the extensive facts), the provided transformations,
and the query.
The schedule is generated through a process of
generating derived facts (intensive facts)
A schedule is generated by using the makeQuery call:

// Query for intensive fact ’temperature’
if(!Loci::makeQuery(rdb,facts,"temperature"))
cerr << "query failed!" << endl ;

Loci Helper Classes

Loci provides helper classes that can simplify program
development
Helper classes include:

Array<T,n>
Provides proper semantics for arrays suitable for storing in
Loci containers. Do not put C++ arrays in containers!
vector3d<T>
Provides operators for addition, scalar multiplication, dot
and cross products
vector2d<T>
Provides operators for addition, scalar multiplication, dot
and cross products

(Go through example)

The options list class

For many solvers inputs may be complex and hierarchical.
The options list class is provided to help standardize
the input of this sort of data.
It is used in most Loci solvers for inputting boundary
condition data.
The general form is a list of assignments of values to
named terms called options.
In general the value assigned to a name may be a real
number, a real number with units, a double, a string, a
name, a list, or a function.
Lists or functions may be viewed as a nested options list
making the input method very powerful.

options list member functions

optionExists: Returns a true value of the provided
name is in the list of attributes
getOptionNameList: Returns a list of attributes that
have definitions
getOptionValueType: Returns the type of the data that
was assigned to the attribute. This may be REAL, NAME,
FUNCTION, LIST, STRING, BOOLEAN, or UNIT VALUE.
getOption: Returns the value associated with the
attribute. The second argument is the returned value and
may be the types bool, double, string, or
options list::arg list.
getOptionUnits: This returns a double value in the
requested units.

A Simple Example: 1-D diffusion

Consider the finite volume method solution to this simple one
dimensional diffusion equation:

ut = νuxx , x ∈ (0,1), t > 0,
u(x ,0) = f (x), x ∈ [0,1],

ux (0, t) = g(t), where g(0) = fx (0), and
u(1, t) = h(t), where h(0) = f (1).

Finite Volume Discretization

Divide the interval [0,1] into N − 1 cells by defining N
nodes such that x = {(i , xi)|i ∈ [0, · · · ,N], xi = i/N}
Cells are defined by their interfaces to the left and right:

il = {(c, l)|c ∈ [N + 1, · · · ,2N], l = c − N − 1},
ir = {(c, r)|c ∈ [N + 1, · · · ,2N], r = c − N}.

x 2 x N-1 x = 1Nx = 00 x 1 x N-2x i x i+1

x , x0[1] x , x1[2]] x ,xN-1[N]x ,xN-2[N-1x , xc-N-1[c-N]
c = N+1 c = N+2 c = i+N+1 c = 2N-1 c = 2N

Indirection Operators

To implement the finite volume scheme we will need to be
able to access values at interfaces, this will be done
through composition
For example, to access the left and right nodes of a given
cell we could compose the interface maps with the x
coordinates with the composition operator:

il → x = {(c, xl)|(c, l) ∈ il , (l , xl) ∈ x}.

Using this operator we can now define other attributes that
will be needed to perform numerical integration such as the
cell center:

xc = (ir → x + il → x)/2.

Numerical Integration

Using a midpoint rule to numerically integrated in space
and a first order explicit Euler integration for time, the
numerical solution to the 1-D diffusion equation can be
written as:

R(u) = ν
ir → ux − il → ux

L

un+1 = un + ∆tR(un)

Summary of Definitions for Diffusion Problem

fact meaning
ν given diffusion constant
f (x) given initial condition
g(t) given left bc
h(t) given right bc
∆t given time-step
x {(i , xi)|i ∈ [0, · · · ,N], xi = i/N}
il {(c, l)|c ∈ [N + 1, · · · ,2N], l = c − N − 1}
ir {(c, r)|c ∈ [N + 1, · · · ,2N], r = c − N}
cl {(i , l)|i ∈ [1, · · · ,N], l = i + N}
cr {(i , r)|i ∈ [0, · · · ,N − 1], r = i + N + 1}

Summary of Transformation Rules

Rule Rule Signature Equation
Rule 1 xc ← (ir , il)→ x (3.8)
Rule 2 L← (ir , il)→ x (3.11)
Rule 3 ux ← (cr , cl)→ (u, xc) (3.13)
Rule 4 ux ← h, t , constraint{dom(cl) ∧ ¬dom(cr)} (3.14)
Rule 5 ux ← g, t , constraint{dom(cr) ∧ ¬dom(cl)} (3.15)
Rule 6 R ← ν,L, (ir , il)→ ux (3.16)
Rule 7 un+1 ← un,Rn,∆t (3.17)
Rule 8 un=0 ← f , xc , constraint{(il , ir)→ x} (3.19)

Setting up the fact database

First we create the maps and install them in the fact
database (this is the 1-D mesh)
Go through example online
Then we can setup default parameters as a Loci program:

// How many nodes
$type N param<int> ;
// diffusion coefficient
$type nu param<float> ;

$rule default(N) { $N=50 ;}
$rule default(nu) { $nu = 1.0 ;}

Writing the Rules

Most of the rules translate directly into Loci rules:

// Rule 1: compute the cell center from
// node positions
$rule pointwise(xc<-(il,ir)->x) {
$xc = .5*($il->$x + $ir->$x) ;

}
// Neuman boundary condition at left boundary,
// ux = h(t)
$rule pointwise(ux<-h), constraint(left_boundary) {
$ux = $h ;

}

Temporal Integration

The temporal iteration is then specified

// Rule 7: initialization of iteration (build rule)
$rule pointwise(u{n=0}<-xc) {
$u{n=0} = f($xc) ;

}

// Rule 8: time advance using explicit Euler time
// integration algorithm
$rule pointwise(u{n+1}<-u{n},dt{n},R{n}) {
$u{n+1} = $u{n}+$dt{n}*$R{n} ;

}

Terminating The Iteration

$rule pointwise(solution<-u{n}),
conditional(simulation_finished{n}) {

$solution = $u{n} ;
}
$type max_iteration param<int> ;
$type simulation_finished param<bool> ;

// When is iteration is complete?
$rule singleton(simulation_finished<-

$n,max_iteration) {
$simulation_finished = ($$n >= $max_iteration) ;

}

Reduction Rules

store

f(x)

f(x)

f(x)

f(x)

parameter

store

f(x)

f(x)

f(x)

f(x)

storeindex map

Global Reduction: Many-to-One

Local Reduction: Many-to-Many

Components of a reduction

An operator that is associative (and commutative)
A part that initializes values to the identity of the operator
(the unit)
A part the produces values that will be combined using the
operator (the apply)

Stable Timestep Using Global Reductions

$type dt param<float> ; // simulation timestep

$rule unit(dt), constraint(UNIVERSE) {
// largest allowble timestep
$dt = std::numeric_limits<float>::max() ;

}

$rule apply(dt<-L,nu)[Loci::Minimum] {
// Stable timestep
float local_dt = $L*$L/(2.*$nu) ;
// combine local with global
join($dt,local_dt) ;

}

Some Pitfalls

$rule apply(sum<-terms)[Loci::Summation] {
// Error! Result depends on order of sum!
if($sum < 1)

join($sum,$terms) ;
}
$rule apply(sum<-terms)[Loci::Summation] {

// OK, result is independent of summing order
if($terms < 1)
join($sum,$terms) ;

}

More Pitfalls

$rule unit(sum), constraint(UNIVERSE){
// Error, not identity of summation!
$sum = 1.0 ;

}
$rule apply(sum<-terms)[Loci::Summation] {

join($sum,$terms) ;
}

Going to the Implementation

After assembling the rules and facts we can see what kind
of application Loci assembles
Loci provides options that allow you to inspect what it has
done. To see what type of program it will generate enter:
./heat --scheduleoutput --nochomp

Loci will also perform different operations depending on
what you query. The default query is “solution” but we can
also get other schedules by querying other variables:
./heat --scheduleoutput --nochomp -q dt

Run and Inspect Example Code

Loci Reduction Alternative

$rule pointwise(xc<-(il,ir)->x) { $xc = .5*($il->$x + $ir->$x) ; }

Convert to use cl and cr maps instead:

$rule unit(xc), constraint(geom_cells) { $xc = 0 ; }
$rule apply(cl->xc <- x)[Loci::Summation] { join($cl->$xc,.5*$x) ; }
$rule apply(cr->xc <- x)[Loci::Summation] { join($cr->$xc,.5*$x) ; }

Note: We cannot combine two apply rules into:

$rule apply((cl,cr)->xc <- x)[Loci::Summation]
{ join($cl->$xc,.5*$x) ;

join($cr->$xc,.5*$x) }

Parametric Rules

$type cellIntegrate(X) store<float> ;
$type X store<float> ;
$rule pointwise(cellIntegrate(X)<-(il,ir)->X) {

$cellIntegrate(X) = $ir->$X - $il->$X ;
}

// The 1d diffusion residue
$rule pointwise(R<-nu,cellIntegrate(ux),L)

{ $R = $nu*$cellIntegrate(ux)/$L ;}
// We find the length of an interval by integrating the position x
$rule pointwise(L<-cellIntegrate(x)) { $L = $cellIntegrate(x) ; }

Parametric unit/apply rules

// A general function for integrating over a cell boundary
$rule unit(cellIntegrate(X)),constraint(geom_cells) {

$cellIntegrate(X) = 0 ;
}
$rule apply(cl->cellIntegrate(X)<-X)[Loci::Summation] {

join($cl->$cellIntegrate(X),$X) ;
}
$rule apply(cr->cellIntegrate(X)<-X)[Loci::Summation] {

join($cr->$cellIntegrate(X),-$X) ;
}

Parametric Time Iteration

// X is the residual, Y is the independent variable
$type EulerIntegrate(X,Y) store<float> ;
$type X store<float> ;
$type Y store<float> ;
$type Y_ic store<float> ;
// Initialize the iteration using the initial conditions
$rule pointwise(EulerIntegrate(X,Y){n=0}<-Y_ic)
{ $EulerIntegrate(X,Y){n=0} = $Y_ic ; }

// Collapse iteration when finished
$rule pointwise(EulerIntegrate(X,Y)<-EulerIntegrate(X,Y){n}),

conditional(eulerTimestepFinished{n}) {
$EulerIntegrate(X,Y) = $EulerIntegrate(X,Y){n} ;

}
// Condition for terminating the timestepping algorithm
$rule singleton(eulerTimestepFinished<-$n,max_iteration)

{ $eulerTimestepFinished = ($$n >= $max_iteration) ; }

Parametric Time Iteration

// Advance the timestep to the next value
$rule pointwise(EulerIntegrate(X,Y){n+1}<-

EulerIntegrate(X,Y){n},dt{n},X{n}) {
$EulerIntegrate(X,Y){n+1} = $EulerIntegrate(X,Y){n}+$dt{n}*$X{n} ;

}

// Extract independent variableb for residual function
$rule pointwise(Y<-EulerIntegrate(X,Y)),

parametric(EulerIntegrate(X,Y)) {
$Y = $EulerIntegrate(X,Y) ;

}

Note the use of the parametric keyword in last rule!

Euler Integration

// Setup the initial conditions
$rule pointwise(u_ic<-xc) {

$u_ic = initialCondition($xc) ;
}

// Ask to solve the problem by using the Euler Integration
// on the function residual, integrating the variable u
$rule pointwise(solution<-EulerIntegrate(R,u)) {

$solution = $EulerIntegrate(R,u) ;
}

Schedule

Iteration Loop{n} {
eulerTimestepFinished{n}<-$n{n},max_iteration{n} over sequence ([11,20])
if(eulerTimestepFinished{n}) {

EulerIntegrate(R,u)<-EulerIntegrate(R,u){n},CONDITIONAL(eulerTimestepFinished{n}) over sequence ([11,20])
} // if(eulerTimestepFinished{n})

-------------- Exit of Loop{n}
if(eulerTimestepFinished{n}) break ;

cellIntegrate(ux){n}<-CONSTRAINT(geom_cells{n}) over sequence ([11,20])
u{n}<-EulerIntegrate(R,u){n} over sequence ([11,20])
ux{n}<-(cl{n},cr{n})->(u{n},xc{n}) over sequence ([1,9])
ux{n}<-cl{n}->(u{n},xc{n}),ub{n},x{n} over sequence ([10,10])
cr{n}->cellIntegrate(ux){n}<-ux{n} over sequence ([0,9])
cl{n}->cellIntegrate(ux){n}<-ux{n} over sequence ([1,10])
R{n}<-L{n},cellIntegrate(ux){n},nu{n} over sequence ([11,20])
EulerIntegrate(R,u){n+1}<-EulerIntegrate(R,u){n},R{n},dt{n} over sequence ([11,20])

} // {n}
solution<-EulerIntegrate(R,u) over sequence ([11,20])

A Three Dimensional Solver

Next example is an implicit three dimensional heat solver
Solves the equation ∂

∂t (ρe) = ∇ · (k∇T)

Using standard FVM methods this becomes the discrete
equation:

Vc
Qn+1 −Qn

∆t
= R(Qn+1),

R =
∑

f∈faces

[
Af k

(
∇Tf · ~nf

)]
.

The Implicit Formulation

The residual can be linearized using Taylor’s theorem:

R(Qn+1) = R(Qn) +
∂R(Q)

∂Q
∆Q + O(∆t2),

which can then be used to form the following implicit form:[
Vc

∆t
I − ∂R(Q)

∂Q

]
∆Q = R(Q).

For this example we will be using the FVM facilities
provided for Loci including mesh readers and a module of
operators such as gradients.

Provided Data Structures

Fact Type Location Description

pos store<vector3d> nodes Node Positions
face2node multiMap faces Nodes that form a face
cl Map faces cell left of face
cr Map faces cell right of face
ref Map boundary faces map to referring category
boundary names store<string> boundary categories boundary category name
geom cells constraint physical cells set of actual cells
cells constraint cells cells including ghost cells

face2node

cr

cl

n

database setup

rule_db rdb ; // Create the rule database
rdb.add_rules(global_rule_list) ; // Add any user defined rules ;
// Load in the finite-volume module called "fvm"
Loci::load_module("fvm",rdb) ;

// First read in user defined facts
string varsFile = "heat.vars" ;
facts.read_vars(varsFile,rdb) ;

// Next read in the grid file
string file = "heat.xdr"
if(!Loci::setupFVMGrid(facts,file)) {

cerr << "unable to read grid file ’" << file << "’" << endl ;
Loci::Abort() ;

}
// Deconstruct boundary_conditions variable
setupBoundaryConditions(facts) ;
// Setup Matrix
createLowerUpper(facts) ;

Matrix Setup

D

D

fjm

fjp

D

D

D

crcl

fjm

fjp

fjm

fjp lower
cr

cr

cr

upper
cl

cl

lower

cl

Row

Column

cr
lower

cl
upper

cl

upper

cl fjm

upper

cr

fjp

cr

cl

lower
cr

upper
cl

upper
cl

cr cr

Matrix Cell View

lower

upper

D

D

D

upperD

D

upper

D D

D

lower
cl

cr cl

cr

cl

cr

cl

cr

crcl

crcl cr cl

cr cl

lower

upper

upper

upper

lower

fjp,fjm

D

fjp,fjm

fjp,fjm

fjp,fjm

crcl

cl

cr

crcl

cl

cr

lower

upper

Boundary Condition Rule Setup

// Extract Twall from boundary condition options
$rule pointwise(Twall<-BC_options),constraint(Twall_BCoption) {

$BC_options.getOptionUnits("Twall","kelvin",$Twall) ;
}
// Temperature at wall set to specified condition
$rule pointwise(temperature_f<-ref->Twall),constraint(specified_BC) {

$temperature_f = $ref->$Twall ;
}
// Handle Boundary Conditions
// Adiabatic Wall, qdot = 0, grad(temperature) = 0
$rule pointwise(adiabatic::qdot),constraint(adiabatic_BC) {

$qdot = 0 ;
}

Residual Evaluation

// Compute the heat flux through faces
$rule pointwise(qdot<-conductivity,grads_f(temperature),area) {

$qdot = $area.sada*$conductivity*dot($grads_f(temperature),$area.n) ;
}
// Add up contributions from all faces, only define qresidual
$rule unit(qresidual),constraint(geom_cells) {

$qresidual = 0 ;
}
// Add to left cell
$rule apply(cl->qresidual<-qdot)[Loci::Summation],

constraint(cl->geom_cells) {
join($cl->$qresidual,$qdot) ;

}

// Add to right cell, note sign change due to normal pointing to cell
$rule apply(cr->qresidual<-qdot)[Loci::Summation],

constraint(cr->geom_cells) {
join($cr->$qresidual,-$qdot) ;

}

Residual Evaluation: Missing Part

// Compute boundary temperatures for gradients
// adiabatic, dT/dx = 0, so copy temperature from cell to face
$rule pointwise(temperature_f<-cl->temperature),

constraint(adiabatic_BC) {
$temperature_f = $cl->$temperature ;

}

// Temperature Specified Wall
$rule pointwise(temperature_f<-ref->Twall),constraint(specified_BC) {

$temperature_f = $ref->$Twall ;
}

Matrix Preliminaries, derivatives

∂q̇

∂Ql
=

∂q̇

∂Tl

∂Tl

∂Ql
=

Af k

(~xl −~xr) ·~nf

∂Tl

∂Ql
,

and
∂q̇

∂Qr
=

∂q̇

∂Tr

∂Tr

∂Qr
= −

Af k

(~xl −~xr) ·~nf

∂Tr

∂Qr
.

// Derivative of flux from left side
$rule pointwise(dqdotdQl<-conductivity,(cl,cr)->cellcenter,area,cl->dTdQ) {

real distance = dot($cl->$cellcenter-$cr->$cellcenter,$area.n) ;
$dqdotdQl = $area.sada*$conductivity*$cl->$dTdQ/distance ;

}

// Derivative of flux from right side
$rule pointwise(dqdotdQr<-conductivity,(cl,cr)->cellcenter,area,cr->dTdQ) {

real distance = dot($cl->$cellcenter-$cr->$cellcenter,$area.n) ;
$dqdotdQr = -$area.sada*$conductivity*$cr->$dTdQ/distance ;

}

Matrix Assembly

// To compute the diagonal term, we first must sum the diagonal
// contributions from the flux derivatives.
$type sumDiagonal store<real> ;

// Add up diagonal contributions from flux derivatives
$rule unit(sumDiagonal), constraint(geom_cells) { $sumDiagonal = 0 ;}

// Add contribution from face to left cells
// (e.g. d R(Ql,Qr)/d Ql goes to diagonal of the left cell)
$rule apply(cl->sumDiagonal<-dqdotdQl)[Loci::Summation],

constraint(cl->geom_cells) {
join($cl->$sumDiagonal,$dqdotdQl) ;

}

// Add contribution from face to right cells
// (e.g. d R(Ql,Qr)/d Qr goes to diagonal of the right cell)
// Note sign change due to normal pointing into the cell
$rule apply(cr->sumDiagonal<-dqdotdQr)[Loci::Summation],

constraint(cr->geom_cells) {
join($cr->$sumDiagonal,-$dqdotdQr) ;

}
$rule pointwise(heat_D<-sumDiagonal,deltaT,vol) {

$heat_D = $vol/$deltaT - $sumDiagonal ;
}

Matrix Assembly

$rule pointwise(heat_B<-qresidual) {
$heat_B = $qresidual ;

}
// Compute matrix lower term from flux derivatives
// Note, we are subtracting del R/del Q in the matrix so there is an
// extra sign change here
$rule pointwise(heat_L<-dqdotdQl) {

$heat_L = $dqdotdQl;
}

// Compute matrix upper term from flux derivatives
$rule pointwise(heat_U<-dqdotdQr) {

$heat_U = -$dqdotdQr;
}

// Solve linear system described by heat_B, heat_D, heat_L, heat_U
$rule pointwise(deltaQ<-petscScalarSolve(heat)) {

$deltaQ = $petscScalarSolve(heat) ;
}

Time Integration

// Initial Conditions
$rule pointwise(Q{n=0}<-Density,Cp,T_initial) {

$Q{n=0} = $Density*$Cp*$T_initial ;
}
// Advance the timestep using linear system solution
$rule pointwise(Q{n+1}<-Q{n},deltaQ{n}), constraint(geom_cells) {

$Q{n+1} = $Q{n}+ $deltaQ{n} ;
}
// Determine when we will finish timestepping
$rule singleton(finishTimestep<-$n,stop_iter) {

$finishTimestep = ($$n > $stop_iter) ;
}
// Collapse to solution when we are finished iterating
$rule pointwise(solution<-Q{n}),conditional(finishTimestep{n}),

constraint(geom_cells) {
$solution = $Q{n} ;

}

Closing the Equations

// Compute temperature from energy
$rule pointwise(temperature<-Q,Density,Cp), constraint(geom_cells) {

$temperature = $Q/($Density*$Cp) ;
}
// Compute transformation derivative from temperature to Q
$rule singleton(dTdQ<-Density,Cp) {

$dTdQ = 1./($Cp*$Density) ;
}

Running the case

Run the case!

